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A Unified Model: Arbitrage-free Term Structure Movements of Flow Risks 

 

 

 

Abstract 

 

This paper first dichotomizes risk drivers into “stock” or “flow” attributes. Stock risk drivers 

are prices of tradable securities and flow risk drivers are rates represented by the stochastic 

movements of a term structure of securities. This paper then shows that the Black Scholes 

model is the relative valuation model for the stock risk drivers while the proposed unified model 

is for the flow risk drivers.   

The unified model can be described in the Ho-Lee model framework. We apply this model to 

five different flow risk drivers: interest rate, credit risk, liquidity risk, energy risk, and inflation 

risk.  We then show that the unified model provides an analytical framework for securities that 

are subjected to several of these flow risk drivers, offering many applications. 

For example, the 2008 financial crisis clearly shows the importance of the use of a unified 

model in enterprise risk management. The crisis demonstrates that risk management should not 

take a silo approach to manage each flow risk driver, such as interest rate risk and credit risk. 

We propose an integrated approach to manage risks using the unified model. 
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I. Introduction 

 

Economic quantities are classified by stocks and flows. The former are values at a point in 

time and the latter are quantities measured per unit time. This classification of economic 

quantities is widely used in accounting and econometric models, where balance sheet items and 

capital are considered stocks and income statement items and transactions are flows. The concept 

of stocks and flows is also applicable to the understanding of risks in the financial markets, 

where risk drivers can also be dichotomized into stocks and flows.  

Stock risk drivers are exemplified by equities, commodities and the firm values. They are the 

underlying risk drivers to many financial instruments, such as equity options and commodity 

futures. At any time, stock risk drivers have observable values that follow some stochastic 

processes which affect the values of their contingent claims. Flow risk drivers such as the interest 

rates and inflation rates also have their stochastic movements. However, their value is measured 

per unit of time. And therefore their contingent claims are generally affected by the accumulated 

flow risks over a time period. Therefore, a flow risk driver must be related to a term structure of 

risks, such as the term structure of interest rates, and the stochastic movements of the term 

structure, and not just the stochastic movements of the rate, are important to the understanding of 

flow risks.   

The Black-Scholes model (1973) is a relative valuation model that values contingent claims on 

stock risk drivers. It assumes that in a perfect capital market the stochastic movements of a 

derivative and its underlying security are instantaneously, perfectly correlated. This characteristic 

of a derivative enables the market participants to form dynamic hedging strategies to construct a 

risk free portfolio of derivatives and their underlying securities and that in turn leads to the risk 

neutral valuation of the derivative relative to the observed underlying security price. Furthermore, 

the model suggests that benchmark derivative prices can be used to determine the implied 

volatility of the underlying security returns, and the implied volatility can be used to price other 

derivatives based on the same underlying securities.  That is, the relative valuation model can be 

defined by the underlying security and a set of benchmark contingent claims or options on the 

security. This fundamental insight has been elaborated in the continuous time model context (See 

Harrison and Krepp, 1979). 

The Ho-Lee model (1986) is also a relative valuation model based on the Black-Scholes 

paradigm. It is a valuation model of contingent claims on flow risk drivers, as opposed to the 

stock risk drivers.  The model specifies arbitrage-free movements of flow risk drivers to value a 

broad range of financial instruments. The term “arbitrage-free” is defined as the absence of an 

arbitrage opportunity among the contingent claims and the observed term structure of securities. 

This definition is consistent with that of the Ho-Lee model paradigm. Dynamic hedging between 
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the term structure of risks and its derivatives is used to derive the risk neutral valuation of the 

derivatives, and the benchmark derivatives with embedded options are used to determine the 

implied volatilities of the term structure movements. Details of these concepts are described in a 

continuous time model context and can be found in Rebonato (1998). 

The model has generated extensive research in alternative specifications of term structure 

movements of interest rates and applications in capital markets. The purpose of this paper is to 

present the Ho-Lee model as a unified model, in the sense that, (1) it is a contingent claim 

valuation model on flow risk drivers, not just a model confined to interest rates, and, (2) it is a 

model that combines multiple risk drivers to determine the contingent claims value, not just an 

analysis of contingent claims on a particular risk driver, isolated from other risk drivers.  

The unified model is an important contribution to financial research because the valuation 

framework is applicable to financial instruments that are prevalent in the capital markets; they 

can be found in trading positions, investment portfolios, balance sheets of financial institutions, 

energy sectors, inflation-linked financial products in pension plans and other financial sectors.  

The unified model is also important in providing a framework to value and hence to analyze 

financial instruments with multiple sources of risks, a topic particularly important in enterprise 

risk management where risk managers have the daunting task of rolling up market risks, credit 

risks, and liquidity risks into a coherent framework.  

The financial crisis of 2008 clearly shows the importance of the applications of a unified 

model. First, the risks of securities such as asset-backed securities and collateralized bond 

obligations and the credit derivative swaps of super senior CDO tranches are option embedded 

contingent claims on credit and market risks. Much research has been devoted to analyzing 

interest rate options embedded in financial instruments. However, much less research has been 

applied to valuing credit options and liquidity options, and scant attention has been paid to the 

combined effects of these three major risk factors on financial instruments. For example, the 

observed increased default rate, lack of liquidity in the mortgage loan and mortgage-backed 

securities markets, slowing of refinancing of mortgages are not isolated events, but are 

consequences of the combined effect of credit, interest rate and liquidity risks on the mortgage 

value and on the financial markets. Standard approaches in analyzing these securities would 

significantly measure the risks erroneously resulting in significant losses in the complex 

securities.  

Second, risks of enterprises should not be analyzed in isolation. Basel II has advocated that 

risks should be analyzed by separate departments. When risks are managed in silos, enterprise 

risk management, regulatory monitoring and supervision processes would fail to provide a 

coherent framework to manage the risks in the financial system. Financial institutions fail to 

manage the combined effect of the flow risks in the financial crisis. Third, the economic capital 
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of a financial institution should be recognized as a contingent claim of market, credit and 

liquidity risk and it has significant embedded option on these risk drivers.  It cannot be measured 

simply as the asset value net of the liability value as it is commonly reported. The option 

embedded in the economic capital may lead to unanticipated consequences in “deleveraging” of 

a balance sheet. This paper will relate the unified model to these issues, which were significant 

causes of the financial crisis. 

The paper proceeds as follows. In section B we identify the differences between a stock risk 

driver and a flow risk driver.  As well, we present the Ho-Lee model (1986) as a unified model. 

Section C provides five examples of contingent claims on flows risk drivers. Section D describes 

the unified model in valuing contingent claims on multiple flow risk drivers, where the term 

structure of the risk drivers has multiple movements. The section also describes the modeling of 

these movements. Section E describes the implications of the unified model in enterprise risk 

management. Finally, Section F contains the conclusion. 

 

II. The Black Scholes Model and the Ho Lee Model 

 

In this section, we use a binomial lattice model to illustrate the Black Scholes model in a way 

comparable to the Ho-Lee model. Let ( , )s n i and ( , )C n i  be the underlying security and the call 

option respectively at time n and state i . Let the option time to expiration and strike be T  and X  

respectively.  Let ( )S n  be the forward price of the security, where 

( ) nrS n Se                                                                      (S1) 

The stochastic price of ( , )s n i  is defined by equation (S1) with the binomial probability of 0.5 

and with a given risk free rate r: 

( , ) ( )(2 /(1 ))n is n i S n                                                            (S2) 

Then, the Black Scholes model can be expressed as a set of recursive equations 

( 1, ) 0.5 ( ( , 1) ( , )) for 0, , 1rC n i e C n i C n i i n                                     (S3) 

with the terminal condition for a call option, as an illustration 

( , ) max( ( , ) ,0) for 0,  1,  2, ,C T i S T i X i T                                       (S4) 

The value of the call option is (0,0)C C . The binomial movement of the security S  ensures 

that the option price is the observed stock price ,S  when the strike price is zero, satisfying the 

arbitrage-free condition. δ determines the local volatility of the underlying security. When C  is 

observable in the market, then the option price can be used to determine δ, and thus specifying 

the implied volatility of the underlying security, which in turn can be used to value other 

derivatives of S. The underlying security S is a stock risk driver. 
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  determines the volatility of the stock σ .  Indeed, we have [ 2 ]Exp
n


   , where n is the 

number of steps in one year. This can be proved as follows. The stock price at time n and state i 

is 
2

( )
1

nr n iSe 


. The logarithm of the stock return is 

2
( )

21[ ]   
1

nr n iSe

Log nr n Log i Log
S


 



   


and 

the variance is 2 21 1
(log ) (1 )

2 2
n    . 

Proposition 1. The binomial model defined by S(1)-S(4) converges to the continuous time 

Black Scholes model. 

Proof: 

First we show that the binomial distribution approaches the lognormal distribution as n .
1
  

We know that 

0

log( )TS
Z

S
    , where Z is a standard normal distribution.                           (C1) 

From (S2),  

                  
0

2
log( )  log( ) log( )

1

T

n

S
r n j

S
 


  


                                                      (C2)  

From the DeMoivre-Laplace theorem,  lim Prob ( ) ( )
(1 )n

j nq
a b N b N a

nq q

 
    

  

 

Since q is 0.5, ( / 2) / 2j n Z n  where the notation   means converge in distribution.  

Substituting into (p2) gives  
0

2
log( )  log( ) (( / 2) / 2) log( )

1

T

n

S
r n n Z n

S
 


   


 

Let 
2

 log( ) / 2 log( )
1

r n n  


   


and / 2 log( )n     

then  

                                                           

1 We assume that  is 1 for simplicity.  
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0

2( ) ( ) lim Prob lim Prob
(1 ) / 4

2 2
 log( )  log( ) log( ) log( ) / 2

1 1lim Prob
log( ) / 4

 log( ) -

lim Prob

n n

n

T
n

n

n
j

j nq
N b N a a b a b

nq q n

r n r n j n

a b
n

S

S
a b

   
 





 

 





 
   

         
    

 

 
          

 
 

 
 
   
 

 



 

Therefore, ( )T nS  converges in distribution to
TS . 

Second, what we have to show is that    

[ [0, ( ) ]] [ [ ]]  r r

T n Tc e E Max S K e E Max S k as n           

If the binomial probability distribution converges to the lognormal, then its moments must 

also converge to the moments of the lognormal.  

Therefore,   

1 1

0

1 2
0, ( ) ( )

2 1

n nn
r r j r

j

n
c e Max Se K SN d Ke N d

j

    


 



     
         

       
  as .n   

Proposition 2. The stochastic price ( , )S n i satisfies the no-arbitrage condition. That is: the risk 

neutral present value of the expected value of ( , )S n i is the observed price S and the following 

relationship holds ( , ) 0.5 ( ( 1, 1) ( 1, ))rs n i e s n i s n i      

Proof: 

The expected value of the stock at period n is 
0

2 ! 1
( )
1 ( )! ! 2

n
rn n i rn

n
i

n
Se Se

n i i





 

 . Therefore, the 

discounted value of rnSe as of time 0 is S .  

Substituting 1 1( 1)(2 /(1 ))n iS n      ( 1( 1)(2 /(1 ))n iS n    ) into ( 1, 1)S n i  ( ( 1, ))S n i and simplifying, 

we can show that the arbitrage-free condition ( , ) 0.5 ( ( 1, 1) ( 1, ))rs n i e s n i s n i     holds.
2
 QED 

The Ho-Lee model (1986) extends the Black Scholes derivative valuation model in the perfect 

capital market context to value contingent claims on a term structure of flow risk drivers.  A risk 

                                                           

2 It is known that the discrete CRR model converges to the continuous BS model as the number of 

partitions grows. By the same token, equations (S1-S4) also converge to the continuous BS model at the 

same speed.  
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factor ( , )u n i is a flow risk driver that follows a stochastic process. The concept of “flow”, where a 

per unit time construct is necessary in describing ( , ).u n i  The symbol “u” is used to denote the 

unified model that applies a broad range of flow risk drivers. A rate index ( , )n i  is defined as the 

proportional change of a stochastic quantity over a binomial period, and it is related to the flow 

risk driver by: 

( , ) exp( ( , ))u n i n i                                                          (u1a) 

A binomial lattice with time n  and state i represents the stochastic movements of the risk 

factor ( , )u n i  or the rate ( , )n i . At the initial time (n=0), the market can form the forward factor 

per unit time period ( , )u n i or the forward rate per unit time period ( )n  where the time to the 

delivery date is n. As time passes, a path in the binomial lattice is used to represent the 

realization of events. The forward factor or rate would converge to the realized risk factor and 

the rate at time n. The forward risk factor and the rate are also related by: 

( ) exp( ( ))U n n                                                              (u1b) 

The term structure of a flow risk driver is defined as a term structure of marketable forward 

contracts on the flow risk driver. Initially, at time 0, the forward values are ( )u n  for 1,2, , .n T  

Then, the Ho-Lee model shows that the stochastic movement of the flow risk driver is given by: 

( , ) ( )(2 /(1 ))n iu n i U n                                                        (u2) 

The contingent claim on the flow risk driver is given by: 

( 1, ) 0.5 ( , )( ( , 1) ( , ))  0, , 1C n i u n i C n i C n i for i n                              (u3) 

with the terminal condition for a call option, as an illustration,  

( , ) max( ( , ) ,0)  0,1,2, ,C T i u T i X for i T                                       (u4) 

Analogous to the Black-Scholes model, when the strike price X is zero and time to expiration is 

T, in applying the recursive equations, we can retrieve the option value which equals 0

( )

T

i

U i

e 


, the 

forward price.
3
   

Lemma: Let the forward rate per unit time period be given by ( )n  for the time to delivery, n>0. 

The primitive security value is given by  

                                                           

3
 If we roll back from period T  where the value at time T  and state i is ( , )u T i , then we have 0

( )

T

i

U i

e 



equals the forward price 
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1

0

1

0

[ ( )] ( , )

( , )

(1 )

n

t

n
t

t

Exp t f n i

A n i






















for some real value 0 1                         (1) 

where ( , )f n i is a function of integer n and I and it is uniquely determined by the recursive 

relation  
1( , ) ( 1, 1) ( 1, )k kf m k f m k f m k                                                    (2) 

with boundary conditions 
( 1)

2( , )
m m

f m m 


 , ( ,0) 1f m  , 
1

( ,1)
m

m t

t

f m  



 ,                                        (3) 

and 
( 1)

2

1

( , 1) ( )
m mm

m t

t

f m m  






   .                                                          (4) 

Proof: We prove the lemma by induction. First, we show that the Equation (1) holds for 1n 

and 0,  1i  . For 1n  and 0i  , 
[ (0)]

(1,0)
2

Exp
A


  by Equation (1). But by Equation (u3), we note 

that
[ (0)]

(1,0)
2

Exp
A


 . Similarly, we can show that Equation (1) holds for 1n  and 1i  . Next, we 

assume that Equation (1) is correct for all periods up to n-1 and for all the states in these 

periods. The induction proof requires us to show that, given assumption, Equation (1) also 

holds for time n  and all the states at time n  .  Consider the pricing of ( , )A n i . By definition, at 

time n , the only payoff is at state i and it is $1. Then at time 1n , there are two states that have 

positive payoffs. At state i and time 1n , the payoff is  

1

1 2
[ ( 1)]

2 (1 )

i

n
Exp n 

 
 


. Similarly, at state 1i  and time 1,n   the payoff is 

1

1

1 2
[ ( 1)]

2 (1 )

i

n
Exp n 






 


. Finally we use induction hypothesis. Using primitive securities to 

price an asset, we have  

1

1 1

1 2 1 2
[ ( 1)] ( 1, ) [ ( 1)] ( 1, 1)

2 2(1 ) (1 )

i i

n n
Exp n A n i Exp n A n i   

 



 
       

 
                 (5) 

Substituting into ( 1, )  and ( 1, 1)A n i A n i   by the induction hypothesis, we confirm that Equation 

(1) holds.4 Q.E.D. 

                                                           

4 For a general form of Arrow-Debreu primitive securities, see Appendix A.  



 10 

Proposition 3. The model (1) (4)u u  provides an arbitrage-free valuation model for a flow risk 

driver, given the observed term structure of forward values ( )U n . 

Proof: We can show that
1

0 0

( , ) [ ( )]
n n

i t

A n i Exp t


 

   , which says that the sum of the primitive 

securities over the states at time n is equal to the security with $1 at time n. Specifically, the 

sum of Arrow-Debreu primitive securities is 1 at time 1 if we assume that the interest rates at 

every period is zero for simplicity (i.e., ( ) 0  0t for t   ). Now, we assume that the sum of Arrow-

Debreu primitive securities at time n is 1, which means that the no-arbitrage condition holds at 

time n.  Consider a zero-coupon bond which matures at time n+1. The value of the zero-coupon 

bond at time n is  

1
0 0

0 0

2 ( , ) 2 ( , )
1

(1 )
(1 ) (1 )

i in n

n n n
t ti i

t t

f n i f n i 


 


 

 

 


 

 
 

                                                 (6) 

To avoid the arbitrage opportunities, the value of the zero coupon bond at time 0 is 1. The sum of 

the Arrow-Debreu primitive securities at time n+1 is  
11 1

0 0 1 0

0 0 0 0

( 1, ) ( , ) ( , 1) 2 ( , )

(1 ) (1 ) (1 ) (1 )

i i in n n n

n n n n
t t t ti i i i

t t t t

f n i f n i f n i f n i  

   

 

   

   

 
  

   

   
   

                               (7) 

Equation (4) is equal to 1 by Equation (3).Q.E.D.   

In comparing equations (S1-S4) and (u1–u4), we can see the similarity between the Black 

Scholes model and the Ho-Lee model, particularly in their determination of the contingent claim 

values. In comparing equations S2 and U2, the functional form of the two models is also similar 

in that it is a product of three factors. The main difference lies on the specification of the forward 

contracts. The Black-Scholes model specifies the forward price of a stock while the Ho-Lee 

model specifies the forward contract on a flow entity, where the time unit is defined by the 

binomial period. Also, compare S3 and u3, the risk free rate is used in the roll back for the stock 

risk model and the risk driver is used for the flow risk model. Expressed in the continuous 

models, a flow risk driver has to be expressed as an “instantaneous rate entity”, such as a money 

market account. 

 

III.  Examples of Term Structure of Flow Risk Drivers 

 

A.  Interest Rate Model 

An example of the Ho-Lee model is the interest rate model. The discount index ( , )u n i is the 

discount factor for a one binomial period at time n and state i . Specifically, it is the present 
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value of $1 paid at time 1n at the binomial outcomes in the states i  and 1i  . In the interest rate 

model, we use the observed yield curve, or the discount function ( )P n  as input to the model.  

Given the discount function ( )P n , we can derive the forward values: 

( ) ( 1) / ( )p n P n P n                                                                 (P1) 

Then, the stochastic movements of the discount factor are given by: 

( , ) ( )(2 /(1 ))n ip n i p n                                                             (P2) 

Heath, Jarrow and Morton (1992) provide an analogous continuous time framework to 

equation (P2). The  represents the volatilities and factor 2 /(1 )n is called the convexity term 

that ensures the yield curve movements are arbitrage-free. The valuation of interest rate 

contingent claims is given by 

( 1, ) 0.5 ( , )( ( , 1) ( , ))  0, , 1C n i p n i C n i C n i for i n                                  (P3) 

with the terminal condition for a call option, as an illustration, given by  

( , ) max( ( , ) ,0)  0,1,2, ,C T i p T i X for i T                                        (P4) 

To show that the interest rate model is arbitrage free, we show that the zero coupon bond price 

based on the initial forward rates equals that based on the backward substitution methodology. 

We use the method of induction for the proof.  We assume that the initial forward rates 

( )  0,1,2 ,n n Twhere  are given. ( )n  is the initial forward rate which is applicable over the 

period of n to n+1. Consider a zero coupon bond. The face value is assumed to be 1. The price of 

a zero coupon bond which matures at period 1 is (0)e  . The price of the same bond by backward 

substitution on the binomial lattice is also (0)e  . The price of a zero coupon bond which matures 

at period 2 is (0) (1)e e   . The price of the same bond by backward substitution on the binomial 

lattice is (0) (1) (1) (0) (1)1 2 2

2 1 1
e e e e e    

 

     
  

  
. Now we assume that the price of a zero 

coupon bond which matures at period T  is the same regardless of whether we achieve by 

backward substitution or from the initial forward rates. The price is (0) (1) (2) ( 1)Te e e e        . The 

price of a zero coupon bond which matures at period 1T   is (0) (1) (2) ( 1) ( )T Te e e e e          from the 

initial forward rates.  The price of the same bond by backward substitution is also
(0) (1) (2) ( 1) ( )T Te e e e e          , because the price of a zero coupon bond which matures at 1T   is 

equal to ( )

1

2
( , )

1

i
T

T
e A T i 






where ( , )A T i  is Arrow-Debreu primitive securities at time T and state .i  

Adding over .i  and simplifying, we get (0) (1) (2) ( 1) ( )T Te e e e e          .  

Swaptions can be used to calibrate the interest rate volatility, specified by the parameter δ. The 

Brace, Gatarek and Musiela (1997) interest rate model is called a market model as the 

specification of the model fits both the swap curve and a set of swaption prices exactly. The 

prevalent use of swaptions in specifying the interest rate model shows the importance of the use 
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of implied volatilities in contingent claims pricing. By way of contrast, Cox, Ingersoll and Ross 

(1985) and Vasicek (1977) interest rate models are not relative valuation model in the sense of 

the Black-Scholes model. These models specify the interest rate risk process to derive the yield 

curve and they do not take the yield curve as given, using equation (P1).  

 

B.  Credit Valuation Model  

 

The unified model can be applied to the credit valuation model. Details of a credit model are 

described in Ho-Lee (2009a, 2009b). The marginal survival factor ( , )s n i  is the flow risk driver 

for the credit valuation for a one binomial period at time n and state i . Specifically, it is the 

probability for a bond at time n and state i to survive another period, conditional on the bond has 

survived till time n.  In the credit valuation model, we use the observed marginal default rate 

curve, or the survival function ( )S n as input to the model.  Given the survival function ( )S n , we 

can derive the forward values: 

( ) ( ) / ( 1)s n S n S n                                                              (S1) 

Then, the stochastic movements of the survival factor are given by: 

( , ) ( )(2 /(1 ))n is n i s n                                                          (S2) 

The valuation of credit risk contingent claims is given by 

( 1, ) 0.5 ( , )( ( , 1) ( , ))  0, , 1C n i s n i C n i C n i for i n                                  (S3) 

with the terminal condition for a call option, as an illustration 

( , ) max( ( , ) ,0)  0,1,2, ,C T i s T i X for i T                                             (S4) 

However, unlike the interest rate model, the survival function and the option of the survival 

rates of bond is not directly observable in the capital markets. We need to relate the survival 

function to tradable financial instruments. Credit derivative swaps (CDS) can be used for this 

purpose. These swaps are actively traded in the market with a term structure of CDS premium 

observable to the marketplace for many corporate bonds, and even sovereign, entities. 

The CDS spread of ( )c T with a T period tenor is the solution to the set of recursive equations 

( 1) ( )[ ( ) ( ) (1 ( ))(1 ) ( )]      1, ,V n p n s n V n s n R c T for n T                              (S5) 

with the terminal conditions ( ) (0) 0V T V  , where R is the recovery rate, p(n) the time value 

discount factor for one period at time n.  S5 says that the seller of the CDS would receive the 

credit premium of the period (n-1), but would have to pay the loss at default in case the default 

event occurs at during this period. The calculation is conditional to the bond survives till time (n-

1). Therefore, given the CDS premiums ( )c n for n= 1, 2, …, N, we can determine the ( )s n .  
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In this example, CDSs are used to determine the credit premiums in defining the implied credit 

premium,  forward looking estimates of credit risk, as opposed to using the historical defaults 

experience. However, the method can be used for non-option embedded bonds to estimate the 

credit premium if the liquidity premium can be appropriately isolated from the credit premium.  

The stochastic movements of the CDS curve are different from those of the interest rate curve. 

While the survival function, like the discount function, should be monotonically downward 

sloping and positive, its movement may follow a different mean reversion process. The 

specification of the binomial lattice should also reflect such differences. For example, the CDS 

curve can rise rapidly.   

There are papers proposing arbitrage free valuation methodologies of credit contingent claims 

such as Duffie (2005), Das et al. (2006) and Longstaff and Rajan (2008). These models assume 

that the hazard rate follows a mean-reversion process similar to that of the Cox, Ingersoll and 

Ross model. Furthermore, the model is then calibrated to the observed CDS curve. This approach 

must necessarily calibrate the hazard rate movement model confined to the mean reversion 

process. These models cannot separate the calibration of the CDS curve and its volatilities. By 

way of contrast, this paper extends the generalized Ho-Lee model to the CDS curve movements 

that ensures the hazard rate movement is arbitrage-free for any given CDS curve. This feature 

separates the specification of volatilities of the hazard rate from the fitting of the model to the 

CDS curve. This separation enables the model to have several advantages over other models. 

 

C.  Liquidity Valuation Model 

 

Liquidity is broadly defined as a measure of the performance of the market, the ability to 

transact any time without moving the market price. A fixed income security may not have a 

ready market at any time and a premium is added to the discounting of the cash flows to 

compensate for such illiquidity. Liquidity premiums vary with time in a stochastic way and they 

affect the values of fixed income securities. We have defined credit spread of a bond by its credit 

derivative swap curve. However, liquidity spread is inseparable from the credit spreads. Lower 

credit corporate papers tend to be less liquid. For this reason, we can define the liquidity spread 

to be the discount rate of a bond net of the interest rate and the credit spread.  Liquidity spread 

within the context of our model, is defined as the catch all term, the option adjusted returns net of 

time value and credit risks for a credit paper. In our relative valuation approach, we are not 

concerned with the modeling of the economics of liquidity. Specifically, we denote the liquidity 

forward price and the liquidity function to be ( )l n and ( )L n  respectively, then ( )l n  can be derived 

from a zero coupon bond price ( )V T  with maturity T by the following model: 
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( ) ( ) ( ) ( )       1,2,V T P T S T L T for T                                                    (l1a) 

We assume that there is no recovery rate for clarity of the exposition and ( )P T and ( )S T are the 

discount function and the survival function respectively. By definition of the liquidity function, 

analogous to the discount function in the interest rate model, we have:  

( ) ( 1) / ( )l n L n L n                                                                        (l1b) 

Then, the stochastic movements of the liquidity factor are given by: 

( , ) ( )(2 /(1 ))n il n i l n                                                                   (l2) 

 The valuation of liquidity contingent claims is given by 

( 1, ) 0.5 ( , )( ( , 1) ( , ))  0, , 1C n i l n i C n i C n i for i n                                   (l3) 

with the terminal condition  for a call option, as an illustration 

( , ) max( ( , ) ,0)  0,1,2, ,C T i l T i X for i T                                            (l4) 

Recent research shows that liquidity risk is an important factor in explaining the changes in the 

yield spread of corporate bonds. For example, Chen et al (2007) empirically show that the 

liquidity risk is a significant factor to determine the yield spread variations of corporate bonds 

using more than 4,000 corporate bonds. Their sample consists of both the investment grade and 

high yield sectors. Covitz and Downing (2007) show that liquidity is important in the yield 

spread even for the commercial paper of less than 35 days to maturity. There should be a 

correlation of the liquidity risk and the credit risk since lower credit often relates to lower 

liquidity, as noted before. Modeling the joint stochastic movements will be discussed in the 

following section.  

 

D.   Energy Valuation Model 

 

There are many energy markets with a range of forward contracts and option contracts. For 

example, there are the natural gas, oil, and electricity markets (See Eydeland and Wolyniec 

(2003) for an extensive discussion of the energy spot and derivative markets.). To illustrate the 

application of the unified model to this broad financial sector, we will discuss only the electricity 

contracts here. Electricity is not a storable commodity, which has to be consumed when 

produced. The electricity futures are priced based on the volume bought over a time period at a 

delivery date. In comparing the forward price and the spot price, the “cost of carry” can be 

positive or negative depend on the month of the year, and therefore the forward prices can be 

higher or lower than the spot price. Electricity is a good example to use because it gives the 

contrast to the contingent claims pricing on financial instruments. Since, electricity is not 

storable, the “cost of carry” cannot be explained by any dynamic trading strategies using 
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electricity spot prices. However, for financial instruments, continuous arbitrage arguments can be 

used.  

In applying the unified model, we assume that the electricity price is based on a fixed volume 

over one binomial period. The flow risk driver is the proportion of the electricity price at time n  

state i to the initial electricity price, denoted by ( , )e n i , called the normalized forward price. Then, 

the stochastic movements of the electricity price factor are given by: 

( , ) ( )(2 /(1 ))n ie n i e n                                                               (e2) 

The valuation of interest rate contingent claims is given by 

( 1, ) 0.5 ( , )( ( , 1) ( , ))  0, , 1C n i e n i C n i C n i for i n                                     (e3) 

with the terminal condition  for a call option, as an illustration: 

( , ) max( ( , ) ,0)  0,1,2, ,C T i e T i X for i T                                               (e4) 

Electricity options on forward contracts can be used to calibrate the electricity price volatility, 

specified by the parameter δ. The importance of the energy model is to show that the Ho-Lee 

model does not apply only to the “rate risk” but to any flow risks, such as the cost of energy per 

unit time.  

Energy contingent claims are growing in the market. With the gradual deregulation of the 

energy markets, where the energy prices are increasingly determined by the market, the use of 

forward contracts and energy options is growing. For example, a utility company may buy gas to 

generate electricity. However, this conversion depends of the prevailing relative prices of gas to 

electricity. Since electricity is not storable, often forward contracts and options on energy prices 

are used to ensure availability of electricity at a certain period under stochastic spot prices and 

demands. Prices of gas vary stochastically depending on the suppliers.  Utility companies may 

seek to buy the cheapest electricity among the suppliers. Contingent claims are used to provide 

options to the utility companies to seek the cheapest sources of gas. 

 

E.  Inflation Contingent Claims Valuation Model 

 

The unified model can be applied to inflation contingent claims valuation. Let the inflation 

discount index be ( , )n i  a one binomial period at time n and state .i  Let the forward inflation 

discount factor be ( )n . Then the stochastic movements of the inflation discount index are given 

by: 

( , ) ( )(2 /(1 ))n in i n                                                                (η 2) 

The valuation of inflation rate contingent claims is given by 

( 1, ) 0.5 ( , )( ( , 1) ( , ))  0, , 1C n i n i C n i C n i for i n                          (η 3) 

with the boundary condition   
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( , ) max( ( , ) ,0)  0,1,2, ,C T i T i X for i T                                            (η 4) 

However, similar to the credit valuation model, the forward inflation index and the option of 

the inflation index are not directly observable in the capital markets. We need to relate the 

forward inflation index to tradable financial instruments. 

Treasury Inflation Protection Securities (TIPS) are US Treasury bonds which have the 

principal adjusted to the inflation rates. For clarity of exposition, we make several simplifying 

assumptions here on the specification of TIPS. We assume that the bond has a coupon rate k for 

each binomial period, with an initial the principal and maturity of $1 and T periods respectively.  

Furthermore, we assume that the convexity effect of TIPS is negligible such that a static inflation 

model can be used. 

Then the value of TIPS is given by 

( ) (1/ (1) (1) 1/( (1) (2)) (2) 1/( (1) ( )) ( )) 1/( (1) ( )) ( )V T c P P T P T T P T                                 (η 5) 

where ( )P n is the discount function. Given the values ( )V n  for n 0,1,2, , ,  we can determine the 

η(n).  

The implied term structure of inflation rates can be estimated from the TIPS as many TIPS have 

been issued since their introduction in 1997. DePrince Jr. (2003) derives the term structure of 

inflation rates using TIPS from February 1997 to September 2002 and the paper shows that the 

implied inflation has economic content. Since inflation rate forecasts using surveys are only short 

term, the implied inflation rates can be useful for market participants. There are many contingent 

claims on inflation rates. Many insurance and pension products are indexed on inflation rates. 

Therefore a unified model incorporating inflation rates has many applications. 

 

IV.  Modeling the Stochastic Process of the Unified Model 

 

The main extension of the Ho-Lee model from the Black-Scholes model is based on the 

definition of the “underlying securities”.  The Ho-Lee model does not require the underlying risk 

driver to be represented by a tradable security. Instead, the Ho-Lee model determines the 

stochastic movements of the forward contracts on the flow risk driver based on the market 

observable forward prices of the risk factor. 

Based on the risk neutral measure, a security drifts at a risk free rate in the Black-Scholes 

framework. However, this is not a requirement for any risk factors in the Ho-Lee framework. For 

this reason, much of the interest rate model research focuses on modeling the stochastic 

movements the risk driver when the Ho-Lee framework is used. We summarize some of the 

results in modeling the risk driver movements in this section. 
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The Ho-Lee (1986) unified model can be extended to a generalized model (Ho-Lee (2007)) 

that allows the risk driver to exhibit a broad range of behavior. We summarize some of the 

characteristics below. The model is presented in Appendix B. 

 

1. State-time dependent volatilities. In section B, we use the Ho-Lee model (1986) to 

illustrate the unified model. To capture a broader range of stochastic movements of the 

risk factor,   in equation (u2) does not have to be constant.  In fact, it can be state and 

time dependent, ( , ).n i   Therefore, the model can be calibrated to an implied volatility 

function.  In this case, the stochastic risk index can be shown to have the following  

functional form below: 

                                                    ( , ) ( ) ( , ) ( , )u n i u n F n i n i                                                                 (8) 

The function ( , )F n i is determined by the specification of the ( , )n i . An implied volatility 

function that declines with time n can induce a mean reversion behavior of the risk factor. 

This observation is made in the Black, Derman and Toy model (1990).  

 

2. Regime switching: The model avoids explosively high rates exhibited by the lognormal 

models on the one hand and negative rates exhibited by the normal models on the other. 

Since we can construct δ to be dependent on the state, the forward volatilities of each 

factor can be proportional to the rate level.  When the rates are low, the process exhibits 

a lognormal behavior. When the rates are high, the process exhibits a normal distribution 

behavior. Cheyette (1997) shows that interest rate movements tend to change the 

stochastic process regime depending on the interest rate level. Ho and Mudavanhu (2007) 

show empirically that the specification of the change in regime in the interest rate 

distribution can be implied from the swaption markets.  

 

3. Multi-movement model: The movements of a risk factor can have multiple risk drivers. 

At each node, each factor can take a binary movement. Let e be a movement over one 

step, represented by 0 or 1; and there are four possible states emulating from each node 

for a two factor model represented by ( 1, 2)v e e . Let e* represent the opposite state of e  

such that * 0e   and 1 when 1e   and 0  respectively. Then, the two consecutive 

movements of ( 1, 2)e e  followed by * *( 1, 2)e e must meet at the same node. This is the 

recombining property that reduces the possible future scenarios for analysis significantly 

without a comparable loss of accuracy of the model.  

For clarity of exposition, we have presented the two-factor model which is

( , , ) ( ) ( , ) ( , ) ( , ) ( , )u n i j u n F n i F n j n i n j  . The generalization of the two-factor model to the 
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multifactor model for equation u2 is straightforward. For an m-factor model, (u2) is 

represented by  

1 1( , , , ) ( ) ( , ) ( , , )m mu n i i u n C n m i i                                               (9)   

where
1

2 2
( , )

1 1n n

m

C n m
 

  
   

    
and 1

1 1( , , ) mii

m mi i     

This shows that 
1( , , , )mu n i i  has three components. First, ( )u n represents the forward price 

based on the initial term structure. Second, ( , )C n m is the convexity term given by

1

2 2
.

1 1n n

m 

  
  

    
This term adjusts the price such that the additional returns derived 

from the convexity are countered by this adjustment to assure the arbitrage-free condition. 

Third, the stochastic movement term 1( ,..., )mi i is given by 1

1
mii

m   

The arbitrage-free condition for the model in equation (9) is proved in Ho-Lee (2007). 

The model for multiple risk drivers can be defined analogously. For the term structure of 

interest rates, Litterman and Schienkman (1991) have shown that historically, the yield 

curve exhibits three principal movements.  Ho and Mudavanhu (2007) describes a multi-

movement model that is consistent with this empirical observation where the arbitrage-

free yield curve movements can be parallel movements or steepening movements, and the 

movements are implied from the swaption market using multiple implied volatility 

functions.                                                                                                                                                                                                                                                                                  

Multi–factor model. We use the analogous multi-dimensional recombining lattice 

described in subsection 3. Combining multiple risk factors is also relatively straight 

forward. Let the risk factor be the combined of m risk factors, 1( , )u n i ( , )mi

mu n i , then, the 

model is: 

1 1 1

1 1 1( , , ) ( ) ( ) ( , ) ( , ) ( , ) ( , )m m mi i ii i i

m m mu n i i u n u n F n i F n i n i n i                     (10) 

Therefore, the unified model enables us to value securities subjected to several types of 

risks. Ho and Lee (2008 b) provides a more detail description of the multi-factor model. 

When the risk factors are uncorrelated, then all the binomial probabilities are the same. 

Otherwise, appropriate binomial probabilities give the desired correlations (see Ho-Lee 

(2004a) pp 249). Note that when there are correlations between two factors, then a non-

option embedded security in one factor may have embedded options from another factor. 

For example, when there is a correlation between the credit risk and interest rate risk, a 

CDS may have embedded interest rate options. The option is induced by the recovery 

payments at default viewed as interest rate risk “prepayment option” when default rate 

changes with the interest rate level. However, such an option value is typically very small. 
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Also, this observation does not mean that the methodology presented is inappropriate. We 

just need to take this observation into account in the calibration process.     

                                                                                                                                                                                                                                                                                                                                                                           

4. Arbitrage-free condition. The model takes the forward discount factors and their 

associated term structure volatilities as inputs to the valuation. The projected discount 

rate of a fixed income instrument is given as the combination of the stochastic shifts 

from the sum of the forward curves of the factors with an adjustment for the convexity 

effect to ensure the arbitrage-free condition held.  The value derived from the roll back 

valuation algorithm using the lattice model is always consistent with these input 

parameters.  

 

5. Term Structure of Rates and the Term Structure Movements: in Section Ⅲ, we have 

focused on the stochastic movements of the discount indices by specifying the risk driver 

at each binomial node ( , )n i . In fact, using the roll back process, the entire term structure 

of the discount index can be determined at each node. For example, for the interest rate 

model, the term structure of interest rate can be determined at each node. For the credit 

model, the credit derivative swap curve can also be specified at each node of the 

binomial lattice. Therefore, the contingent claims can be specified for the entire term 

structure and not confined only to the one period risk driver. Furthermore, for a multi-

factor model, at each node ( , , )i j k  , multiple movements of the term structures can be 

modeled. 

 

V. Implications of the Unified Model to Risk Management 

 

A. Relevance of the Unified Model to the Financial Crisis 2008 

 

A tranche of a CDO has an embedded option within a CDO package, which in turn is pooled 

from asset backed security (ABS) tranches, themselves have embedded options. Each ABS is a 

pool of mortgage loans or bonds, which have also embedded options. These options of driven by 

multiple risk drivers. For this reason, the actuarial credit risk measure would not be inappropriate 

to identify the risks of these securities that led to the subprime crisis.  

Managing credit, market, liquidity risks separately would not be able to provide a coherent 

valuation and analytical framework. For example, Basel II requirements suggest entirely 

different risk measurement approaches to market risk, credit risk and liquidity risks, and the 

Basel requirements provide no guidance in rolling up the risks to the enterprise level. As a result, 

financial institutions have separate market risk and credit risk departments. Such separation of 
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risk analyses can easily fail to identify properly the risk of structured products such as the asset 

backed securities and collateralized debt obligations which have complicated embedded credit 

and interest rate options.   

A coherent way in isolating the credit risk from interest rate risk is important. For example, an 

internal measure of the credit guarantee cost is a useful way to bifurcate the credit option value 

from the interest rate option in a bond. One of the Federal Home Loan Bank (FHLB) lending 

programs to their network of banks uses this approach. This approach allows their affiliated 

banks to retain the credit risk while selling the interest rate options to the FHLBs.  The unified 

model can be used to identify these values. 

The application of the unified model goes beyond the valuation of securities. Enterprises can 

be modeled as contingent claims of multiple flow risk drivers. For a financial institution, often 

the economic capital is defined as the asset net of the liability. However, in many instances, the 

liability cannot be valued separately from the assets. For example, the “run on a bank” behavior 

of the depositors can be viewed as the depositors’ American put option on the banks’ asset value 

with a strike price of the account value. The put option adds additional value to the deposit 

liability and lowering the appropriate measure of the economic capital. Another example is the 

margin requirements on some liabilities. Often, financial institutions’ funding requires margins, 

which increase with the value of the assets net of the face value of liability. As a result of this 

requirement, the financial institution has to sell assets to generate cash as the asset liquidity 

spread widens. This process is called “deleveraging” which has shown to be very significant in 

the 2008 financial crisis. The descriptions of these implications of these embedded options in the 

economic capital are beyond the scope of this paper. However, we have highlighted the 

importance of using contingent claims analysis to the analysis on economic capital and risk 

management of a financial institution.   

Financial research has studied corporate liabilities in terms of the Merton model, where equity 

is viewed as a call option on the firm value, the total capitalization, with the strike price equaling 

the face value of a bond. As the 2008 financial crisis shows, distressed financial institutions have 

value based more on their economic capital value than on the total capitalization. As noted above, 

the economic capital values are contingent claims on multiple flow risk drivers, where a unified 

model may be more appropriate for analysis than the Merton model that is based on the stock 

risk drivers.  

   

B. Benchmark securities and model calibration 

 

A portfolio of these fixed income securities with similar liquidity risk and credit risk that have 

market prices is called a benchmark portfolio. The term structures of volatilities of interest rates, 
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default rates, and liquidity rates can be calibrated from the prices of the fixed income securities 

in the benchmark portfolio. The calibrated model can then be used to value other financial 

instruments that have similar credit risk and liquidity risk. Any discrepancy between the model 

value and the market price is called the “cheap/rich” value. Therefore, the financial instrument is 

relatively valued to the benchmark portfolio and that the model determines the risk neutral 

measures for the valuation purpose. 

The unified model is calibrated to the appropriate benchmark portfolio that is chosen to solve 

the problem at hand. This approach recognizes that there are often other factors affecting the 

quoted prices, such as the bid-ask spreads, commissions, and other microstructure factors. The 

benchmark portfolio should contain securities relevant to the instruments to be relatively valued. 

For example, CDSs are not all liquid. The choice of CDSs used in the benchmark portfolio 

should take liquidity into account. In this sense, the unified model should be viewed as a 

generalized relative valuation model. The model provides the value of a security relative to a 

benchmark portfolio.   

The calibrated term structure of default rates and liquidity rates should be upward sloping in 

normal market conditions. This is because the default risk and liquidity cost both increases with 

time to maturity. As a result, the forward default rates and liquidity rates must also increase in 

calendar time in projected into the future, as the maturity of the fixed income security shortens. 

However, when a fixed income security maturity shortens, we expect that both the credit spread 

and the liquidity spread tighten, not rising as predicted by the model under risk neutral measure, 

as opposed to the market measure. By the same token, the normal yield curve is upward sloping. 

The arbitrage-free interest rate models would consistently “predict” that the short term rates 

would rise in the future, and clearly this prediction is inconsistent with the historical experience. 

This apparent contradiction does not affect the robustness of the model which is based on the risk 

neutral measure.  

C. Combining interest rate risk, credit risk and liquidity risk in enterprise risk management 

 

Historically, from the deregulation of interest rates in the late 1970s till the mid 1990s, the US   

experienced significant interest rate risks fluctuating between 6% and 12%. However, in the 

2000s, interest rates have fallen, to less than 4% in recent months. In this low interest rate regime, 

credit risk and liquidity risk have become significant contributors to the value of many financial 

instruments. That is, credit risk and liquidity risk factors have to be considered along with 

interest rate factors. The Ho-Lee framework is therefore proposed here to deal with this current 

market condition.  
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Let us consider the valuation of a callable bond to illustrate the economics of the unified 

model. Let the bond has a maturity of N years and is callable at par any time after M year, with 

M <N. The bond has a coupon rate such that the bond has a value at par. The bond is subject to 

interest rate, credit and liquidity risks.   

The bond has an embedded call option. Interest rate models would consider the option subject 

only to the interest rate risk. The term structure of volatilities is estimated from the swaption 

market prices. However, the bond would be called if the credit risk premium or the liquidity 

premium has been tightened. The unified model would take the combined effect into 

consideration. 

Valuation of fixed income securities, for example corporate bonds with call or put options, can 

be determined by the standard roll back procedure using the lattice model. The arbitrage-free 

condition would ensure that when the bond’s call option is stripped off, the bond value calculated 

by the roll back method is identical to the standard cash flow bond model. Therefore, all 

arbitrage-free conditions would apply. For example, the put-call parity of options is 

automatically held. Since the arbitrage-free condition is satisfied at each node point, the roll back 

method using the Bellman’s optimization can be used.  

Thus far, we have described the valuation on a contingent claim on the term structures of 

interest rate, default rates and liquidity rates. We now extend this discussion to describe the 

valuation of a portfolio of credit and liquidity risks. Arbitrage-free interest rate models can 

extend from a single security valuation to that for a portfolio simply because the identical yield 

curve applies to all the securities. Such is not the case with credit and liquidity risks. The term 

structure of default rates and liquidity rates are not the same, not even perfectly correlated, across 

securities. A model of a portfolio of risk factors has to be described. 

For simplicity, let us consider a portfolio of two bonds. To determine VaR, we assume that the 

risk sources are the discount function, the survival function and the liquidity function. Consider 

the log of these three functions. We assume that they are uniformly distributed and are constant 

in time. The associated term structures of volatility are flat for simplicity.  

To determine the individual VaR, such as market, credit and liquidity VaR, we perturb each 

risk source while the other two risk sources are kept constant. To determine the interest rate VaR, 

we keep the other survival and liquidity functions fixed. Since the discount function is uniformly 

distributed, we generate the profit/loss distribution from the discount function disturbances.
5
 

Once we generate the distribution of the profit/loss, we can determine the maximum possible 

                                                           

5
 The three factor unified Ho and Lee model is given in Appendix B.  
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loss given the significance level, which is the Market VaR. Similarly, we can get credit VaR and 

liquidity VaR of an individual bond.  

Since the three risk sources determine the bond value and the discount function is applicable 

across the bonds, we have altogether five random variables, which are uniformly distributed by 

assumption. We use the Gaussian Copula method to generate the joint distribution of five 

random variables. Specifically, we map the uniform distribution into the normal distribution on a 

percentile-to-percentile basis. Then, we generate multi-variate normal distribution with 

correlation coefficients being historical correlations for simplicity. We determine the portfolio 

VaR from the joint cumulative distribution, given the significance level. The diversification 

effect is the difference between the portfolio VaR and the sum of individual VaR. The 

diversification effect depends on the correlation structure among the risk sources. 

The component VaR is defined by the contribution part of the portfolio VaR from each risk 

source. To determine the component VaR from a risk source, we eliminate the risk source while 

we keep the other risk sources. The decrease in the portfolio VaR can be regarded as the 

contribution of the risk source to the portfolio VaR. Then, we eliminate another risk source to 

determine the component VaR of the second risk source. Repeating the same procedure until we 

eliminate the last risk source, we can determine the component VaR of each risk sources.  

 

D. Financial Engineering Considerations 

 

A unified model must necessarily require extensive computational resources. Therefore, a 

specification of the unified model must be related to issues in financial engineering, as well as 

the principles in financial theories. Note that the unified model is constructed based on binomial 

periods, but the model does not require the binomial model to have constant calendar time period. 

For example, the binomial steps do not have to be one month for all periods. They can vary and 

therefore the unified model can be adapted to a variable step size construction quite simply.  

Consider the callable bond in this illustration. Since the call protection period is only one year, 

the model must measure this one year short dated option accurately. The unified model with 

variable step size would use a small lattice step size in the early years. For the latter year, a 

longer step size is used to save the computing time without consequential loss of accuracy.  

Since a recombining lattice enumerates all possible risk scenarios with the assigned risk 

neutral measures, within the context of the model, we can assign probabilities to each risk 

scenario. Furthermore, based on any measure of distance between two risk scenarios, we can 

form equivalent classes in this risk space with their representative risk scenarios. See Ho (1992) 

for such a methodology. As a result, we can determine the set of representative scenarios with 

their assigned probability weights for the purpose of valuation when scenario paths have to be 
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used, as in the case of valuation a mortgage loan using a prepayment model. The structured 

sampling approach can enhance the computational efficiency significantly. 

 

VI.  Conclusions 

 

This paper shows that risk drivers can be dichotomized into “stock” or “flow” attributes. The 

Black-Scholes model is a relative valuation model for the stock risk drivers and the Ho-Lee a 

model for the flow risk drivers. A unified model that values contingent claims on multiple flow 

risk drivers is presented here. 

The model is then applied to five different flow risk drivers: interest rate, credit risk, liquidity 

risk, energy risk, and inflation risk. We show how the unified model can be adjusted for each 

type of flow risk drivers and how the benchmark securities are used to calibrate the models. 

Furthermore, we show that the unified model provides valuation of contingent claims on 

multiple flow risk drivers. Hence, the unified model provides a model and a framework to 

analyze the combined effect of multiple flow risk driver on securities and on the economic 

capital of a financial institution. 

The 2008 financial crisis illustrates the importance of the applications of the unified model. 

For example, CDO and ABS are structured products that have significant credit and interest rate 

embedded options. This example shows that risk management should not take a silo approach to 

manage market risk, credit risk and liquidity risk in isolation. This is because the impact of the 

sum of these risks is not the same as that of the combined risks. The options embedded in the 

security do not offer a simple separation of the effects of the risk drivers.  

Furthermore, we show that the economic capital of a financial institution is a contingent 

claim on multiple risk drivers and therefore the economic capital cannot be measured simply as 

the asset net of the liability. The unified model should be used to analyze a distressed financial 

institution along with the Merton model which is a relative valuation model on the stock risk 

driver and not modeling the economic capital as a contingent claim on flow risk drivers.  The 

unified model can provide a coherent framework to manage the enterprise risk. In particular, we 

show how the model is used to generate the value-at-risk measures for the combined market, 

credit and liquidity risks.   
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Appendix A:  A General form of the Arrow-Debreu Primitive Securities 

The Arrow-Debreu primitive securities at time n are equal to a vector with (n+1) elements, 

which we can calculate by multiplying the following n matrixes.   
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For example, when n is equal to 1, the Arrow-Debreu primitive securities at time 1 is the first 

matrix such that A(1,1)  is equal to 
(0)

01

e 






 and A(1,0)  is equal to

(0)

01

e 






. When n is equal to 2, 

we can generate the Arrow-Debreu primitive securities at times 2 by multiplying the first two 

matrixes such that  
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The first element of the vector is (2,2)A , the second element is (2,1)A , and the last element is

(2,0)A . Similarly, we can generate the Arrow-Debreu primitive securities at the following 

periods and determine them accordingly.  The intuition behind the general form of the Arrow-

Debreu primitive securities is the recursive relationship among ( , )A n i , ( -1, )A n i and ( -1, -1)A n i  

for any n and i  such as                   
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Appendix B:  Three Factor Unified Model 

The model is provided in Ho Lee (2007). For completeness, we specify the model in this 

appendix. Let , , ( )n

i j lB T  be the T year bond price at time n, at state  , ,i j k  Then , , ( )n

i j lB T  is 

specified by combining three one-factor models. Specifically, we have 
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and the one period forward volatilities are given by definition, 
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Where the functions  ( ) ( ) exp   , ,m n a bn cn d where m r h l       are specified by the 

parameters a, b, c, and d, which can be obtained from the calibration to the market price of an 

option on CDS, etc. This specification of the implied volatility function allows for a broad range 

of shapes including downward sloping or dumped shape. 

Using the direct extension, we can specify the one period hazard rates for the two-factor 

model for any future period m and state i, and ,1

m

ih  and ,2

m

ih  are defined by  
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