
 Electronic copy available at: http://ssrn.com/abstract=2446385 

NON‐TRANSFERABLE	NON‐HEDGEABLE	
EXECUTIVE	STOCK	OPTION	PRICING	

	
	
	
	

David	B.	Colwell,a		David	Feldman,b		Wei	Huc,d	
	
	
	
	

Latest	Revision	July	30,	2014	
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1	 Introduction	

Executive	stock	options	(ESOs)	are	call	options	granted	by	firms	to	employees	as	a	form	

of	 compensation	 in	 addition	 to	 base	 salary,	 bonuses,	 and	 retirement	 savings.	 ESOs	 typically	

become	“vested”	(exercisable)	over	time	[Murphy	(1999)].	ESOs	are	generally	non‐transferrable	

and	non‐hedgeable	(NTNH)	for	at	least	two	reasons:	NTNH	features	incentivize	executives,	and	

they	prevent	negative	signalling	to	investors.	Holders	of	NTNH	ESOs	cannot	transfer	the	ESOs	to	

third	parties	at	any	price,	nor	are	they	allowed	to	hedge	their	value	by	positions	in	underlying	

assets	or	other	derivatives.	ESOs	are	 typically	 forfeited	 if	 the	executive	 leaves	 the	 firm	before	

vesting.	

There	are	two	approaches	to	pricing	contingent	claims:		arbitrage	and	equilibrium.	The	

difficulty	 in	 pricing	 ESOs	 lies	 in	 their	 NTNH	 feature.	 On	 one	 hand,	 NTNH	 constraints	 nullify	

arbitrage	pricing,	disabling	arbitrage	strategies.	On	the	other	hand,	NTNH	adds	constraints	to	a	

portfolio’s	optimization.	

The	state	of	the	art	in	this	area	of	research	includes	the	stochastic	discount	factor	(SDF)	

approach	and	 the	utility‐based	approach.	 Ingersoll	 (2006)	was	one	of	 the	 first	 to	use	 the	SDF	

approach.	He	used	 the	 constrained	optimization	method	of	Cvitanić	 and	Karatzas	 (1992)	 and	

Karatzas	 and	 Kou	 (1996)	 to	 solve	 the	 optimal	 constrained	 portfolio	 of	 the	 undiversified	

executive,	 identified	 an	appropriate	 SDF,	 and	derived	 a	 closed‐form	subjective	ESO	 fair	price.	

However,	his	approach	 includes	 two	restrictive	 features.	First,	 the	manager	 is	 infinitely	 lived;	

second,	the	value	of	the	executives’	firm	shares	and	options	holdings	as	a	fraction	of	their	total	

personal	wealth	must	remain	constant	over	a	period.	 In	 the	real	world,	however,	 the	value	of	

this	fraction	fluctuates	stochastically1	and	the	corresponding	constraints	are	stochastic	intervals.	

A	utility‐based	approach	relaxes	 the	restrictive	assumptions	of	 Ingersoll	 (2006)	at	 the	

cost	 of	 not	 deriving	 a	 SDF,	 hence	 losing	 a	 compact,	 concise,	 general	 pricing	 framework.	 Two	

comprehensive	studies	 in	this	 field	are	Carpenter,	Stanton	and	Wallace	(2009)	and	Leung	and	

Sircar	 (2009).	 In	 these	 articles,	 an	 executive’s	 goal	 is	 to	 maximize	 the	 expected	 utility	 of	

terminal	wealth	by	choosing	the	optimal	exercise	time	and	an	optimal	trading	strategy	before	

and	 after	 exercise.	 Traded	 assets	 include	 all	 the	 primary	 assets	 and	 some	 non‐transferable	

options.	 Solving	 the	 free‐boundary	 problem,	 the	 authors	 obtain	 the	 executives’	 continuation	

region	and	the	critical	stock	price	boundary,	above	which	the	option	holders	exercise	and	below	

which	they	await.	Carpenter,	Stanton	and	Wallace	(2009)	allow	only	for	a	single	block	exercise	

of	the	option,	while	Leung	and	Sircar	(2009)	allow	a	discrete	partial	exercise.	

Here,	 we	 aim	 to	 take	 the	 merits	 of	 both	 approaches.	 We	 use	 a	 partial	 equilibrium	

approach—constrained	portfolio	optimization.	We	show	that	NTNH	constraints	break	the	local	

																																																													
1	There	is	no	chance,	of	course,	that	managers’	firm’s	shares	and	options	holdings	value	are	perfectly	correlated	with	
the	total	value	of	their	personal	portfolio.	
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co‐linearity	caused	by	derivative	assets	in	solving	portfolio	optimization	problems.	Thus,	we	are	

able	to	translate	portfolios	that	include	NTNH	derivatives	into	portfolios	that	consist	of	primary	

assets	 only	 by	 replicating	 (vanilla)	 derivatives	 using	 primary	 assets	 and	 then	 integrating	 the	

NTNH	 constraints	 into	 a	 single	 rectangular	 constraint.	 Solving	 the	 constrained	 portfolio	

optimization	 problem	 identifies	 a	 SDF	 that	 gives	 the	 subjective	 price	 of	 any	 contingent	 claim	

written	 on	 the	 primary	 assets	 in	 this	 portfolio.	 Furthermore,	 by	 using	 executives’	 optimal	

exercise	policies,	we	derive	the	objective	price	of	ESOs	from	the	firms’	perspectives.	

We	 obtain	 the	 subjective	 and	 objective	 prices	 of	 NTNH	 American	 ESOs	 with	 block	

exercise	 policy	 and	under	 continuous	partial	 exercise	 policy.	 The	 optimal	 exercise	 rate	 is	 the	

one	that	equates	the	marginal	utility	increase,	from	relaxation	of	the	HTNH	constraints	induced	

by	reduction	 in	the	number	of	outstanding	NTNH	ESOs,	equal	 to	the	marginal	utility	decrease	

from	 loss	of	 option	 time	value.	The	optimal	 exercise	 rate	 is	 the	one	maximizing	 the	 expected	

utility	of	 terminal	wealth.	However,	because	of	 the	NTNH	constraints,	 this	 rate	 is	not	 the	one	

that	maximizes	the	value	of	the	NTNH	ESOs.	

We	simulate	NTNH	ESOs	and	execute	a	comprehensive	comparative	statics	analysis	of	

prices	and	optimal	exercise	policies	of	NTNH	American	ESOs	with	continuous	partial	exercise.	

We	identify	policy	implications	that	enhance	the	ESOs’	incentivizing	efficiency.	

Accurate	ESO	pricing	 is	 important	 for	 several	 reasons.	First,	 it	 is	a	 requirement	of	 the	

Financial	Accounting	Standard	Board	(FASB).	Though	once	optional,	the	reporting	of	their	cost	

became	mandatory	in	2004	because	of	the	extensive	use	of	ESOs.2	

Second,	accurate	and	subjective	ESO	pricing	is	essential	for	understanding	the	incentives	

they	 induce.	Understanding	 this	and	 the	sensitivity	of	ESO	values	 to	stock	prices	allows	us	 to	

design	ESOs	by	choosing	features,	such	as		vesting	period,	maturity,	and	strike	price	to	optimally	

induce	incentives.	

Third,	pricing	of	NTNH	ESOs	facilitates	solving	other	pricing	problems.	This	is	because	

many	 asset	 pricing	 problems	 can	 be	 transformed	 into	 a	 NTNH	 or	 other	 non‐transferable	

contingent	 claims	 pricing	 with	 different	 constraints.	 Examples	 of	 the	 problems	 with	 non‐

transferable	constraints	include	asset	pricing	under	transaction	costs	and	valuation	of	pensions,	

human	capital,	or	real	estate	investment	[Detemple	and	Sundaresan	(1999)].	

Other	methods	have	been	used	in	attempts	to	price	ESOs.	The	FASB	proposes	a	simple	

method	 of	 ESO	 pricing,	 substituting	 the	 ESOs’	 expiration	 dates	 with	 exogenously	 specified	

expected	time	to	exercise.	Huddart	and	Lang	(1996)	conclude	that	this	approach	overstates	the	

cost	of	 the	ESOs	 to	 the	 firm.	The	drawback	of	 the	FASB	approach	 is	 that	 it	does	not	properly	

reflect	 executives’	 optimal	 ESO	 exercise	 times	 conditional	 on	 possible	 stock	 price	 paths.	 It	
																																																													
2	Please	see	Statement	of	Financial	Accounting	Standards	(SFAS)	No.	123	(revised	2004),	paragraph	B79	and	B80.	See	
also	International	Financial	Reporting	Standard	3	(IFRS	2),	Share‐based	Payment	3,	and	Securities	Exchange	Act	of	
1934	(as	amended	through	P.L.	111‐257,	approved	October	5,	2010),	Sec.	16	(C).	
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ignores	optimal	exercise	behaviour,	for	example.	Hitting	time	models	extend	the	FASB	model	by,	

first,	replacing	the	exogenously	specified	expected	exercise	time	with	an	endogenous	first	time	

the	stock	price	hits	an	(exogenously	given	deterministic)	optimal	exercise	boundary	and,	then,	

aggregating	over	possible	stock	price	paths	(Hull	and	White	(2004)	and	Cvitanić	et	al.	(2008)).	

While	the	exercise	boundaries	in	the	above	models	are	independent	of	model	parameters,	such	

as	 the	 stocks’	 drift	 rates	 and	volatilities,	 Leung	 and	Sircar	 (2009)	 show	 that	 optimal	 exercise	

boundaries	are	highly	sensitive	to	these	parameters.	

Extensions	 of	 hitting	 time	 models	 are	 default	 models,	 so	 named	 because	 they	 share	

features	of	credit	risk	valuation	models.	These	default	models	define	early	exercise	as	the	first	

arrival	of	an	exogenous	counting	process.	Jennergren	and	Naslund	(1993)	and	Carpenter	(1998)	

use	the	first	jump	time	of	an	exogenous	Poisson	process,	which	serves	as	a	proxy	for	executives	

exercising	 the	 options	 early	 due	 to	 liquidity	 shocks,	 diversification	 needs,	 voluntary	 or	

involuntary	job	termination,	or	other	events	relevant	to	the	executives	but	not	to	unrestricted	

option	holders.	Carr	and	Linetsky	(2000)	extend	the	default	model	by	making	the	 intensity	of	

the	Poisson	process	depend	on	the	firm’s	stock	price	and	time.	

The	above	three	models—FASB,	hitting	time,	and	default—all	focus	on	finding	objective	

prices.	They	price	the	ESOs	to	firms,	assuming	exogenously	given	executives’	exercise	policies,	

including	estimated	times	to	exercise,	the	exercise	boundary,	or	the	exercise	process.	The	price	

is	 the	 expected	 payoff	 at	 the	 exercise	 time	 discounted	 by	 the	 SDF	 derived	 from	 the	

unconstrained	 portfolio	 optimization	 problem.	 In	 contrast,	 we	 develop	 here	 the	 executives’	

subjective	 fair	 price	 of	 ESOs	 and	 identify	 endogenous	 optimal	 exercise	 policies.	We	 then	 use	

these	subjective	prices	under	endogenous	optimal	exercise	policies	to	price	ESOs	to	firms.	

The	 rest	 of	 the	 paper	 is	 organized	 as	 follows,	 Section	 2	 develops	 a	 theoretical	 ESO	

pricing	model	and	prices	European	options;	Section	3	numerically	prices	American	ESOs	under	

a	continuous	partial	exercise	policy;	and	Section	4	concludes.	

2	 ESOs	pricing	model	

2.1	 Constrained	portfolio	optimization	

Cvitanić	 and	 Karatzas	 (1992)	 develop	 a	 duality	 technique	 to	 solve	 the	 constrained	

consumption/investment	 problems	 by	 transforming	 the	 original	 constrained	 problems	 into	

auxiliary	unconstrained	problems.	This	approach	assumes	the	support	function	of	the	constraint	

to	 be	 bounded	 below	 in	 the	 duality	 and	 existence	 proofs.	 However,	 in	 ESO	 pricing	 problem	

settings,	the	aforementioned	condition	does	not	hold.	To	implement	the	Cvitanić	and	Karatzas	

(1992)	approach	in	pricing	ESOs,	we	relax	the	bounded	below	condition	into	a	less	strict	one.	

In	 the	 market	 	there	 is	 a	 traded	 bond	 whose	 price,	 ,	 appreciates	 at	 a	

deterministic	risk‐free	rate	of	interest,	 ,	thus	evolving	according	the	differential	equation,	
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	 , 0 1.	 (1)

Uncertainty	 in	 the	 market	 is	 driven	 by	 a	 	dimensional	 standard	 Brownian	 Motion	

, … , 	in	 ,	 defined	 on	 a	 complete	 probability	 space	 , , ℙ ,	 and	 we	

denote	by	 	the	ℙ‐augmentation	of	the	natural	filtration	 ; 0 ,	with	time	

span	 0, 	for	some	finite	 0.	

Primary	asset	prices	 , 1, … , 	follow	the	dynamics	of	

	 , 0 , , 1,2, … , .		 (2)

Here	 ≜ 	is	 a	 	volatility	 matrix,	 ≜ ,	a	 1	drift	 rate	 vector.	 Let	

≜ , ; , ∈ 0, 	be	 a	 family	 of	 closed,	 convex,	 nonempty	 subsets	 of	 ;	 and	

let ≡ , , ≜ sup ∈ :	 → ⋃ ∞ ; , ∈ 0, 	be	

the	corresponding	family	of	support	functions,	where	 , ≜ ∈ 	 ; 	 | ∞ 	is	

the	effective	domain	of	 the	support	 function	and	 	 ≡ , , , … , , .	Let	

	denote	the	Hilbert	space	of	 ‐progressively	measurable	processes	 	with	values	in	 ,	and	

with	the	inner	product	 , ≜ .	Without	loss	of	generality,	we	assume	

that	the	ESO	is	written	on	 .	

Let	 ∙ 	be	a	strictly	increasing,	strictly	concave,	of	class	 	utility	function,	satisfying,	

	 0 ≜
↓

∞, ∞ ≜
→

0 .	 (3)

Let			 ∈ 0,∞ 	be	the	 initial,	at	 0,	or	realized,	at	 0,	executive’s	wealth.	 	Let	 the	

vector	 , 	represent	 the proportion of wealth invested, at time t, in each of the primary assets 

(henceforth,	 the	 portfolio	 process).	 	 , , 	is	 the	 set	 of	 admissible	 portfolio	 processes,		

ensuring	 that	 the	 portfolio	 wealth	 process,	 denoted	 by	 , ,		 is	 finite	 for		 ∈ , 	and	

satisfies	 , | ∞.	

We	 now	 define	 an	 auxiliary	 market	 .	 There,	 the	 risk‐free	 rate	 is	

	 ,	∀	 , ∈ 0, ;	 the	vector	of	drift	 rates	of	 the	primary	assets	 is	 	

,	 where	 ≜ 1	1…1 ,	 and	 , , 	is	 the	 admissible	 set	 of	 portfolio	 processes	

, ,	ensuring	 that	 the	 portfolio	 wealth	 in	 this	 market,	 denoted	 by	 , ,	is	 finite	 for	

	 ∈ , 	and	satisfies	 , | ∞.	

It	turns	out	that	in	the	auxiliary	market	the	constraints	are	not	binding	and,	thus,	can	be	

ignored.	In	particular,	the	role	of	the	vector	 	is	to	modify	the	original	market,	changing	the	

expected	returns	of	some	assets	in	order	to	make	them	more	(or	less)	attractive.	So,	for	example,	

if	 one	 asset	 has	 a	 short‐sale	 constraint,	 then	 	would	 increase	 the	 expected	 return	 on	 that	

asset	 until	 it	 is	 not	 optimal	 to	 short	 the	 asset.	 Proposition	 1	 below	 (see	 also	 Cvitanić	 and	
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Karatzas	(1992),	Proposition	8.3)	then	gives	conditions	under	which	the	optimal	unconstrained	

portfolio	in	the	auxiliary	market	is	also	the	optimal	constrained	portfolio	in	the	original	market.	

Note	that	the	total	adjustment	to	the	optimal	portfolio	expected	return	in	the	auxiliary	market	is	

zero.	

The	constrained	optimization	problem	 in	 the	 original	market	 	is	 to	maximize,	 for	 all	

0 ∞,	the	derived	utility	

	 ; ≜ , | , ∀ ∈ 0, 	 (4)

by	choosing	 	over	the	class	(here,	ℓ	is	Lebesgue	measure).	

	 , , , , , ≜ ∈ , ; , ∈ , ℓ⨂ℙ . . , .	 (5)

The	unconstrained	problem	in	the	auxiliary	market	 	(the	auxiliary	unconstrained	problem)	is	

to	maximize,	for	all	0 ∞,		

	 ; ≜ , | 	 (6)

by	choosing	 	over	the	class	 , , .	

The	dual	problem	of	the	auxiliary	unconstrained	problem	is	to	minimize	

	 ; ≜ | 	 (7)

by	choosing	 	over	the	class	

	 		 ≜ ∈ ; ∞ ,	 (8)

where	 ≜ ,	 	 ∙ 	is	 the	 inverse	 function	 of	 ′ ∙ ,	

≜ ‖ ‖ ,	 is	 the	 stochastic	 discount	

factor	 (SDF)	 in	 the	 auxiliary	 market	 ,	 and	θ ≜ .	 If	 we	 define	

≜ 	(sometimes	known	as	 the	 reciprocal	of	 the	money	market	 account)	

and	 ≜ ‖ ‖ ,	then	 .	If	 0,	then	

≜ | 		is	the	SDF	in	the	original	market	 .	 	 ≡ 	is	the	inverse	function	of	

≜ | .	We	call	the	optimal	solution	 ;	thus,	

	 ≜ argmin
∈

; argmin
∈

| .	 (9)

As	 Cvitanić	 and	 Karatzas	 (1992)	 point	 out	 (p.	 768),	 the	 dual	 approach	 “is	 of	 great	

importance	here…because,	as	it	turns	out,	it	is	far	easier	to	prove	existence	of	optimal	policies	in	

the	 dual,	 rather	 than	 in	 the	 primal,	 problem.”	We	 assume	 that	 the	 following	 conditions	 from	

Cvitanić	and	Karatzas	(1992)	are	satisfied.	The	effective	domain	of	the	support	function	is	the	

same	for	all	 , ;	that	is,	
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	 , ≡ .	 (10)

	 , , 0 ,	is	 	‐progressively	measurable.	 (11)

	 | , 	is	continuous	on	 	for	all	 , .						 (12)

	 For	some	 ∈ 0,1 ,	 ∈ 1,∞ ,	we	have	 ′ ′ ,	∀ ∈ 0,∞ .					 (13)

	 → ′ 	is	non‐decreasing	on	 0,∞ .									 (14)

	 ∞ ∞.				 (15)

	 0˖ ∞.		 (16)

	 ∀ ∈ 0,∞ , ∃ ∈ 	such	that	 ; ∞.								 (17)

We	are	now	ready	to	state	Proposition	1.	

Proposition	 1.	 For	 every	 	progressively	 measurable	 process	 ≡ , ,	0 ,	

such	that	 ∈ , 	for	ℓ⨂ℙ . . , ,	assume	that	the	following	conditions	hold:	

	 ∀ ∈ 0,∞ , lim
‖ ‖→

; ∞	 (18)

and	

	 ∀ ∈ 0,∞ , lim
↓

; ∞.	 (19)

Then,	 when	 , ∈ , 	and	 , , , 0 	are	 satisfied,	 , 	

maximizes	 the	 constrained	 optimization	 problem	 in	 the	 original	 market	 	and	 the	 auxiliary	

unconstrained	problem	 in	 auxiliary	market	 .	 Also,	 , 	minimizes	 the	dual	problem	of	the	

auxiliary	unconstrained	problem	in	the	auxiliary	market	 .	

Proof.	 The	 proof	 directly	 follows	 from	 Theorem	 7.4,	 Proposition	 8.3,	 Proposition	 12.1,	

Proposition	12.2,	Theorem	12.4,	Theorem	13.1	 and	Proposition	13.2	 in	Cvitanić	 and	Karatzas	

(1992).	

Remark.	 If	 , 	contains	 the	origin,	 then	the	support	 function	of	 the	constraint	 is	bounded	

below	and,	clearly,	Conditions	 (18)	and	 (19)	are	satisfied.	However,	the	NTNH	constraints	imply	

that	K t, ω 	does	not	contain	the	origin.	The	existence	of	a	minimum	to	Equation	 (7)	can	still	be	

guaranteed,	however,	if	these	two	conditions	are	first	imposed	then	verified.	

2.2	 NTNH	European	ESO	pricing	

There	are	three	types	of	prices	associated	with	ESOs:	the	market	price,	the	subjective	price,	and	

the	objective	price.	

Market	price	( , 0 )	–	the	Black‐Scholes	price	without	taking	the	NTNH	features	into	

account.	We	call	the	corresponding	SDF	the	market	SDF.			

Subjective	price	 ( ̂ , 0 )	 –	 the	value	of	 the	ESO	 to	 its	grantee,	under	optimal	exercise	
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while	fully	considering	the	NTNH	features.	Because	of	the	NTNH	constraints,	the	corresponding	

subjective	SDF	is	different	from	the	market	SDF,	and	the	subjective	ESO	price	is	lower	than	the	

market	one.	

Objective	price	( , 0 )	–	the	ESO	cost	for	firms	to	fulfill	their	obligation	upon	exercise.	

As	NTNH	constraints	do	not	apply	to	firms,	the	objective	SDF	and	the	market	one	are	same;	on	

the	 other	 hand,	 the	 objective	 and	 subjective	 prices	 represent	 the	 same	 payoff.	 For	 European	

ESOs,	the	market	price	and	objective	price	are	the	same.	For	American	ESOs,	the	objective	price	

is	 lower	 than	 the	 market	 price	 due	 to	 executives’	 suboptimal	 (early)	 exercise.	 The	 objective	

price	 is	 higher	 than	 the	 subjective	 price	 because	 firms	 can	 replicate	 the	 option	 without	 the	

NTNH	constraint.	Thus,	the	objective	price	falls	between	the	market	price	and	subjective	price.	

The	difference	between	the	objective	and	subjective	prices	is	the	amount	paid	by	firms	but	not	

appreciated	by	executives.	We	call	it	the	dead	weight	cost.	It	measures	the	efficiency	loss	to	firms	

in	exchange	for	incentivising	their	executives.	

We	 now	 introduce	 terminology	 describing	 the	 constraints.	 We	 call	 an	 ESO	 non‐

transferable	if	its	owner	is	forbidden	from	transferring	it	to	a	third	party,	at	any	time,	under	any	

price.	We	 call	 an	 ESO	non‐hedgeable	 if	 its	 owner	 is	 forbidden	 from	 selling	 shares	 of	 the	 ESO	

issuer	stock	that	they	do	not	own.	

We	assume	that	executives’	portfolios	consist	of	 	 	shares	of	NTNH	ESOs	with	exercise	

price	 	and	maturity	 ,3	and	a	sub‐portfolio	composed	of	primary	assets	only.	We	name	the	sub‐

portfolio	outside	wealth	and	denote	its	initial	value	by	 	and	its	value	process	by	 , .	We	

denote	the	initial	value	of	total	wealth	as	 ≡ 	and	the	value	process	of	total	wealth	

by	 .	We	denote	 ≡ 	and	 ≡ .	

In	this	section,	we	focus	on	pricing	European	NTNH	ESOs,	 ignoring	early	exercise.	The	

idea	behind	our	pricing	of	NTNH	contingent	claims	is	replacing	the	 	shares	of	non‐transferable	

contingent	claim	with	a	replicating	portfolio	composed	of	primary	assets	only.	Because	markets	

are	 complete,	 we	 can	 see	 firms	 as	 having	 two	 equivalent	 choices.	 One	 is	 giving	 executives	 	

option	payoffs	at	time	T,	which	we	denote	 ;	the	other	is	giving	executives,	at	time	0,	a	cash	

amount	of	 0 	and	making	 them	use	 this	sum	to	replicate	 (using	a	self‐financing	strategy)	

the	option	payoffs	 	at	time	 .	Under	the	latter	interpretation,	because	the	ESO	cannot	be	

hedged,	their	position	in	 	can	never	be	less	than	 	shares4	of	 .	This	puts	the	problem	of	

pricing	 NTNH	 options	 in	 the	 framework	 of	 a	 constrained	 portfolio	 optimization	 problem.	

Holding	 	shares	of	a	non‐transferable	European	option	is	equivalent	to	holding	 	shares	

of	firm	stock	and	 e 	dollars	of	savings	account,	where	 	is	the	strike	price	of	the	

																																																													
3	For	simplicity	and	brevity,	we	often	depress	dependency	on	parameters	such	as	 .	
4	 ∙ 	is	the	cumulative	density	function	of	the	standard	normal	distribution	

√

,	 √ .		
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ESOs.	 Recalling	 that	 under	 the	 non‐hedgeable	 constraint,	 the	 number	 of	 shares	 of	 the	 firm’s	

stock	 in	 the	 total	 portfolio	 should	 be	 greater	 than	 or	 equal	 to	 	shares,	 the	 combined	

constraint	for	the	portfolio	process	can	be	written	as	follows:	

	 ∀ , , ∈ , ,∞ ∞,∞ ,	 (20)

where	 	is	the	firm’s	stock	price	underlying	the	ESO.	Then,	we	identify	 	and	 	as	

	 0,∞ 0 ,	 (21)

	 ≡ on ,	 (22)

which	 also	 confirms	 the	 fulfillment	 of	 Conditions	  (10)‐ (12).	 We	 assume	 ∈ ,	 then	

, ∞, ∀ ∈ .	

We	note	that	our	use	of	the	Black‐Scholes	options	pricing	formula	implies	that	the	volatility	of	

the	underlying	asset	is	deterministic.	

Assumption	1.		∀ ∈ 0, ,	and	∀	 ∈ 0,∞ ,	the	indirect	utility	function,	 , ,	is	

	 , ≜
∈ , , , ,

, .	 (23)

We	denote	the	solution	of	Equation	 (23)	under	the	constraint	 , 	of	Equation	 (20)	as	 ∗.	We	

assume	 ∙, 0	on	 0,∞ .	

We	have	now	developed	a	sufficient	mathematical	structure	to	identify,	in	the	following	

theorem,	the	subjective	price	of	a	NTNH	European	ESO,	characterizing	the	SDF	as	the	real‐world	

marginal	rate	of	substitution.		

Theorem	 1.	Under	 Assumption	 1,	 the	 time	 	subjective	 price	 of	 NTNH	 European	ESOs	 with	

terminal	payoff	 	is	uniquely	determined	by	

	 ̂ ≡ ̂ , ,
, ∗

|
, , ∀ 0,	 (24)

where	 , ∗
	represents	the	optimal	outside	wealth	for	the	constrained	problem.	

Proof.		See	Appendix	A.	

Theorem	2.	 i)	Under	Assumption	1,	 the	 time	 	subjective	 price	 of	NTNH	European	ESOs	with	

terminal	payoff	 	is	uniquely	determined	by	

	 ̂ ≡ ̂ , ,
| |

,	 (25)

where	 ∙ 	is	an	expectation	under	the	martingale	measure	in	the	auxiliary	market	 ,	for	 	as	

defined	in	Equation	 (9).	

ii)	The	time	 	objective	price	of	this	NTNH	European	ESO	is	equal	to	the	market	price:	
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	 ≡
| |

,	 (26)

where	 ∙ 	is	 expectation	 under	 the	 martingale	 measure	 in	 the	 auxiliary	 market	 	(where	

0).	

Proof.		See	Appendix	A.	

Theorem	 2	 identifies	 the	 auxiliary	 markets	 	and	 	as	 the	 corresponding	 “risk‐

neutral	markets”	to	constrained	and	unconstrained	pricing	in	the	original	market,	respectively.	

The	 number	 of	 ESO	 shares	 granted	 affects	 the	 subjective	 price	 in	 two	ways.	 First,	 by	

affecting	 the	 initial	 total	 wealth. 5 	Second,	 as	 	increases	 the	 constraint	

, , ∞ ∞,∞ 	becomes	 more	 binding,	 inducing	 a	 “more	 aggressive”	

SDF.	In	the	following	subsection,	we	show	the	effect	of	this	dependence	of	the	subjective	price	

on	the	number	of	ESO	shares	and	on	optimal	exercise	policies	for	American	ESOs	(block	exercise	

and	a	continuum	of	exercise	ratios),	which,	in	turn,	affect	the	outstanding	number	of	ESO	shares,	

affecting	ESO	prices,	and	so	on.	

2.3	 NTNH	American	ESO	pricing	with	block	exercise	policy	

The	 ESOs’	 exercise	 time	 , :	 	 , , ℙ → 0, ,	 is	 a	 stopping	 time	with	 respect	 to	 the	

filtration	 .	 Let	 	be	 the	 class	 of	 	stopping	 times.	 Before	 ,	 the	 NTNH	 constraint	 is	

, / ,∞ ∞,∞ ,	 and	 we	 denote	 the	 corresponding	 SDF	 .	

Because	of	the	executives’	general	restriction	from	short	selling	their	firm’s	stock,	even	after	 ,	

although	there	are	no	NTNH	ESOs	in	the	portfolio	anymore,	the	portfolio	cannot	have	negative	

weights	 in	the	 firm’s	stock.	Hence,	 the	constraint	becomes	 , 0,∞ ∞,∞ ,	and	

we	 denote	 the	 corresponding	 SDF	 .	 The	 post‐exercise	 total	 wealth	 at	 	is	 the	 sum	 of	

outside	wealth	 , 	and	the	intrinsic	value	of	ESOs	 .	Hence,	

	 , , ∞ ∞,∞ 1 0,∞ ∞,∞ 1 .	 (27)

We	have	now	developed	sufficient	mathematical	 structure	 to	 identify,	 in	 the	 following	

theorem,	 the	 subjective	 price	 of	 a	 NTNH	 American	 ESO	 under	 block	 exercise	 policy,	

characterizing	the	SDF	as	the	real‐world	marginal	rate	of	substitution.		

Theorem	3.	Under	 a	 block	 exercise	 policy,	 the	 subjective	 price	 of	 a	 NTNH	 American	ESO	 is	

uniquely	determined	by	

	 ̂ ≡ ̂ , ,
, ∗ ∗ ∗ , ∗ ∗ |

, ,
, ∀ 0,	 (28)

where	 ∗ ∗ , 			is	the	solution	to	Problem	  (30)	below	for	 ∈ , ∗ 	but	is	the	solution	to	
																																																													
5	If	the	constraint	is	a	closed,	convex	cone	or	the	utility	is	logarithmic,	then	according	to	Cvitanić	and	Karatzas	(1992),	
the	 initial	wealth	does	not	appear	 in	 the	pricing	 formula.	The	non‐hedgeability	constraint	 is	a	closed,	convex	cone;	
however,	the	NTNH	constraint	is	not.	
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Problem	 (29)	below	for	 ∈ , ,	and	 , 	is	as	in	Equation	 (27):	

	 , ≜
∈ , , , ,

, ,	 (29)

and	

	 , , ≜
∈ ∈ , , , ,

, , | 	.	 (30)

Also,	 ∗	is	the	optimal	exercise	time;	that	is,	the	optimal	stopping	time	in	Problem	 (30).	

Proof.		See	Appendix	B.	

We	are	now	ready	to	develop	a	martingale	pricing	expression	of	a	NTNH	American	ESO	

under	block	exercise. 

Theorem	4.	The	subjective	and	objective	prices	of	a	NTNH	American	ESO	under	block	exercise	

are	uniquely	determined	as	follows.		

i)	The	subjective	price	is	

	 ̂ ≡ ̂ , ,
∗ ∗ | ∗ ∗ |

,	 (31)

where	 ∗	is	the	optimal	exercise	time	identified	by	the	optimal	stopping	time,	Problem	 (30),	and	

	minimizes	 the	 dual	 problem	 	 ; ≜ ∗ 	over	 	with	 , 	as	 in	

Equation	 (27)	for	 ∗.	

ii)	The	objective	price	of	this	NTNH	American	ESO	is	

	 ≡ , ,
∗ ∗ | ∗ ∗ |

.	 (32)

Proof.		See	Appendix	B.	

Remark.	Equation	 (31)	implies	that	the	subjective	price	of	a	NTNH	American	ESO	under	block	

exercise	 is	 determined	by	 ∗ ,	 the	 SDF	before	 the	optimal	 exercise	 time	 ∗	with	 constraint		

, / ,∞ ∞,∞ .	In	contrast,	because	optimal	stopping	times	are	

determined	backward,	 ∗	is	 determined	by	 ,	 the	 SDF	 after	 ∗.	Hence,	 the	 subjective	price	

̂ , , 	is	determined	by	both	the	auxiliary	market	 	before	 ∗	and	the	auxiliary	market	 	

after	 ∗.	Thus,	these	two	determinants	are	time	separable.	

Remark.	Note	that	the	subjective	price	 ̂ , , 	is	not	equal	to	 | / ,	where	

the	 auxiliary	 market	 	is	 defined	 as	 the	 one	 that	 encompasses	 both	 auxiliary	 markets	 	

(before	optimal	exercise)	and	 	(after	optimal	exercise).	The	equality	does	not	hold	because	it	

uses	the	terminal	payoff	rather	than	the	one	at	exercise.	

Remark.	 Further	 note	 that	 even	 after	 improving	 the	 previous	 pricing	method,	 the	 subjective	

price	 ̂ , , 	is	not	equal	to	 | / .	This	is	because	executives	with	

NTNH	 American	 ESOs	 do	 not	 simply	 maximize	 the	 subjective	 prices	 of	 their	 options.	 Under	

NTNH	 constraints,	 the	 optimal	 ESO	 exercise	 policy	 can	 be	 obtained	 only	 by	 maximizing	 the	
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expected	 utility	 of	 the	 terminal	 wealth.	 As	 optimal	 exercise	 under	 NTNH	 constraints	 is	 a	

function	of	 the	executive’s	wealth	relative	 to	outside	wealth,	 separation	(between	maximizing	

the	 option	 value	 and	 maximizing	 the	 expected	 utility)	 is	 lost.	 With	 no	 constraints,	 however,	

separation	 exists;	 thus,	 maximizing	 the	 subjective	 price	 of	 the	 options	 and	 maximizing	 the	

expected	utility	of	total	terminal	wealth	are	equivalent.	

2.4	 NTNH	American	ESO	pricing	with	continuous	partial	exercise	policy	

Leung	 and	 Sircar	 (2009)	 extended	 the	 block	 exercise	 policy	 into	 a	 discrete	 partial	

exercise	one.	We	now	determine	the	optimal	exercise	policy	under	the	most	general	conditions:		

executives	may	exercise	continuously	 in	 time	and	chose	exercise	 rates	 from	a	continuum.	We	

call	this	exercise	policy	continuous	partial	exercise.	

Under	continuous	partial	exercise,	the	dynamics	of	the	total	wealth	process	is	

	
,

0 0 , ∈ 	 (33)

where	 ≡ ,	 ≡ ,	 and	 ≡ , 	is	 the	

time	t	optimal	exercise	rate	that	maximizes	the	expected	utility	of	terminal	wealth.	The	constant	

	is	the	number	of	ESO	shares	granted	at	time	zero.	The	control	variable,	the	random	exercise	

rate	 process,	 is	 denoted	 by	 .	 It	 belongs	 to	 the	 set	 ≜ :	 ,	 the	

collection	 of	 all	 feasible	 exercise	 rates.	 We	 define	 ≜ 	to	 be	 the	 accumulated	

number	of	ESOs	that	have	been	exercised	at	time	t.	The	constraint	of	the	portfolio	process	is	

	 ∈ , 	 / ,∞ ∞,∞ .	 (34)

The	derived	utility	of	an	executive	maximizing	expected	utility	of	terminal	wealth	by	choosing	

optimal	portfolio	and	exercise	rate	processes	is	

	 ∗, ∗
, , , , ∈ , , , , ,

, | ,	 (35)

where	 , 	is	described	in	Equation	 (34).	

For	 a	 given	 ,	 we	 know	 how	 to	 solve	 the	 portfolio	 optimization	 problem	 by	

employing	 the	 duality	 technique.	 As	 the	 indirect	 utility	 function	 is	 a	 monotone	 increasing	

function	 of	 initial	 wealth,	 the	 time	 t	 optimal	 portfolio	 process	 generates	 the	 ex‐ante	 optimal	

initial	wealth	 for	 the	next	period	 ;	otherwise,	 the	existence	of	another	portfolio	process,	

which	 leads	 to	 higher	 wealth,	 would	 contradict	 optimality.	 Hence,	 we	 can	 simplify	 the	

optimization	problem	by	separating	it	into	the	following	two	stages:	

	
∗, ∗

, , ,
∈ ∈ , , , ,

, , | ,	 (36)

where	 ∗, ≡ , ∗,	 	is	 the	 total	 wealth	 process	 generated	 by	 the	 optimal	 portfolio	

process	 ∗	for	a	given	initial	wealth	 	and	under	an	exercise	rate	process	 .	
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The	 following	 proposition	 identifies	 the	 first‐order	 condition	 (FOC)	 necessary	 to	

determine	the	optimal	exercise	process.	

Proposition	2.	Assume	the	firm’s	stock	pays	no	dividend.	The	FOC	of	the	(viscosity)	solution	to	

the	optimization	problem	in	Equation	 (36)	is	

∗, , , ,
∗,

∗, , , ,
0.	 (37)

Proof.	See	Appendix	C.	

It	is	well	known	that	under	a	non‐negative	interest	rate,	an	American	call	option	written	

on	a	non‐dividend‐paying	stock,	under	constant	strike	price,	should	never	be	exercised	before	

its	 expiry	 date	 (see,	 e.g.,	 Rutkowski	 2009).	 In	 other	 words,	 under	 usual	 circumstances,	 an	

American	 call	 option	price	 is	 always	 greater	 than	or	 equal	 to	 its	 intrinsic	 value.	We	will	 now	

explain	why	early	exercise	might	become	optimal.	As	executives	exercise	 the	NTNH	ESOs,	 the	

newly	received	cash	 is	subject	only	 to	short	sale	constraints	of	 the	 firm’s	stock,	and	 the	other	

portfolio	 constraints	 are	 relaxed.	 Updating	 the	 corresponding	 SDF	 and	 auxiliary	 market	

definitions	induces	appropriate	pricing.	The	optimal	exercise	rate	sets	the	marginal	increase	of	

subjective	 value	 due	 to	 the	 constraint	 relaxation	 to	 exactly	 offset	 the	 marginal	 loss	 of	

opportunity	value	due	to	early	exercise.	

We	are	now	ready	to	develop	a	martingale	pricing	expression	of	an	NTNH	American	ESO	

under	optimal	continuous	exercise	using	a	continuum	of	exercise	ratios.	

Theorem	5.	i)	The	subjective	price	of	the	NTNH	American	ESO	with	continuous	partial	exercise	

policy	is	

	 ̂ ≡ ̂ , , ∗
∗ | ,	 (38)

where	 ∗ 	solves	 Equation	  (37),	 and	 ∗ 	minimizes	 dual	 problem	  (7),	 under	 , 	

described	in	Equation	 (34).	

ii)	The	objective	price	of	this	NTNH	American	ESO	is	

	 ≡ , , ∗ | .	 (39)

Proof.	This	follows	immediately	from	the	definition	of	 ∗ 	and	Theorem	2.	

Remark.	Our	results,	obviously,	depend	on	 ∗,	and	 ∗.	While	solving	for	 ∗,	we	are	able	to	use	

methods	developed	earlier	(see	Proposition	1).	We	now	have	to	develop	methods	to	solve	for	 ∗.	

Note	 that	while	 both	 loss	 of	 option	 time	 value	due	 to	 early	 exercise	 and	 an	 underlying	 stock	

paying	 dividend	 are	 wealth	 leakages	 to	 option	 holders,	 they	 are	 essentially	 different.	 To	

compensate	for	the	latter,	it	is	sufficient	to	deduct	the	present	value	of	all	future	dividends	from	

the	stock	price	without	affecting	the	SDF.	However,	exercising	NTNH	ESOs	affects	the	portfolio	

process	 constraint	 at	 the	 time	 and	 affects	 the	 corresponding	 SDF.	 Thus,	 we	 cannot	 model	



 

13 

negative	jumps	due	to	the	loss	of	option	time	value	the	way	we	model	negative	jumps	in	stock	

prices	due	to	dividends.	

At	any	time	 ,	the	indirect	utility	is	the	conditional	expectation	of	the	utility	generated	by	

the	terminal	total	wealth	under	the	optimal	exercise	rate	process	and	optimal	portfolio	process.	

The	 common	 approach	 is	 to	 solve	 for	 the	 optimal	 controls	 backward.	 However,	 here,	 total	

wealth	 is	 determined	 by	 	geometric	 Brownian	 motions	 requiring	 many	 branches	 of	 the	

multinomial	tree.	In	addition,	the	accumulated	number	of	the	firm’s	stock	shares	 	is	another	

state	variable.	This	makes	the	complexity	of	the	problem	computationally	infeasible.	

Moreover,	working	backward,	at	any	time	 ,	the	time	 	total	wealth	is	determined	by	the	

optimal	 portfolio	 process,	 ∗ , 0 .	 Hence,	 using	 a	 binomial	 tree	 cannot	 solve	 the	

problem.	Moreover,	 the	 FOC	  (37)	 is	 determined	 not	 only	 by	 the	 information	 given	 in	 the	 set	

, ∈ 0, 	but	 also	 by	 the	 future	 optimal	 portfolio	 process,	 which	 is	 determined	 by	

, ∈ , .	Therefore,	the	forward‐looking	Monte	Carlo	simulation	cannot	solve	the	problem	

either.	

Under	logarithmic	preferences,	however,	the	substitution	and	income	effects	offset	each	

other,	mathematically	implying	that	the	cross	partial	derivatives	of	the	derived	utility	function	

are	zero.	Now	solving	 the	FOC	  (37)does	not	 require	 future	optimal	knowledge	of	 the	optimal	

portfolio	process	π∗,	in	another	manifestation	of	the	so	called	myopia	of	logarithmic	preferences.	

In	this	case,	we	can,	thus,	use	Monte	Carlo	simulation	to	solve	for	 ∗,	satisfying	FOC	 (37).	

3	 Simulation	experiment	

In	 this	 section,	we	show	that	under	 logarithmic	preferences,	Conditions	  (18)	and	  (19)	

are	satisfied,	and	the	FOC	 (37)	is	fully	determined	by	the	information	available	up	to	time	 ,	not	

depending	on	future	optimization	outcomes.	Thus,	the	forward‐looking	Monte	Carlo	simulation	

becomes	 useful.	 Below	 we	 describe	 the	 simulation	method,	 present	 the	 numerical	 results	 of	

NTNH	ESO	pricing,	and	perform	a	sensitivity	analysis.	

3.1	 Solving	for	the	optimal	exercise	rate	

Executives	 are	 granted	 	shares	 of	 unvested	 NTNH	 ESOs	 and	 	shares	 of	

unvested	 (restricted)	 stocks.	 The	 ESOs	 and	 the	 stocks	 vest	 on	 future	 dates	 	and	 ,	

respectively.	 For	 any		 ,	 we	 call	 the	 total	wealth	 before	 exercise	 _ .	 After	 solving	

FOC	  (37)	 for	 the	 optimal	 exercise	 rate	 	∗ ,	we	 can	write	 the	 total	wealth	 after	 exercise	 as	

_ _ ,	 and	 the	 accumulated	 number	 of	 shares	 from	

exercised	 ESOs	 as	 .	 Upon	 exercise,	 the	 constraint	 , 	changes	 and,	 in	 turn,	 induces	

changes	 in	 ,	 the	 optimal	 control	 of	 the	 dual	 problem,	 Equation	  (36).	 The	 updated	 	

determines	 the	 corresponding	 SDF	 in	 the	 original	market	 and	 the	drift	 rate	 adjustments	 that	

convert	the	original	market	price	processes	to	auxiliary	market	ones.	We	can	now	use	 	to	
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solve	 for	 the	 new,	 after	 exercise,	 value	 of	 the	 optimal	 portfolio	 process,	 ∗ ,	 making	 the	

appropriate	primary	asset	weight	adjustments.	The	changes	 in	 the	primary	asset	prices,	 from	

	to	 1 ),	 affect	 next	 period’s	 wealth	 _ 1 ,	 which	 then	 is	 adjusted	 to	

_ 1 ,after	time	 1	exercise,	and	then	further	adjusted	to	 ∗ 1 ,	and	so	on.	Figure	

1	 below	 describes	 this	 process.	 	We	 calculate	 the	 following	 values	 for	 each	 time	 point:	 	 pre‐

exercise	 total	 wealth,	 _ , 	optimal	 exercise	 rate,	 ∗ ,	 post‐exercise	 total	 wealth,	

_ ,	updated	constraints,	 1 , 1 ,	SDF,	and	the	optimal	portfolio	process,	 ∗ .	

	

	

	

	

	

	

	

	

Figure	1.	Sample	path	generating	process	for	Monte	Carlo	simulation		

The	following	Lemma	states	that	under	logarithmic	preferences	Conditions	 (18)	and	 (19)	

are	satisfied.	

Lemma	1.	Given	 , , ∞ ∞,∞ ,	where	 ≡ , 0,	if	 ∙ ∙ ,	then	for	

any	 ∈ 0,∞ ,	we	have,	lim‖ ‖→ ; ∞,	and	for	any	 ∈ 0,∞ , lim ↓ ; ∞.	

Proof.	See	Appendix	D.	

Finally,	 the	proposition	below	 identifies	 the	 logarithmic	preferences	case	of	FOC	  (37)	 that	we	

use	to	solve	for	the	optimal	exercise	rate,	 ∗ .	

Proposition	3.	Under	logarithmic	preferences	 ∙ ∙ ,	which	have	an	Arrow‐Pratt	relative	

risk‐aversion	 coefficient	 of	 1,	 the	 FOC	  (37)	 with	 respect	 to	 the	 optimal	 continuous	 partial	

exercise	rate	 	becomes	

	

_
_

1

_
1
2

＝0,	

(40)

where	 argmin ∈ , 2
_

‖ ‖ 	 ,	

1	

Options	vesting	date	

_

∗

, ∗

_ 1 	

∗ 1 	

1 , ∗ 1 ,		

_ 1 	

∗ 1 	

	 1 , ∗ 1 	

_ 1 , 1 , 1 	

1

_ , , 	 _ 1 , 1 , 1 	
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,			and	‖∙‖	is	the	Euclidean	norm.	

Proof.	See	Appendix	E.	

3.2	 Simulation	result	and	sensitivity	analysis	

In	 this	 section,	we	explicitly	 solve	a	 family	of	examples	of	NTNH	American	call	option	

prices	under	continuous	partial	exercise	policies.	We	assume	that	executives’	outside	wealth	in	

addition	to	the	firm’s	restricted	stocks	is	the	market	index.	We	compare	our	results	with	vanilla	

Black‐Scholes	prices	and	study	price	sensitivity	to	spot	prices,	interest	rate,	volatility,	maturity,	

instantaneous	correlation	between	primary	assets’	price	processes,	drift	rates,	vesting	periods,	

and	 the	 initial	 endowments	 of	 unvested	 stocks,	 NTNH	 American	 ESOs,	 and	 cash.	 We	 define	

“incentives”	as	the	delta	of	subjective	price	 ̂ ,	 i.e.,	 the	change	 in	subjective	price	per	unit	of	

share	 price	 change,	 ̂ ⁄ 	(see	 Table	 1).	 We	 define	 the	 deadweight	 cost	 as	 the	

discrepancy	 between	 objective	 price	 and	 subjective	 price	 ̂ 	(see	 Table	 2).	 And	 we	

define	“efficiency”	as	the	ratio	of	incentives	to	deadweight	cost,	
⁄

	(see	Table	2).	

The	intuition	behind	the	term	incentives	is	straightforward,	as	it	is	the	sensitivity	of	the	

value	 to	 the	 executive	 with	 respect	 to	 the	 share	 price.	 We	 call	 the	 difference	 between	 the	

objective	price	and	the	subjective	one	“deadweight	cost,”	as	it	is	a	price	that	the	firm	pays	but	

the	executive	does	not	benefit	from.	The	term	“efficiency”	is	intuitively	appealing	as	it	increases	

in	 incentives,	 decreases	 in	 deadweight	 cost,	 and	 gives	 the	 ratio	 of	 incentives	 per	 unit	 of	

deadweight	cost.	

Firms	will	be	interested	in	the	following	comparative	statics.	

1. Figures	 2(a,c)	 demonstrate	 that	 NTNH	 ESOs	 induce	 strong	 incentives	 to	 improve	

performance.	 Not	 only	 do	 NTNH	 ESOs’	 subjective	 prices	 increase	 as	 a	 function	 of	 stock	

prices,	 they	 also	 increase	 in	 the	 stock	 drift	 rates,	 forming	 a	 positive	 feedback	 cycle	 and	

further	intensifying	incentives.	

2. The	objective	price	is	always	greater	than	the	subjective	price,	and	both	prices	move	in	the	

same	direction	when	parameters	change.	See	Table	2	and	Figure	2.	

3. Longer	maturity	adds	value	to	both	subjective	and	objective	prices.	See	Figure	2(f).	

4. Subjective	 and	 objective	 NTNH	 ESO	 prices	 decrease	 as	 the	 options	 become	 a	 larger	

proportion	 of	 their	 endowments	 of	 total	 initial	 wealth	 (of	 options,	 stocks,	 and	 cash).	 See	

Figure	2(m)	to	Figure	2(o).	

5. Subjective	and	objective	NTNH	ESO	prices	are	also	affected	by	the	drift	rate	and	volatility	of	

the	 market	 index.	 As	 the	 index’s	 drift	 rate	 increases,	 the	 subjective	 and	 objective	 prices	

decrease.	 Similarly,	 as	 the	 index’s	 volatility	 decreases,	 these	 prices	 decrease.	 See	Table	 2.	

Intuitively,	 as	 the	 index	 becomes	 more	 attractive,	 i.e.,	 as	 its	 drift	 rate	 increases	 or	 its	

volatility	decreases	(all	else	being	equal),	the	position	in	the	ESO	becomes	less	desirable.	In	



 

16 

fact,	for	our	parameter	values,	the	subjective	price	is	actually	more	sensitive	to	the	volatility	

of	the	index	than	it	is	to	the	volatility	of	the	stock.	See	Figure	2(d,h).	

6. As	the	correlation	between	returns	on	the	underlying	stock	and	returns	on	the	market	index	

increases,	 the	 subjective	 and	 objective	 prices	 increase.	 For	 example,	 as	 the	 correlation	

approaches	one,	the	call	option	on	the	stock	effectively	becomes	a	call	option	on	the	market	

index,	which	would	be	quite	desirable.	On	the	other	hand,	when	the	correlation	is	low,	the	

ESO	gives	the	executive	a	concentration	of	wealth	in	an	asset	that	is	“far	from”	the	optimal	

market	index.	See	Figure	2(b).	

7. We	argue	that	if	the	subjective	price	of	the	ESO	increases	(all	else	being	equal),	then	the	firm	

can	 grant	 fewer	 ESOs	 to	 the	 executives.	 So,	 for	 example,	 following	 the	 insights	 of	 the	

previous	 two	 points,	 if	 there	 is	 a	 decrease	 in	 the	 drift	 rate	 of	 the	market	 index,	 then	 the	

subjective	price	increases,	and	the	firms	can	grant	fewer	ESOs.	Similar	conclusions	hold	for	

the	other	variables.	

8. Efficiency	decreases	 in	vesting	period,	maturity,	 stock	volatility,	and	 the	proportion	of	 the	

executive’s	endowment	of	total	wealth.	See	Table	2.	

9. The	ESO’s	strike	price	has	little	effect	on	the	option’s	efficiency.	

Executives	as	well	as	firms	will	be	interested	in	the	following	comparative	statics.	

10. Executives,	on	average,	exercise	more	shares	of	deeper	 in‐the‐money	options.	See	Figures	

3(a).	

11. Higher	stock	drift	rates	induce	an	executive	to	hold	NTNH	ESOs	longer	before	exercise.	See	

Figure	3(c).	

12. A	 higher	 index	 drift	 rate	 induces	 an	 executive	 to	 exercise	 the	 NTNH	 ESOs	more	 quickly.	

Intuitively,	if	the	index	is	more	“attractive”	(all	else	being	equal),	the	executive	exercises	the	

options	in	order	to	invest	more	money	in	the	index.	See	Figure	3(d).	

13. Low	correlation	between	returns	on	 the	 index	and	returns	on	 the	stock	 leads	 to	 the	ESOs	

being	 exercised	 more	 quickly.	 See	 Figure	 3(b).	 The	 rough	 intuition	 here	 is	 that	 a	 low	

correlation	 makes	 the	 ESO	 less	 “attractive”	 (all	 else	 being	 equal),	 causing	 executives	 to	

exercise	them	more	quickly	in	order	to	invest	in	the	index.	

14. Shorter	 maturity	 options	 are	 exercised	 at	 a	 higher	 rate	 than	 longer	 maturity	 options,	

however,	 cumulatively,	 till	 maturity,	 executives	 exercise	 higher	 percentage	 of	 longer	

maturity	options.	See	Figure	3(f).	

15. Higher	stock	volatility	induces,	on	average,	earlier	exercise.	See	Figure	3(g).	

16. Higher	index	volatility	induces,	on	average,	later	exercise.	See	Figure	3(h).	

17. Lower	proportions	of	option	endowments	out	of	initial	total	wealth,	induce,	on	average,	the	

exercise	of	fewer	options.	See	Figure	3(m)	to	Figure	3(o).	

The	 above	 findings	 imply	 the	 following	 efficiency‐enhancing	 policy	 implications	 for	
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firms:		1)	rather	than	granting	long	term	ESOs,	roll	over	short	term	ESOs	by	granting	long‐term	

reload6	options,	 2)	 reduce	 the	 firm’s	 stock	 price	 volatility,	 3)	 control	 the	 proportion	 of	 ESO	

endowments	out	of	executives’	total	wealth,	and	4)	shorten	vesting	periods.	

4	 Conclusion	

We	 identify	 a	 method	 for	 pricing	 non‐transferable,	 non‐hedgeable	 (NTNH)	 European	

and	American	call	options	under	both	block	and	continuous	partial	exercise.	We	implement	this	

methodology	to	price	executive	stock	options	(ESOs)	and	run	a	sensitivity	analysis	that	suggests	

efficiency‐enhancing	ESO	policy	implications.	Our	pricing	methodology	is	simple	and	universal.	

It	can	be	used	to	solve	a	category	of	pricing	problems,	 including	pensions,	human	capital,	real	

estate,	and	intellectual	property.	

Future	work	might	 investigate	 executives	hedging	ESOs	using	primary	 assets	 that	 are	

correlated	with	the	ESOs’	underlying	assets.	While	the	benefit	of	such	hedging	is	clear,	there	are	

costs,	both	in	terms	of	lower	performance	relative	to	that	of	unrestricted	portfolios	and	in	terms	

of	additional	transaction	costs.	These	costs	clearly	depend	on	the	level	of	the	executive’s	outside	

wealth	relative	to	the	ESOs’	value,	and	an	interesting	problem	is	identifying	the	value	of	outside	

wealth	that	is	required	to	mitigate	the	non‐hedgeability	consequences.	

We	could	also	price	NTNH	ESOs	accounting	for	executives’	job	termination.	This	would	

be	 comparable	 to	 pricing	 default	 NTNH‐contingent	 claims	 with	 the	 credit	 name	 being	 the	

executives’	 job	 termination.	 We	 could	 also	 apply	 our	 NTNH	 ESO	 valuation	 method	 to	 more	

complex	 ESO	 pricing;	 for	 example,	 NTNH	 reload	 ESOs.	 Upon	 reload,	 executives	 receive	

additional	 shares	 at	market	 value	 equal	 to	 the	 current	 intrinsic	 value	 of	 (all)	 their	 ESOs	 and	

additional	re‐grant	of	new	at	the	money	NTNH	ESOs	of	the	same	maturity	as	the	original	ones.	

																																																													
6	For	re‐load	options,	additional,	at	the	money,	stock	options	are	granted	upon	the	exercise	of	the	previously	granted	
options.	
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Table	1	

Incentive	of	ESO	

	

This	table	displays	the	benchmark	Black‐Scholes	price,	subjective	price,	and	objective	price	of	NTNH	ESO.	The	total	portfolio	includes	ESO,	restricted	

firm	stock,	and	market	index.	The	benchmark	parameter	values	are	as	follows:		Maturity=15	years.	Spot	price	of	stock=$10;	Spot	price	of	index=$6;	

Strike	price=$10;	Volatility	of	stock=50%;	Volatility	of	index=30%.	Correlation	between	stock	and	index=60%;	Drift	rate	of	stock=15%;	Drift	rate	of	

index=8%;	Risk‐free	rate=4%;	Initial	option	endowment=200	shares;	Initial	stock	endowment=200	shares;	Initial	cash	endowment=$1000;	Vesting	

period	 of	 firm	 stock=1	 year;	 Vesting	 period	 of	 option=2	 year;	 Number	 of	 steps=30;	Montecarlo	 repeating	 times=10000.	 The	 Benchmark	 Black‐

Scholes	price,	subjective	price,	and	objective	price	of	NTNH	ESO	are	7.59,	6.49	and	6.95,	respectively	(see	the	middle	row	with	Spot	stock	price	being	

$10).	By	changing	the	spot	price	of	stock	to	a	lower	(higher)	level	$8	($10),	we	investigate	the	incentive	of	option	 ̂ ⁄ ,	which	is	defined	as	

the	delta	of	the	subjective	price.	

	

Spot price (stock) Black-Scholes price Subjective price Objective price Incentive

8 5.82 4.75 5.07 0.87
10 7.59 6.49 6.95 0.79
12 9.41 7.92 8.51 0.71
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Table	2	

Price	sensitivity	analysis	and	determinants	of	ESO’s	efficiency	

	

This	table	lists	the	results	of	ESO	price	sensitivity	analysis;	namely,	how	does	parameter	change	affect	the	
change	of	ESO	prices?	The	table	also	displays	all	the	determinants	affecting	the	ESO’s	efficiency,	which	is	
defined	as	incentive	per	unit	of	dead	weight	cost.	The	dead	weight	cost	is	the	objective	price	net	of	the	
subjective	price.	Each	panel	lists	three	levels	(low,	benchmark,	high)	of	results	from	above	to	below.	We	
use	0.79,	which	is	the	benchmark	incentive	in	Table	1,	throughout	the	sensitivity	analysis.	

Black-Scholes price Subjective price Objective price Incentive Dead weight cost Efficiency

Correlation
30% 7.59 5.82 6.49 0.79 0.67 1.18
60% 7.59 6.29 6.75 0.79 0.46 1.73
90% 7.59 7.33 7.33 0.79 0.00 254.76

Drift rate (stock)
8% 7.59 2.96 4.06 0.79 1.10 0.72
15% 7.59 6.29 6.75 0.79 0.46 1.73
20% 7.59 7.28 7.39 0.79 0.11 7.24

Drift rate (index)
6% 7.59 6.70 7.03 0.79 0.33 2.40
8% 7.59 6.29 6.75 0.79 0.46 1.73
20% 7.59 2.80 3.56 0.79 0.76 1.05

Risk-free rate
2% 7.15 6.03 6.46 0.79 0.43 1.83
4% 7.59 6.29 6.75 0.79 0.46 1.73
6% 7.99 6.46 6.95 0.79 0.49 1.62

Maturity
5 4.82 4.03 4.53 0.79 0.50 1.60

15 7.59 6.29 6.75 0.79 0.46 1.73

25 8.78 7.14 7.79 0.79 0.65 1.21

Volatility (stock)
0.2 5.20 4.39 4.58 0.79 0.19 4.13
0.5 7.59 6.29 6.75 0.79 0.46 1.73
0.9 9.40 6.30 8.33 0.79 2.03 0.39

Volatility (index)
0.1 7.59 2.75 3.90 0.79 1.15 0.69
0.3 7.59 6.29 6.75 0.79 0.46 1.73
0.6 7.59 6.69 7.03 0.79 0.33 2.39

Strike price
6 8.24 7.33 7.79 0.79 0.46 1.73
10 7.59 6.29 6.75 0.79 0.46 1.73
14 7.10 5.41 5.86 0.79 0.45 1.77

Spot price (index)
2 7.59 6.29 6.75 0.79 0.46 1.73

6 7.59 6.29 6.75 0.79 0.46 1.73

10 7.59 6.29 6.75 0.79 0.46 1.73

Vesting period (stock)
0.5 7.59 6.48 6.75 0.79 0.27 2.95

1 7.59 6.29 6.75 0.79 0.46 1.73

1.5 7.59 6.10 6.75 0.79 0.65 1.22

Vesting period (option)
1 7.59 6.18 6.61 0.79 0.43 1.84

2 7.59 6.29 6.75 0.79 0.46 1.73

3 7.59 6.38 6.88 0.79 0.50 1.60

Initial endowment (option)
20 7.59 7.35 7.59 0.79 0.24 3.28

200 7.59 6.29 6.75 0.79 0.46 1.73

2000 7.59 2.85 4.35 0.79 1.51 0.53

Initial endowment (stock)
20 7.59 4.51 5.23 0.79 0.72 1.10
200 7.59 6.29 6.75 0.79 0.46 1.73
2000 7.59 7.25 7.59 0.79 0.35 2.29

Initial endowment (cash)
500 7.59 5.84 6.42 0.79 0.58 1.37

1000 7.59 6.29 6.75 0.79 0.46 1.73

10000 7.59 7.59 7.59 0.79 0.00 5320.38
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(a)	Price	sensitivity	w.r.t	spot	price	of	stock																					(b)	Price	sensitivity	w.r.t	correlation																			(c)	Price	sensitivity	w.r.t	drift	rate	of	stock	

	 					 			 	

(d)	Price	sensitivity	w.r.t	drift	rate	of	index																								(e)	Price	sensitivity	w.r.t	risk‐free	rate																							(f)	Price	sensitivity	w.r.t	maturity	

					 				 	

(g)	Price	sensitivity	w.r.t	stock	volatility																											(h)	Price	sensitivity	w.r.t	index	volatility																					(i)	Price	sensitivity	w.r.t	strike	price	
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(j)	Price	sensitivity	w.r.t	spot	index	price																								(k)	Price	sensitivity	w.r.t	stock	vesting																					(l)	Price	sensitivity	w.r.t	option	vesting	

	 				 						 	

(m)	Price	sensitivity	w.r.t	option	endowment														(n)	Price	sensitivity	w.r.t	stock	endowment													(o)	Price	sensitivity	w.r.t		cash	endowment	

						 				 	

	

	

	

Figure	2.	Price	sensitivity.	This	figure	displays	the	patterns	of	how	parameters’	changes	affect	ESO	price	changes	(i.e.,	Black‐Scholes,	subjective,	
and	objective	prices).	Each	curve	interpolates	three	parameter	values	specified	in	Tables	1	and	2,	low	level,	benchmark	level,	and	high	level.	
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					(a)	Stock	spot	price																																																																			(b)	Correlation																																																																				(c)	Stock	drift	rate	

						 						 	

(d)	Index	drift	rate																																																																			(e)	Risk‐free	rate																																																																(f)	Maturity				

							 					 	

					(g)	Stock	volatility																																																																					(h)	Index	volatility																																																															(i)	Strike	price	
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(j)	Index	spot	price																																																																(k)	Stock	vesting																																																														(l)	Option	vesting			

				 		 	

(m)	Option	endowment																																																							(n)	Stock	endowment																																																					(o)	Cash	endowment	

	 				 		 	

	

	

Figure	3.	Exercise	policies.	This	figure	displays	how	different	levels	(Benchmark,	High,	Low)	of	the	parameters	affect	the	average	exercise	policies	

throughout	the	option’s	life.	The	 	axis	represents	the	percentage	of	the	averaged	cumulative	numbers	of	exercised	options	over	10,000	Monte	Carlo	

sample	paths	out	of	 the	 initial	ESO	endowment.	The	 	axis	represents	running	time	in	years	with	maturity	of	15,	except	 for	 in	Figure	3(f),	where	

maturity	is	the	changing	parameter.	
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Appendix	A.	Proofs	of	Theorem	1	and	Theorem	2	

A.1.	Proof	of	Theorem	1	

The	 utility	 function	 :		 0,∞ → 	is	 strictly	 increasing,	 and	 strictly	 concave,	 of	 class	 	and	

satisfies,	 0 ≜ ↓ ∞, 		 ′ ∞ ≜ → 0.	

The	following	inequality	exists	due	to	the	concavity	of	the	utility	function:		

	 ℘ ℘ ℘ ℘ , ∀ 0 ℘ ∞.	 (A.1)

For	any	initial	outside	wealth	 ,	we	introduce	the	models,	

	 , 0 ≜
∈ , , , ,

, , 0 ∞	 (A.2)

	 , , 0 ≜
∈ , , , ,

, , 0 ∞	 (A.3)

	 , ̂ , ≜
∈ , , , ,

,
̂

, 0 ∞,	 (A.4)

where	 , , , , 	is	defined	in	Equation	 (5).	For	any	 0,	write	 ̂ ,	then	

, ̂ , ∗ ,	

where	 ∗ ≡ , ∗	 	and	 ∗	solves	 , , 0 .	 Here	 we	 abandon	 	shares	 of	 the	

option	in	exchange	for	 	dollars	in	cash.	

Let	the	initial	outside	wealth	be	 ̂ .	Then,	thanks	to	the	first	inequality	in	 (A.3),	we	have	

	
∗ ̂

∗ ̂
′ ∗

̂
̂

.	

(A.5)

Since	 	and	 ↦ ∗ 	is	non‐decreasing,	we	get	

, ̂ , ∗ ̂ ∗
̂
̂

.	

By	the	definition	of	 , , 0 ,	

, ̂ , , , 0
̂ ∗

̂
̂

.	

Also,	 ̂ , ̂ , ̂ , , 0 .	So,		

, ̂ , , , 0 ∗ ,	and	

̂ , ̂ , , ̂ , ̂ , , 0 , , 0 ∗ .  

So,	for	 ̂ ,	
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̂ , ̂ , , ̂ ,
̂

	

̂ , , 0 , , 0
̂ ̂ ̂ ∗

̂
̂

.	

In	general,	
→ → →

.	

Taking	the	 	of	both	sides,	it	follows	that	

↑

̂ , ̂ , , ̂ ,
̂ ↑

̂ , , 0 , , 0
̂

	

↑ ̂ ̂ ∗
̂
̂

.	

Now,	using	the	fact	that	 ̂ ,	we	write	this	as	

↓

̂ , ̂ , ̂ , ̂ ,
	

↓

̂ , , 0 , , 0

↓ ̂ ∗
̂
̂

.	

As	 ↓ 0 ,	 ∗ 	increases,	 and	 ′
∗ 	decreases.	 Thus,	 by	 the	

Monotone	Convergence	Theorem	

↓

̂ , ̂ , ̂ , ̂ ,
′ ̂ , , 0

1
̂ ∗ 	

	 ′ , , 0 ∗ .	

Now	we	consider	the	case,	 0,	or	equivalently,	 ̂ .	From	the	second	inequality	 in	  (A.3),	

we	have	

∗
̂
̂

	 ∗ ̂ ∗
̂
̂

.		

In	this	case,	 	and	since	 ↦ ∗ 	is	non‐decreasing,	we	get	

∗
̂
̂ ∗ ̂ ∗

̂
̂

.		

Taking	 expectations	 gives	 us	 the	 inequality	 in	  (A.5).	 Using	 the	 definitions	 of	 , ̂ , 	and	

, , 0 ,	and	dividing	by	 ̂ 0,	it	is	not	hard	to	see	that	

̂ , ̂ , , ̂ ,
̂

	

̂ , , 0 , , 0
̂ ̂ ̂ ∗

̂
̂

.	

Again,	in	general,	
→ → →

.	

Taking	the	 	of	both	sides,	it	follows	that	
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↓

̂ , ̂ , , ̂ ,
̂

	

↓

̂ , , 0 , , 0
̂ ̂ ̂ ∗

̂
̂

	

↓

̂ , , 0 , , 0
̂

	

↓ ̂ ̂ ∗
̂
̂

.	

Now,	using	the	fact	that	 ̂ ,	we	write	this	as	

↑

̂ , ̂ , ̂ , ̂ ,
	

↑

̂ , , 0 , , 0

↑ ̂ ∗
̂
̂

	

′ , , 0 ∗ .	

Hence,	

↓

̂ , ̂ , , ̂ ,
̂

	

′ , , 0
1
̂ ∗

↑

̂ , ̂ , , ̂ ,
̂

.	

If	 the	derivative	
, ,

	exists,	 then	the	 fair	subjective	price	of	 the	NTNH	ESO	is	set	to	be	the	

solution	of	the	equation,	
, ,

0.	

Intuitively,	this	means	that	the	executive	is	indifferent	between	holding	the	current	portfolio	or	

removing	a	small	amount	of	money,	 ,	out	of	the	portfolio	and	buying	more	options.	If	 	is	not	

differentiable,	then	the	fair	subjective	price	is	set	to	be	the	weak	solution	 (see	definition	7.2	in	

Karatzas	and	Kou	1996)	of	the	above	equation.	In	either	case,	the	inequalities	above	show	that	 ̂ 	

is	determined	by	

′ , , 0 ∗ 0.	

The	subjective	price	of	the	ESO	at	time	zero	is	

̂ , , 0 ≡ ̂ ∗

′ , , 0
∗

′ 0 , 0
.	

Thanks	to	the	Markov	property,	the	subjective	price	of	the	ESO	at	time	 	is	

̂ , ,
, ∗

|

′ ,
, ∀ 0.	

	

A.2.	Proof	of	Theorem	2	

Theorem	7.4	in	Karatzas	and	Kou	(1996)	requires	their	equation	(7.24),	which	is	based	on	the	

assumption	that		is	bounded	from	below.	Although	we	cannot	assume	that		is	bounded	from	
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below	in	this	paper,	it	is	a	sufficient	condition	rather	than	a	necessary	one.	This	assumption	is	

used	 to	 prove	 that	 the	 conditions	 ∀ ∈ 0,∞ , lim‖ ‖→ ; ∞ 	and	

∀ ∈ 0,∞ , lim ↓ ; ∞	hold.	 Hence,	 we	 directly	 make	 these	 less	 strict	 assumptions,	

given	in	equations	 (18)	and	 (19)	respectively,	so	that	the	results	in	Theorem	7.4	still	hold.		We	

can	then	prove	Theorem	2	directly:	

̂ , ,
| |

,				

where	 the	 second	 equality	 is	 obtained	 by	 abstract	 Bayes’	 theorem,	 and	 	 ∙ 	is	 under	 the	

corresponding	 martingale	 measure	 with	 respect	 to	 the	 auxiliary	 market	 .	 According	 to	

Theorem	 9.1	 of Cvitanić	 and	 Karatzas	 (1992), page	 780,	 there	 exists	 a	 portfolio	 process	

satisfying	the	constraints,	such	that	the	initial	 ̂ , , 	will	evolve	to	 	at	the	terminal	date.	

Since	 the	 firm	 will	 repay	 the	 executive	 when	 the	 European	 call	 option	 is	 exercised	 at	 its	

maturity,	and	the	NTNH	constraints	are	not	for	the	firm,	the	SDF	for	the	objective	price	of	the	

NTNH	 ESO	 is	 simply	 the	 market	 SDF	 .	 Again,	 thanks	 to	 abstract	 Bayes’	 theorem,	 the	

objective	price	of	the	NTNH	ESO	with	terminal	payoff	 	at	time	 	is	equal	to	the	market	price:		

| |
.	

	

Remark:	 The	 total	 initial	 wealth	 for	 the	 executive	 is	 	amount	 of	 cash	 and	 	shares	 of	

contingent	claims	remaining	 fixed	 in	 the	portfolio.	Those	 	shares	can	be	replicated	by	a	 sub‐

portfolio	of	underlying	assets.	The	outside	initial	wealth	 	can	be	invested	freely	as	long	as	there	

is	no	negative	position	 in	 the	 firm’s	stock.	The	combined	non‐transferable	and	non‐hedgeable	

constraint	is	that	the	number	of	shares	of	the	firm’s	stock	in	the	portfolio	has	to	be	no	less	than	

	shares.	 Thus,	 we	 have	 translated	 the	 problem	 into	 a	 traditional	 constrained	 portfolio	

optimization	 problem.	We	 can	 get	 the	 optimal	 portfolio	 strategy	 within	 the	 constraints	 and,	

correspondingly,	the	optimal	terminal	wealth	under	constraints.	It	is	natural	to	define	the	price	

for	the	optimal	terminal	wealth	 ∗ 	as	the	total	initial	wealth,	which	is	

0 , ∗
.	

From	Theorem	2,	

̂ , ,
|

.	

Then	the	subjective	price	of	outside	wealth	 , ∗
	will	be	 0 ̂ , , .	

Appendix	B.	Proofs	of	Theorem	3	and	Theorem	4	

B.1.	Proof	of	Theorem	3	

First,	we	prove	that	the	indirect	utility	 ∙, 	satisfies	
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	 , ℘ , ℘, , ℘ ℘, , ∀ 0 ℘ ∞.	 (B.1)

According	to	Theorem	7.3	in	Karatzas	and	Kou	(1996),	with	their	Assumption	6.2	being	relaxed	

by	our	Assumptions	 (18)	and	 (19)	from	Proposition	1,	and	assuming	that	the	constraint	set	 	is	

closed,	convex	and	satisfies	the	regularity	conditions,	then	for	any	 0,	there	exists	a	process	

≡ ∈ 	and	 a	 portfolio	 process	 ∗ ∈ , 0, , 0, 	for	 the	 constrained	 portfolio	

optimization	 problem	 of	 , 0 , ∈ , , , ,
, , 0 ∞ ,	 with	

corresponding	 terminal	 wealth	 , ∗
		 . .,	 where	 ≡ 	is	 the	

inverse	function	of	 ≜ | ,	and	 ∙ 	is	the	inverse	function	of	 ′ ∙ .	 ∗	

is	 optimal	 for	 the	 problem.	 The	 value	 function	 ∙, 	is	 continuously	 differentiable,	 and	 its	

derivative	can	be	represented	as	 , ≡ , 0, ∀ 0.	

Note	 that,	 according	 to	 Assumption	 7.2	 in	 Karatzas	 and	 Kou	 (1996),	 we	 have	

∀ ∈ , , , , ,	and	∀ ∈ ℘, , , , ,		
℘,

,

℘
,	which	implies	that	

, ∗

→

, ∗ , ∗

→

1 , ∗
, ∗

.	

Also,	the	concavity	of	the	utility	function,	 ∙ ,	gives	us	the	inequality,	

℘ ℘ ℘ ℘ ,			∀	0 ℘ ∞.	

Therefore,	

, ℘, , , , ℘, , ℘, ,	

from	which	we	can	see	that	

, ∗
℘

, ∗

, ∗ ℘, ∗
	

℘, ∗
℘

℘, ∗

℘

℘, ∗

.	

Note	that	

, ∗
, ∗ , ∗

, ∗
, ∗

→

, ∗ , ∗

, 	

since	 ∙ 	is	a	utility	function,	being	strictly	increasing	and	strictly	concave	of	class	 .	Also,	it	is	

not	hard	to	see	that	if	 0,	then	0
, ∗ , ∗ , ∗ , ∗

.	

Then,	by	the	monotone	convergence	theorem,	we	have,		

↓

, ∗ , ∗

↓

, ∗ , ∗

.	

If	 0 ,	 then 0
, ∗ , ∗ , ∗ , ∗

.	 Again	 by	 the	
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monotone	convergence	theorem,	we	have		

↑

, ∗ , ∗

↑

, ∗ , ∗

.	

Then,	

→

, ∗ , ∗

→

, ∗ , ∗

.	

Hence,	

, ∗
℘

, ∗

℘, ∗
	

, ∗
℘

℘, ∗

;	

that	is,	

, ℘ ′ , ℘, , ℘ ′ ℘, ,	∀	0 ℘ ∞.	

So	far,	we	have	proved	that	the	indirect	utility	function	of	the	portfolio	is	concave.	The	indirect	

utility	 function	of	 the	portfolio	 that	we	define	 for	pricing	 the	NTNH	ESOs	 is	 exactly	 the	 same	

except	 that	 the	 total	 initial	wealth	 includes	 two	parts,	 the	 net	 initial	wealth	 	and	 	shares	 of	

non‐transferable	ESOs	worth	 0 .	

In	our	model,	the	 	shares	of	the	NTNH	American	ESOs	are	included	in	the	total	wealth	portfolio,	

and	the	marginal	 	share	is	outside	of	the	executive’s	total	wealth;	they	are	assumed	shares	for	

finding	 the	 indifference	price.	Since	we	are	 interested	 in	 the	price	of	 the	ESO	within	 the	 total	

wealth,	we	let	the	exercise	time	of	the	extra	 	shares	be	the	same	as	the	former;	otherwise	it	is	a	

multi‐option	and	multi‐optimal	exercise	time	problem,	which	we	do	not	discuss	in	this	paper.	

We	define	

, ̂ , ≜
∈ ∈ , , , ,

,
̂

, 		

∈ ∈ , , , ,

,
, .	

Here,	 , 	represents	 the	 outside	 wealth,	 the	 wealth	 apart	 from	 the	 ESO,	 and	

,
	represents	 the	 total	 wealth	 that	 evolves	 from	 the	 initial	 total	 wealth	

0 0 .	The	stochastic	constraint	 , 	in	this	model	is	

,
, ∞ ∞,∞ ,	which	 is	a	 function	of	 	 .	 In	theory;	 there	 is	no	problem	

with	having	a	stochastic	constraint.	This	only	makes	the	drift	rate	and	the	risk‐free	rate,	 ,	
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stochastic	 in	 the	 auxiliary	 market.	 Moreover,	 please	 be	 aware	 that	 the	 constraint	 , 	in	

Karatzas	and	Kou	(1996)	is	not	a	function	of	 ,	while	it	is	a	function	of	 	in	this	case.	

Let		be	any	stopping	time.		As	noted	in	the	proof	of	Theorem	3,	the	following	inequality	exists,	

due	to	the	concavity	of	the	indirect	utility	function	M:	

	 , ℘ , ℘, , ℘ ℘, , ∀ 0 ℘ ∞.	 (B.2)

Define	

, ̂ , ≜
∈ ∈ , , , ,

,
, .	

We	next	define	

	
, , 0 ≜ ∈

∈ , , , ,

, , .	
(B.3)

Let	 ∗	and	 ∗	solve	equation	 (B.3)	and	fix	 0.	From	the	first	inequality	in	 (B.2),	we	have	

, ∗ ∗ ∗
̂

∗ ,
̂

∗ , ∗ ∗ ∗
̂

∗ , ∗ 	

, ∗ ∗ ∗ , ∗ .	

Because	 0	and	X	is	non‐decreasing,	we	get	

, ∗ ∗ ∗
̂

∗ , ∗ 	

, ∗ ∗ ∗ , ∗
̂

∗ , ∗ ∗ ∗
̂

∗ , ∗ .	

The	rest	of	the	proof	is	similar	to	the	proof	of	Theorem	1.	

The	 reason	we	 employ	 ∗	is	 that	we	made	 an	 assumption	 at	 the	 beginning,	 that	 the	marginal	

	shares	 	ESOs	will	have	 the	same	optimal	exercise	 time	as	 the	 	shares	of	non‐transferable	

constrained	contingent	claims	by	solving	 ∈
, ∗

, 	.	

Similar	to	the	proof	of	Theorem	1,	then,	we	have	

0, ̂ ,
, , 0

1
̂ ∈

′ , ∗
, 0.	

The	fair	price	is	 ̂ , , 0
, ∗ ∗ ∗ , ∗ ∗

, ,
.	By	Markov	property,	

̂ , ,
, ∗ ∗ ∗ , ∗ ∗ |

, ,
,			∀ 0.	

	

B.2.	Proof	of	Theorem	4	

Step1. Assume	that	for	any	stopping	time	 	and	for	any	 , ̀ ,	we	have	that	

, , ̀ ≜ ̀ , 0, ̀ , 0, 0, 	is	 finite	 for	

every	 ∈ 0,∞ .	Under	 this	 assumption,	 the	 function	 , , ̀ :		 0, ∞ → 0,∞ 	is	 continuous	and	

strictly	 decreasing,	with	 , , ̀ 0 ∞.	We	 let	 , , ̀ ∙ 	denote	 its	 inverse	 and	 introduce	 the	
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following	random	variables.	

For	brevity,	we	denote	 0 ,	and	we	define,	 , , ̀ ≜ , , ̀ ̀ , 0, .	

It	is	obvious	from	the	above	definition	that		

, , ̀ ̀ , 0, 0, ,		

which	 guarantees	 that	 the	 initial	 outside	wealth	 is	 	and	 the	 total	 initial	 wealth	 is	 	plus	 the	

Black‐Scholes	price	of	 	shares	of	NTNH	ESOs.	

Please	note	that	at	the	exercise	time,	the	constraints	are	relaxed	and	there	is	a	negative	

jump	with	respect	to	the	wealth	process.	Holding	 	shares	of	non‐transferable	contingent	claims	

is	equivalent	to	holding	the	replicating	portfolio.	After	being	exercised,	the	shares	become	cash	

with	the	amount	equal	to	the	intrinsic	value	of	the	contingent	claims	and	can	be	reinvested	into	

any	 primary	 assets	 under	 the	 constraint	 of	 no	 shorting	 selling	 of	 the	 firm’s	 stock.	 Then	 the	

NTNH	constraint	is	relaxed.	On	the	other	hand,	the	amount	of	cash	is	equal	to	the	intrinsic	value	

of	the	contingent	claim,	which	is	lower	than	the	market	price	of	the	replicating	portfolio	or	the	

Black‐Scholes	 price	 of	 the	 contingent	 claim.	 That	means	 exercising	 the	 contingent	 claim	will	

make	the	wealth	portfolio	lose	value	immediately.	Hence,	there	is	a	trade‐off	between	those	two.	

Finding	the	optimal	exercise	time	involves	balancing	the	benefit	and	 loss,	and	maximizing	the	

current	expected	indirect	utility	at	the	exercise	time.	(To	be	clear,	there	is	an	increase	in	what	

we	call	outside	wealth,	but	a	decrease	in	total	wealth.)	

If	the	intrinsic	value	is	equal	to	zero,	early	exercise	will	make	the	option	holder	worse	

off	 by	 losing	 time	 value	 in	 exchange	 for	 zero	 dollars	 of	 intrinsic	 value.	 Note	 that	 a	 non‐zero	

intrinsic	value	could	be	reinvested	without	the	non‐transferability	constraint.	

	 In	the	auxiliary	market,	 , , ̀ ,	the	dynamic	of	the	total	wealth	process	is	

	
, , ̀ , , ̀ , , ̀ ̀ ̀

∗ ̀ 1

1 , , ̀ , , ̀ 1 ,			
(B.4)

where	 ̀ , ∈ ,	 for	 ⨂ . . , ∈ 0, ,	 and	 , ∈ ,	 for	 ⨂ . . , ∈

, .	Also,	 	represents	 the	 Effros	 Measure	 of	 	on	 the	 random	 closed	 set,	 e.g.	 0, 	and	

, 	instead	of	the	Lebesgue	measure	(See	Molchanov	(2005)	page	25,	Definition	2.1).	For	any	

,	 the	 adjustment	 of	 the	 drift	 rate	 , 	and	 , 	are	 the	 optimal	 , 	and	 ̀ , ,	

respectively,	to	obtain	the	following	infimum	for	a	given	stopping	time	 :	

, ̀∈
; , ̀ ≜ ̀ , 0, 0, ,	

where	 	is	determined	by	 , 	of	 (27).		

Step2.	We	prove	the	following	lemma.	(Cf.	Proposition	8.3	of	Cvitanić	and	Karatzas	(1992).)	

Lemma	B.1.	For	 , ∈ , 	and	 , ∈ , ,	suppose	
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	 0,	 (B.5)

	 0.	 (B.6)

Then,	 where	 ∙ 	and	 ∙ 	are	 the	 wealth	 dynamics	 in	 the	 auxiliary	 markets	 	and	 ,	

respectively,	 ∈ , 0, , 0, ˗ 	and	 ∈ ˖ , ˖, , ˖, ,	 the	 optimal	 portfolio	

processes	 for	 the	 constrained	 optimization	 problems	  (29)	 and	  (30)	 in	 the	 original	 market,	

satisfy	 for	 any	 given  , ̀ ∈ , 

, , , , ̀ ≜ ∈ ∈ , ,
, , 	,		 	where	

̀ , ≜
̀∈ ̀ , , ̀

, ̀ | .			

Proof.	For	simplicity,	we	define	 , , ̀ ≜ 1 ̀1 	and	 , , ̀ ≜ 1 ̀1 .	

By	replacing	 ,	 ̀ 	with	 	and	 ,	respectively,	in	 (B.4),	we	have	

, , , , 	

, , 1 1 		

	 , , , , 1 ,			

, , 0 ,	 , , , , ,	

where , , ≜ , , , 0, , and , ,  is the inverse function of 

, , , 0, , 0, 0, .	

In	different	markets,	original	or	auxiliary,	the	drift	rate	is	different.	The	risk‐free	rate	is	different	

as	well.	Although	the	Black‐Scholes	price	 	at	any	time	 	is	independent	of	the	drift	rate	at	

time	 ,	it	is	a	function	of	the	risk‐free	rate	at	time	 	and	the	spot	price	at	time	 .	Standing	at	any	

time	before	 ,	the	spot	price	at	time	t	is	a	function	of	the	drift	rate	of	the	underlying	asset.	Hence,	

it	 is	 necessary	 for	 us	 to	 specify	 in	which	market	 the	Black‐Scholes	 price	will	 be	 taken	 in	 the	

above	pricing	model.	And	 	in	this	research	is	the	Black‐Scholes	price	in	the	original	market.	

When	  (B.5)	 and	  (B.6)	 are	 satisfied,	 the	 wealth	 dynamic	 in	 the	 auxiliary	 market	 , , 	is	 as	

follows:	

, , , , , , , , 1 ,	

		 0 .	

Compare	it	with	the	wealth	dynamic	in	the	original	market,	

	 	 	 1 ,				 0 .	

It	 is	 obvious	 that		 , , 	is	 also	 a	 wealth	 process	 corresponding	 to	 , , 	in	 the	 original	

market	 .	Furthermore,	from	this	and	 , 	and	 , ∈ , of	 (27),	we	conclude	that	

∈ , 0, , 0, ˗ ,	 ∈ , , ˖ , ˖, , ˖, ,	 and	 , , , ,
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, , 0 , where	 , , 0 is	 defined	 in	 equation	  (B.3).	 By	 the	 fact	 that	

1 1 0,	for	any	given	stopping	

time	 	and	for	any	given	 , ̀ ,	 , , ̀ 0,	∀0 .	Hence,	we	have	

	 , , ̀ , , 	 (B.7)

	 , , ̀ 	 (B.8)

Then,	∀ , ̀ ∈ ,	 from	  (B.7),	 we	 have	 , 0, , 0, ˗ ⊂ , 0, ˗ ,	and	 from	  (B.8),	 we	

have	 ˖, ˖, , ˖, ⊂ ̀ , , ̀ ˖ , ˖, 	and,	 further,	 , , 0 , , ̀ .	 Because	

, , 	is	 a	 special	 case	 of	 , , ̀ ,	it	 is	 trivial	 that	 , , 0 , , .	 Hence,	 we	 get	

, , 0 , , ,	which	indicates	that	the	optimal	unconstrained	portfolio	process	 , , 		

in	 the	 auxiliary	 market	 , , ,	is	 the	 optimal	 constrained	 portfolio	 process	 in	 the	 original	

market,	 .	

Let	 , , ̀
, , , 	be	 the	 wealth	 process	 with	 initial	 wealth	 ,	 portfolio	 process	 , , 	in	 market	

, , ̀ .	 We	 have	 , , ̀
, , ,

, , 0, ∀	0 .	 Thus,	 ∈ , 0, ˗ 	before	 ,	 and	

∈ ̀ , , ̀ ˖ , ˖, 	after	 ,	which	indicates,	 , , , , ̀ .		

Step	3.	The	proof	of	the	theorem	is	based	on	the	following	logic.	Assume	we	are	able	to	solve	the	

corresponding	 optimal	 portfolio	 process	 , , ̀ 	for	 any	 auxiliary	market	 , , ̀ .	 If	 the	 auxiliary	

market	is	not	arbitrarily	chosen,	but	satisfies	the	condition	

1 1 0,	

then	 the	 optimal	 portfolio	 process	 for	 the	 unconstrained	 auxiliary	 market	 is	 the	 optimal	

constrained	original	market.	But,	do	we	know	how	to	solve	the	optimal	portfolio	process	in	an	

unconstrained	 auxiliary	 market	 , , ?	 Because	 in	 this	 case,	 there	 is	 a	 negative	 jump	 at	 the	

optimal	exercise	time,	the	problem	is	not	exactly	the	same	as	the	one	in	Cvitanić	and	Karatzas	

(1992).	

To	answer	that	question,	we	need	to	make	sure	 , , 		is	well	defined	first,	namely	

, , ∞.	According	to	the	useful	inequality	 ,	we	have,	

, , 1 , , , 0, , , 1 ,	

, , 1 , , , 0, , , 1 ,	

, , , 0 1 , , , 0, , , 1 , 0 .	

If	 , , 0,	then,	 , , 0 | 1 | , , , 0, .	

If	 , , 0,	then,	

, , , , 1 , , , 0, , , , 0, , , 	
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		 | 1 | , , , 0, .	

Hence	 we	 have	 , , | 1 | , , , 0, ∞,	 where	 the	 last	

inequality	is	proved	as	follows.	First,	note	that	 , , 	is	a	monotonically	continuous	function	

and,	hence,	∀ 0	belongs	to	a	closed	interval,	 , , 	and	is	bounded.	Also,	

, 0,

1
2
‖ ‖

1
2

1
2
‖ ‖

1
2
‖ ‖ .	

In	 this	 case,	 for	 ,	 , , ∞ ∞,∞ ,	 and	

	on	 0,∞ 0 ;	 for	 , 	 , 0,∞

∞,∞ ,	and	 0,	on	 0,∞ 0 .	Then,	

, 0,

‖ ‖ ‖

‖ ,	

where	 	is	the	first	element	of	the	vector	 .	Now,	

1
2
‖ ‖ 	

1
2

∗ ∗ ⋯

∗ 	

1
2

⋯ 2 ∗ ∗ ∗ 2 ∗

∗ ∗ ⋯ 2 ∗ ∗ ∗ ∗

∗ ⋯ ∗ ,	

,	
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where	

≡ ⋯ 0,		

≡ θ s σ s ⋯ ,		

⋯ .	

Hence,	 ‖ ‖ 	is	 bounded	 from	 below	 by	

≡ 4 4⁄ ,	 which	 is	 a	 random	 variable.	 Let	 us	 write	 ≡

⋯ ,	and	note	that	 	is	deterministic.	

Since	0 ,	we	have	

2 	

					 2 , .	

Denote	 2 , 	as	 ,	 hence,	 ‖ ‖ 	is	

bounded	from	below	by	 ,	a	deterministic	variable.	Similarly,	 ‖ ‖ 	is	a	

bounded	from	below	by	a	deterministic	variable,	 ≡ 4 4⁄ .	Then,	

, 0, ‖ ‖

‖ ‖ ∗ ∗ ∞.	

Now,	 consider	 any	 arbitrary	 portfolio	 process,	 ∈ , 0, ˗ 	for	 ∈ 0, and		 ∈

̀ ˖, ˖, 	for		 ∈ , .	Then,		

, , ̀
,

, , ̀ ̀ , 0, , , ̀
, ,		

almost	surely;	therefore,	

, , ̀
,

, , ̀ ̀ , 0, ̀
, 	

,
, , ̀

̀ , 0, ̀
, 0,

0, 	

,
, , ̀ ̀ , 0, , 0, 	

, .	

We	can	see	that	the	above	proof	depends	on	the	equality	

̀ ̀ , 0, 0, ,	which	follows	from	the	definition	of	 ̀ ,	

and	 the	 inequality	 ̀ , 0, , 0, ,	in	 addition	 to	
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the	 convexity	 of	 the	 direct	 and	 indirect	 utilities.	 Because	 in	 the	 auxiliary	 market	 , , ̀ ,,	 the	

dynamic	of	the	wealth	process	is	

, , ̀ , , ̀

, , ̀ ̀ ̀
∗ ̀ 1 ∗ 1

, , ̀ , , ̀
∗ 1 .			

Without	 negative	 jumps,	 ,	 it	 is	 well‐known	 that	 ̀ , 0, , 	is	 a	

super‐martingale,	hence	by	adding	the	negative	jump,	again	it	becomes	a	super‐martingale.	

Step	4.	So	far,	we	have	studied	for	an	arbitrary	exercise	time	 	how	to	find	the	optimal	portfolio	

process.	The	next	question	is	how	to	determine	the	optimal	exercise	time	 ∗.	

Thanks	to	optimal	stopping	time	theory,	we	obtain		
∗ :		 , , .	

Step	5.	In	the	final	step,	we	prove	the	equivalent	martingale‐based	expression	of	the	subjective	

a	NTNH	ESO	price.	We	know	that	

, , ≜ , 0, , 0, 0, 	

is	 finite,	 for	 every	 ∈ 0,∞ .	Under	 this	 assumption,	 the	 function	 , , :		 0,∞ → 0,∞ 	is	

continuous	 and	 strictly	 decreasing,	 with	 , , 0 ∞	and	 , , ∞ 0.	 We	 let	 , , ∙ 	

denote	its	inverse	and	introduce	the	random	variables	

, , ≜ , , , 0, ,	

′ , , ≜ ′ , , , 0, , , , 0, .	

We	also	know	that	 , , ≜ ∗
∗ , ,	where	 ∗ 	

denotes	 , ,

, , ,
∗

,	and	 ′ , , ′ ∗
∗ , .	

We	have	 , , , 0, ∗ , ,	

0,
∗

, ,

, ∗
,

, , 0
,	

since	 the	payoff	 is	 the	 sum	of	 the	NTNH	American	ESOs	and	outside	wealth.	The	price	of	 the	

NTNH	 American	 Contingent	 Claim	 is	 defined	 as	 its	 expectation	 of	 the	 payoff	 at	 the	 optimal	

exercise	time,	discounted	by	the	SDF.	Hence,	 ̂ , , 0 ∗ ∗ ∗ ∗ .	

Due	to	the	Markov	property	of	stock	price,	we	have	

̂ , ,
∗ ∗ | ∗ ∗ |

.	
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Appendix	C.	Proof	of	Proposition	2	

The	 primitive	 objects	 of	 a	 stochastic	 control	 problem	 are	 the	 set	 ⊂ 	of	 states	

≜ , , ,	 where	 	is	 the	 total	 wealth	 process,	 	is	 the	 accumulated	

number	of	ESO	shares	that	have	been	exercised,	and	 	is	the	stock’s	price.	

In	the	Merton	Model,	the	total	wealth	is	the	only	state	variable.	The	reason	the	primary	

assets’	 price	 vector	 	is	 not	 a	 state	 variable	 is	 that	 the	 terminal	 wealth	 is	 sufficient	 to	

determine	 the	utility,	and	 terminal	wealth	 is	 linear	 in	 .	Also,	 the	control	variable	portfolio	

process	does	not	affect	the	stock	price	of	the	next	period.	

In	our	partial	exercise	model,	as	the	stock	price	affects	whether	the	option	holder	will	

exercise	the	option	at	any	particular	time	in	the	post‐vesting	period	before	the	expiration	date,	

the	stock	price	is	necessarily	be	included	in	the	state	variable	set.	In	the	case	that	the	NTNH	ESO	

is	European,	the	stock	price	is	still	a	necessary	state	variable	because	it	determines	whether	the	

investor	will	exercise	the	option	at	the	maturity.	Additionally,	the	exercise	payoff	will	determine	

the	terminal	wealth	at	the	same	time.	

The	 state	 variable	 set	 also	 includes	 the	 cumulative	 number	 of	 shares	 of	 exercised	

options	 .	On	one	hand,	 	is	the	maximum	of	number	of	shares	that	can	be	exercised,	

which	 determines	 the	 opportunity	 set	 of	 the	 control	 variable	 .	 On	 the	 other	 hand,	 the	

control	variable	 	determines	the	cumulative	number	of	shares	of	exercised	options.		

The	dynamics	of	the	system	are	as	follows:	

	

1

,			

0 ≜ 0 ,	

(C.1)

	 ,		 			 0 0,	 (C.2)

	 , 0 .	 (C.3)

The	unique	solution	is	taken	as	 ∗, ,	where	 ∗ 	is	the	optimal	portfolio	process	given	the	

constraint,	 and	 the	 drift	 adjustment	 	with	 respect	 to	 the	 auxiliary	 market	 	associated	

with	the	constraint	 , 	in	 (34)	is	 .	

Let	us	summarize	some	terminology	and	notation.	

 The	constraint	on	the	state	variable	 , , :	

˖ ∈ ˖ 0,∞ , , , 0,∞ ,	∀ ∈ 0, .	

 The	Control	variable		 :	the	exercise	rate	at	any	time	depends	on	the	current	stock	price;	

hence,	it	is	a	function	of	the	sample	path,	namely	a	random	variable.	Sometimes	we	denote	it	
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as	 , .	

 The	set	of	feasible	controls:	 ≜ , | , : 0, → , , 	 	 ‐	

	 ,	∀	0 , 	 ; 	 , .	

 A	running	reward	function:	 ≡ 0.	

 A	terminal	reward	function	 :	 ⟶ .	(In	our	case,	 ).	

 The	cost	functional	measuring	the	performance	of	the	control:	

, , ∗, ,	where	 ∗, ≡ , ∗, .	

 The	exercise	rate	 ∙ 	is	called	an	admissible	control,	and	 ∙ , ∙ 	is	called	an	admissible	

pair,	if	 ∙ ∈ ,	 ∙ 	are	the	unique	solutions	of	equations	 (C.1)	to	 (C.3)	under	 ∙ ,	and	the	

state	constraint	is	satisfied.	

 The	set	of	admissible	controls	is	denoted	as	 0, .	

 The	function	 → , , 	is	in	 0, .	(In	our	case,	 ≡ 0.)	

 A	 controlled	 drift	 function	 :	 ⟶ .	 In	 our	 case,	 , ∗,

∑ ∗, , , .	

 A	controlled	diffusion	function	 :		 ⟶ :	

, ∗, , 0, .	

We	assume	that	the	primitives	 , , 0, , , , , 	 	are	as	above.	Then,	given	any	

initial	state	 ∈ ,		the	utility	of	any	admissible	control	 	is	well	defined	as		
∗, .	 The	 indirect	 utility	 at	 time	 0	at	 initial	 state	 	is	 then	

, 0 ∈ ,
∗, .	We	 postulate	 that	 , 0 	is	 in	 , , 0, .	 According	 to	

dynamic	programming	principle,		

, 0 ∗, 0 , 0 , 0 , 0 ∈ , , .	

By	Taylor’s	theorem,	we	have	

, , 0
∈ ,

, , , 	

, , , ∙ .		

Hence	we	obtain	the	Bellman	equation	

0
∗, , , , ∗, , , ,

∗,
∗,

∗, , , ,
		

∗, , , , ∗, , , ,
∗,

∗, ∗,

∗, , , ,
∗,

∗,
∗, , , ,
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∗, , , , ∗, , , ,
∗,

∗,

∗, , , ,
.		

We	know	that	

＝ ,			 ＝ ∈ ,			 ∗, ∈ 	

∈ ,	 	

∗, ∗,

∑ ∗, ∑ ∑ ∗, ∑

∑ ∑ ∑ ∑ ∗, ∗, 		

∗, ∑ ∗, ∑

∗, ∑ .		

Taking	expectations	on	both	sides	and	dividing	both	sides	by	 ,	we	get	

0 ∈ ,

∗, , , , ∗, , , ,
∗,

∗,

∑ ∗,

∗, , , , ∗, , , ,

∗, , , ,
∗,

∗,

∗, , , , ∗, , , ,
∗,

∗, ∑ 			

This	is	the	Hamilton‐Jacobi‐Bellman	equation.	We	take	the	derivative	with	respect	to	the	control	

variable	 	and	set	it	equal	to	zero.	Then	we	obtain	the	FOC,	which	implies	the	optimal	 :	

∗, , , ,
∗,

∗, , , ,
0	

	

Appendix	D.	Proof	of	Lemma	1.	

Suppose	 	 ∙ ∙ 	and	 , , ∞ ∞,∞ ,	 where	 , ω 0,	 	 so	 that	

	on	 	 0,∞ 0 , 	and	 ≜ , 	where	

≜ ,… , ,	 and	 	is	 the	 initial	 wealth	 at	 time	 0.	 Then	∀ ∈

0,∞ ;	note	that	

	 ; ; 1 	

1
1

1
1 1

	

1 ‖ ‖ .	
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To	 prove	 that	 lim
‖ ‖→

; ∞,	 we	 need	 only	 to	 prove	 that	 lim
‖ ‖→

‖ ‖ ∞.	

We	have	∀ ∈ 0,∞ ,	

lim‖ ‖→ ‖ ‖ lim‖ ‖→ ‖

‖ ∞.		

On	 the	 other	 hand,	 for	 any	 fixed	 ∈ , ‖ ‖ 	is	 a	

constant	(i.e.,	independent	of	y)	denoted	as	 ;	and	so	

lim ↓ ; lim ↓ 1 ∞.	
	

Appendix	E.	Proof	of	Proposition	3	

Without	 loss	 of	 generality,	 we	 assume	 that	 the	 current	 time	 is	 0.	 The	 total	 initial	

wealth	 is	 0 .	 If	we	define	the	 initial	marginal	utility	with	respect	 to	 total	 initial	wealth	as	 ,	

then	we	have	 .	

Under	the	log	utility	assumption,	we	have	 .	Now	we	have	simplified	the	

left‐hand	side	of	 the	FOC,	and	next	we	work	on	the	right‐hand	side.	The	relationship	between	

total	initial	wealth	and	total	initial	marginal	utility	implies	

∗, , , , ,	that	is,	

∗, , , , 	 	.	

Substituting	the	above	results	into	the	FOC,	we	obtain	the	following	simplified	FOC:	

1
2

0.	

We	rewrite	it	more	explicitly	by	differentiating	between	the	pre‐exercise	total	wealth	at	

time	 	and	 the	 after‐exercise	 total	 wealth	 at	 time	 .	 By	 considering	 the	 vesting	 period	 of	 the	

stock	and	option,	respectively,	then	we	have	

1 1
2

0,	

where	 _ _ ,	and	 	is	after	the	end	of	the	vesting	period	
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for	the	ESOs	.	Also,	 ≡ 0,	before	the	end	of	the	vesting	period	for	the	ESOs.	
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