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Abstract 

Due to the serious disease event such as the flu in 1918, the mortality 

rates in a group of nearby populations or worldwide may show a 

co-movement trend. In other word, a large numbers of deaths may occur 

at the same time caused by this catastrophic event, whereas we call it 

"infectious mortality risk" in this research. Nowadays, the trend of 

globalization and the progress of transportations may help the spread of 

infectious diseases across countries. Thus, we can't ignore the infectious 

risk, especially in pricing mortality-linked securities. This research 

attempts to model infectious mortality risk and investigate its effect in 

pricing mortality-linked securities. Using the Swiss Re mortality bond as 

an example, we derive a closed-form solution using Wang’s transform 

(2000) and the corresponding fair spread of the Swiss Re bond is 

examined. 

Keywords: Infectious Mortality Risk, Mortality Rates, Wang Transform (2000), 

Mortality Security, Jumps 

 

1. Introduction 

A large number of life insurance and pensions products have mortality as their 

primary source of risk. This means that products are exposed to unanticipated changes 

over time in the mortality rates of the underlying population. If future mortality 

improves relative to current expectations, life insurer liability decreases because death 

benefit payments are later than expected. However, annuity writers have a loss relative 

to current expectations because they have to pay annuity benefits longer than expected. 

If mortality deteriorates, the situation is reversed: life insurers have losses and annuity 

writers gain. Therefore, efficient mortality risk modeling for pricing mortality 
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securities is an increasingly important concern for insurers. 

In the past two decades, a wide range of mortality models have been proposed 

and discussed for modeling the dynamics of mortality over time. In 1992, Lee and 

Carter pioneered modeling the central mortality rates as log-linearly correlated with a 

time-dependent mortality factor, and adjusted for age-specific effects using two sets of 

age-dependent coefficients. Further, using USA data from 1933 to 1987 as a sample, 

they fit the model quite well. Tuljapurkar et al. (2000), Li et al. (2004), and Lundström 

and Qvist (2004) used the Lee-Carter (LC) (1992) model to forecast the mortality rates 

of G7 countries and Sweden. However, the Lee-Carter (LC) (1992) model cannot 

explicitly capture structural changes and short-term catastrophic shocks which may 

cause mortality jumps such as earthquakes and the tsunami in southern Asia and the 

east African killing of 182340 people in December 2004, or co-movement trends such 

as 1918 worldwide flu. Thus, the Lee-Carter approach with jump shocks has been 

presented by Cairns et al. (2006), Cox et al. (2006), Dahl and Møller (2006), 

..

Gr u ndl et al. (2006) , Lin and Cox (2008), Kogure and Kurachi (2010), Wills and 

Sherris (2010), Yang et al. (2010). Alternatively, Hardy( 2001), Yuen and Yang (2010), 

Modisett and Maboudou-Tchao (2010) employed a regime-switching model to 

describe the phenomenon of structural changes in mortality rates. Above all, the 

literature ignores the impact of one country’s mortality on another country’s mortality. 

Cox, Lin, and Wang (2006) decomposed mortality shocks into two factors, a specific 

factor and a common factor, and applied multivariate exponential tilting to valuations 

of mortality-based securities written on the mortality indices of several countries. They 

regard the common factor as a substantial factor which causes the co-movement of  

the mortality indices of many countries. However, this phenomenon cannot be shown 

in Figure 1 which illustrates that in 2002 SARS killed 775 people in Europe, Asia, and 
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America, but deaths in France, England, Italy and Taiwan did not have a significant 

co-movement trend in 2002. Conversely, Figure 1 obviously demonstrates that there 

existed a co-movement phenomenon in France, England, Italy, Switzerland and the 

USA during the 1918 Spanish flu which killed at least 20 million people. Therefore, 

Figure 1 shows the fact that there is not a co-movement trend as a common factor does 

not cause substantially higher mortality rates, such as SARS in 2002. Mortality rates 

have significant co-movement phenomenon when the common factor leads to 

substantially higher deaths such as during the 1918 Spanish flu, namely infectious 

mortality. 

Despite the fact that the phenomenon of infectious mortality exists in the world, 

modeling infectious mortality has not been proposed in the existing literature yet. This 

paper extends the Cox et al. (2006) model to present a multi-infectious mortality 

model and uses it to price Swiss Re bond, which is the first pure mortality security 

issued by the Swiss Reinsurance Company in late December 2003. The literature on 

pricing for the Swiss Re bond has a common conclusion that the fair spread of the 

bond is far less than the actual price, see Cox et al. (2006), Lin and Cox (2008), Chen 

and Cox (2009) and Liu and Yu (2010). Cox et al. (2006) showed that the actual par 

spread of the Swiss Re bond was three times bigger than the fair spread4. Considering 

infectious mortality effects, this paper aims to derive an analytical solution by means 

of the Wang transform (2000) to reexamine the par spread of the Swiss Re bond.  

2. Model Formulation 

Assuming there are m countries, and each country has in  people for 

i 1, 2, 3,...., m . Let i, j  denote the death time of the thj person of the thi country for

                                                       
4 Cox et al. (2006) show the fair par spread of the Swiss Re bond is 0.45%. The actual par spread of 
the bond is 1.35%. 
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ij = 1, 2, 3,......, n ; tN stands for the total number of deaths in the world at time t, also 

denoted as 

inm

t i, j
i 1 j 1

N D (t)
 

  with 
i, j

i, j i

1, if t
D (t) , i 1, 2, 3,...., m;  j=1, 2, 3,......, n

0,   o.w

 
 


. 

Suppose (i)
tN is the total number of deaths except for the thi country, equally, 

inm
(i)
t k, j

k i 1 j 1

N D (t)
  

   ; 
(i)

(i) t
t

t

N
V

N
 is the ratio of the deaths except the thi country 

relative to the total deaths in the world, and follows the geometric Brownian motion as 

follows. 

                      
( i )
t

v,i v,i v,t( i )
t

dV
 = μ dt+σ dW

V
,                    (1) 

in which v,iμ  and v,iσ  denote the drift term and volatility, respectively; v,tW  is a 

one dimensional standard Brownian motion under the original probability measure, P. 

If (i)
tV  is higher than the threshold a , then the death rate except for the thi country 

can affect the death rates of other countries. Suppose the jump number of the impacts 

of the death rate except the thi country on the death rates of the other countries 

follows Poisson distribution with a density of i, t  at time t, also denoted as 

t
(i)
s i, t

0

I(t) D ds ~ Poisson( ) . 

 Let i , tq  represent the population mortality index of the thi country at time t and 

follow the dynamic process as below.  

i , t
i i i, t i i, t i i, t

i , t

dq
= μ dt+σ dW +( 1)d (π 1)dI

q
     ,          (2) 
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where iμ and iσ are constants; i, tW  is a one dimensional standard Brownian 

motion under the original probability measure, P. Also, the correlation coefficient 

between i, tW and v,tW  is denoted as v, t i, t v,icorr(dW , dW )   . iπ 1  is the random 

variable percentage in the mortality index of the thi country resulting from common 

jumps of deaths in other countries. Assume that the natural logarithm of iπ  follows 

normal distributions with the mean of 
i

u   and variance of 
i

2
 , also denoted as

i i

2
iln ~ N(u , )   , i 0  , i 1, 2, 3,...., m . On the other hand, i 1   denotes the 

percentage in the mortality index of the thi country resulting from specific jumps in 

deaths of the thi county, and 
i i

2
iln ~ N(u , )   , i 0  , i 1, 2, 3,...., m . i  is 

independent of i . i, tI  and i, t are independent Poisson processes with the intensity 

i,tI and 
i at time t, respectively. i, tdI is independent of i, td .  

In the same vein, when (k)
tV  is higher than the threshold ( a ), the death rate 

except in the thk country can affect the death rates of other countries. Suppose the 

jump number of the impacts of the death rate except in the thk country on the death 

rates of the other countries follows Poisson distribution with a density of k, t  at time 

t, also denoted as
t

(k)
k, t s k, t

0

I D ds ~ Poisson( ) , i k . 

Let k , tq  represent the population mortality index of the thk country at time t and 

follows the dynamic process as below.  

k , t
k k k, t k k, t k k, t

k, t

dq
= μ dt+σ dW +( 1)d (π 1)dI

q
     ,          (3) 

where kμ and k are constants; k, tW  is a one dimensional standard Brownian 
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motion under the original probability measure. Also, the correlation coefficients are 

denoted as k, t i, t v,kcorr(dW , dW )    and v, t k, t v,kcorr(dW , dW )   for

i, k 1, 2, 3,...., m , i k . kπ 1  is the random variable percentage in the mortality 

index of the thk country resulting from common jumps of deaths in the other 

countries. Assume that the natural logarithm of kπ  follows normal distributions with 

the mean of 
k

u  and variance of 
k

2
 . k 0  , k 1, 2, 3,...., m . On the other hand, 

k 1   denotes the percentage in the mortality index of the thk country resulting 

from specific jumps in deaths of the thk country, and 
k k

2
kln ~ N(u , )   , k 0  , 

k 1, 2, 3,...., m . k  is independent of k . k, tI  and k, t are independent Poisson 

processes with the intensity 
k ,tI and 

k
 at time t, respectively. k, tdI is independent 

of k, td .  

From equations (2) and (3), iln  and kln   are also called the effects of 

infectious mortality. When the threshold (a) is infinite, the model can be reduced to 

Lin and Cox (2008).  

3. Description and Valuation of Swiss Re Bond 

3.1 Description of Swiss Re Bond 

Swiss Re bond was a mortality security which can transfer mortality risk into 

investors in the capital market. The bond was issued by Swiss Reinsurance Company 

in 2003 and matured on January 1, 2007. It was a three-year deal. The principal was 

exposed to mortality risk. The mortality risk was defined in terms of an index based 

on the average annual population death rates in the US, UK, France, Italy, and 

Switzerland. If the index exceeded 130% of the actual 2002 level, then investors had 
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have a reduced principal payment at maturity (T) as follows. 

                          

3

1

(1 , 0)
iT t

i

B Max L


  ,                     (4) 

with
- -
0 0

-
0

3
max max

1

( 1.3 , 0) ( 1.5 , 0)

0.2i

t t
t

i t

Max Y Y Max Y Y
L

Y

  
 , 

1 2 3max ( , , )t t tY Max Y Y Y  and 5 1 2 51 2

1, 2, 5,

1

...( ...... )
t t t

a a a aa a
tY q q q    . 

-
0t

Y , 
0t

Y ,
1t

Y ,
2t

Y  and 
3t

Y stand for the geometric average population death rates 

in the US, UK, France, Italy, and Switzerland in 2002, 2003, 2004, 2005, and 2006, 

respectively. 1 2 5a , a ,...., a  denote the weights of population mortality indices for the 

US, UK, France, Italy, and Switzerland, respectively. The fair price of the bond is 

shown in equation (5). 

 rT Q
0 TB 400000000 e E B  ,                          (5) 

in which r  is the riskless rate; Q
tE ( . )  denotes the expectation value under the risk 

neutral probability measure,Q , at time t. Let -
0

1 1.3
t

K Y  and
 

-
0

2 1.5
t

K Y . Thus, 
it

L  

can be written as equation (6).  

3
max 1 max 2

1 2 1

( , 0) ( , 0)
it

i

Max Y K Max Y K
L

K K

  


 .                     (6) 

Further, substituting equations (4) and (6) into (5) becomes equation (7). 

 rT Q max 1 max 2
0

2 1

Max(Y K ,0) Max(Y K ,0)
B 400000000 e E Max 1 ,0

K K
     

      
. (7) 

3.2 Valuation of Swiss Re Bond 

Pricing derivative securities in the complete market involves replicating portfolios. 

This also means if there is a traded bond and stock index, then options on the stock 

index can be replicated by holding bonds and the index, which are priced. Swiss Re 
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bond was a mortality derivative, but there is no efficiently traded mortality index with 

which to create a replicating hedge. These situations are called incomplete markets. In 

incomplete markets, Wang transform (2000) is a popular pricing methodology based 

on the following transformation: For a risk with CDF F(x)  under the original 

probability measure, P, the risk-adjusted CDF *F (x)  under the risk-neutral 

probability measure, Q  for the pricing of the risk is given by 

                           * 1F (x)= ( (F(x))+ )  ,                   (8) 

where   is a constant risk premium. In this section, this paper proposes a 

methodology to solve equation (7). 

  Let i,t i, t i, tX I   , which follows the Poisson distribution with the intensity 
i,tX . 

Suppose ln ix  follows normal distributions with the mean of xu  and variance of 

2
x ; i,t i i, t i i, t( 1) X ( 1)d (π 1)dI

d

ix d       . Therefore,  

             i i,t i i, t i i, tE (x 1)dX E ( 1)d (π 1)dI            ,              (9) 

               i i,t i i, t i i, tVar (x 1)dX Var ( 1)d (π 1)dI            .        (10) 

From equations (9) and (10), one can obtain  

 
2 2

i i

i,,t i

i i,,t

1 1

2 2
I

I

( 1) ( 1)
1

i i
u u

i

e e
E x

  
 

 

  





  
 


, 

2 2
i i

i,,t i

i i,,t i i,,t

2 2
i i

i,,t i

i i,,t

21 1

2 2
I

I I

21 1

2 2
I

I

( 1) ( 1)

( 1)
( 1)( )

( 1) ( 1)
                     

i i

i i

u u

i

u u

A e e

Var x

e e

 

 

 

 

 

   

 

 

 

 

 



 

 





 
    
  

  

 
   

   
 

, 
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2 22
i i i ii i i

i i i

2 22

i,,t i,,t i,,t

21 1
2 2 22 2

2 21 1
22 2

I I I

( 2 2) 1 ( ) 1

       ( 1) 1 ( 1)i i i ii i i

u uu

u uu

A e e e e

e e e e
     

  

  

  

  

     
  

  

 

   
        
   
                     

. 

Under probability measure, P, equation (2) can be rewritten as  

   
i,T2

i i 0 i i,T-t0

0

X1
(μ - σ ) (T-t )+σ W

2
i,T= i, t i,l

l=1

q q e x , i=US, UK, Swiss, Italy, France,  

or 
,

0 0

X
2

, , 0 , ,
1

1
ln ln ( )( )

2

i T

i T i t i i i i T t i l
l

q q T t W x   


       .                   (11) 

Furthermore, one can obtain 

1, 2, 5,

0 0

X X X

0 1 1, 2 2, 5 5,
1 1 11 2 5

1
lnY lnY ( ) ln ln ... ln

...

T T T

T tT t y y l l l
l l l

T t W a a a
a a a

 


  

 
               

   ,    

(12) 

with 
5

2

11 2 5

1 1
( )

... 2y i i
ia a a

  


 
    ,

5

,
1

1

5y t i i t
i

W W 


  , and 

   
15

'

1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5
1 2 5

51

1
1

.
...

1
y a a a a a a a a a a

a a a


          



 
       
 


  



 

Suppose 1, 2, 5,X X +X .... Xt t t t   . Xt  
follows the Poisson distribution with the 

intensity t , 
i i,,t

5

I
1

( )t
i

  


  . 

 Let 
1, 2, 5,X X XX

1 1, 2 2, 5 5,
1 1 1 1

ln ln ln ... ln
t t tt

l l l l
l l l l

a x a x a x
   

        , and 2ln ~ N( , ) z zu  . 

Given Xt s , ln Xt t s  has a normal distribution with mean zu  and variance 2
z , 

in which there is 
1 2 5

51 2 ...z

ss s
u u u u

s s s      and 
1 2 5

2 2 2 251 2 ...z

ss s

s s s         . 

In addition, 
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i,,t

,

I ,

( )

0

( )

0

( )
20

,

0 ,

( )

V 1
ln ( )

2 v i

i t

t i
s

t i
r

i

v it

v i

E I

E D d

P V a d

a











  

 

   

   

 

  
   

   
 
  
 






. 

Equation (12) can be written as 

                        

X

0
1

0

( ) ln

Y Y

T

y y T l
l

T t W

T t e
 



   


.                    (13) 

Let max 1 max 2

2 1

( ,0) ( ,0)
T

Max Y K Max Y K
S

K K

  



. Equation (7) becomes 

 0 1400000000 (1 )1
T

rT Q
T SB e E S


     .                (14) 

If
1max tY Y , then

   1 11 21 1
1 2

2 1

( )1 ( )1
t t

t tY K Y K

T

Y K Y K
S

K K

 
  




.  

If
2max tY Y , then

   2 21 22 2
1 2

2 1

( )1 ( )1
t t

t tY K Y K

T

Y K Y K
S

K K

 
  




.  

If
3max tY Y , then

   3 31 23 3
1 2

2 1

( )1 ( )1
.t t

t tY K Y K

T

Y K Y K
S

K K

 
  




 

Therefore, equation (7) becomes 

   

 

1 1 2 2

3 3

max max max max1 1

0

max max1

(1 )1 ( ) (1 )1 ( )
.

(1 )1 ( )

T T

T

Q Q Q Q
T t r t T t r tS S

rT

Q Q
T t r tS

E S Y Y P Y Y E S Y Y P Y Y
B e

E S Y Y P Y Y

 



                 
       

 

(15) 

Using Wang transform (2000), one can obtain
  

1 1

1 1
max max 1 1 2 1,2 1( ) ( ( ( )) ) ( ( ( , , )) )Q p

r t r tP Y Y P Y Y d d              , 

2 2

1 1
max max 2 3 4 3,4 2( ) ( ( ( )) ) ( ( ( , , )) )Q p

r t r tP Y Y P Y Y d d              , 
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3 3

1 1
max max 3 5 6 5,6 3( ) ( ( ( )) ) ( ( ( , , )) )Q p

r t r tP Y Y P Y Y d d              , 

in which 1 , 2  , and 3  are the risk premiums of 
1t

Y ,
2t

Y , and
3t

Y ;  

1 1 2 1 3max 1 2 1,2( ) ( , ) ( , , )p p
r t r t t t tP Y Y P Y Y Y Y d d       ,

2 2 1 2 3max 3 4 3,4( ) ( , ) ( , , )p p
r t r t t t tP Y Y P Y Y Y Y d d       , 

 

3 3 1 3 2max 5 6 5,6( ) ( , ) ( , , )p p
r t r t t t tP Y Y P Y Y Y Y d d       , with 2 1

1
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t t
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


 ,
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
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
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


,

 

3 1
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d
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
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
,

3 2
6

3 2

( )y

y

t t
d

t t









, 3 12 1

1,2

2 1 3 1

( , )t tt t WW
corr

t t t t
 

 
, 3 22 1

3,4

2 1 3 2

( , )t tt t WW
corr

t t t t
 

 
,

3 1 3 2

5,6

3 1 3 2

( , )t t t tW W
corr

t t t t
  

 
. 

Alternatively, 
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In addition, 

 
   

   

 

1 11 21 1

1 1 21 11 21 1
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1 121
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2 1 1
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 

    
    



           
 

 
      

,

 

   
2

2 2 222

1
max 2 1 21

2 1

1 ( ) 1 ( )
T t

tQ Q Q Q
T t r t r tS Y K

Y K
E S Y Y P Y K E P K Y K

K K 

           
, 
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   
3

3 3 323

1
max 2 1 21

2 1

1 ( ) 1 ( )
T t

tQ Q Q Q
T t r t r tS Y K

Y K
E S Y Y P Y K E P K Y K

K K 

           
. 

Using Wang transform (2000), one can obtain  
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and 

1 1
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1 0 1 0

0

0
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( ( ))t
y z z y
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t t s
t t s u t t
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Thus, the formula can be written as follows. 
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 
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         

            


, 

1, 2 , 3.i   

Consequently, the fair par spread of Swiss Re bond is shown in equation (16). 

 

 

 

1 1

2 2

3 3

max max1

0 max max1

max max1

(1 )1 ( )

400000000 (1 )1 ( )

(1 )1 ( )

T

T

T

Q Q
T t r tS

rT Q Q
T t r tS

Q Q
T t r tS
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
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 

       

,       (16) 
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4. Empirical Results 

In this section, HMD (Human Mortality Data) is used to estimate the parameters

i ii i π π v,i v,i(μ , σ , u , , μ ,  σ ) for the US, UK, France, Italy, and Switzerland. The time 

window is the period from 1933 to 2007. Further, the fair par spread of Swiss Re bond 

was obtained through equation (16), and comparative statics were performed. 

4.1 Estimation of Model Parameters 

A calibration approach was adopted to estimate the variables

i ii i π π v,i v,i(μ , σ , u , , μ ,  σ )  for the US, UK, France, Italy, and Switzerland. The 

term calibration indicates the task of estimating best-fitted parameters in a parametric 

model in comparison with a chosen observable quantity. The source of information 

consists typically of historical data for liquid instruments. The procedure of fitting 

prices was based on the assumption that a trader agreed with the view that the 

historical data were fully consistent with a true process. Different jump-diffusion 

processes were calibrated using actual log returns of the population mortality index 

for each country. The detailed procedure is described in the following steps. 

(1) Collect the actual log returns of the population mortality indexes of the US, UK, 

France, Italy, and Switzerland. 
^

i,t(ln q )d was the model log returns of the five 

countries from equation (11), i,t(ln q )d the observed log returns of the population 

mortality index of each country. The differences of i,t(ln q )d 
^

i,t(ln q )d was a 

function of the values taken by =
i ii i π π v,i v,i(μ , σ , u , , μ ,  σ ) . 

(2) Given the initial values of 
i ii i π π v,i v,i(μ , σ , u , , μ ,  σ ) , the parameter vector   
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was found to solve the nonlinear the sum of the squared errors during Period I and 

Period II as follows:  

2

1

min [ ]




 
n

j
j

SSE  

Through the above procedure, the estimated parameters are disclosed in Tables 1 

and 2. Based on equation (16), the fair par spread of Swiss Re bond was found to be 

1.0958973% which is higher than that of Cox et al. (2006), and closes to the actual 

par spread of 1.35%. This shows that considering infectious effects of mortality rates 

enables the par spread Swiss Re bond to fit the real world. 

4.2 Analysis of Comparative Statics 

   Given that the risk premiums for Swiss Re bond presented by Cox et al. (2006), 

Lin and Cox (2008), Chen and Cox (2009) and Lin, Liu and Yu (2010) were 0.83, 

0.8657, 1.5, and 1.21, respectively, the impacts of mean and volatility on the 

magnitudes of infectious mortality, the threshold values (a), and jump intensities on 

the par spread of Swiss Re bond are demonstrated in Table 3. 

   Table 3 shows a common phenomenon, that the fair spread of the Swiss Re 

bond decrease as mortality increased. In Panel A, the impacts of mean of the 

magnitudes of infectious mortality on the par spread of the Swiss Re bond are 

uncertain. However, the par spreads of the Swiss Re bond decrease as volatilities of 

the magnitudes of infectious mortality increased on account of the higher mortality 

rates as demonstrated in Panel B. 

 Panel C illustrates that the relationship of the threshold values and the par 

spreads of the Swiss Re bond is positive. This reason is that the higher the threshold 

values are, the lower infectious mortality is. Conversely, Panel D explains that when 

the jump intensities increase, mortality rates increase so that the par spread of the 

bond decline. 
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Also, the sensitivity of volatilities of magnitudes of infectious mortality is the 

largest among model parameters, whereas that of the threshold values is the smallest.  

5. Conclusion 

Previously much literature studied mortality rates with jumps such as Cairns et al. 

(2006), Cox et al. (2006), Dahl and Møller (2006), 
..

Gr u ndl et al. (2006) , Lin and 

Cox (2008), Kogure and Kurachi (2010), Wills and Sherris (2010), Yang et al. (2010). 

General speaking, this literature explains the co-movement of mortality rates using 

common jumps in the world. However, actual data report from when an event occurs 

show that mortality rates do not significantly co-move in the world until large deaths 

occur. There is no existing literature to model the real phenomenon of mortality rates. 

This paper fills the gap by offering a fresh look at the infectious effects of mortality 

rates on the valuation of mortality securities.  

From empirical results, the fair par spread of the Swiss Re bond in the model was 

found to be far higher than that of Cox et al. (2006), and closer to the actual par 

spread. This shows that considering infectious effects of mortality rates enables the 

par spread Swiss Re bond to fit into the real world. This is helpful to price mortality 

securities for insurance issuers. 
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Table 1 Parameter Estimation of Dynamic Processes of the Mortality Index of the 5 
Countries 

 US UK France Italy Switzerland 

iμ  -0.007635698 -0.0019212853 -0.0023350499 -0.0022268845 -0.0017903048 

iσ  0.0353039713 0.0303390187 0.0208596021 0.0346345882 0.0041059500 

iπ
u  -0.4080070179 -0.0685499403 -0.0480721838 -0.0797427948 -0.0545940218 

iπ
  0.1727495194 0.0287313469 0.0201543124 0.00328499675 0.0227485367 

Note that i=US,  UK,  France,  Italy,  and Switzerland , 1 0.7a  , 2 0.15a  , 3 0.025a  ,

4 0.05a  ,  5 0.075a  . 

 

Table 2 Parameter Estimation of Dynamic Processes of the Ratio of the Deaths Except 
in the thi country  

 US UK France Italy Switzerland 

v,iμ  -0.0002826201 -0.0018850476 -0.0021297657 -0.0018799084 -0.0004465767

v,iσ  0.0184113032 0.0126177338 0.0093617168 0.0124682592 0.0122047626

Note that i=US,  UK,  France,  Italy,  and Switzerland , 1 0.7a  , 2 0.15a  , 3 0.025a  ,

4 0.05a  , 5 0.075a  . 

   
Table 3 Impacts of Various Important Model Parameters on Swiss Re Bond 
Parameter 0.83   0.8657  1.21  1.5   

zu  Panel A: zu changes 

-0.001 0.5163 0.5196 0.5897 0.6125 
-0.003 0.4987 0.5011 0.5734 0.5813 
-0.005 0.4593 0.4972 0.5539 0.5712 
-0.007 0.4886 0.5313 0.5618 0.5896 
-0.009 0.5098 0.5478 0.5715 0.5947 

z  Panel B: z  changes 

0.1 0.9125 0.9237 0.9358 0.9399 
0.2 0.8143 0.8168 0.8915 0.9141 
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0.3 0.7759 0.7825 0.8598 0.8611 
0.4 0.5647 0.5998 0.6315 0.7014 
0.5 0.3325 0.3985 0.4918 0.5481 
a Panel C: a changes 

0.01 0.8169 0.8198 0.8245 0.8266 
0.02 0.8256 0.8267 0.8309 0.8351 
0.03 0.8321 0.8357 0.8401 0.8416 
0.04 0.8395 0.8400 0.8415 0.8423 
0.05 0.8411 0.8425 0.8438 0.8509 

t  Panel D: t  changes 

0.01 0.6458 0.6511 0.6715 0.6798 
0.02 0.6135 0.6212 0.6598 0.6613 
0.03 0.5123 0.5237 0.5997 0.6011 
0.04 0.4978 0.5198 0.5498 0.5599 
0.05 0.4569 0.4986 0.5058 0.5149 
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Figure 1 The Deaths in the World from 1816 to 2006 
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