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Abstract 

 
Hamilton (1989) proposed the regime-switching model to explain the different behaviors 
of mean and volatility for returns at different states of the stock market cycle. However, 
there are often abnormal jumps when the unanticipated information reaches the market 
such as during the periods of the internet bubble or the subprime crisis. Therefore, this 
study incorporates the regime-switching model with jump risks to model the behavior of 
stock returns in financial markets. We find that Dow Jones Industrial Average (DJIA) 
and S&P 500 suitable for the regime-switching model with jump risks based upon LR 
test from 1999 to 2010 using expectation-maximization (EM) algorithm and 
supplemented expectation-maximization (SEM) algorithm. In addition, both the 
regime-switching model and regime-switching model with jump risks can address the 
leptokurtic feature of the asset return distribution, volatility smile, and the volatility 
clustering phenomenon. Consequently, we develop the European option formula under 
stock market cycle with Poisson jump risks by capturing the stock market cycle and 
jump risks in the underlying assets. Finally, we offer some sensitivity analysis for the 
option pricing formula for a European call option.■■ 
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OPTION PRICING UNDER STOCK MARKET CYCLES WITH JUMP 

RISKS IN DOW JONES INDUSTRIAL AVERAGE INDEX AND S&P 

500 INDEX 

INTRODUCTION 

The normality of economic behavior sometimes is disrupted by dramatic events. To 

capture the time-series behavior with business cycles, Hamilton (1989) pioneers in 

modeling changes in regime with a Markov chain process (also termed “Markov 

switching model”). Since the introduction of Markov switching models in the 

mainstream econometrics, it has received considerable attention from financial 

time-series analysis. There is a class of studies devoting to the forecasting of stock 

return, volatility, and the equity premium using Markov switching models. 

Among these studies, Turner et al. (1989) is the earliest example of applying 

Markov- switching technique in describing the behavior of stock returns. They develop a 

two-regime Markov switching model whose transition probabilities remain constant. 

The main advantage of their model is to improve the accuracy of the stock return 

forecast under heteroscedasticity. Hamilton and Susmel (1994) distinguish a high-, 

median-, and low-volatility regime in stock return data, with the high-volatility regime 

being associated with economic recessions. A similar conclusion that volatilities are 

much higher in a bear market is also reached by Maheu and McCurdy (2000). Kim 

(2004) develops a stock return model with Markov switching volatility feedback effect 

to empirically test the positive relation between the equity premium and stock market 

volatilities. Extending the setting of regime-switching volatility, Kim et al. (2005) 

further examine the structural break in equity premium based on Bayesian margin 

likelihood analysis. More recently, Chen (2007) investigates the asymmetric effects of 
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monetary policy on stock returns using Markov switching models. Note that above 

models all are based on an assumption that the dynamics of variables are continuous 

under a given regime. In brief, those studies ignore the discrete effects in describing the 

behavior of economic variables. To display the significance of such an effect, we take 

Dow Jones Industrial Average Index (hereafter DJIA) as an example. Figure 1 plots the 

index (Panel A) and daily returns (Panel B) of DJIA from Jan. 3, 1995 to Jan. 15, 2010. 

[Insert Figure 1 here] 

The data of sudden shocks in DJIA daily returns are given in Table I. Weak, median, 

and strong shocks are defined when the daily observation is over or below the level of 

single, double, and triple standard deviation of those computed by the full period. From 

Panel A of Figure 1, we observe that the index continued to grow during the period 

1995-2000 due to the U.S. “new economy” effect, while in the second half of 2000, 

economy faced the burst of Internet bubbles. The expansion from 2003 to mid-2007 is 

attributed to the effect of oil-shock-based inflation. Global subprime mortgage crisis, 

however, appeared in 2008, and thus its aftermath prompts the depression. Such an 

undulating pattern for the index path is the so-called “stock market cycle” which can be 

captured well by existing models. 

[Insert Table I here] 

Compared to Panel B, it is notable that fluctuations in the daily returns are fiercer 

visibly, especially at the time where abnormal events occur (e.g., subprime mortgage 

crisis). The numbers shown in Table I give a clearer insight to the sudden shocks. For 

example, the ratio of strong-shock observation to total is 1.5048%, which approximates 

the likelihood of a strong sudden shock. Further, the means and variances of returns 

under shocks are also lower and higher respectively relative to those computed by full 
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sample. These facts suggest that, as abnormal events strike the market, the index returns 

behave highly volatile within a short time period (e.g., 1 day). Such dynamic is 

obviously not in line with the assumption that time-series variables act continuously. 

Hence, the family of existing Markov switching models cannot explicitly capture the 

impacts of sudden shocks. 

In 1976, Merton proposes the original type of jump-diffusion models.1 He assumes 

that total changes in the assets prices can be divided into a normal variation part and an 

abnormal variation part. The former is modeled as a standard geometric Brownian 

motion with a fixed variance capturing continuous fluctuations in the prices because of 

strategic trading by informed or liquidity traders and the market microstructure effects; 

while the latter is modeled as a counting process that reflects discrete effects due to 

unanticipated information released to the public. To capture the sudden shock under 

switching regimes, this paper combines Markov regime-switching processes with jump 

risks, and jumps risk in the model are assumed to obey a Poisson process with a constant 

jump rate for the jump frequency and to follow a normal distribution for the jump sizes.  

In this paper, we develop a estimating and testing methodology by the 

Expectation-Maximization (hereafter EM) algorithm (see Dempster et al., 1977), rather 

than the traditional maximum likelihood estimator for hidden states. The employment of 

the EM algorithm over MLE overcomes the problems of missing data and slow 

convergence (see Hamilton, 1990). Likelihood ratio test is also used in this study to 

compare the fitting performance of a standard-type regime-switching model with ours. 

The data we collected consists of Dow Jones Industrial Average Index and S&P 500 

                                                 
1 There has been a vast amount of work on applying the jump-diffusion model in several dimensions. For 
example, option pricing (Kou, 2002; Kou and Wang, 2004; Hilliard and Schwartz, 2005; Duan et al., 2006; Ahn 
et al., 2007; and Feng and Linetsky, 2008;), financing structure (Dao and Jeanblanc, 2006; and Chen and Kou, 
2009;), time-series analysis (Becker, 1981; Ball and Torous, 1985; Akgiray and Booth, 1988; Jorion, 1988; 
Bates, 1996; Pan, 2002; Eraker, 2004; Jiang and Oomen, 2007, and Lin, Wang and Tsai, 2009;), and term 
structure of interest rate and credit spreads (Ahn and Thompson, 1988; Duffie and Pan, 2001; Zhou, 2001; Das, 
2002; Glasserman and Kou, 2003; Johannes, 2004; Guan et al., 2005;and Wang and Lin, 2010 ). 
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Index. Using the data, we test if the Markov switching model with jump risks fits better 

than regime-switching model. Based on the regime-switching model with jump risk, we 

derive the closed form formula for the European option and conduct sensitivity analysis. 

The rest of this study is organized as follows. In the models of stock returns of 

Section 1, a regime-switching model with jump risks and a standard-type model are 

illustrated. Section 2 estimates the parameters and its variance using EM algorithm and 

SEM algorithm and give the empirical results in S&P 500 index and DJIA index. Section 

3 evaluates European call options with the regime-switching model and the 

regime-switching model with jump risks based on the no-arbitrage theorem by he 

Esscher transform method. Numerical and empirical analyses are given in Sections 4. 

Section 5 draws the conclusion of this paper. 

 

1. MODEL OF STOCK RETURNS 

In the real world, the mean and volatility of a time series variable usually vary with 

market regimes. For instance, the mean of stock returns is positive in the bull market but 

negative in the bear market, while its volatility is significantly higher during a poor 

economic condition. Such structural changes in the economic series cannot be captured 

by traditional models, which assume that all the observations are drawn from a Gaussian 

distribution with fixed mean and variance throughout the sample period. Moreover, the 

Markov regime-switching models are especially useful for addressing financial 

phenomenon, such as leptokurtic feature of the asset return distribution, volatility smile, 

and the volatility clustering phenomenon. 

 

1.1. Markov Switching Model 

Consider a discontinuous trading economy. The uncertainty over this economy is 
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defined on a finite space X  consisting of states I,,2,1  . A standard-type Markov 

switching model governing the dynamics of stock returns with instantaneous mean 
tqu  

and constant volatility 
tq  under the state Xqt   at time Tt ,,2,1   is one that 

attaches a hidden Markov process following 

 tqqt ZuR
tt

 , (1.1)

where tR  denotes the stock return at time t; tZ  is a standard one-dimensional normal 

distribution at t; and tq  implicates the unobservable state of economy at t characterized 

by a hidden Markov Chain on X . 

Consider Markov properties with one period which states that if the current state of 

the process is known, then the future behavior of the process is independent of its past. , 

we assume that the probability of Markov Chain and stock return satisfies 

)|Pr(),,|Pr( 111   tttt qiqqqiq  , 

and 

)|Pr(),,,|Pr( 111 ttttt qRqqRR   . 

Now we are ready to form the migration of tq  as a transition probability matrix P  

with )|Pr( 1 iqjqp ttij    for Xji  ,  and Tt ,,2,1  : 




















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I

I

ppp
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ppp
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




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22221

11211

. 

Note that the sum of each entry in the same row must equal one; namely, 1
1

 

I

j ijp  

for Si . To define the initial state probability, let )Pr( 1 iqi   that satisfies 

1
1



I

i i . 

Since uncertainty associated with the stock market cycles is generally divided 
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between expansion and recession, the standard Markov switching model can be reduced 

to a two-regime model (i.e., “regime-switching model”). A growing economy is 

classified as a recession ( 1tq ) one. In such a state 1uu
tq   and 1 

tq . On the 

other hand, when the state is an expansion (i.e., 2tq ), the value is taken as 2uu
tq   

and 2 
tq . Then we define a finite space containing all the relevant parameters as 

}2,,,0,,1,0|,,,{ 22  IXjiRupup iiijiiiijiRSM  . 

It has been mentioned that Markov switching–type models are successful in 

explaining the asymmetric behavior of time series caused by changes in the structural 

state. This is because this model can produce leptokurtosis (fat fail) and skewness 

(nonzero third-order cross-moments) in the return (see Krolzig, 1997; and Sola and 

Timmermann, 1998). Based upon our previous discussions, however, it is found that the 

arriving of unanticipated abnormal events delivers sudden shocks to the market states, 

hence the daily observations behave highly volatile within a short time period. Such 

dynamics cannot be captured using existing models that usually assume that variables 

act continuously under a given regime. To address this issue, in the following subsection 

a regime-switching model with jump risks will be proposed. 

 

1.2. Regime-Switching Model with Jump Risks 

The model we proposed combines a standard regime-switching process and a compound 

Poisson process N  with a constant arrival rate of the abnormal events  . First, let’s 

consider an infinite sequence  ,,2,1}{ nnY  that consists of independent and identically 

distributed random variables representing the n-step jump size. A larger jump size 

implies a fiercer shock; and an upward jump indicates the release of unexpected good 

news. For tractability, assume that all the jumps follow a lognormal distribution with 
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constant mean yu  and variance 2
y . Total number of jumps over the time period ),0( t  

is counted using a Poisson process tN . As usual, three sources of model’s randomness 

 ,,2,1}{ nnY , 0}{ ttN , and 0}{ ttZ  are assumed to be mutually independent. The 

dynamic of stock returns governed by a switching regime with jump risks thus has the 

following explicit form 

 



t

tt

N

n
ntqqt YZuR

0

log , (1.2)

with a corresponding finite parameter space 

}2,,,0,,,,1,0|,,,,,,{ 2222  IXjiRuupuup yiyiijiyyiiijiRSMJ  . 

From Equation (1.2), the volatility of stock return is decomposed into two parts: 

continuous variation and discrete variation. The former is modeled as a product of 

standard normal distributed variable and regime-switching variance; while the latter is 

described using a jump process reflecting non-marginal effect of the information. Our 

idea serves as an extension of Merton’s jump-diffusion model. Differing from Merton 

(1976), however, the key role in the model is the regime-switching process, instead of a 

pure standard Brownian motion. The estimation of relevant parameters in two spaces 

RSM  and RSMJ  will be discussed later. 

We derived the descriptive statistics of stock returns under the regime-switching 

model with jump risks. The mean, variance, skewness and kurtosis of the returns are 

summarized in Table II. 

[Insert Table II here] 

Under the Black-Scholes model, the returns follow a normal distribution. Therefore, 

the skewness is 0 and kurtosis is 3. Under the regime-switching model, the formulae of 

skewness and kurtosis are derived by Timmermann (2000). In this paper, we derive the 
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formulae of skewness and kurtosis under the regime-switching model with jump risks 

and summarize them in Table II. Furthermore, if jump term is ignored, that is 0 , the 

formulae of skewness and kurtosis will degenerate into those shown in the 

regime-switching model. 

The regime-switching models with jump risks not only address the stock market 

cycles and the financial features, including the leptokurtic feature of the asset return 

distribution, volatility smile and the volatility clustering phenomenon, but also capture 

the effect of the abnormal events on the financial markets as described in Table I.  

 

2. ESTIMATION AND TEST 

In this section, we offer an estimate and test method of the regime-switching model with 

jump risks. Then, we use the DJIA and S&P 500 index to estimate the parameters of the 

Black-Scholes model, the regime-switching model and the regime-switching model with 

jump risks, and to test these models. Finally, we show the dynamics of the stock market 

cycles in the past ten years, and compute the daily jump probability dynamics. 

 

2.1. Estimation and Test 

Hamilton (1989) and Hardy (2001) employ the maximum likelihood estimation to 

compute the parameters of their models. However, in this paper, we use the EM 

algorithm to estimate the parameters. Suppose that the stock returns 

},,,{ 21
~

TRRRR   are observable, the states of the financial market 

},,,{ 21
~

Tqqqq  , the jump times },,,{ 21
~

TNNNN   are unobservable, and the set 

of parameters under the regime-switching model with jump risks is RSMJ . Let 

),,|(
~~~
NqRL RSMJ

RSMJ
C   denote the complete-data likelihood function under the 
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regime-switching model with jump risks, it can be shown as follows: 








T

t
RSMJtt

T

t
RSMJt

T

t
RSMJtttqRSMJ

RSMJ
C qqNNqRNqRL

2
1

11
~~~

),|Pr()|Pr(),,|Pr(),,|(
1

  

 





T

t
RSMJt

T

t
RSMJttt

T

t
qqq NNqRp

tt
111

)|Pr(),,|Pr(
11

 . (2.1)

Then the incomplete-data likelihood function can be written as follows: 

  







2

1,, 0,,
~~~~

1 1

),,|()|(
T Tqq NN

RSMJ
RSMJ
CRSMJ

RSMJ
IC NqRLRL

 
. (2.2)

However, too many observations will lead to numerous combinations of states and the 

number of shocks, causing computer unable to compute incomplete-data likelihood 

function. Therefore, in this study, we use Expectation-Maximization algorithm (EM 

algorithm) to find the maximum likelihood estimates of parameters. Under the 

regime-switching model with jump risks, the log-complete-data likelihood function is 

shown as follows: 

),,|(log
~~~
NqRL RSMJ

RSMJ
C   (2.3)






















T

t ytq

qt
ytqtt

T

t
qqq n

uR
nnnp

t

t

ttt
1

22

2
22

2 )(2

)(
)](2log[

2

1
)!log(logloglog

11 
 ,

where 
1q  denotes the initial probability; the second term is the transition probabilities; 

the third term is the probabilities of the stock returns under the regime-switching model 

with jump risk; and the fourth term is the probabilities of occurring considerable events. 

The EM algorithm is operated by E-step and M-step. In E-step, given the thk )1(   

parameter, the conditional expectation of the log-complete-data likelihood function, 

)|( )1(  k
RSMJRSMJQ  can be shown as follows: 

],|),,|([log)|( )1(

~~~~

)1(   k
RSMJRSMJ

RSMJ
C

k
RSMJRSMJ RNqRLEQ  (2.4)
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.),|Pr(),|Pr(),(),|Pr(log

),|,Pr(log),|Pr(log

2

1 1 0

)1(

~

)1(

~

2

1

2

1 2

)1(

~
1

2

1

)1(

~
1 11





 







  













i

T

t n

k
RSMJt

k
RSMJttttttt

i j

T

t

k
RSMJttqq

i

k
RSMJq

t

tt

RiqRnNnhnNiqR

RjqiqpRiq




 

We could divide )|( )1(  k
RSMJRSMJQ  into three components. The first part describes the 

initial probability; the second part is related to the transition probabilities; and the last 

part represents the behavior of the returns.  

In the M-step of EM algorithm, we obtain the parameter estimates in the thk  

iteration by maximizing )|( )1(  k
RSMJRSMJQ  employing the estimated parameters from the 

(k-1)th iteration.  













2

1

)1(

~
1

)1(

~
1)(

),|Pr(

),|Pr(
ˆ

i

k
RSMJ

k
RSMJk

i

Riq

Riq
 ,  





 












 2

1 2

)1(

~
1

2

)1(

~
1

)(

),|,Pr(

),|,Pr(
ˆ

j

T

t

k
RSMJtt

T

t

k
RSMJtt

k
ij

Rjqiq

Rjqiq
p . 

For the non-linear function of the third part, through Lagrange multiplier, we can finally 

get the estimates of 11p̂ , 22p̂ , 1û , 2û , yû , 1̂ , 2̂ , y̂ , and   from EM gradient 

algorithm, which can be shown as follows: 

 )|()]|([ )1(101)1(20)1()(   k
RSMJRSMJ

k
RSMJRSMJ

k
RSMJ

k
RSMJ QdQda , (2.5)

where )|(maxarg )1()( 


 k

RSMJRSMJ
k

RSMJ Q , )1,0(a , 10d  and 20d  are the first order 

and second order condition of )|( )1(  k
RSMJRSMJQ with respect to RSMJ . Under the 

condition that )|( )1(  k
RSMJRSMJQ  is monotonically increasing, we repeat the step E and 

the step M until the parameter estimates converge and the estimated parameters are the 

maximum likelihood estimators (Dempster et al., 1977). We then estimate the 

variance-covariance matrix of parameters via the supplemented EM algorithm (SEM) 

developed by Meng and Rubin (1991). 
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Based on the approximate theory of a large sample, the likelihood ratio test (LRT) 

  usually is employed for the goodness of fit tests of the model with the null 

hypothesis 0 0:H   . The alternative hypothesis 1 1 0: \H     where 01  , 

and the likelihood ratio test can be denoted as follows, 

);(

);(
ln2

1

0





RL

RL
, 

where );( iRL   represents the maximum likelihood function under the hypothesis 

iH , 1,0i . Under the null hypothesis 0H  with large sample, the likelihood test 

statistic   follows an asymptotically Chi-squared distribution )(2
1    with a degree 

of freedom   and significant level  . The test models include the Black Scholes 

model versus the regime-switching model, and the regime-switching model versus 

regime-switching model with jump risk. 

 

2.2 Estimating the Parametric Variance 

The asymptotic variance-covariance matrix of parametric estimators can be obtained by 

SEM algorithm (Meng and Rubin, 1991) in this subsection. An information matrix can 

be given by inverting the observed information matrix )|( *
obso YI  , where obsY  is 

observed data and *  is an maximum likelihood estimator (MLE) of  , and the 

observed information matrix can be represented by the following: 

T
obs

obso

Yf
YI








)|(

)|(
2

* . 

However, according to the hidden variables of the states in models, it is difficult to 

calculate the observed information matrix )|( *
obso YI   directly. In contrast with the 

observed information matrix, it would be easy if we proceed to evaluate a complete data 
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function )|( Yf , where },{ misobs YYY   is a complete data and misY  is a missing data. 

Therefore, the complete-data information matrix can be represented by the following 

To

Yf
YI








)|(

)|(
2

* . 

 The observed information matrix can be derived by complete-data information 

matrix and missing-data information matrix (Orchard and Woodbury, 1972), and 

expressed as the following formula: 

omocobso IIYI )|( * , 

where ],|)|([ *  obsooc YYIEI  and 












 *
2

,|
),|( 




obsT
obsmis

om Y
YYf

EI . 

Then, Louis (1982) proves that the missing information matrix can be rewritten as: 












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
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,
)|(
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T

obsobsobs

T

Y
Yf

EY
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EY
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


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





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
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





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














 










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,
)|(

,
)|(

,
)|()|(

. 

Moreover, we can obtain the complete information matrix as follows,  

T

obsobsobs

T

ocobso Y
Yf

EY
Yf

EY
YfYf

EIYI 








































 










 ,

)|(
,

)|(
,

)|()|(
)|( .

Because the parameter *  is the MLE, the third part of the previous equation is zero. 

Therefore, the observed information matrix )|( *
obso YI   can be rewritten as: 


















 ** ,
)|()|(

)|( 




 obs

T

ocobso Y
YfYf

EIYI . 

Dempster and Rubin (1977) develop the possibility of obtaining the asymptotic 

variance for the maximum likelihood estimator in single parameter case by using the 

rate of convergence of EM algorithm. We can thus give the relationship between the 
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observed-data asymptotic variance and the complete-data asymptotic variance is as 

follows, 

r

V
V C




1
, 

where V  denotes the observed-data asymptotic variance, CV  represents the 

complete-data asymptotic variance, and r  stands for the converge rate of the 

parameters in EM algorithm. Meng and Rubin (1991) propose a supplemented EM 

algorithm, where the algorithm is a method of calculating the asymptotic 

variance-covariance matrix based on EM algorithm. The process of the SEM algorithm 

requires only the calculations of complete data information matrix and the codes for the 

EM algorithm, and uses the rate of convergence of EM algorithm to obtain the 

asymptotic variance-covariance matrix.  

Meng and Rubin (1991) show that the asymptotic variance-covariance matrix can 

be obtained by the following equation: 

VIV oc  1 ,                         (2.6)

where 11 )(   DMIDMIV oc  and 
*

)(











i

jM
DM  denotes the dd   

convergence rate matrix of EM algorithm for parameters, dji ,,2,1,  . 

)()1( )( kkM    represents a mapping for the EM algorithm. Therefore, the composition 

of the SEM algorithm is divided into three main components to obtain the estimation of 

the asymptotic variance-covariance matrix. The first component is calculating an inverse 

function of complete-data information matrix, the second component is to evaluate the 

convergence rate matrix DM , and the third component is to find the observed 

variance-covariance matrix V . 

To obtain the observed variance-covariance matrix V , one needs to calculate the 
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rate of convergence matrix DM . Meng and Rubin (1991) suggest the use of EM 

algorithms. Let ijr  be the thji ),(  element of the convergence rate matrix DM  and 

define )()( it  ),,,,,,()( **
1

)(*
1

*
1

)(
di

t
ii

t i    . That is, only the thi  component in 

)()( it  is in the sense and the other components are fixed at their MLE. By the 

definition of ijr , we have 

*

* * * * * *
1 1 1

*

( ) *
( )

( ) *

( ) ( , , , , , , ) ( )
lim

[ ( )]
lim lim

i i

j j i i i d j
ij

i i i

t
j j t

ijtt t
i i

M M M
r

M i
r

 

      
  

 
 

 



 

  
 

 


 



 

, 

where the convergence rate ijr  can be approximated by )(t
ijr  when t  is sufficiently 

large. *( )M   can be obtained by the EM algorithm program as )(M  is the result of 

E-step and M-step in the EM algorithm. 

Based on the same starting value of the SEM algorithm and EM algorithm, and 

setting the same value for *  and )(t , )(t
ijr can be obtained by the following procedure. 

First, we use the E and M step to obtain ( 1)t  , and repeat the steps for di ,,2,1  . 

Next, we calculate )()( it  and perform iteration it as the current estimate of  , and 

give the iteration of EM to obtain )]([ )( iM t
j  . We finally obtain the ratio 

( ) *
( )

( ) *

[ ( )]t
j jt

ij t
i i

M i
r

 
 





, 

where the output is )1( t  and },,2,1,:{ )( djir t
ij  . Let )1( t

ijr  substitute for ijr  

when 4)()1( 10||   t
ij

t
ij rr , and then we have the DM  matrix. Therefore, the asymptotic 

variance-covariance matrix can be obtained by equation (2.6). 
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2.3 Empirical Results 

The data include the daily DJIA index and S&P 500 index from 1999/01/01 to 

2009/12/31. The parameter estimates and tests for the Black-Scholes model (BSM), the 

regime-switching model (RSM) and the regime-switching model with jump risks (RSMJ) 

are presented in Table III based on the DJIA index and S&P 500 index. For the DJIA 

index, the return follows a normal distribution with a mean of 0.000046 and a standard 

deviation of 0.0129 under the Black-Scholes model. Under the regime-switching model, 

the transition probabilities, 11p  and 22p , are 0.9798 and 0.9907, respectively. Both 

probabilities are close to one, implying that the probabilities of switching from 

expansion to recession and vice versa are very small. In recession, the mean stock return 

is a negative 0.008, with a standard deviation of 0.0196. In contrast, in expansion the 

mean stock return is a positive 0.0005, with a standard deviation of 0.0079. The 

volatility of stock returns in expansion is more stable than that in recession. Same results 

in the S&P 500 index using BSM and RSM are observed. 

[Insert Table III here] 

Using the regime-switching model with jump risk to fit DJIA index, the results of 

RSMJ are similar to those under the regime-switching model. The transition 

probabilities are still close to one. In recession, the mean return is negative and the 

volatility is high, while in expansion, the mean return is positive and the volatility is low. 

Moreover, comparing with the estimated results in the regime-switching model, the 

means are larger and the volatilities are smaller as part of them is explained by the jump 

term. The mean jump times is 0.2934, and the jump size follows a log-normal 

distribution with mean -0.0002 and standard deviation 0.0138, implying that the release 

of unanticipated information on average causes returns to go down. The same estimated 
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results in S&P 500 for RSMJ are observed. 

From LR test results, the null hypothesizes are  rejected, meaning that at the 95% 

confidence level, the regime-switching model is better than the Black-Scholes model, 

and the regime-switching model with jump risks is better than the regime-switching 

model. The test results in S&P 500 index are the same. 

Figure 2 shows the price, the return of DJIA index, the probability of recession 

under the regime-switching model with jump risks, and the probability of jumps. In 

panel A, the prices went upward in 1999 and 2003~2007 during the periods of economic 

expansion. The prices turned south during the periods of economic recession (from 2000 

to 2003 and from 2008 to 2009) due to the dot-com bubble and the global financial crisis. 

Panel B shows that the volatilities from 1999 to 2002 are larger than the volatilities from 

2003 to 2007, implying the returns become more volatile in the recession time. 

Moreover, we observe volatility clustering in panel B. 

 [Insert Figure 2 here] 

Panel C indicates that the probability of recession from 1999 to 2002 is high 

because of the dotcom bubble, and the probability of recession from 2003 to 2007 is low. 

Hence, there is a transition of states in 2002 to 2003. In 2008, as the financial crisis 

progressed, the probability of recession in 2008 also became higher. There is also a 

switch of states in 2007 to 2008. Panel D shows the probability of jumps is large in 2000 

to 2003, 2007 and 2008, consistent with the events of the dot-com bubble in 2000, the 

September 11 attacks in 2001, the end of Iraq war in 2003, the Yen carry trade in 2007, 

and the financial crisis in 2008. Based on Equation (1.8), the probability of jumps is one 

minus the probability of no jump given the daily returns and estimated parameters of the 

RSMJ. Figure 3 shows similar results for the S&P 500 index. 
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(1.8)

 

[Insert Figure 3 here] 

3. OPTION PRICING 

When the market is incomplete, the jump risks are considered as undiversifiable. The 

extended Girsanov's principle and the Esscher transform are often used to select the risk 

neutral pricing measure. The original Girsanov's theorem has been applied to change the 

measure of the Brownian motion under the continuous time. However, Elliott and 

Madan (1998) propose an extended Girsanov's principle which is then applied to change 

the measure of the Brownian motion under the discrete time. Liew and Siu (2010) 

further apply extended Girsanov's principle to change the measure of the regime-switch 

model. Another method of selecting the pricing measure under the incomplete market is 

the Esscher transform which is proposed by Gerber and Shiu (1994). When the stock 

price obeys a stochastic process in continuous time and the moment generating function 

of the stochastic process exists, the martingale measure can be found by the Esscher 

transform. In this section, we propose the Esscher transform to find the martingale 

measure for economic models, and we derive the European option pricing formula under 

regime switching with jump risks models. 

 

3.1. Esscher Transform with No Arbitrage Condition 

Merton (1976) assumes stock price follows the jump diffusion model and the jump risks 

are diversifiable. Therefore, jump risks can be avoided by the diversification of 

investments, and the investors will not demand the jump risk premium. However, Jarrow 
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and Rosenfeld (1984) indicated that jump risks are the undiversifiable risks. When the 

stock price is expected to jump, the investors will demand the jump risk premium. When 

the jump risks are undiversifiable, the martingale measure is not unique. Therefore, we 

investigate the Esscher transform to derive the European option pricing formula. For 

such pricing problems, Elliott et al. (2005), Liew and Siu (2010) and others also show 

that the martingale measure can be found by the Esscher transform. 

 

A. Esscher Transform under RSM 

Under the true probability measure, the stock price dynamics of the regime switching 

model is 

 














  )(

2

1
exp)0()( 2 tWtuStS

ttt qqq  , (3.1)

where )(tW  denotes the Brownian motion, }2,1{tq  address the state of stock 

market cycles, and 
tqu  and 

tq  present the mean and the volatility when the state is 

tq . 

Assume that the transition probability is known in the future, that is, there is no risk 

premium when the state changes into a different one. Let 
tBqh  be Esscher transform 

parameters of the Brownian motion with the state of stock market cycle, tq . Suppose 

that 


)(
1| ttt BqFR hM  denotes the conditional moment generating function of returns 

tR  given the information set 1tF . Thus, given the state is known in the future, the 

Randon-Nikodym derivative of the Brownian motion is as follows: 
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where 1Bh  and 2Bh  are the transformed parameters with the state 1 and 2, respectively. 

The Esscher transform from the physical measure to the risk neutral measure is denoted 

by 










 


t

thtW

t
ttWdPtWdQ tt

t

qBq
Bq

Q

2

])([
exp

2

1
)())(())((

2


 , 

or, the new Brownian motion is presented as ),0(~)()( tNthtWtW
tt qBq

Q  . 

Since the expectations of the discounted stock price should equal to the present 

stock price in the risk neutral measure at any time t i.e., 

 ]|)()[exp()0( 0FtSrtES Q  . (3.3)

No arbitrage condition is derived as 2

ttt qBqq hur  . A special case of Esscher 

parameters which satisfies the no arbitrage condition can be found as 

2)(
ttt qqBq urh  . Under the risk neutral Esscher measure, the dynamics of the stock 

index can be denoted as follows: 

 














  )(

2

1
exp)0()( 2 tWtrStS Q

qq tt
  (3.4)

with the no-change transition probability P , which has two states, 2I . 

 

B. Esscher Transform under RSMJ 

Under the physical probability measure, the stock price dynamics of the RSMJ is 
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where )(tN  denotes the jump frequency and follows Poisson process with the arrival 

rate t , and }{ mY  presents the jump size that follows lognormal distribution with 

location parameter yu  and scale parameter 2
y . The transition probability is 











2221

1211

pp

pp
P , 

where 1
2

1
 j ijp  for 2,1i . We also assume that the transition probability is known 

in the future, i.e. the investors do not demand risk premium of changes in stock market 

states. 
tBqh  and Jh  are respectively Esscher transform parameters of the Brownian 

motion and the systematic jump risk term. Suppose 


)(
1| ttt BqFR hM  denotes the 

conditional moment generating function of returns tR  given the information set 1tF . 

we derive the Esscher transform )(tB  for the given states in Equation (3.6), because 

the Brownian motion term and the systematic jumps risk term are independent: 
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where 1Bh  and 2Bh  are the transformed parameters with  state 1 and 2, respectively. 

Similarly, the Brownian motion of a given state follows 

),0(~)()( tNthtWtW
tt qBq

Q   under the risk neutral measure. 

Because the jump risk is undiversifiable, the Esscher transform can be used to 

change the stock price dynamics from the true probability measure to the risk neutral 

probability measure. The Esscher transform of jump risks from the physical measure to 
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the risk neutral measure is defined by 
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Based on the Esscher transform, we can obtain the new distribution of the jump sizes 

under risk neutral measure as ),(~log 22
yyJym huNY  . Suppose 
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1|log JFY hM
t

 

denote the conditional moment generating function of jump size Ylog  given the 

information set 1tF , the derivation can be shown as: 
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We also can derive the risk neutral distribution of the jump frequency 

])1([~)( )( tPoitN Jh   by the following 
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Since the expectations of the discounted stock price should equal to the present 

stock price in the risk neutral measure at any time t, i.e. 

 ]|)()[exp()0( 0FtSrtES Q  . (3.7)

The no arbitrage condition can be derived as follows: 

)( )()1(2 JJ

ttt

hh
qBqq hur    , 

And a special case of Esscher parameters which satisfies the no arbitrage condition can 

be found as 2)(
ttt qqBq urh   and )5.0( 2  yyJ uh  . Under this Esscher 

parameters special case, the jump size of the risk neutral measure is changed to 

),5.0(~log 22
yym NY  , and the arrival rate matrix of the risk neutral measure follows 

]28exp[ 222
yyy ut   . 
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Therefore, according to the no arbitrage condition, the dynamics of the stock index 

with RSMJ under the risk-neutral Esscher measure is stated as follows, 

 
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with the no-changed transition probability P , which has two states, 2I . 

  

3.2. Valuation of Stock Index Options with Economic Models 

Section 3.1 finds the Esscher transform parameters to satisfy the no arbitrage condition. 

Under the risk neutral measure, we obtain the stock index dynamics of the RSM and the 

RSMJ. Hence, in Section 3.2, the risk neutral stock price dynamics can be used to derive 

the European call stock index option formula and explain the association with economic 

models. 

 

A. Valuation of European Stock Index Call Options with RSM 

Under the risk-neutral world and the stock price dynamics in (3.4), we compute the 

European call option price with strike price K, risk-free interest rate r, and maturity date 

T of the RSM as follows: 

)]()()0([ 21
0

2

1
|, 0 k

rT
k

T

k i
iqkTiRSM dNKedNSC 

 
    , 

where i  denotes the initial probability, and iqkT 0|,  , as Duan et al. (2002), is the 

remaining probabilities that the amount, k, of the visits to state 1 in T years (days) given 

the initial state being i. Given that the initial state is state 1, for 0k  and 

Tt ,,2,1  , the state immediately changes to 2 in the initial day and remains in state 2 

later. The probability is denoted as 1
2212
tpp . For 1k  and 1t , the probability of the 

state not changing in period )1,0[t  is 11p . For 1k  and Tt ,,3,2  , the 
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probabilities of staying at state 1 in only one day and the others at state 2 is marked as 

2
222112

3
2221

1
12

2
221211 )2(   tttt pppppptppp . Finally, let )1|( 0 qlF  be the probability 

that state 1 occurs given initial state 1 after l periods. For Tk ,,3,2   and 

Tt ,,3,2  , the probabilities are calculated by the previous daily probabilities and 

)1|( 0 qlF . 
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Similarly, given that the initial state is state 2, the remaining probabilities are computed 

as below. 
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kd1  and kd 2  are denoted as follows, 
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2

2
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2 )(  kTkk  , Tk ,,1,0  . 

  

B. Valuation of European Stock Index Call Options with RSMJ 
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Under the risk-neutral world and the stock price dynamics in (3.8), we compute the 

European call option price with strike price K, risk-free interest rate r, and maturity date 

t of the RSMJ as follows: 
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where iqkT 0|,  presents the probability that state 1 will stay for k years (days) when the 

maturity is T years (days) and the initial state is iq 0 . Such probability can be 

obtained from Duan et al. (2002) with hidden Markov Chain. And, * , kd1  and kd 2  

are denoted as follows, 
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4. EMPIRICAL AND SENSITIVITY ANALYSIS 

In this section, we first show the features of heavy tails and volatility clustering by the 

parameter estimates of the regime-switching model with jump risks. The volatility curve 

and volatility surface under the regime-switching model with jump risks are discussed 

next. Finally, sensitivity analysis for the European call option value under Black-Scholes 

model, the regime-switching model and the regime-switching model with jump risks is 

presented. 

 

4.1. Financial Features 

A. Volatility Clustering 

The volatility clustering phenomenon was documented as early as Mandelbrot (1963) to 

describe that periods of high/low volatility are generally followed by periods of 
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high/low volatility. Cont (2005) summarizes the characteristics of financial time series, 

and posits that volatility clustering does not imply the correlation of the returns, but the 

correlation of absolute returns or squared returns which displays a positive, significant 

and slowly decaying autocorrelation function (ACF). 

Under the Black-Scholes model, since the returns are independent, the squared 

returns are also independent, implying that no significant correlation is found in the 

squared returns. As a result, the Black-Scholes model does not describe the characteristic 

of volatility clustering. 

The regime-switching model and the regime-switching model with jump risks, on 

the other hand, can better describe the volatility clustering. Under the regime-switching 

model, the ACF of the squared returns is derived by Haldrup and Nielsen (2006). We 

extend their work to derive the ACF of the squared returns under the regime-switching 

model with jump risks, which can be shown in Table IV. As 0 , the ACF under the 

regime-switching model with jump risks reduces to the ACF under the regime-switching 

model. 

 

[Insert Table IV here] 

  

We consequently input the parameter estimates in Table IV to the ACF formulae 

and plot the ACF for different model settings in Figure 4. For comparison, panel A 

shows the returns of S&P 500 from 1999 to 2008. Panel B, C and D present the ACF of 

real data squared returns, the regime-switching model and the regime-switching model 

with jump risks, respectively. From panel B, we notice that the ACF of real data is 

positive, significant and slowly decaying, which means that the time series exhibits 

volatility clustering. Moreover, the ACFs of squared returns under the regime-switching 
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model and the regime-switching model with jump risks conform to that of real data. In 

other words, the ACFs under both models decay fast if the ACF of real data decays fast. 

Conversely, the ACFs under both models decay slowly if the ACF of real data decays 

slowly. Similar results are found in DJIA index. 

 

[Insert Figure 4 here] 

  

B. Volatility Smile 

Based on the information of option price, asset price, strike price, risk-free interest rate 

and maturity, the implied volatility can be computed under the Black-Scholes model. 

Harvey and Whaley (1992) indicate that implied volatility changes along with the 

expectation and the changes of the market. Therefore, implied volatility not only 

represents current price of the market but also reflects expectations of the market. 

Volatility curve can be plotted under different ratios of strike to spot price. Since 

the implied volatility for at-the-money option is smaller than that for out-the-money or 

in-the-money options, the volatility curve is convex, hence named volatility smile. 

However, Schwert (1989), and Fleming et al. (1995) notice that the increasing speed of 

implied volatility for in-the-money options is faster than that for out-the-money options, 

making volatility smile like smirk. Harvey and Whaley (1992) verify the phenomenon of 

volatility smirk using S&P100 index. 

We solve the implied volatilities, plot the volatility curve, and compute the 

one-year option prices for nine different strikes via the estimation under the 

regime-switching model with jump risks assuming the current time is  September 30, 

2008. A volatility surface is constructed with seven volatility curves by seven different 

maturities. Figure 5 shows the volatility curves and the volatility surface for the S&P500 
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index under the regime-switching model with jump risks. Panel A indicates that the 

curve has the feature of volatility smirk. The volatility surface for the S&P500 index in 

panel B shows that the implied volatility is also in smirk shape and is decaying along 

with maturities. These are the same results as in the DJIA index option. 

 

[Insert Figure 5 here] 

  

4.2. Sensitivity Analysis 

Because the DJIA index and the S&P500 index exhibit stock market cycles, this section 

performs sensitivity analysis for the estimated parameters. Tables V and VI report 

sensitivity analysis of European call price assuming stock returns follow regime 

switching model with jump risks. The base volatility of state 1 (4% 2%) and the base 

volatility of state 2 (1%+1% and 1%-0.05%) show the effect of the volatility on 

European call option. Hence, the volatilities of daily stock returns are 2%, 4% and 6% 

for state 1；and 0.5%, 1% and 2% for state 2. According to the sensitivity analysis in 

Table V, there is a positive relationship between volatility and option value in state 1 and 

state 2, holding other parameters fixed, implying the larger the volatility, the higher the 

probability of increasing stock price, hence higher call price. In addition, there is a 

positive relationship between 11p  and call value, other parameters held constant, 

because the volatility of the state 1 stays longer when 11p  is closed to 1. The higher the 

11p , the lower the probability that the economy will switch from state 1 to state 2.That is, 

in the long term, the longer the duration of state 1, which has higher volatility, the higher 

the call value will be. On the contrary, there is a negative relationship between 22p  and 

call value. The higher the 22p , the lower the probability the economy will switch from 
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state 2 to state 1. In the long term, the longer the duration of state 2, which has lower 

volatility, the smaller the call value. 

 

[Insert Table V here] 

  

This paper also discusses the influence of jump volatility on call price. Table VI 

illustrates the sensitivity analysis of the impact of jump size and jump frequency on call 

price. Other things held constant, there is a positive relationship between average jump 

size and call price. Since call price increases at expiration when stock price increases, 

the bigger jump size implies larger stock price upside volatility, hence higher call price. 

 

[Insert Table VI here] 

  

The relationship between the standard deviation of jump size and call price is 

concave, because the no arbitrage condition is satisfied. Finally, other parameters held 

constant, the higher jump frequency indicates more frequent jump volatility. Therefore, 

the option value is higher  

 

5. CONCLUSION 

This study proposes a regime-switching model with jump risks to price the European 

option. To capture the dynamics of stock returns over expansion-recession cycles and the 

occurrences of the abnormal events in financial markets, we assume the index return 

would follow the regime-switching model with jump risks. 

In this study, we show that comparing to the Black-Scholes model and the 
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regime-switching model, the regime-switching model with jump risks can better explain 

the dynamics of DJIA and the S&P 500 stock indices. In addition, both the 

regime-switching model and the regime-switching model with jump risks can address 

the leptokurtic feature of the asset return distribution, volatility smile, and the volatility 

clustering phenomenon. 

We then examine the influence of parameters on European call value under the 

regime-switching model with jump risks, and find that option prices increase along with 

the probability of staying in the recession state, but decrease along with the probability 

of staying in the expansion state. Moreover, the increases of standard deviation (in either 

state), the mean of jump sizes, the standard deviation of jump sizes, and the mean of 

jump times, would all increase option prices. The differences among valuations under 

the Black-Scholes model, the regime-switching model and the regime-switching model 

with jump risks suggest that it is critical to value a European call option by an 

appropriate model. 
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TABLE I 

Sudden Shocks in the Daily Return of DJIA Index 

 Shock Type 

Items 
Weak 

(  single std.) 

Median 

(  double std.) 

Strong 

(  triple std.) 
Total 

Obs. 824 183 57 3788 

Percentage 21.7529% 4.8310% 1.5048% 100% 

Avg. Daily Return 4109673.4   3106166.4   3102315.7   4102694.3   

Variance of Returns 4102607.5   4104108.7   4102854.8   4103931.1   

Note. In this table, we use the DJIA index from Jan. 3rd, 1995 to Jan. 15th, 2010 as sample and present the weak, 

median, and strong shocks defined by the daily observation over or below the mean of single, double, and triple 

standard deviation, respectively. 
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TABLE II 

The Moments in the Regime-Switching Model with Jump Risks 
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TABLE III 

The Estimating and Testing of the BSM, RSM, RSMJ Models in DJIA Index and S&P 500 Index 

Index Model 11p̂  22p̂  1û  2û  yû  
1̂  2̂  y̂  ̂   ln2  

DJIA 

Index 

BSM   4.6E-5   0.0129     

   (0.0002)   (0.0002)     

RSM 0.9798 0.9907 -0.0008 0.0005  0.0196 0.0079   919* 

 (0.0069) (0.0033) (0.0007) (0.0002)  (0.0007) (0.0002)    

RSMJ 0.9818 0.9936 -0.0009 0.0005 -0.0002 0.0196 0.0077 0.0138 0.2934 23* 

 (0.0103) (0.0082) (0.0004) (0.0044) (0.0066) (0.0009) (0.0006) (0.0044) (0.0138)  

S&P500 

Index 

BSM   -3.5E-5   0.0138     

   (0.0003)   (0.0002)     

RSM 0.9783 0.9895 -0.0010 0.0004  0.0207 0.0082   945.4* 

 (0.0057) (0.0027) (0.0007) (0.0002)  (0.0006) (0.0002)    

RSMJ 0.9803 0.9925 -0.0010 0.0005 -0.0004 0.0207 0.0079 0.0144 0.3100 26.4* 

 (0.0039) (0.0013) (0.0008) (0.0016) (0.0024) (0.0002) (0.0000) (0.0025) (0.0057)  
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TABLE IV 

The Autocorrelation Function of the Squared Return under RSMJ 

Model Autocorrelation Function 

RSM 
22

2

2

22

2

1

2

11

4

2

2

2

2

2

4

22

4

1

2

1

2

1

4

11

2

2211

22112211222

2

2

2

22

1

2

1

)]()([)36()36(

)2(

)1)(1()1(
])()[(











uuuuuu

pp

pppp
uu

k

 

RSMJ 

)()]()([)36()36(

)2(

)1)(1()1(
)]()([4

)2(

)1)(1()1(
])()[(

22

2

2

22

2

1

2

11

4

2

2

2

2

2

4

22

4

1

2

1

2

1

4

11

2

2211

221122112

2

2

22

2

1

2

112

2211

22112211222

2

222

1

2

JumpCuuuuuu

pp

pppp
uuuuu

pp

pppp
uu

k

y

k

yy















 

)()]()([)36()36(

)(
)2(

)1)(1()1(
4)])(1())(1([

2

)1(1
2

22

2

2

22

2

1

2

11

4

2

2

2

2

2

4

22

4

1

2

1

2

1

4

11

2

212

2211

22112211222

1

2

1112

2

2

2

2221

2211

2211

JumpCuuuuuu

uu
pp

pppp
uupuupu

pp

pp
u

k

y

k

y

























 

Note. 
1

( log )
tN

n yn
E Y u


 , 2 2 2 2

1
( log ) ( )

tN

n y yn
E Y u    


   , 

3 3 3 2 2 2

1
( log ) ( 3 ) 3 ( )

tN

n y y yn
E Y u u     


     , and 4 4 4 3 2 2 2 3 2 4 2

1
( log ) ( 6 7 ) 6 ( 3 ) 3 ( )

tN

n y y y yn
E Y u u          


         . 

)]log()log()log()[(4)log()]}()()[()3()3({4

})]log()][()({[4])log([)log()(

1

2

1

3

122111

2

2

2

22

2

1

2

112211

2

22

3

22

2

11

3

11

2

1

2

2

2

22

2

1

2

11

22

1

4

1











tttt

ttt

N

n n

N

n n

N

n n

N

n n

N

n n

N

n n

N

n n

YEYEYEuuYEuuuuuuuu

YEuuYEYEJumpC




 

  



38 
 

Table V 

The Impact of Pricing Cycles for Call Option under the RSMJ 

11p  22p  1  2  

0.005 0.01 0.02 

0.90 

0.90 

0.02 5.0434 5.4076 6.6211 

0.04 8.9696 9.1878 9.9860 

0.06 13.0776 13.2298 13.8069 

0.95 

0.02 4.3836 4.9355 6.6211 

0.04 7.3263 7.7030 8.9600 

0.06 10.4820 10.7665 11.7525 

0.99 

0.02 3.2692 4.1854 6.6211 

0.04 4.2294 5.0511 7.2965 

0.06 5.3107 6.0709 8.1662 

0.95 

0.90 

0.02 5.6055 5.8322 6.6211 

0.04 10.2699 10.4005 10.8905 

0.06 15.0730 15.1629 15.5091 

0.95 

0.02 4.9970 5.3852 6.6211 

0.04 8.8035 9.0574 9.9286 

0.06 12.7836 12.9726 13.6388 

0.99 

0.02 3.5854 4.4063 6.6211 

0.04 5.0518 5.7785 7.7803 

0.06 6.6377 7.3093 9.1635 

0.99 

0.90 

0.02 6.3552 6.4123 6.6211 

0.04 11.9611 11.9927 12.1144 

0.06 17.6472 17.6687 17.7525 

0.95 

0.02 6.1025 6.2215 6.6211 

0.04 11.3715 11.4457 11.7082 

0.06 16.7371 16.7915 16.9865 

0.99 

0.02 4.8318 5.3086 6.6211 

0.04 8.1579 8.5744 9.7302 

0.06 11.5804 11.9657 13.0286 
Note. 0002.0yu , 0138.0y , 2934.0 , 100S , 100K , 60T , %28.0r . 
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TABLE VI 

The Impact of Jump Risk for Call Option under the RSMJ 

  yu  
y  

0.005 0.01 0.02 

0.1 

-0.0003 3.5203 3.6330 4.0381 

0 3.5204 3.6331 4.0381 

0.0003 3.5203 3.6330 4.0381 

0.5 

-0.0003 3.6699 4.1683 5.6764 

0 3.6702 4.1686 5.6766 

0.0003 3.6699 4.1683 5.6764 

1.0 

-0.0003 3.8457 4.7359 7.1821 

0 3.8463 4.7364 7.1824 

0.0003 3.8457 4.7359 7.1821 

Note. 9818.011 p , 9936.022 p , 0196.01  , 0077.02  , 100S , 100K , 60T , %28.0r . 
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Panel A: Index path of DJIA index Panel B: Distribution of daily return of DJIA index 

Panel C: Index path of S&P 500 index Panel D: Distribution of daily return of S&P 500 index

FIGURE 1 

Index path and daily return of DJIA index and S&P 500 index from Jan. 4th, 1999 to Jan. 15th, 2010. 
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Panel A: The path index Panel B: The returns of index 

Panel C: The probabilities of recession Panel D: The probabilities of jumps  

FIGURE 2 

The index, index return, probabilities of the recession and probabilities of the jumps of the DJIA index from 

1999 to 2010. 
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Panel A: The path of index Panel B: The returns of index 

Panel C: The probabilities of recession Panel D: The probabilities of jumps 

FIGURE 3 

The index, index return, probabilities of the recession and probabilities of the jumps of the S&P 500 index from 

1999 to 2010. 
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Panel A: The dynamic of the return in the S&P 500 

index from 1999 to 2010 

Panel B: The autocorrelation of the squared return in 

real data 

Panel C: The autocorrelation of the squared return in 

regime- switching model 

Panel D: The autocorrelation of the squared return in 

regime- switching model with jump risks 

FIGURE 4 

The plots of the returns and the autocorrelation of the squared returns. 
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Panel A: The Black-Scholes implied volatility curve of the S&P 500 index estimated under the regime-switching 

model with jump risks 

 
Panel B: The Black-Scholes implied volatility surface of the S&P 500 index estimated under the 

regime-switching model with jump risks 

 

FIGURE 5 

Black-Scholes implied volatility smirk and volatility surface estimated under the regime-switching model with 

jump risks. 
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