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1. Introduction 

 

Ever since Black and Scholes (1973) published their seminal article on option pricing in 1973, 

various theoretical and empirical researches have been conducted on option pricing. One 

important direction in which the Black and Scholes (1973) model can be modified is to 

generalize the geometric Brownian motion, which is used as a process for the dynamics of log 

stock prices. For example, Merton (1976) and Naik and Lee (1990) propose a jump-diffusion 

model. Hull and White (1987), Johnson and Shanno (1987), Scott (1987), Wiggins (1987) and 

Heston (1993) suggest a stochastic volatility model. Naik (1993) considers a regime-switching 

model that assumes jumps of the volatility. Duan (1995) and Heston and Nandi (2000) develop 

an option pricing framework based on the GARCH process. Madan, Carr and Chang (1998) use 

the Variance Gamma process as an alternative model for capturing the dynamics of log stock 

prices. 

Bakshi, Cao and Chen (1997, 2000) and Kim (2005) have conducted a comprehensive 

empirical study on the relative merits of competing option pricing models. They have 

discovered that taking the stochastic volatility into account is of the first order in importance for 

improving the Black and Sholes (1973) model. However, among the striking empirical findings, 

Dumas, Fleming and Whaley (1998), Jackwerth and Rubinstein (2001) and Li and Pearson (2007) 

and Kim (2009) examine the performance of a number of these mathematically sophisticated 

models and find that they predict option prices less well than a pair of ad hoc approaches 

sometimes used by option traders. Ad hoc approaches can be an alternative to the complicated 

models for pricing options; they are known as ad hoc Black and Scholes models (henceforth 

AHBS). 

There are two versions of the AHBS models. In the “relative smile” approach, the implied 

volatility skew is treated as a fixed function of moneyness, S/K, whereas the implied volatility 

for a fixed strike K varies as the stock index S varies. This is also known as the “sticky volatility” 
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method. In the “absolute smile” approach, the implied volatility is treated as a fixed function of 

the strike price K, and the implied volatility for a fixed strike does not vary with S. This is also 

known as the “sticky delta” method. Jackwerth and Rubinstein (2001), Li and Pearson (2007), 

Kim (2009), and Choi and Ok (2011) have found that the “absolute smile” approach shows 

better performance than the “relative smile” approach for pricing options. Further, a simpler 

model among the AHBS models shows better performance than the other models. That is, the 

presence of more parameters in AHBS models actually causes over-fitting. 

When the options are priced and hedged, we need to estimate the parameters that are needed 

to plug into each model. For one day ahead pricing and hedging, the parameters are estimated 

using the previous days’ options data. For one week ahead pricing and hedging, the options 

data before seven days are used. In general trading dates, there are no complicated problems. 

However, it is standard to eliminate the nearest option contracts with expiries less than 7 days, 

as well as to use the next-to-nearest option contracts with expiries less than 7 days plus 1 month 

for the empirical study. When forecasting the parameters for the next-to-nearest option 

contracts with expiry less than 7 days plus 1 month, we have the problem of the roll-over 

strategies of the parameter. One can use either the nearest contracts with expiry greater than 6 

days (the nearest-to-next roll-over strategy) or the next-to-nearest contracts with expiry greater 

than 6 days plus 1 month (the next-to-next roll-over strategy). Recently, Choi and Ok (2011) 

have shown that the next-to-next roll-over strategy can mitigate the over-fitting problems of 

AHBS models and can make AHBS models with more parameters to become the better model 

than the AHBS model with less parameters. As a result, the next-to-next roll-over strategy of the 

parameters can be useful for the AHBS type models.  

However, is the next-to-next roll-over strategy functioned only with the AHBS models? Or can 

this strategy also be functioned with mathematically complicated models, stochastic volatility 

(henceforth SV) and stochastic volatility with jump (henceforth SVJ) models? In this paper, we 

examine the empirical performance of several options pricing models with respect to the roll-
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over strategies of parameters. Not only the traders’ rules, that is, AHBS-type models, but also 

the SV model and the SVJ model are considered for a horse race competition. We compare the 

pricing and hedging performances of several option pricing models using the traditional roll-

over strategy of the parameters, which is the nearest-to-next approach, with those using the 

new roll-over strategy, the next-to-next approach. We examine whether the new roll-over 

strategy of the parameters can be functioned not only for the AHBS-type models but also for the 

mathematically complicated models, the SV and SVJ models. After considering the new roll-

over strategy of the parameters, we try to find out the best options pricing model.  

We fill the gaps that have not been resolved in previous researches. First, when the roll-over 

strategies of the parameters are examined, Choi and Ok (2011) and Choi, Jordan, and Ok (2012) 

do not consider the mathematically complicated models that are shown to be competitive 

options pricing models. In this paper, we examine whether the new roll-over strategy of the 

parameters for the SV and the SVJ models is functioned. Second, in previous researches, the 

new roll-over strategy of the parameters, or the next-to-next strategy, is not considered for 

hedging performance. When we try to find out the best options pricing model, both pricing and 

hedging performance must be considered. Pricing performance of the options pricing models 

measures the ability to forecast the level of options price; however, hedging performance 

measures the ability to forecast the variability of options prices. If a specific model shows better 

performance than the other models for both performance measures, that model can truly be the 

best options pricing model. Third, Choi and Ok (2011) and Choi, Jordan and Ok (2012) consider 

the sample period with a span of just two years. For two years, the dates that require the roll-

over of the parameters are twenty four days when we examine the one day ahead out-of-sample 

pricing and hedging performance. The effect of the roll-over strategy can be exaggerated due to 

a small sample. In this paper, we examine the roll-over strategies using sample dates with a 

span of 13 years. If the new roll-over strategy works well, even for a long sample period, we can 

conjecture that there is a structural change of the parameters when the maturity of options is 
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rolled- over. Fourth, recent researches that examine the performance of AHBS-type models have 

considered KOSPI 200 options, which is one of the emerging markets. Although KOSPI 200 

options are the biggest derivatives products in the world, in terms of trading volume, these 

products are traded in the emerging market. We use S&P 500 (SPX) option prices for our 

empirical work. S&P 500 options have been the focus of many existing investigations including, 

among others, Bakshi, Cao and Chan (1997), Bates (1996), Dumas, Fleming and Whaley (1995). 

Also, the roll-over strategies of the parameter are not compared in the SPX options market. If 

the new roll-over strategy is well functioned for SPX options, we can conjecture that it is not 

only fit to the emerging markets, but can also be generally applied to the advanced options 

markets. 

It is found that the next-to-next strategy can decrease pricing and hedging errors of all 

options pricing models compared to the nearest-to-next approach. The AHBS-type models that 

more parameters show better performance than the ad-hoc approaches which have less 

parameters and the mathematically complicated models for both pricing and hedging options. 

That is, the next-to-next strategy can mitigate the over-fitting problem of AHBS-type models. 

The “absolute smile” traders’ rule has the advantage of simplicity and is the best model for 

pricing and hedging options. 

The outline of this paper is as follows. The AHBS-type models, the stochastic volatility with 

jumps model and the roll-over strategies of the parameters are reviewed in Section 2. The data 

used for the analysis are described in Section 3. Section 4 describes the parameter estimates of 

each model and evaluates pricing and hedging performances of alternative options pricing 

models. Section 5 concludes our study by summarizing the results. 

 

2. Options Pricing Models 

 

2.1 Ad Hoc Black-Scholes Model 
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Despite its significant pricing and hedging biases, the Black and Scholes (1973) model 

(henceforth the BS model) continues to be widely used by market practitioners. However, when 

practitioners apply the BS model, they commonly allow the volatility parameter to vary across 

strike prices of options as well as to fit the volatility to the observed smile pattern. As Dumas, 

Fleming and Whaley (1998) show, this procedure can avoid some of the biases associated with 

the BS model’s constant volatility assumption. 

We have to construct the AHBS model in which each option has its own implied volatility 

depending on a strike price (or moneyness) and the time to maturity. Specifically, the spot 

volatility of the asset that enters the BS model is a function of the strike price (or moneyness) 

and the time to maturity or a combination of both. However, we only consider the function of 

the strike price (or moneyness) because the liquidity of the index options market is concentrated 

in the nearest expiration contract. Dumas, Fleming and Whaley (1998) show that the 

specification that includes a time parameter performs worst of all, indicating that the time 

variable is an important cause of the over-fitting problem at the estimation stage. 

There are two versions of the ad hoc approach. In the “relative smile” approach, the implied 

volatility skew is treated as a fixed function of moneyness, S/K, and the implied volatility for a 

fixed strike K varies as the stock index S varies. This is also known as the “sticky volatility” 

method. In the “absolute smile” approach, the implied volatility is treated as a fixed function of 

the strike price K, and the implied volatility for a fixed strike does not vary with S. This is also 

known as the “sticky delta” method. These models are so called the ad hoc Black-Scholes model 

(henceforth AHBS). Dumas, Fleming and Whaley (1998), Jackwerth and Rubinstein (2001) and 

Li and Pearson (2007), Kim (2009) and Choi and Ok (2011), Choi, Jordan and Ok (2012), who 

report that the AHBS model outperforms other options pricing models, adopt the “absolute 

smile” approach. On the other hand, Kirgiz (2001) and Kim and Kim (2004), who report the 

AHBS model does not outperform others, adopt the “relative smile” approach. That is, the 

specific type of the AHBS model seems to be important for pricing and hedging performances. 
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Specifically, we adopt the following six specifications for the BS implied volatilities: 

 

R1:  ii KS /21    

R2:    2321 // iii KSKS  
 

R3:      34

2

321 /// iiii KSKSKS    

A1: 
ii K 21   

A2: 
2

321 iii KK  
 

A3: 3
4

2
321 iiii KKK    

 

where i  is the implied volatility for an i th option of strike iK  and spot price S . 

R1, R2 and R3 models are the “relative smile” approaches using the “relative” moneyness as 

the independent variables. A1, A2 and A3 models are the “absolute smile” approaches using 

the “absolute” strike prices as the independent variables. R1 is the ad hoc Black-Scholes model 

that considers the intercept and the moneyness as the independent variables. R2 is the ad hoc 

Black-Scholes model that considers the intercept, the moneyness and the square of the 

moneyness as the independent variables. R3 is the ad hoc Black-Scholes model that considers 

the intercept, the moneyness, the square and the third power of the moneyness as the 

independent variables. A1 is the ad hoc Black-Scholes model that considers the intercept and 

the strike price as the independent variables. A2 is the ad hoc Black-Scholes model that 

considers the intercept, the strike price and the square of the strike price as the independent 

variables. A3 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and 

the square and the third power of the strike price as the independent variables. Up to now, 

previous studies do not consider the third power of the moneyness and the strike price. In this 

paper, the performances of the AHBS models with higher degrees are examined. 

For implementation, we follow a four-step procedure. First, we abstract the BS implied 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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volatilities from each option. Second, we set up the implied volatilities as the dependent 

variable and the moneyness or the strike price as the independent variables. We also estimate 

the )4,3,2,1( ii  by ordinary least squares. Third, using the estimated parameters from the 

second step, we plug each option’s moneyness or the strike price into the equation, and obtain 

the model-implied volatility for each option. Finally, we use volatility estimates computed in 

the third step in order to price options with the following BS formula. 

 

   21;, dNKedNSC r
tKt




  

   12;, dNSdNKeP t
r

Kt   
  

   


 2//ln 2

1




rKS
d t ,  12 dd  

 

where  N  is the cumulative standard normal density. The AHBS model, although 

theoretically inconsistent, can be a more challenging benchmark than the simple BS model for 

any competing options valuation model. 

 

2.2 Stochastic Volatility with Jumps Model 

Bakshi, Cao and Chan (1997) derived a closed-form option pricing model that incorporates 

both stochastic volatility and jumps. Under the risk neutral measure, the underlying non-

dividend-paying stock price tS  and its components for any time t  are given by 

 

  tttStJt

t

t dqJdzvdtr
S

dS
 ,  

  tvtvtvvt dzvdtvdv ,   

    22 ,2/11ln~1ln JJJt NJ    

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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 where tr  is the instantaneous spot interest rate at time t ,   is the frequency of jumps per 

year and tv  is the diffusion component of return variance (conditional on no jump occurring). 

tSz ,  and tvz ,  are standard Brownian motions, with   dtdzdzCov tvtSt ,, , . tJ  is the 

percentage jump size (conditional on a jump occurring) that is lognormally, identically and 

independently distributed over time, with unconditional mean, J . The standard deviation of 

 tJ1ln  is J . tq  is a Poisson jump counter with intensity  , that is,   dtdqt  1Pr  

and    dttdq  10Pr . v , vv  /  and v  are the speed of adjustment, long-run 

mean and variation coefficient of the diffusion volatility tv , respectively. tq  and tJ  are 

uncorrelated with each other or with tSz ,  and tvz , . 

For a European call option written on the stock with strike price K  and time to maturity , 

the closed form formula for price ,tC  at time t  is as follows. 

 

   ttt
r

ttttt vrStPKevrStPSC t ,,;,,,;, 21,  


  

 

where the risk neutral probabilities, 
1P  and 

2P , are computed from inverting the respective 

characteristic functions of the following: 

 

 tttj vrStP ,,;,  

 
   











 


0

;,,,,lnexp
Re

1

2

1





 i

vrStfKi tttj
 ( 2,1j ) 

 

The characteristic functions, jf , are given in equations (A-1) and (A-2) of the Appendix. The 

price of a European put on the same stock can be determined from the put-call parity. 

(13) 

(14) 
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The option valuation model in equation (13) and (14) contains the most existing models as 

special cases. For example, we obtain (i) the BS model by setting 0 vvv  ; we 

obtain (ii) the SV model by setting 0 , where in order to derive each special case from 

equation (14), one may need to apply L’Hopital’s rule. 

 In applying the option pricing models, one always encounters the difficulty where spot 

volatilities and structural parameters are unobservable. As estimated in standard practice, we 

estimate the parameters of each model for every sample day. Since closed-form solutions are 

available for an option price, a natural candidate for the estimation of parameters in the formula 

is a non-linear least squares procedure, involving a minimization of the sum of squared errors 

between the model and the market prices.1 Let 
*
,tiO  denote the model price of option i  on 

day t , and tiO ,  denote the market price of option i  on day t . To estimate parameters for 

each model, we minimize the sum of percentage squared errors between the model and the 

market prices: 

 

 



N

i
titi OO

t 1

2*
,,min


 ( Tt ,...,1 ) 

 

where N denotes the number of options on day t , and T  denotes the number of days in the 

sample. 

Estimating the parameters from the asset returns can be an alternative method; however, 

historical data reflect only what happened in the past. Furthermore, the procedure using 

                                            
1 The objective function to minimize the sum of percentage squared errors can be used. 
However, in this case, the AHBS models are calibrated by OLS on implied volatilities whereas 
the SV and SVJ models are calibrated on relative pricing errors. Christoffersen and Jacobs (2004) 
address such inconsistencies in the choice of objective function and argue that results from the 
mixture of two different objectives have little explanatory power. In particular, they argue that 
the in-sample objective function must be the same as the out-of-sample objective function. Also, 
in our sample, there is no large difference between the results using the sum of squared errors 
and those using the sum of percentage squared errors. 

(15) 
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historical data is not capable of identifying risk premiums, which must be estimated from the 

options data conditional on the estimates of other parameters. The important advantage of 

using option prices to estimate parameters is to allow one to use the forward-looking 

information contained in the option prices. 

 

2.3 Rollover Strategies 

When options are priced and hedged, we need to estimate the parameters that are needed to 

plug into each model. As estimated in standard practice, we estimate the parameters of each 

model using the options data for every sample day. For one day ahead pricing and hedging 

performance, the parameters are estimated using the previous days’ options data. For one week 

ahead pricing and hedging performance, the options data seven days ago are used. In general 

trading dates, there is no complicated problems to implement this methodology. However, it is 

standard to eliminate the nearest option contracts with expiries less than 7 days, and use the 

next-to-nearest option contracts with expiries less than 7 days plus 1 month for the empirical 

study due to the liquidity problems of options contract. When forecasting the parameters for 

the next-to-nearest option contracts with expiry less than 7 days plus 1 month, one can use 

either the nearest contracts with expiry greater than 7 days (the nearest-to-next roll-over 

strategy) or the next-to-nearest contracts with expiry greater than 7 days plus 1 month (the next-

to-next roll-over strategy). The information content of these two contracts may differ and thus, 

the rollover procedure may be important to the accuracy of the parameter forecasting. Figure 1 

shows the difference between the nearest-to-next strategy and the next-to-next strategy. Figure 

1 represents the example for one day ahead pricing and hedging performance. The circle 

represents the options data from the nearest option contract. The diamond represents the 

options data from the next-to-nearest option contract. It is standard to eliminate the nearest 

option contracts with expiries less than 7 days, and use the next-to-nearest option contracts with 

expiries less than 7 days plus 1 month for the empirical study due to liquidity problems of the 
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options contract. When forecasting the parameters for the next-to-nearest option contracts with 

expiry less than 7 days plus 1 month, one can use either the nearest options contracts (circle) 

with expiry greater than 6 days or the next-to-nearest options contracts (diamond) with expiry 

greater than 6 days plus 1 month. When the nearest contract’s expiry is less than 7 days, the 

next-to-next strategy uses the next-to-nearest contracts on the previous day(s), whereas the 

nearest-to-next one uses the nearest-term contracts. These two strategies are different only on 

the day(s) when the expiry of nearest-term option contracts is less than seven days. 

In this paper, the performances of the nearest-to-next strategy and the next-to-next strategy are 

compared. If the next-to-next roll-over strategy shows better performance than the nearest-to-

next one, we can conjecture that there is a structural change when the nearest-to-next contracts 

are changed into the nearest contract. 

 

3. Data 

 

The S&P 500 index option data used in this paper come from Option Metrics LLC. The data 

include the end-of day bid and ask quotes, implied volatilities, open interest and daily trading 

volume for the SPX options traded on the Chicago Board Options Exchange from January 4, 

1996 through December 31, 2008. The data also include daily index values and estimates of 

dividend yields, as well as the term structures of zero-coupon interest rates constructed from 

LIBOR quotes and Eurodollar futures prices. We use the bid-ask average as our measure of the 

option price. 

The following rules are applied in order to filter the data needed for the empirical test. We 

use out-of-the-money options for calls and puts. First of all, since there is only a very thin 

trading volume for the in-the-money (henceforth ITM) option, the credibility of price 

information is not entirely satisfactory. Therefore, we use the price data with regards to both 

put and call options that are near-the-money and out-of-the-money (henceforth OTM). Second, 
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if both call and put option prices are used, ITM calls and OTM puts, which are equivalent 

according to the put-call parity, are used to estimate the parameters. Third, as Huang and Wu 

(2004) mention, “the Black-Scholes model has been known to systematically misprice equity 

index options, especially those that are out-of-the-money (OTM).” We recognize the need for an 

alternative option pricing model in order to mitigate this effect. 

As options with less than 7 days to expiration may induce biases due to low prices and bid-

ask spreads, they are excluded from the sample. As we mentioned before, this is the reason why 

the roll-over strategies can be emerged. Because the liquidity is concentrated in the nearest 

expiration contract, we only consider options with the nearest maturity. To mitigate the impact 

of price discreteness on option valuation, prices lower than 0.4 are not included. Prices not 

satisfying the arbitrage restriction are excluded. 

We divide the option data into several categories, according to the moneyness, S/K. Table 1 

describes certain sample properties of the SPX option prices used in this study. Summary 

statistics are reported for the option price as well as for the total number of observations, 

according to each moneyness-option type category. Note that there are 42,396 call- and 64,316 

put-option observations, with deep OTM2 options, respectively, taking up 24% for calls and 

49% for puts. Table 2 presents the “volatility smiles (or sneers)” effects for 26 consecutive six-

month sub-periods. We employ six fixed intervals for the degree of moneyness, and compute 

the mean over alternative sub-periods of the implied volatility. SPX options market seems to be 

“sneer” independent of the sub-periods employed in the estimation. As the S/K increase, the 

implied volatilities decrease to near-the-money; however, after that, they increase to out-of-the-

money put options. The implied volatility of deep out-of-the-money puts is larger than that of 

deep out-of-the-money calls. That is, a volatility smile is skewed towards one side. The skewed 

volatility smile is sometimes called a 'volatility sneer' because it looks more like a sardonic smile 

than a sincere smile. In the equity options market, the volatility sneer is often negatively skewed, 

                                            
2 For the call option, deep OTM options are options in S/K < 0.94. For the put option, deep 
OTM options are options in S/K > 1.06. 
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where lower strike prices for out-of-the money puts have higher implied volatilities and, thus, 

higher valuations.3 This is consistent with Rubinstein (1994), Derman (1999), Bakshi, Kapadia 

and Madan (2001), and Dennis and Mayhew (2002). As the smile evidence is indicative of 

negatively-skewed implicit return distribution with excess kurtosis, a better model must be 

based on a distributional assumption that allows for negative skewness and excess kurtosis. 

 

4. Empirical Results 

 

In this section, we examine the empirical performances of each model with respect to in-

sample pricing, out-of-sample pricing and hedging performance. The analysis is based on two 

measures: mean absolute errors (henceforth MAE) and root mean squared errors, (henceforth 

RMSE) as follows.   

 

MAE =  
 


T

t

N

i
titi OO

NT 1 1

*
,,

11
 

RMSE =   
 


T

t

N

i
titi OO

NT 1

2

1

*
,,

11
 

 

where 
*
,tiO  denotes the model price of option i  on day t , and tiO ,  denotes the market 

price of option i  on day t . N denotes the number of options on day t , and T  denotes the 

number of days in the sample. MAE measures the magnitude of pricing errors, while RMSE 

measures the volatility of errors. If some options pricing model has the lowest values for both 

MAE and RMSE, that model is the best. 

 

4.1 In-sample Pricing Performance 

                                            
3 See Rubinstein (1994) and Bakshi, Cao and Chen (1997). 

(16) 

(17) 
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Table 3 reports the mean and the standard error of the parameter estimates for each model. R2 

values for each AHBS-type model are also reported. For AHBS-type models, each parameter is 

estimated by the ordinary least squares every day. For the BS, SV and SVJ models, each 

parameter is estimated by minimizing the sum of the squared errors between the model and the 

market option prices every day. First, the daily estimates of each model’s parameters have 

excessive standard errors. However, such estimation will be valuable for the following reasons. 

The estimated parameters can be generated by indicating market sentiment on a daily basis, 

and the estimated parameters may suggest future specification of more complicated dynamic 

models. Also, because the AHBS-type models are based on not theoretical backgrounds, but on 

the traders’ rule, it is not a fatal problem. Second, as expected, the R3 andA3 models that have 

four independent variables show higher R2 values compared to other models. Therefore, it is 

necessary to check for the over-fitting problem by examining the out-of-sample pricing 

performance. Third, the implied correlation between the index return and the level of the 

volatilities of the SV and SVJ models has negative values. The negative estimate indicates that 

the implied volatility and the index returns are negatively correlated and the implied 

distribution recognized by option traders is negatively skewed. Also, the mean of jumps of the 

SVJ model is negative. This is consistent with the volatility sneer pattern shown in table 2. 

We evaluate the in-sample pricing performance of each model by comparing the market 

prices with the model’s prices computed by using the parameter estimates from the current day. 

Table 4 reports in-sample valuation errors for the alternative models computed over the whole 

sample of options. The SVJ model shows the best performance, closely followed by the SV 

model for MAE; the SV model outperforms other models for RMSE. Roughly, the SV and SVJ, 

the mathematically complicated models, are better than the AHBS-type models for in-sample 

pricing. The in-sample pricing performance is simply contingent on the number of free 

parameters. Second, all models show moneyness-based valuation errors. The models exhibit the 

worst fit for the near-the-money options. The fit, as measured by MAE, steadily improves as we 
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move from near-the-money to out-of-the-money options. Also, the SV and SVJ models do not 

show better performance than the AHBS-type models for OTM call options which S/K is less 

than one. 

Overall, all AHBS-type models and mathematically complicated models demonstrate better 

performance than the BS model. Also, the traders’ rule can explain the current market price in 

the options market although it is not rooted in rigorous theory. 

 

4.2 Out-of-sample Pricing Performance 

 In-sample pricing performance can be perverted due to the dormant problem of over-fitting 

to the data. A good in-sample fit might be a result of having an increasingly larger number of 

parameters. To reduce the effect of this connection to inferences, we turn to examining the 

model’s out-of-sample pricing performance. In the out-of-sample pricing, the presence of more 

parameters may actually cause over-fitting and thus, have the model penalized if the extra 

parameters do not improve its structural fitting. This analysis also has the purpose of evaluating 

the stability of each model’s parameter over time. To control the parameters’ stability over 

alternative time periods, we analyze out-of-sample valuation errors for one day or one week. 

We use the current day’s estimated parameters in order to price options for the following day 

(or week). 

Table 5 and table 6, respectively, report one-day and one-week ahead out-of-sample pricing 

errors for alternative models computed over the whole sample of options. First, we examine the 

out-of-sample pricing performance using the nearest-to-next roll-over strategy. Panel A of table 

5 and table 6 represents the results using the nearest-to-next roll-over strategy. For one day 

ahead out-of-sample pricing, the A2 model shows the best performance, closely followed by the 

A1 model. The A1 model exhibits better fit for the one week ahead out-of-sample pricing. For 

the in-sample pricing performance, the mathematically complicated models are competitive. 

However, for the out-of-sample pricing performance, the AHBS-type models show better 
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performance than the SV and SVJ models. Also, for the in-sample pricing performance, the A3 

and R3 models that have more parameters than other models show better performance. 

However, for the out-of-sample pricing performance, the simpler A1 or A2 model is the best. 

That is, the presence of more parameters actually causes the problem of over-fitting. Consistent 

with Jackwerth and Rubinstein (2001), Li and Pearson (2007) and Kim (2009), the traders’ rules 

dominate more mathematically sophisticated models although the SV and SVJ models are not 

far behind. With respect to moneyness-based errors, similar to the results of the in-sample 

pricing performance, MAE steadily decreases as we move from near-the-money to deep out-of-

the-money options for all models. Generally, simple absolute AHBS approaches, the A1 and A2 

models, outperform all other models. 

Pricing errors increase from in-sample to out-of-sample pricing. The average of MAE of all 

models is 0.5360 for in-sample pricing, and increases to 1.2184 for one-day ahead out-of-sample 

pricing. One-week ahead out-of-sample pricing errors grow to 1.9805, which is almost four 

times as much as the in-sample pricing errors. The relative margin of pricing performance is 

significantly changed when compared to that of the in-sample pricing results. The difference of 

the BS and the best model becomes smaller in the out-of-sample pricing. The ratio of the BS 

model to the SVJ model for MAE is 8.0882 for in-sample pricing errors. The ratio of the BS 

model to the A2 or A1 model decreases to 2.2312 and to 1.5415 for one-day ahead and one-week 

ahead out-of-sample errors, respectively. As the term of the out-of-sample pricing becomes 

longer, the difference between the BS model and the best model becomes smaller. The pricing 

performance of the SVJ model, which is the best model for in-sample pricing, is not maintained 

as the term of out-of-sample pricing gets longer, implying that the presence of more parameters 

actually cause over-fitting. For the AHBS-type models, A3 and R3, the best models among them 

for in-sample pricing do not remain their position for one day and one week ahead out-of-

sample pricing. For out-of-sample pricing, the A3 and the R3 models are changed into the very 

last, implying that the presence of more parameters actually cause over-fitting. This result is 
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consistent with the result of Jackwerth and Rubinstein (2001), Li and Pearson (2007) and Kim 

(2009). As a result, both the mathematically complicated options pricing models and the AHBS-

type models have over-fitting problems when the traditional nearest-to-next roll-over strategy 

is used. To mitigate these problems, we need to consider the new roll-over strategy, the next-to-

next strategy. 

Second, we examine the pricing performance for the next-to-next roll-over strategy, 

suggested by Choi and Ok (2011). Panel B of table 5 and table 6 represents the results using the 

next-to-next roll-over strategy. Above all, the next-to-next roll-over strategy decreases the 

pricing errors of all options pricing models. After using the next-to-next strategy, the averages 

of the MAEs of all options pricing models are decreased from 1.2184 (1.9805) to 1.0046 (1.4687) 

by 20% (35%) for one day (one week) ahead out-of-sample pricing. Panel A and panel B of 

Figure 1 represent the MAE of each options pricing model for both the nearest-to-next and the 

next-to-next roll-over strategies, respectively. The pricing errors of all models are decreased 

largely by the next-to-next strategy. Among them, the models with more parameters, R3, A3, 

and SVJ are favored the most. For both one day and one week ahead out-of-sample pricing, the 

A3 model generally shows the best performance. When the nearest-to-next roll-over strategy is 

applied, the simpler A1 and A2 models show better performance compared to other models. 

However, using the next-to-next strategy, the A3 model shows better performance than the 

complicated models. As a result, when the next-to-next roll-over strategy is applied, the over-

fitting problems of the models are disappeared and the A3 model outperforms all other models. 

Finally, we examine the relative strength of the absolute and relative smile approaches for 

pricing options. For the in-sample pricing performance, the averages of the MAEs of “relative 

smile” and “absolute smile” approaches are 0.4092 and 0.4129, respectively. Using the nearest-

to-next strategy, for one day (one week) ahead out-of-sample pricing, the average MAEs of 

alternative “relative smile” and “absolute smile” approaches are 1.2186 (2.0395) and 0.9891 

(1.6234), respectively. Using the next-to-next strategy, for one day (one week) ahead out-of-
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sample pricing, the averages of the MAEs of the alternative “relative smile” and “absolute 

smile” approaches are 0.9704 (1.5087) and 0.7551 (1.0833), respectively. Irrespective of the type 

of the roll-over strategy, the effects of the reduction of pricing errors for the absolute smile 

approach are much better compared to those for the relative smile approach. This result is 

consistent with those of Jackwerth and Rubinstein (2001), Li and Pearson (2007), Kim (2009) and 

Choi and Ok (2011), who report that the “absolute smile” model beats the “relative smile” 

model for predicting prices. The result can be explained by the fact that the absolute smile 

model implicitly adjusts for the negative correlation between the index return and the level of 

the volatilities. Because the absolute model treats the skew as a fixed function of the strike 

instead of the moneyness S/K, it creates a smaller implied volatility than the relative smile 

model when there is an increase in the stock price. 

 

4.3 Hedging Performance 

Hedging performance is an important tool for gauging the forecasting power of the volatility 

of the underlying assets. In practice, option traders usually focus on the risk due to the 

underlying asset price volatility alone, and carry out a delta-neutral hedge, employing only the 

underlying asset as the hedging instrument. While this seems plausible for the BS and AHBS-

type models, the SV and SVJ models lead to incomplete markets. It is well known that a simple 

delta hedging strategy is sub-optimal in this setting. Additionally, Alexander and Nogueira 

(2007) show that the delta-hedge ratios of the SV and SVJ models should be theoretically 

identical (or only be driven by differences in the model fit) because of the homogeneity of the 

call option prices and the scale-invariance property of the SV and SVJ models. 

Because there are several risk factors in the proposed SV and SVJ models, the need for a 

perfect hedge may arise in situations where not only is the underlying price risk present, but 

also is volatility, or jump risk present. To implement this hedging practice, we should recognize 

that a perfect hedge is not practically feasible in the presence of stochastic jump sizes. So, in line 
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with the measure of hedging performances in Dumas, Fleming, and Whaley (1998) and 

Gemmill and Saflekos (2000), we define the hedge portfolio error as follows. 

 

*OOt   

 

where O  is the change in the reported market price from day t  until day 1t  or 

7t  and 
*O  is the change in the model’s theoretical price. 

Table 7 and table 8 present one day and one week hedging errors over alternative moneyness 

categories, respectively. First, using the nearest-to-next roll-over strategy, the A3 model has the 

best hedging performance for one day and one week. The SV or the SVJ model is the worst 

performer, and even the performances of those models are less than that of the BS model. For 

hedging performance, the AHBS-type models show better performance than the other models. 

The ratios of the BS model to the A3 model, which is the best performer, are 1.2915 and 1.3866 

for one-day ahead and one-week ahead hedging errors, respectively. As the term of hedging 

becomes longer, the difference between the BS model and the best model becomes smaller. 

Second, we examine hedging performances using the next-to-next roll-over strategy. In Panel A 

and Panel B of Figure 2, the hedging errors of all models are decreased and the complicate 

models are favored the most, similar to the out-of-sample pricing results. The A3 model is the 

best performer for both one day and one week ahead hedging errors. After the next-to-next 

approach is applied into the models, the SV and SVJ models become better than the BS model. 

Similar to the results of the out-of-sample pricing, the next-to-next strategy can mitigate the 

over-fitting problem of AHBS-type models. The AHBS-type models that have more parameters 

show better hedging performance compared to those with less parameters. However, the next-

to-next strategy does not make extreme decreases of the hedging errors. The next-to-next roll-

over strategy can decrease 18% and 26% of one day and one week ahead out-of-sample pricing 

errors, but only 9% and 16% of one day and one week ahead hedging errors. As a result, the 

(18) 
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next-to-next roll-over strategy can also decrease the hedging errors, but is not drastic. 

 

5. Conclusion 

 

For S&P 500 options, we implement a horse race competition among several options pricing 

models. We consider the traders’ rules to predict future implied volatilities by applying simple 

ad hoc rules to the observed current implied volatility patterns as well as to the mathematically 

complicated options pricing models, the SV and SVJ models, for pricing and hedging options. 

The roll-over strategies of the parameters for each options pricing model are also compared. In 

the nearest-to-next strategy, the options data of the nearest term contract on day t − k is used to 

estimate the parameters of the next-to-nearest contract on day t, whereas in the next-to-next 

roll-over strategy, the next-to-nearest contract on day t − k is used to estimate the parameter of 

the next-to-nearest contract on day t.  

When we use the traditional roll-over method, the nearest-to-next strategy, it is found that the 

SVJ, the mathematically complicated model, is the best models for in-sample pricing. However, 

for out-of-sample pricing, the A1 and A2 models show better performance than the SV and SVJ 

models. Also the absolute smile approaches show better performance than the relative smile 

approaches. Among AHBS-type models, a simpler model with less parameter shows better 

performance compared to other models. That is, the presence of more parameters actually 

causes the problem of over-fitting. For hedging performance, the AHBS-type models show 

better performance than the mathematically complicated models; yet, the differences among the 

models are not significant.  

When we use the new roll-over method, the next-to-next strategy decreases the pricing and 

hedging errors of all options pricing models. The pricing errors of the AHBS-type models are 

decreased largely by the next-to-next strategy. Moreover, the A3 model is the best. The AHBS-

type models that more parameters show better performance than those which have less 
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parameters for pricing options. That is, the next-to-next strategy can mitigate the over-fitting 

problem of AHBS-type models. For hedging performance, the next-to-next strategy also 

decreases the errors of all options pricing models; however, the difference between the results 

using the nearest-to-next strategy and those using the next-to-next strategy are not so large. 

As a result, when the next-to-next strategy is considered, the “absolute smile” AHBS-type 

model that has more independent parameters can be a competitive model for pricing and 

hedging S&P 500 index options. 
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Appendix 

 

The characteristic functions jf̂  for the SVJ model are respectively given by 
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The characteristic functions for the SV model can be obtained by setting 0  in (A-1) and 

(A-2). 
 

(A-1) 

(A-2) 
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Table 1: S&P 500 Options Data 

This table reports the average option price and the number of options, which are shown in 
parentheses, for each moneyness and options type (call or put) category. The sample period is 
from January 4, 1996 to December 31, 2008. The last bid-ask average of each option contract is 
used to obtain the summary statistics. Moneyness of an option is defined as S/K, where S 
denotes the spot price and K denotes the strike price. 
 

Call Options Put Options 

Moneyness Price Number Moneyness Price Number 

S/K<0.94 2.7833 10,033 1.00<S/K<1.03 13.0104 17,966 
0.94<S/K<0.96 4.8054 13,580 1.03<S/K<1.06 6.5072 15,149 
0.96<S/K<1.00 12.2916 18,783 S/K>1.06 3.0967 31,201 

Total 7.6435 42,396 Total 6.6693 64,316 
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Table 2: Implied Volatilities Sneer 

This table reports the implied volatilities calculated by inverting the Black-Scholes (1973) model separately for each moneyness category. The 
implied volatilities of individual options are then averaged within each moneyness category and across 26 consecutive six-month sub-periods. 
Moneyness is defined as S/K, where S denotes the spot price and K denotes the strike price. 1996 01-06 is the period from January, 1996 to June, 1996. 
 

  S/K < 0.94 0.94 < S/K < 0.97 0.97 < S/K < 1.00 1.00 < S/K < 1.03 1.03 < S/K < 1.06 S/K > 1.06 

1996 01-06 0.1308 0.1204 0.1207 0.1553 0.1841 0.2249 

1996 07-12 0.1413 0.1243 0.1289 0.1606 0.1884 0.2332 

1997 01-06 0.1626 0.1579 0.1636 0.1895 0.2108 0.2516 

1997 07-12 0.1920 0.1867 0.1957 0.2223 0.2477 0.3092 

1998 01-06 0.1517 0.1491 0.1588 0.1917 0.2226 0.2872 

1998 07-12 0.2364 0.2037 0.2139 0.2406 0.2709 0.3492 

1999 01-06 0.1831 0.1851 0.2011 0.2267 0.2511 0.3132 

1999 07-12 0.1626 0.1658 0.1774 0.2035 0.2267 0.2887 

2000 01-06 0.1922 0.1840 0.1969 0.2238 0.2417 0.3025 

2000 07-12 0.2095 0.1844 0.1891 0.2070 0.2259 0.2841 

2001 01-06 0.2120 0.1962 0.2040 0.2269 0.2391 0.2996 

2001 07-12 0.2159 0.1977 0.2115 0.2401 0.2638 0.3525 

2002 01-06 0.1781 0.1694 0.1740 0.1993 0.2256 0.2889 

2002 07-12 0.2711 0.2683 0.2787 0.3070 0.3270 0.3850 

2003 01-06 0.2427 0.2248 0.2208 0.2325 0.2504 0.2951 

2003 07-12 0.1563 0.1459 0.1446 0.1689 0.1911 0.2444 

2004 01-06 0.1464 0.1262 0.1243 0.1504 0.1768 0.2281 

2004 07-12 0.1227 0.1127 0.1121 0.1354 0.1589 0.2036 

2005 01-06 0.1197 0.1025 0.0986 0.1233 0.1510 0.1994 

2005 07-12 0.1628 0.0902 0.0926 0.1205 0.1472 0.1958 
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2006 01-06 0.1205 0.0968 0.0981 0.1289 0.1562 0.2131 

2006 07-12 0.2184 0.0875 0.0903 0.1201 0.1480 0.1954 

2007 01-06 0.1666 0.0945 0.0955 0.1301 0.1618 0.2236 

2007 07-12 0.1809 0.1548 0.1713 0.2124 0.2386 0.2917 

2008 01-06 0.1902 0.1771 0.1942 0.2284 0.2471 0.2893 

2008 07-12 0.3975 0.3296 0.3435 0.3754 0.4017 0.4722 
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Table 3: Parameters 

This table reports the mean and the standard error of the parameter estimates for each model. 
The mean and the standard deviation of R2s for each AHBS-type model are reported. For the 
AHBS-type models, each parameter is estimated by the ordinary least squares every day. For 
the BS, SV and SVJ models, each parameter is estimated by minimizing the sum of the squared 
errors between the model and the market option prices every day. R1 is the ad hoc Black-
Scholes model that considers the intercept and the moneyness as the independent variables. R2 
is the ad hoc Black-Scholes model that considers the intercept, the moneyness and the square of 
the moneyness as the independent variables. R3 is the ad hoc Black-Scholes model that 
considers the intercept, the moneyness, the square and the third power of the moneyness as the 
independent variables. A1 is the ad hoc Black-Scholes model that considers the intercept and 
the strike price as the independent variables. A2 is the ad hoc Black-Scholes model that 
considers the intercept, the strike price and the square of the strike price as the independent 
variables. A3 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and 
the square and the third power of the strike price as the independent variables. BS is the Black-
Scholes (1973) option pricing model. SV is the option pricing model considering the continuous-
time stochastic volatility. SVJ is the option pricing model considering the continuous-time 
stochastic volatility and the jumps. 
 

Panel A: AHBS-type Models 

 0  
1  2  3  2R  

R1 
-0.6097 
(0.0052) 

0.8006 
(0.0046) 

 
 0.9326 

(0.1124) 

R2 
1.7984 

(0.0631) 
-3.9174 
(0.1255) 

2.3059 
(0.0621) 

 0.9720 
(0.0427) 

R3 
26.9431 
(1.0340) 

-77.5085 
(3.0511) 

73.9906 
(2.9996) 

-23.2409 
(0.9828) 

0.9833 
(0.0289) 

A1 
1.0360 

(0.0048) 
-0.0008 
(0.0000) 

 
 0.9152 

(0.1202) 

A2 
4.3900 

(0.0656) 
-0.0071 
(0.0001) 

0.0000 
(0.0000) 

 0.9761 
(0.0377) 

A3 
-17.1892 
(1.0140) 

0.0559 
(0.0030) 

-0.0001 
(0.0000) 

0.0000 
(0.0000) 

0.9847 
(0.0285) 

 
Panel B: Other Models 

          

BS 
0.1858 

(0.0014) 
    

   

   J  J  
v  v  v    

tv  

SV    
0.6431 

(0.0638) 
0.3722 

(0.0417) 
1.3843 

(0.0264) 
-0.6305 
(0.0046) 

0.0390 
(0.0026) 

SVJ 
1.1187 

(0.0358) 
-0.1777 
(0.0087) 

0.2032 
(0.0172) 

0.9792 
(0.0258) 

0.6074 
(0.0212) 

0.4631 
(0.0083) 

-0.4239 
(0.0201) 

0.0173 
(0.0007) 
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Table 4: In-Sample Pricing Errors 

This table reports in-sample pricing errors with respect to moneyness. The in-sample pricing performance of each model is evaluated by comparing 
the market prices with the model’s prices computed by using the parameter estimates from the current day. S/K is defined as moneyness, where S 
denotes the asset price and K denotes the strike price. MAE denotes mean absolute errors and RMSE denotes root mean squared errors. R1 is the ad 
hoc Black-Scholes model that considers the intercept and the moneyness as the independent variables. R2 is the ad hoc Black-Scholes model that 
considers the intercept, the moneyness and the square of the moneyness as the independent variables. R3 is the ad hoc Black-Scholes model that 
considers the intercept, the moneyness, the square and the third power of the moneyness as the independent variables. A1 is the ad hoc Black-
Scholes model that considers the intercept and the strike price as the independent variables. A2 is the ad hoc Black-Scholes model that considers the 
intercept, the strike price and the square of the strike price as the independent variables. A3 is the ad hoc Black-Scholes model that considers the 
intercept, the strike price and the square and the third power of the strike price as the independent variables. BS is the Black-Scholes (1973) option 
pricing model. SV is the option pricing model considering the continuous-time stochastic volatility. SVJ is the option pricing model considering the 
continuous-time stochastic volatility and jumps. 
 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAE 

S/K<0.94 2.1424 0.4279 0.3100 0.1577 0.5455 0.2500 0.1381 0.1874 0.2493 

0.94<S/K<0.96 1.9385 0.5458 0.3979 0.2231 0.6187 0.3571 0.1891 0.1613 0.1842 

0.96<S/K<1.00 1.5185 0.9628 0.8138 0.5887 1.0738 0.7637 0.5516 0.4015 0.3704 

1.00<S/K<1.03 1.5342 0.6935 0.5504 0.6171 0.7226 0.5696 0.5959 0.4527 0.3630 

1.03<S/K<1.06 2.2481 0.3666 0.2984 0.2129 0.3854 0.2981 0.1853 0.1840 0.1511 

S/K>1.06 1.9463 0.1896 0.1711 0.1197 0.2170 0.1563 0.1093 0.1866 0.1216 

Total 1.8619 0.5034 0.4081 0.3160 0.5588 0.3873 0.2927 0.2657 0.2302 

RMSE 

S/K<0.94 2.7826 0.6683 0.4764 0.2383 2.8438 0.3796 0.2173 0.2936 0.7878 

0.94<S/K<0.96 2.3684 0.9581 0.6833 0.3747 1.0699 0.7589 0.3370 0.2696 0.6927 

0.96<S/K<1.00 1.8362 1.3847 1.1295 0.8592 1.5330 1.0672 0.8222 0.6835 0.8548 

1.00<S/K<1.03 1.9255 1.0109 0.8813 0.9327 1.0172 0.9080 0.8887 0.7399 0.7221 

1.03<S/K<1.06 2.6427 0.5752 0.5852 0.3648 0.5569 0.5734 0.3191 0.2791 0.3785 
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S/K>1.06 2.5675 0.3225 0.3329 0.2059 0.3643 0.3000 0.1828 0.2681 0.2456 

Total 2.3618 0.8635 0.7191 0.5752 1.2557 0.7065 0.5432 0.4731 0.6114 
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Table 5: One Day Ahead Out-of-Sample Pricing Errors 

This table reports one day ahead out-of-sample pricing errors with respect to moneyness. Each model is estimated every day during the sample 
period; one day ahead out-of-sample pricing errors are computed using the estimated parameters from the previous trading day. Panel A reports 
one day ahead out-of-sample pricing errors using the nearest-to-next roll over strategy. Panel B reports one day ahead out-of-sample pricing errors 
using the next-to-next roll over strategy. S/K is defined as moneyness, where S denotes the asset price and K denotes the strike price. MAE denotes 
mean absolute errors and RMSE denotes root mean squared errors. R1 is the ad hoc Black-Scholes model that considers the intercept and the 
moneyness as the independent variables. R2 is the ad hoc Black-Scholes model that considers the intercept, the moneyness and the square of the 
moneyness as the independent variables. R3 is the ad hoc Black-Scholes model that considers the intercept, the moneyness, the square and the third 
power of the moneyness as the independent variables. A1 is the ad hoc Black-Scholes model that considers the intercept and the strike price as the 
independent variables. A2 is the ad hoc Black-Scholes model that considers the intercept, the strike price and the square of the strike price as the 
independent variables. A3 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the square and the third power of the 
strike price as the independent variables. BS is the Black-Scholes (1973) option pricing model. SV is the option pricing model considering the 
continuous-time stochastic volatility. SVJ is the option pricing model considering the continuous-time stochastic volatility and jumps.  
 

Panel A: Nearest-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAE 

S/K<0.94 2.3820 1.7209 1.4492 1.7704 1.7932 1.2515 1.7001 1.0524 1.3395 

0.94<S/K<0.96 2.0893 1.2060 1.0784 1.0156 1.0759 0.8305 0.7952 1.0933 1.2787 

0.96<S/K<1.00 1.9595 1.6458 1.5069 1.3948 1.4724 1.2002 1.0755 1.5138 1.6761 

1.00<S/K<1.03 1.8610 1.3506 1.2755 1.3002 1.1108 1.0091 1.0219 1.4552 1.5424 

1.03<S/K<1.06 2.2990 0.8960 0.8760 0.8786 0.7103 0.6666 0.6454 1.0387 1.0688 

S/K>1.06 1.9679 0.6636 0.9832 1.5465 0.5317 0.7510 1.1171 0.6946 0.6744 

Total 2.0498 1.1536 1.1653 1.3370 1.0080 0.9187 1.0406 1.1001 1.1923 

RMSE 

S/K<0.94 4.3852 9.8866 6.9483 11.2266 12.1547 7.4598 11.6676 2.4316 3.6415 

0.94<S/K<0.96 3.0969 2.5736 2.2606 2.2050 2.8509 1.9258 1.8610 2.3508 3.3254 

0.96<S/K<1.00 2.7602 2.6426 2.3948 2.3005 2.3494 1.9160 1.7958 2.8194 3.5162 

1.00<S/K<1.03 2.7072 2.2118 2.1536 2.1869 1.8059 1.7111 1.7057 2.7001 3.1183 
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1.03<S/K<1.06 3.0361 1.7302 1.7318 1.8537 1.3526 1.3127 1.2769 2.1421 2.5299 

S/K>1.06 2.8041 1.6942 3.1487 12.5589 1.3521 2.3913 9.4232 1.6386 2.1283 

Total 3.0350 3.6539 3.2101 7.7982 4.1522 2.9598 6.3635 2.3070 2.9496 

 
Panel B: Next-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAE 

S/K<0.94 2.2890 1.2526 1.0825 1.3277 1.0851 0.7968 1.0984 0.9585 0.9453 

0.94<S/K<0.96 2.1098 1.0664 0.9990 0.9275 0.8735 0.7367 0.6670 0.9400 0.9276 

0.96<S/K<1.00 1.9423 1.5407 1.4337 1.3185 1.3561 1.1138 0.9807 1.3139 1.3267 

1.00<S/K<1.03 1.7539 1.2706 1.1821 1.2049 1.0167 0.9067 0.9146 1.2125 1.2527 

1.03<S/K<1.06 2.2271 0.8463 0.8161 0.8077 0.6525 0.6072 0.5768 0.8584 0.8687 

S/K>1.06 1.9351 0.5325 0.5269 0.5276 0.4249 0.3838 0.3861 0.5694 0.5258 

Total 2.0028 1.0144 0.9502 0.9467 0.8399 0.7158 0.7095 0.9335 0.9284 

RMSE 

S/K<0.94 3.4969 6.5118 4.4744 9.9655 7.7868 4.2148 10.1036 2.0523 2.0509 

0.94<S/K<0.96 2.9122 1.9145 1.8257 1.7539 1.5357 1.3176 1.2002 1.7983 1.8402 

0.96<S/K<1.00 2.6059 2.3118 2.1726 2.0654 1.9846 1.6376 1.4830 2.1155 2.1516 

1.00<S/K<1.03 2.4388 1.9392 1.8888 1.9098 1.4814 1.3808 1.3534 1.8983 1.9627 

1.03<S/K<1.06 2.8444 1.4731 1.4869 1.4545 1.0535 1.0306 0.9614 1.4924 1.5424 

S/K>1.06 2.6668 1.1429 1.1481 1.1399 0.8229 0.7548 0.7765 1.1794 1.1557 

Total 2.7665 2.5918 2.1065 3.4315 2.7239 1.7325 3.2841 1.7102 1.7372 
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Table 6: One Week Ahead Out-of-Sample Pricing Errors 

This table reports one week ahead out-of-sample pricing with respect to moneyness. Each model is estimated every day during the sample period; 
one week ahead out-of-sample pricing errors are computed using estimated parameters from one week ago. Panel A reports one week ahead out-of-
sample pricing errors using the nearest-to-next roll over strategy. Panel B reports one week ahead out-of-sample pricing errors using the next-to-
next roll over strategy. S/K is defined as moneyness, where S denotes the asset price and K denotes the strike price. MAE denotes mean absolute 
errors and RMSE denotes root mean squared errors. R1 is the ad hoc Black-Scholes model that considers the intercept and the moneyness as the 
independent variables. R2 is the ad hoc Black-Scholes model that considers the intercept, the moneyness and the square of the moneyness as the 
independent variables. R3 is the ad hoc Black-Scholes model that considers the intercept, the moneyness, the square and the third power of the 
moneyness as the independent variables. A1 is the ad hoc Black-Scholes model that considers the intercept and the strike price as the independent 
variables. A2 is the ad hoc Black-Scholes model that considers the intercept, the strike price and the square of the strike price as the independent 
variables. A3 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the square and the third power of the strike price as 
the independent variables. BS is the Black-Scholes (1973) option pricing model. SV is the option pricing model considering the continuous-time 
stochastic volatility. SVJ is the option pricing model considering the continuous-time stochastic volatility and jumps. 
 

Panel A: Nearest-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAE 

S/K<0.94 2.6955 2.4740 2.5531 3.0536 2.4607 2.3104 3.1074 1.9402 2.3406 

0.94<S/K<0.96 2.3209 1.8113 1.6752 1.6174 1.5575 1.3106 1.3781 2.0172 2.6683 

0.96<S/K<1.00 2.4645 2.3196 2.1757 2.0906 1.9263 1.6263 1.5425 2.7361 3.3861 

1.00<S/K<1.03 2.4457 2.1117 2.0762 2.0837 1.6234 1.5316 1.5427 2.8080 3.0853 

1.03<S/K<1.06 2.4741 1.5557 1.5498 1.5749 1.1563 1.1495 1.1733 2.0799 2.2210 

S/K>1.06 1.9914 1.3350 2.1132 2.8087 1.0396 1.7047 2.0681 1.4441 1.3936 

Total 2.3278 1.8381 2.0237 2.2567 1.5101 1.5898 1.7702 2.1108 2.3977 

RMSE 

S/K<0.94 5.4083 11.7077 12.6689 15.3663 14.5579 11.5353 15.0424 4.4645 4.7711 

0.94<S/K<0.96 3.7497 3.4075 3.4598 3.3580 3.6598 2.6120 3.1233 4.1324 5.2583 

0.96<S/K<1.00 3.6732 3.6611 3.4406 3.3757 3.0477 2.5708 2.5055 4.7418 5.9154 

1.00<S/K<1.03 3.6445 3.3300 3.3049 3.3273 2.5613 2.4069 2.4213 4.7627 5.1920 
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1.03<S/K<1.06 3.5529 2.7604 2.7448 2.8641 2.1222 2.0400 2.2054 3.9105 4.1467 

S/K>1.06 2.9730 2.5126 4.1344 15.3676 2.0307 3.4903 11.2947 3.0310 3.0275 

Total 3.6779 4.6395 5.1587 9.8868 5.1212 4.4360 7.9132 4.0841 4.6342 

 
Panel B: Next-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAE 

S/K<0.94 2.3866 1.6770 1.7050 1.5188 1.2440 1.2787 1.0834 1.5221 1.3450 

0.94<S/K<0.96 2.3951 1.5615 1.5110 1.4381 1.1851 1.0791 0.9971 1.5652 1.4809 

0.96<S/K<1.00 2.5028 2.2119 2.1317 2.0171 1.7648 1.541 1.4046 2.2169 2.1416 

1.00<S/K<1.03 2.1983 1.9819 1.9167 1.9159 1.4130 1.2908 1.2917 2.1895 2.1238 

1.03<S/K<1.06 2.2872 1.3932 1.3787 1.3991 0.9711 0.9368 0.9400 1.6557 1.6035 

S/K>1.06 1.9435 0.9062 0.9124 0.9214 0.6958 0.6473 0.6744 1.0499 0.9903 

Total 2.2328 1.5420 1.5129 1.4713 1.1575 1.0683 1.0240 1.6430 1.5665 

RMSE 

S/K<0.94 3.8324 7.3373 8.4343 5.7274 7.4183 8.2250 3.0896 2.9123 2.6266 

0.94<S/K<0.96 3.5167 2.7285 2.6666 2.5978 2.0137 1.8453 1.7212 2.7959 2.6431 

0.96<S/K<1.00 3.5124 3.2995 3.2114 3.1088 2.5312 2.2361 2.0776 3.4452 3.2413 

1.00<S/K<1.03 3.2540 3.0122 2.9683 2.9811 2.0871 1.9427 1.9221 3.3412 3.1529 

1.03<S/K<1.06 3.2580 2.4232 2.4145 2.4438 1.6461 1.5466 1.5552 2.7657 2.6247 

S/K>1.06 2.8865 1.8045 1.8136 1.8225 1.3018 1.1693 1.2655 2.0088 1.9136 

Total 3.2942 3.3527 3.5615 2.9933 2.9041 3.0086 1.8623 2.8330 2.6662 
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Table 7: One Day Ahead Hedging Errors 

This table reports one day ahead hedging error with respect to moneyness. For each option, its hedging error is the difference between the change in 
the reported market price and the change in the model’s theoretical price from day t until day t+1. Panel A reports one day ahead hedging errors 
using the nearest-to-next roll over strategy. Panel B reports one day ahead hedging errors using the next-to-next roll over strategy. MAE denotes 
mean absolute errors and RMSE denotes root mean squared errors. R1 is the ad hoc Black-Scholes model that considers the intercept and the 
moneyness as the independent variables. R2 is the ad hoc Black-Scholes model that considers the intercept, the moneyness and the square of the 
moneyness as the independent variables. R3 is the ad hoc Black-Scholes model that considers the intercept, the moneyness, the square and the third 
power of the moneyness as the independent variables. A1 is the ad hoc Black-Scholes model that considers the intercept and the strike price as the 
independent variables. A2 is the ad hoc Black-Scholes model that considers the intercept, the strike price and the square of the strike price as the 
independent variables. A3 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the square and the third power of the 
strike price as the independent variables. BS is the Black-Scholes (1973) option pricing model. SV is the option pricing model considering the 
continuous-time stochastic volatility. SVJ is the option pricing model considering the continuous-time stochastic volatility and jumps. 
 

Panel A: Nearest-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAE 

S/K<0.94 1.4032 1.1922 1.1215 1.0193 0.8805 0.8471 0.8117 0.9604 0.9999 

0.94<S/K<0.96 1.0095 1.1021 1.0441 0.9860 0.8010 0.7717 0.7490 0.9999 1.0270 

0.96<S/K<1.00 1.083 1.3724 1.3135 1.2989 1.0635 1.0418 1.0336 1.4638 1.5533 

1.00<S/K<1.03 1.0923 1.2066 1.2221 1.2702 0.9877 1.0004 1.0029 1.4359 1.4960 

1.03<S/K<1.06 0.8690 0.8436 0.8643 0.9074 0.6640 0.6573 0.6568 1.0009 0.9968 

S/K>1.06 0.6773 0.5671 0.6033 0.5743 0.4277 0.4380 0.4349 0.5749 0.5980 

Total 0.8441 0.8649 0.8584 0.8466 0.6664 0.6608 0.6536 0.9048 0.9385 

RMSE 

S/K<0.94 2.8595 2.8751 2.7309 2.6181 2.3547 2.2827 2.2543 2.1086 2.6671 

0.94<S/K<0.96 1.9191 2.1929 2.0520 1.9817 1.7546 1.6135 1.5810 2.0084 2.8089 

0.96<S/K<1.00 1.8319 2.2460 2.1475 2.1491 1.8579 1.7735 1.7657 2.6404 3.2653 

1.00<S/K<1.03 1.7300 1.8846 1.9068 1.9861 1.5255 1.5485 1.5585 2.6153 2.8267 
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1.03<S/K<1.06 1.5180 1.4926 1.5196 1.5993 1.1348 1.1344 1.1420 2.1019 2.3396 

S/K>1.06 1.3464 1.4179 1.5476 1.4854 1.0805 1.1690 1.1599 1.4923 2.0838 

Total 1.6723 1.8186 1.7986 1.7842 1.4585 1.4362 1.4274 2.0078 2.4716 

 
Panel B: Next-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAE 

S/K<0.94 1.3331 1.0988 1.0418 0.9487 0.7784 0.7592 0.7277 0.9243 0.9058 

0.94<S/K<0.96 0.9870 1.0404 0.9997 0.9520 0.7385 0.7296 0.7057 0.9171 0.8702 

0.96<S/K<1.00 1.0359 1.287 1.2412 1.2226 0.966 0.9556 0.9406 1.2862 1.2458 

1.00<S/K<1.03 0.9944 1.1462 1.1411 1.1892 0.9183 0.9148 0.9151 1.2105 1.2548 

1.03<S/K<1.06 0.8044 0.8074 0.8222 0.8597 0.6214 0.6140 0.6063 0.8331 0.8277 

S/K>1.06 0.6561 0.5189 0.5412 0.5126 0.3814 0.3770 0.3736 0.5055 0.5134 

Total 0.8004 0.8113 0.8024 0.7912 0.6086 0.6018 0.5924 0.7922 0.7869 

RMSE 

S/K<0.94 2.1383 2.0917 2.0195 1.9386 1.4771 1.3956 1.3575 1.9661 1.9233 

0.94<S/K<0.96 1.5449 1.7538 1.7008 1.6560 1.2528 1.2728 1.1720 1.6808 1.6468 

0.96<S/K<1.00 1.5557 1.9082 1.8753 1.8741 1.4536 1.4390 1.4225 2.0025 1.9958 

1.00<S/K<1.03 1.4955 1.7597 1.7601 1.8364 1.3619 1.3585 1.3565 1.8423 1.9266 

1.03<S/K<1.06 1.3219 1.4064 1.4371 1.5000 1.0126 1.0115 0.9981 1.4571 1.4507 

S/K>1.06 1.1857 1.1165 1.1536 1.0953 0.7589 0.7478 0.7451 1.1068 1.1882 

Total 1.3894 1.5128 1.5033 1.4988 1.1077 1.0964 1.0737 1.5268 1.5469 
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Table 8: One Week Ahead Hedging Errors 

This table reports one week ahead hedging error with respect to moneyness. For each option, its hedging error is the difference between the change 
in the reported market price and the change in the model’s theoretical price from day t until day t+7. Panel A reports one week ahead hedging errors 
using the nearest-to-next roll over strategy. Panel B reports one week ahead hedging errors using the next-to-next roll over strategy. MAE denotes 
mean absolute errors and RMSE denotes root mean squared errors. R1 is the ad hoc Black-Scholes model that considers the intercept and the 
moneyness as the independent variables. R2 is the ad hoc Black-Scholes model that considers the intercept, the moneyness and the square of the 
moneyness as the independent variables. R3 is the ad hoc Black-Scholes model that considers the intercept, the moneyness, the square and the third 
power of the moneyness as the independent variables. A1 is the ad hoc Black-Scholes model that considers the intercept and the strike price as the 
independent variables. A2 is the ad hoc Black-Scholes model that considers the intercept, the strike price and the square of the strike price as the 
independent variables. A3 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the square and the third power of the 
strike price as the independent variables. BS is the Black-Scholes (1973) option pricing model. SV is the option pricing model considering the 
continuous-time stochastic volatility. SVJ is the option pricing model considering the continuous-time stochastic volatility and jumps.  
 

Panel A: Nearest-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAE 

S/K<0.94 2.6283 2.1145 2.0282 1.8813 1.6999 1.6574 1.5812 1.8439 1.6667 

0.94<S/K<0.96 1.5998 1.7879 1.6956 1.5704 1.2709 1.2070 1.1719 1.9364 2.0456 

0.96<S/K<1.00 1.5394 1.9869 1.873 1.8386 1.4784 1.4206 1.4123 2.5479 2.9488 

1.00<S/K<1.03 1.8656 1.8960 1.9405 2.0163 1.4660 1.4845 1.4931 2.6144 2.8695 

1.03<S/K<1.06 1.6018 1.4320 1.4528 1.5239 1.1520 1.1045 1.1097 1.9225 2.0450 

S/K>1.06 1.4885 1.1769 1.2948 1.2538 0.9082 0.9424 0.9383 1.3257 1.2967 

Total 1.2291 1.1821 1.1886 1.1729 0.9061 0.8944 0.8864 1.4229 1.5082 

RMSE 

S/K<0.94 4.9952 4.5678 5.0059 4.8419 4.0583 4.2023 4.1496 4.1175 3.4577 

0.94<S/K<0.96 2.8507 3.2096 3.6100 3.4291 2.5558 2.3965 2.3661 3.9714 4.3152 

0.96<S/K<1.00 2.6294 3.2183 3.0550 3.0526 2.5423 2.4069 2.3966 4.4859 5.5497 

1.00<S/K<1.03 2.8621 2.9178 3.0120 3.1069 2.1942 2.2172 2.2360 4.4352 4.5892 
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1.03<S/K<1.06 2.4656 2.3010 2.3629 2.4532 1.8311 1.7952 1.8093 3.6031 3.7004 

S/K>1.06 2.3053 2.3184 2.5515 2.5253 1.8371 1.9596 1.9377 2.9761 3.1366 

Total 2.4342 2.4979 2.6397 2.6163 2.0158 2.0198 2.0078 3.2677 3.5177 

 
Panel B: Next-to-Next 

 Moneyness BS R1 R2 R3 A1 A2 A3 SV SVJ 

MAE 

S/K<0.94 2.2661 1.7700 1.6531 1.4952 1.3604 1.2076 1.1270 1.5597 1.4429 

0.94<S/K<0.96 1.5252 1.5835 1.5055 1.4096 1.1445 1.0808 1.0313 1.5388 1.3757 

0.96<S/K<1.00 1.5303 1.9347 1.8555 1.7919 1.4044 1.3465 1.2965 2.1387 1.8133 

1.00<S/K<1.03 1.6108 1.7697 1.7585 1.8348 1.3191 1.3059 1.3062 1.9476 2.1042 

1.03<S/K<1.06 1.4347 1.2983 1.3056 1.3793 0.9914 0.9465 0.9438 1.5066 1.4817 

S/K>1.06 1.4236 0.9007 0.9327 0.9044 0.6875 0.6670 0.6662 1.0313 0.9922 

Total 1.1352 1.0446 1.0278 1.0138 0.7799 0.7463 0.7305 1.1277 1.0730 

RMSE 

S/K<0.94 3.1783 2.9651 2.8073 2.6715 3.7514 2.0978 1.9467 2.9383 2.7330 

0.94<S/K<0.96 2.3139 2.5200 2.4310 2.3587 1.8485 1.7591 1.6915 2.6926 2.4580 

0.96<S/K<1.00 2.2742 2.8370 2.7691 2.7306 2.0650 1.9893 1.9214 3.3470 2.8145 

1.00<S/K<1.03 2.5007 2.7508 2.7457 2.8430 1.9779 1.9697 1.9596 2.8990 3.1287 

1.03<S/K<1.06 2.2279 2.1269 2.1603 2.2536 1.5544 1.5348 1.5202 2.4300 2.3431 

S/K>1.06 2.1324 1.6784 1.7441 1.6765 1.2180 1.2029 1.1879 1.9382 1.8766 

Total 2.0121 2.0287 2.0101 2.0006 1.6541 1.4402 1.4024 2.2453 2.1268 
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Figure 1: Roll-over Strategies 

This figure shows the difference between the nearest-to-next roll-over strategy and the next-to-next roll-over strategy. This figure represents the 
example for one day ahead pricing and hedging performance. The circle represents the options data from the nearest option contract. The diamond 
represents the options data from the next-to-nearest option contract. It is standard to eliminate the nearest option contracts with expiries less than 7 
days, and use the next-to-nearest option contracts with expiries less than 7 days plus 1 month for the empirical study due to liquidity problems of 
the options contract. When forecasting the parameters for the next-to-nearest option contracts with expiry less than 7 days plus 1 month, one can use 
either the nearest options contracts (circle) with expiry greater than 6 days or the next-to-nearest options contracts (diamond) with expiry greater 
than 6 days plus 1 month. When the nearest contract’s expiry is less than 7 days, the next-to-next strategy uses the next-to-nearest contracts on the 
previous day(s), whereas the nearest-to-next one uses the nearest-term contracts. These two strategies are different only on the day(s) when the 
expiry of nearest-term option contracts is less than seven days. 
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Figure 2: Out-of-Sample Pricing Errors 

This figure shows the mean absolute errors (MAE) of out-of-sample pricing for each option pricing models with respect to the roll-over strategies. 
Panel A represents one-day ahead out-of-sample pricing errors and Panel B represents one-week ahead out-of-sample pricing errors. R1 is the ad 
hoc Black-Scholes model that considers the intercept and the moneyness as the independent variable. R2 is the ad hoc Black-Scholes model that 
considers the intercept, the moneyness and the square of the moneyness as the independent variables. R3 is the ad hoc Black-Scholes model that 
considers the intercept, the moneyness, the square and the third power of the moneyness as the independent variables. A1 is the ad hoc Black-
Scholes model that considers the intercept and the strike price as the independent variables. A2 is the ad hoc Black-Scholes model that considers the 
intercept, the strike price and the square of the strike price as the independent variables. A3 is the ad hoc Black-Scholes model that considers the 
intercept, the strike price, and the square and the third power of the strike price as the independent variables. BS is the Black-Scholes (1973) option 
pricing model. SV is the option pricing model considering the continuous-time stochastic volatility. SVJ is the option pricing model considering the 
continuous-time stochastic volatility and the jumps.  
 

Panel A. One-Day Ahead Out-of-Sample Pricing Errors 
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Panel B. One-Week Ahead Out-of-Sample Pricing Errors 

`
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Figure 3: Hedging Errors 

This figure shows the mean absolute errors (MAE) of hedging for each option pricing models with respect to the roll-over strategies. Panel A 
represents one-day ahead hedging errors and Panel B represents one-week ahead hedging errors. R1 is the ad hoc Black-Scholes model that 
considers the intercept and the moneyness as the independent variables. R2 is the ad hoc Black-Scholes model that considers the intercept, the 
moneyness and the square of the moneyness as the independent variables. R3 is the ad hoc Black-Scholes model that considers the intercept, the 
moneyness, the square and the third power of the moneyness as the independent variables. A1 is the ad hoc Black-Scholes model that considers the 
intercept and the strike price as the independent variable. A2 is the ad hoc Black-Scholes model that considers the intercept, the strike price and the 
square of the strike price as the independent variables. A3 is the ad hoc Black-Scholes model that considers the intercept, the strike price, and the 
square and the third power of the strike price as the independent variables. BS is the Black-Scholes (1973) option pricing model. SV is the option 
pricing model considering the continuous-time stochastic volatility. SVJ is the option pricing model considering the continuous-time stochastic 
volatility and the jumps. 
 

Panel A: One-Day Ahead Hedging Errors 
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Panel B: One-Week Ahead Hedging Errors 

 


