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Catastrophe Risk Management Incorporating Natural Climate Cycles 

and Global Warming 

 

 

 

Abstract 

This paper develops a regime-switching compound Poisson process in which the state of 

hurricane intensity is a function of the forecast values of the Atlantic Multidecadal 

Oscillation (AMO) and carbon dioxide (CO2) indices. Our empirical results demonstrate the 

asymmetric effect of the AMO index and the CO2 index on U.S. hurricane intensity. The 

resulting regime-switching model incorporating the AMO and CO2 (RACM) provides an 

excellent projection of the annual U.S. hurricane frequency with a forecasting error of about 

one. We also examine the influence of the regime-switching effect, the AMO effect and the 

CO2 effect on the tail value at risk (TailVaR) of hurricane risk and reinsurance premiums, and 

find that the RACM model can effectively manage the hurricane risk by setting appropriate 

reserves. Pricing errors resulting from utilizing the RACM for stop-loss reinsurance 

premiums are 55 to 70 percent smaller than those from the linear constant model. 

Furthermore, the regime-switching effect and the AMO effect dominate the CO2 effect in 

reducing pricing errors and producing more effective TailVaR, and the CO2 has its largest 

effect in 2008—the year of Hurricane Ike.  

 

Keywords: Regime-switching compound Poisson process, Hurricane intensity, AMO index, 

CO2 index; Reinsurance premium. 
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Catastrophe Risk Managements Incorporating Natural Climate Cycle 

and Global Warming 

 

1. Introduction 

Catastrophes (CAT) occur infrequently but often lead to severe losses. A report from the 

Insurance Information Institute indicates that U.S. hurricanes and tropical storms were 

responsible for 44% of the total losses associated with CAT events from 1991 to 2010. The 

most costly insured CAT losses in the U.S. are resulted from weather-related CAT, in 

particular, hurricanes. (See Table 1). For better risk management of hurricane events and 

more accurate valuation of CAT insurance products, it is thus important to have reliable 

forecasts generated from hurricane intensity models. 

[Table 1 is here] 

Questions remain about the factors that cause increased hurricane activities. Recent 

meteorological studies (e.g., Lehmiller et al., 1997; Bove et al., 1998; Maloney and Hartmann, 

2000; Elsner et al., 2000; Goldenberg et al., 2001; Landsea, 2005; Sutton and Hodson 2005) 

attribute increases in Atlantic hurricane activity to natural climate cycles, including the 

Atlantic Multidecadal Oscillation (AMO), the El Nino-Southern Oscillation (ENSO) and the 

North Atlantic Oscillation (NAO)1 . Geo Risks Research at Munich Reinsurance has 

performed hurricane frequency analyses that account for the AMO in recent decades. The 

AMO index—which measures sea surface temperature (SST) anomalies of the North Atlantic 

that are correlated with hurricane activity—has been used to predict near-term hurricane 

activity. Warm phases in the AMO (i.e., a positive AMO index) may lead to higher SSTs and 

above-average hurricane activity over the long term in the Atlantic. Cool phases in the AMO 

(negative AMO index) may lead to lower SSTs and below-average hurricane activity over the 

                                                 
1 The ENSO measures temperature anomalies in the Pacific Ocean off the coast of Peru; and the NAO is a 
north-south shift (or vice versa) in the track of storms and depressions across the North Atlantic Ocean and into 
Europe. 
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long term. 

However, other studies (Knutson and Tuleya 2004; Barnett et al. 2005; Emanuel, 2005; 

Webster et al., 2005; Webster et al. 2006) suggest that global climate change—rather than 

natural climate cycles—is playing the dominant role in generating higher levels of hurricane 

activity. The fourth status report of the Intergovernmental Panel on Climate Change (IPCC 

2007) indicates that there may be a significant link between human-induced global warming 

and the greater frequency and intensity of unanticipated tropical cyclone events. Storm 

frequencies during the current warm phase (since 1995) have been much higher than during 

the previous warm phases that occurred during the middle of the last century. These 

frequency differences cannot easily be explained by natural fluctuations. Instead, this 

difference can be attributed to human-induced global warming; thus, the AMO index and 

human-induced global warming may have an asymmetric effect on hurricane intensity. 

Human-induced global warming is caused by an increase in the atmospheric levels of 

greenhouse gases and aerosols, in solar radiation and in land surface properties. Carbon 

dioxide (CO2) is the most important anthropogenic greenhouse gas, and increased CO2 levels 

are primarily the result of fossil fuel use and changes in land use. Certain empirical studies 

(e.g., Henderson-Sellers et al. 1998, Knutson and Tuleya 2004) suggest that doubling CO2 

production increases the frequency of the most intense hurricane events. 

Meteorologists such as Elsner et al. (1993, 2000, 2001, 2003, 2006) among others 

(Solow and Moore 2000; Jagger et al. 2002; and McDonnell and Holbrook 2004) have used 

the Poisson regression model to forecast hurricane intensity. The Poisson regression, which is 

a linear regression variant, is appropriate for modeling the influence of a set of independent 

natural climate cycle variables on the expected rate of a Poisson distributed random process, 

and it is used to characterize North Atlantic hurricane activity2. Elsner et al. (2008) utilize a 

                                                 
2 See Elsner and Schmertmann 1993; Elsner et al. 2001; Elsner and Bossak 2004; Briggs 2008; Elsner et al. 
2008 
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linear Poisson regression model to forecast North Atlantic hurricane intensity based on the 

predicted coefficients of the Atlantic SST model. However, the research of Elsner et al. (2008) 

has its limitations because it uses one-state hurricane intensity and does not respond to global 

warming information. 

Insurance economists however, based on data of CAT losses, employ a compound 

Poisson process to describe CAT intensity to price insurance products (e.g., Cummins and 

Geman, 1995; Louberge et al., 1999; Lee and Yu, 2002; Cox et al., 2004; Jaimungal and 

Wang, 2006). Lin, Chang, and Powers (2009) point out the deterministic intensity of the 

compound Poisson process is inadequate for natural CAT events and propose a doubly 

stochastic Poisson process to model the intensity process. Wu and Chung (2010) reinvestigate 

the intensity process of CAT occurrence and adopt a mean-reverting process for the CAT 

intensity. Chang, Lin, and Yu (2011) derive a pricing formula for CAT equity put options by 

assuming that hurricane events follow a continuous-time Markov-modulated Poisson process. 

Models of economists build upon loss data and fail to evaluate or incorporate important 

climate variables, such as AMO and CO2 indices. These models are also generally incapable 

of forecasting future weather-related CAT intensity. 

This paper connects the meteorology and the insurance economics literatures and makes 

the following contributions. First, we provide a general regime-switching compound Poisson 

(RSCP) process to capture the characteristics of two-state hurricane intensity. This process 

also allows greater flexibility and predictive power regarding hurricane intensity by 

incorporating both natural climate and global warming variables. Second, we utilize data for 

AMO and CO2 that are available from the National Oceanic and Atmospheric Administration 

and data for hurricane frequency and losses that are available from the U.S. database on 

spatial hazard events and losses. Employing these data, we obtain the predicted values for the 

AMO and CO2 indices using the ARMA model and combine with the RSCP model to 

forecast U.S. hurricane intensity. Our empirical results show that the regime-switching model 



  6

that incorporates the AMO and CO2 effects (RACM) improve it projection of the average 

annual U.S. hurricane frequency substantially, with a forecasting error of about one. 

For the management of hurricane risk, we further examine the influence of the 

regime-switching effect, the AMO effect and the CO2 effect on the tail value at risk (TailVaR) 

and stop-loss reinsurance premiums. Finally, we offer a measure that is equivalent to the 

physical measure in the RSCP model by employing the discrete-time Esscher transform 

method to provide a closed-form solution for weather-induced CAT reinsurance premiums 

for insurance practitioners and compare pricing errors with previous pricing models. Our 

results provide insurers the appropriate reserves to manage hurricane risk based on the 

RACM developed in this study. The pricing errors of reinsurance premium using the RACM 

are 55 to 70 percent smaller than those found using the linear constant model (LM). 

Furthermore, the regime-switching effect and the AMO effect dominate the CO2 effect. 

However, the CO2 effect is still effective in reducing pricing error and estimating TailVaR, 

especially in the year of Hurricane Ike, 2008. Our empirical and analytic results support our 

inclusion of regime-switching effect, the CO2 effect, and the AMO effect in forecasting 

hurricane activity and pricing weather-induced CAT products.  

The remainder of the paper is organized in the following manner. Section 2 presents the 

RSCP model and the time series model of the AMO and CO2 indices. Section 3 provides the 

empirical analysis for the AMO and CO2 indices and the goodness of fit of hurricane 

intensity for the different models. Section 4 introduces TailVaR and the pricing of 

weather-induced CAT stop-loss reinsurance, and investigates the impact of the 

regime-switching effect, the AMO effect and the CO2 effect on them. Section 5 provides 

conclusions. 

2. Modeling: Regime-switching compound Poisson process 

This section extends the compound Poisson process to a regime-switching compound 
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Poisson (RSCP) process to model total CAT losses. Let tY  be the aggregate losses from 

CAT events from time 1t  to t ,  


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where ny  describes the inflation-adjusted loss from a weather-induced CAT at time n , 

which is a sequence of independent and identically distributed positive random variables. The 

popular distribution of ny  includes exponential distribution, gamma distribution, Weibull 

distribution and lognormal distribution. tN  denotes the counts of weather-induced CAT 

events at time t , which represents a Poisson process with the intensity parameter t  that is 

independent of all other random variables.  

In order to include the influence of natural climate cycles and global warming on 

weather-induced CAT intensity, we propose a RSCP model to capture the aggregate losses 

from CAT events from time 1t  to t , as follows: 
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where 1tS  is the high CAT event state and 2tS   is the low CAT event state. The state 

variable  1, 2tS   is assumed to follow a first-order Markov process and state transition 

probabilities given the 1t  information 1tF  are as follows:  

1 1 11( 1 1, ) ,t t tp S S F p                            (3) 

1 1 22( 2 2, ) .t t tp S S F p                            (4) 

Thus, the transition matrix )(tP  can be written as follows: 
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rate leaving from state i  to other state j . We denote the joint probability of tS  and 
tStN ,  

as ),,,()1,( ,1,1 mNNjSiSPmp
tt StStttij   which represents the one-period transition 

probability with m  arrival times from state iSt 1  to state jSt  . Last and Brandt (1995) 

give the moment-generating function for this joint distribution function as follows:  
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where ))1,((:)1P(m, mpij  represents the 22  transition probability matrix. The 

moment-generating function under the Kolmogorov forward equation has a unique solution 

for [ -(1-m) ]P(m,1) e   , where  is the weather-induced CAT intensity matrix,  
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and , tt S  represents the weather-induced CAT intensity at state  1, 2tS   from time 1t  

to t . 

We extend Elsner et al. (2008) to capture the asymmetric impact of natural climate 

cycles and global warming on weather-induced CAT intensity by proposing a two-state 

regime-switching Poisson regression function that includes the AMO and CO2 as climate 

variables to model weather-induced CAT intensity. Weather-induced CAT intensity is higher 

in one state because of the effects of high AMO and CO2, but it is lower in another state 

because of the effects of low AMO and CO2. Therefore, the model of weather-induced CAT 

intensity at state tS  is as follows: 
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where 1

tS
 
describes the state-dependent drift term of intensity from time 1t   to time t , 

2

tS  represents the state-dependent parameter of the AMO effect on the weather-induced CAT 

event to capture the impact of the natural climate cycle on CAT intensity and 3

tS  represents 

the state-dependent parameter of the CO2 effect on weather-induced CAT event to capture the 

impact of global warming on CAT intensity. 

In predicting the future weather-induced CAT intensity, we model the dynamics of AMO 

and changes in CO2 using a standard ARMA(p, q) time series model:  

2
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where p  and q denote the AR and MA orders, respectively; I
i  and I

j  are the AR and 

MA coefficients of the AMO and CO2, respectively; and setting 0 21, .I I AMO or CO    I
tw  

is an arbitrary constant, and I
t  is independent and normally distributed with a mean of zero 

and a variance of 
2 0I  . 

We can forecast future AMO and CO2 with Equation (9). Therefore, Equation (8) can be 

rewritten using the predicted values of AMO ( *
tAMO ) and CO2 ( *

2,tCO ): 
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Equation (10) indicates that the intensity of a weather-induced CAT at time t  can be 

obtained from the past information of the AMO index and the CO2 index in the ARMA(p, q) 

model. Thus, we are able to predict hurricane intensity and the natural logarithm of the 
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hurricane intensity contains the mean reverting property. If we do not consider the 

regime-switching effect and the CO2 effect, ( 1 1 2 2 3 3
1 2 1 2 1 2, , 0         ), Equation (10) 

reduces to the model of Elsner et al. (2008). If 2 3 0
t tS S    (i.e., where there is no AMO 

effect and no CO2 effect), Equation (10) reduces to the model of Chang, Lin and Yu (2011). If 

1 1 2 3
1 2, 0

t tS S       and there is no regime-switching effect, Equation (10) reduces to the 

traditional Poisson model.  

 

3. Empirical Analysis 

3.1 Preliminary Data Analysis 

This section employs the AMO index, the CO2 index and annual hurricane frequency 

from 1961 through 2010 for our analyses. The data from the AMO and CO2 indices are 

extracted from the National Oceanic and Atmospheric Administration (NOAA), and 

hurricane frequency and losses are available from the U.S. database on spatial hazard events 

and losses. The AMO index is computed by averaging SSTs between 0° and 60°N and 75° 

and 7.5°W. The CO2 index in the Earth's atmosphere (parts per million) derived from in situ 

air measurements at the Mauna Loa Observatory, Hawaii: Latitude 19.5Â°N Longitude 

155.6Â°W Elevation 3397m. Utilizing data covering the 1961-2010 period, Figures 1 and 2 

show the time series relationship among of the AMO index, the CO2 index and hurricane 

frequency from 1961 to 2010. The correlation coefficient of the AMO index (CO2 index) and 

hurricane frequency is approximately 53% (55%). Thus, the AMO and CO2 indices are each 

positively related to hurricane frequency. 

[Figure 1 is here] 

[Figure 2 is here] 
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Table 2 provides the descriptive statistics for the AMO index, the CO2 index and 

hurricane frequency from 1961 to 2010. The skewness of the AMO and CO2 indices is close 

to zero, and the excess kurtosis is also close to zero. We employ standard tools of time-series 

analysis to assist us in modeling the AMO index and changes in the rate of the CO2 index. 

The first step in the development of a time-series model is to check for stationarity. We then 

use the Phillips-Perron (PP) test (Phillips and Perron, 1988) to investigate the null hypothesis 

that a time series is non-stationary with a unit root. The PP method estimates the 

non-augmented Dickey-Fuller test and modifies the t-ratio of the alpha coefficient such that 

serial correlation does not affect the asymptotic distribution of the test statistic. Finally, we 

use the Ljung-Box (LB) test and Jarqur-Bera (JB) test to check for normality. 

[Table 2 is here] 

Table 3 reports the results of the unit root tests for the AMO index, the CO2 index and 

the change rate of CO2 index. The PP tests reject the null hypothesis of the unit root for the 

AMO index and for the change rate of CO2 index, but the CO2 index fails to reject the null 

hypothesis of the unit root. Consequently, we use the AMO index and the change rate of CO2 

index in further analyses. 

[Table 3 is here] 

We use univariate autoregressive moving average (ARMA) models for hurricane 

intensity projection. We employ data from the 1961 to 2010 period and determine that the 

ARMA(1,1) is the optimal model for the AMO index and the change rate of CO2 index 

( 2CO ) based on the Akaike information criterion (AIC) and the Schwarz Bayesian 

information criterion (BIC) values. The estimated result is the following: 

**)2041.0(***)0861.0(

)0166.0,0(~,4150.09221.0 11 NAMOAMO AMO
t

AMO
t

AMO
ttt   

, 
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***)0974.0(***)0117.0(

)10*076.2,0(~,8259.0,9999.0 6
112,2

222 



  NCOCO CO

t
CO

t
CO

ttt 
.    (11) 

The LB and JB tests show that the LB and JB statistics for the residuals of the AMO index 

(the change rate of CO2 index) are 11.6696 (15.079) and 4.6417 (2.7209), respectively, which 

is not statistically significant at the 5% level. Therefore, we can say that ARMA(1,1) is 

appropriate model for the AMO index and the change of CO2 index.  

3.2 Parameter Estimation for Hurricane Risk 

Table 4 reports the estimates of hurricane intensity using linear and regime-switching 

models after obtaining the coefficient estimates for the parameters of the AMO and the 

change rate of CO2 indices from Equation (11). Table 4 shows the goodness-of-fit of 

hurricane intensity for four linear models, including the linear constant model (LM), the 

linear model with AMO index (LAM), the linear model with CO2 index (LCM) and the linear 

model with both AMO and CO2 indices (LACM), in addition to four regime-switching 

models, including the regime-switching constant model (RM), the regime-switching model 

with AMO index (RAM), the regime-switching model with CO2 index (RCM) and the 

RACM. The coefficient of the constant term, 1
1 =1.5173, in the LM corresponds to the mean 

value of hurricane frequency ( t ) of 4.560 reported in Table 2. However, its significance is 

only at 12.92% level. The LAM model finds that the coefficient of the AMO index, 

2
1 4.3723  , is significant at the 1% level, which implies that hurricane intensity is 

significantly and positively affected by the AMO index, which is consistent with the 

empirical evidence of Elsner et al. (2008). We further consider the impact of global warming 

on hurricane intensity. The coefficient of the CO2 index, 3
1 495.9430  , in the LCM is 

significant at the 1% level, which indicates that hurricane intensity is significantly and 

positively affected by the CO2 index. This result implies that the CO2 index also influences 

hurricane intensity, which is supported by the IPCC report (2007) and indicated that future 

climate change may become more serious as a result of human-induced global warming and 

may increase unanticipated hurricane events. The LAM and LCM models produce a better fit 

than the LM model based on the AIC and the BIC values. This result demonstrates that the 

AMO index and the CO2 index must be considered in analyzing and predicting hurricane 

intensity. 
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[Table 4 is here] 

Table 4 shows the goodness of fit of hurricane intensity for four regime-switching 

models. The results reveal that the coefficient of the AMO index in the high regime is 

significantly positive at the 1% level ( 2
1 4.1638  ), and the corresponding coefficient in the 

low regime is significant at the 10% level ( 2
2 0.5726  ) in the RAM. The RCM 

demonstrates that the coefficient of the CO2 index in the high regime is significantly positive 

at the 1% level ( 3
1 157.6834  ), but the corresponding coefficient of the AMO index in the 

low regime is not significant ( 3
2 0.0006  ). These results imply that the CO2 index exerts an 

asymmetric effect on hurricane intensity. The effect of the CO2 index on hurricane intensity 

would increase in the high regime. By contrast, the significant influence of the CO2 index 

vanishes in the low regime. Furthermore, increased hurricane intensity is driven by the higher 

AMO index and the CO2 index in the high regime. We also observe that the regime-switching 

models dominate the linear models, and RACM offers the best fit for the hurricane intensity 

based on the AIC and the BIC values. The transition probabilities, 11p  and 22p , are 0.7382 

and 0.2685, respectively. These results imply that the probability of switching from low 

hurricane intensity to high hurricane intensity is higher than switching from high hurricane 

intensity to low hurricane intensity.  

We further use the maximum likelihood estimation to estimate the parameter values of 

losses caused by hurricanes using several popular distributions. The empirical results are 

shown in Table 5. We find that the gamma distribution exhibits the best goodness-of-fit with 

an estimated shape parameter of 134.0  and scale parameter 152.0 , which are 

significant at the 1% and 5% levels, respectively. Its value of the log-likelihood function is 

327.625.  

[Table 5 is here] 
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3.3 Prediction of Hurricane Intensity 

The empirical results from the previous section provide us with the background to 

develop a prediction algorithm for hurricane intensity. Specifically, we use the ARMA(1,1) 

model in Equation (11) to predict future AMO/CO2 index and use then compute the 

corresponding hurricane intensity. Taking the ARMA(1,1) model of the AMO/CO2 index as 

an example, we obtain a predicted AMO/CO2 index for the 2007-2010 periods by using the 

historical AMO/CO2 index for the 1961-2006 periods. Finally, based on the predicted 

AMO/CO2 index, each model produces the corresponding hurricane intensity from 2007 to 

2008, 2008 to 2009 and 2009 to 2010. We employed the mean absolute error (MAE) and the 

root mean square error (RMSE) methods to measure projection performance and the 

predictive power of the models.  

Table 6 reports the prediction errors of annual hurricane intensity given the actual 

AMO/CO2 index and the predicted AMO/CO2 index using the ARMA(1,1) model. The MAE 

and the RMSE find that LAM (LACM) produces better prediction performance than LM 

(LAM), which suggests that the effects from both the AMO and CO2 should be considered. 

Furthermore, we find that the RACM produces better prediction performance than the LACM 

with an improvement rate about 60% (i.e. (2.7496-1.1050)/ 2.7496; see Table 6, Panel A).  

Panel B shows that employing the predicted AMO and CO2 indices from ARMA(1,1) 

model produces the lowest forecasting errors in RACM. This finding implies that the 

regime-switching Poisson regression using the predicted AMO and CO2 values provides a 

better means of predicting U.S. hurricane frequency. The minimum MAE of this model is 

only 1.0848 which is low comparing with our sample mean of 4.56 hurricane events per year. 

This indicates that our forecasting error for the annual U.S. hurricane frequency is about one. 

[Table 6 is here] 
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4. Applications: Risk Management and Valuation of CAT Reinsurance 

4.1 Hurricane Risk Measurements: TailVaR 

Several measures of tail risk are used for to measure CAT risk. The best known measure 

is “value at risk” (VaR), which is the quantile of the loss distribution at a remote return period. 

However, the VaR measure ignores the shape of the risk in the tail of the distribution. A more 

common measure adopted by reinsurers is expected shortfall or TailVaR. TailVaR measures 

the expected loss after the loss exceeds a given remote threshold. This section measures the 

TailVaR of hurricane risk from 2007 to 2010 based on the four models (the LM, LAM, 

LACM, and RACM). We then investigate the influence of the regime-switching effect, the 

AMO effect and the CO2 effect on the TailVaR for reinsurers with hurricane risk.  

The value of TailVaR is obtained as follows: 

1. We first compute the hurricane loss of a specific event using the RSCP model 

because hurricane loss of each event and hurricane frequency are independent. Based 

on the hurricane loss data from 1961 to 2006, it shows that the gamma distribution 

exhibits the best goodness-of-fit with an estimate of a shape parameter of 129.0  

and a scale parameter 168.0 . Therefore, we simulate 100,000 paths for the 

gamma random variables using the shape parameter 129.0  and the scale 

parameter 168.0  to generate specific hurricane loss for each event from 2007 

to 2010.  

2. We simulate 100,000 paths using the standard normal random variables to generate 

the AMO index and changes in the CO2 index using ARMA(1,1) from 2007 to 2010, 

which allows us to compute hurricane intensity with the RACM, the LACM and the 

LAM in each year. 

3. We compute the expected value for the 1,000 extreme paths of total hurricane losses 

to obtain the TailVaR of hurricane risk based on the RACM, LACM, LAM and LM 
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in each year at the 1% significance level. 

Figure 3 presents the TailVaR estimated from our four CAT intensity models. This 

figure shows that the TailVaR in LM is much lower than those from the LAM, LACM and 

RACM. The differences show that AMO effect is larger than the CO2 effect and the 

regime-switching effect is substantial in all four years. In particular, Hurricane Ike alone 

caused a $12.5 billion insured loss in September 2008, while the LM produces a TailVaR of 

less 2 billion (1.79 billion) in the year of 2008. However, the RACM suggests a TailVaR of 

13.39 billion which seems to be a more reasonable reserve for the insurance industry to cover 

the hurricane risk. 

[Figure 3 is here] 

We further compare the RACM, LACM, LAM and LM to obtain greater insight on the 

influence of the regime-switching effect, the CO2 effect and the AMO effect on TailVaR. We 

consider the LM as the benchmark and define the changes of TailVaR as follows: 

Let ΔTailVaR  TailVaR(RACM) - TailVaR(LM) 

=[TailVaR(RACM)-TailVaR(LACM)]+[TailVaR(LACM)-TailVaR(LAM)] + 

[TailVaR(LAM)- TailVaR(LM)] 

=ΔTailVaR resulting from the regime-switching effect +ΔTailVaR resulting from the CO2 

effect +ΔTailVaR resulting from AMO effect 

 Regime-switching effect + CO2 effect+ AMO effect 

   Total effect                                             (12) 

We use Equation (12) to compute the total effect, the regime-switching effect, the CO2 

effect and the AMO effect; the results are shown in Figure 4. Figure 4 indicates that the 

regime-switching effect and the AMO effect dominate the CO2 effect in each year and that 

the CO2 effect is the largest in 2008. This result indicates the importance of incorporating 

the regime-switching effect, the CO2 effect and the AMO effect in managing hurricane risk 

and forecasting hurricane activity.  
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[Figure 4 is here] 

4.2 Valuation of stop-loss reinsurance 

This section illustrates the payoff of a stop-loss CAT reinsurance contract and uses the 

discrete-time Esscher transformation to price the reinsurance via the equivalent martingale 

probability measure. The aggregate CAT loss is assumed to follow the regime-switching 

compound process (RSCP). 

The stop-loss reinsurance contract offers a protection for losses exceeding M  and the 

protection is capped atC . By design, if the aggregate CAT loss, 
tSTY , , is less than the 

protection M , the reinsurer pays nothing. However, when the aggregate CAT loss, 
tSTY , , 

exceeds the protection M , reinsurance pays MY
tST ,  up to the limit of the reinsurer's 

exposure, MC  . The payoff of the reinsurer for the contract at maturity T , ( )V T , is: 

, , ,( ) min(max( ,0), ) max( ,0) max( ,0)
t t tT S T S T SV T Y M C M Y M Y C       .    (13) 

Thus the stop-loss reinsurance is simply the difference between two call options with 

different strike prices (M and C) that are written on the same underlying losses. 

Change measure: discrete-time Esscher transform 

When the market is incomplete, there are infinitely many equivalent martingale 

measures. The Esscher transform is a well-known tool in actuarial science and finance. Its 

history may be tracked to the seminal work of Esscher (1932), in which this transform was 

first introduced to the actuarial science literature. The original purpose of the Esscher 

transform was to provide a convenient method to approximate the distribution of aggregate 

claims. Gerber and Shiu (1994) adopt the continuous-time Esscher transform to price options 

embedded in insurance products in an incomplete market. The Esscher transform has the 

advantage that the dynamic structure of invariance can be maintained after a measure 

transform. The existence condition of the moment-generating function remains qualified 
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regardless of the size of CAT events. Furthermore, the Esscher transform can be regarded as 

the general Girsanov transformation. Elliott et al. (2005) provide the continuous-time 

regime-switching version of the Esscher transform to determine an equivalent martingale 

measure. Christoffersen et al. (2010) employ the discrete-time Esscher transform to 

determine an equivalent martingale measure in an incomplete market. Since both the AMO 

and CO2 indices are discrete, we thus follow Christoffersen et al. (2010) in the following 

analysis.  

We use P  to describe the physical distribution of the states of nature. We assume that a 

finite time t  is specified by [0,1,2,..., ]T  and that the financial market consists of a 

zero-coupon risk-free bond index and a CAT claim. The dynamics of the bond are described 

by the process   0

T

t t
B


 normalized to 0 1B  . The dynamics of the aggregate CAT losses of 

CAT events are described by   0

T

t t
Y


. The information structure is given by the filtration 

 F= 0,1,...,tF t T  generated by the CAT claim and the bond process. We follow Elliott et 

al. (2005) to assume the information of the transition of the state   0

T

t t
S


, tS

tF , is known in the 

future; there is no risk premium when the state changes into another state. We follow 

Christoffersen et al. (2010) to do not constrain the interest rate tr  at time t  to be constant; 

instead, it is assumed to be 1
tr

tF   measureable. Specifically, the discrete-time Esscher 

transform is given in the following equation, 

  11 1

exp( )
exp ( ( )) ,

exp( )
t

t t
i i

i i i iP
iiF t i i

hYdQ
hY h

dP E hY  

   
     

   
              (14) 

where th  denotes the time-varying parameter of the discrete-time Esscher transform, and 

)( tt h  is defined as the natural logarithm of the moment-generating function for the total 

loss, i.e.,    )exp()(exp 1 tt
P
ttt YhEh  . 



  19

According to the definition of a martingale condition on tS
tF  for the discounted 

aggregate CAT loss under the risk-neutral measure,  1 1 1 ,Q
t t t t tE Y B Y B   the martingale 

condition holds if and only if the parameters of the Esscher transform th  satisfy the 

following: 

       1 1 ,exp( ) exp( ) exp( ( ( ) 1)) 0
t

P
t t t t t t t S t tE Y hY r Y h                   (15) 

where  )exp(1 ttt
P
t YhYE   can be obtained by the MATLAB command for a Taylor polynomial. 

Term  1( ) exp( )P
t t t t th E h y   is the moment-generating function for the specific loss ty .  

The solution of the martingale condition reveals that the dynamic of the RSCP model by 

the discrete-time Esscher transform under the risk-neutral probability measure Q , which can 

be shown as follows and the detailed proof in Appendix A,  

,1

1,1

,2

1,2

,1
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1,
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Q
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t
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y Y if S
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
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
 
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 
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 





 

where 
Q

tSt
N

,  denotes a new regime-switching Poisson process with a new intensity matrix 

Q  of weather-induced events, as follows: 

,1

,2

( ) 0

0 ( )
t t tQ

t t t

h

h

 
 

 
   

  
,                    (16) 

where the invariant Markov chain tS  has an original matrix of the transition rate   that 

remains unchanged under the risk-neutral probability measure. Based on the new intensity 

matrix and the invariant Markov chain tS , the one-period joint probability under the 

risk-neutral probability measure is defined by 1 , 1,( ,1) ( , , )
t tij t t t S t SQ m Q S i S j N N m      , 

and the joint probability under the risk-neutral measure can be determined from the 
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moment-generating function, [ -(1-m) ]Q(m,1) e
Q  . Finally, under the risk-neutral probability 

measure Q , the new density function of each specific weather-induced CAT loss is:  

( ) ( )
( )

t th y
Q

t t
t t

e
f y f y

h
 ,                        (17) 

where ( )tf y  is the original density function of each specific weather-induced CAT loss. 

Many distributions, such as gamma, lognormal and Pareto, can also be applied for claim size 

distribution. In Table 5, we have shown that gamma distribution fits best for the U.S. 

hurricane losses during the period of 1961 to 2010. 

Closed-form solutions of reinsurance premium 

If the stop-loss reinsurance has a maturity of T years, and the claim is settled at each 

year, the value of the reinsurance at time 0, or reinsurance premium, is 

 1 , 1, , 1,
1

(0) ( ) ( ) , 1, 2 ,t

t t t t

T
r Q

t t S t S t S t S t
t

V e E Y Y M Y Y C S  
  



         
     (18) 

where , tt SY  denotes the aggregate CAT loss at state tS  during t  years. The formula of the 

reinsurance premium can be obtained as Theorem 1. 

Theorem 1: Based on the RSCP model, the closed-form solution of the stop-loss reinsurance 

premium under the risk-neutral probability measure Q  is as follows: 

2 2

,
1 0

(0) ( ,1) ( ) ( ) ( ) ( )t

T
r m Q m m m Q m m

i ij t j t t t t tM C
t m i j

V e Q m y M f y dy y C f y dy
  

 

          ,  (19) 

where 2
1 2 1

1 2

, 1
  

 
  


 and ( ,1)ijQ m  represents the transition probability with m  

arrival times from state iSt 1  to state jSt  , in which the hurricane intensity is 

1 2 * 3 *
2,

, e (1 )i i t i tAMO COQ t
t i

h   


   . 
( 1, ( ) )

( ) ( ) 1
( ) ( 1)

m Q m m t
t t tk

t

m h km
y k f y dy

h m

  
 

   
      



( , ( ) )
1

( )
tm h k

k
m

  


 
    

, ,k C or M  and   is the lower incomplete gamma functions. 
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Equation (19) can be viewed as the sum of transition probability of the difference 

between two call options with different strike prices (M and C). Appendix B provides the 

proof. 

  We consider several special cases to further illustrate the property of the stop-loss 

reinsurance solution and to show their specific formulae in the following remarks. 

Remark 1: If 



Q

tSt

Q
tSt

N

Nn

Q
n

Q
t yY

,

,1

, where Q
St t

N ,  is a regime-switching Poisson process and the 

hurricane intensity is constant at different states (i.e., no AMO effect and no CO2 effect

2 3; 0)
t tS S   , the hurricane intensity will reduce to the model in Chang et al. (2011), and the 

pricing formula for the stop-loss reinsurance can be derived as the following: 

2 2

1 0

(0) ( ,1) ( ) ( ) ( ) ( )t

T
r m Q m m m Q m m

i ij t t t t t tM C
t m i j

V e Q m y M f y dy y C f y dy
  

 

          , 

where ( ,1)ijQ m  represents the transition probability with m  arrival times from state 

iSt 1  to state jSt   and its hurricane intensity is 
1

, e (1 )i

t

Q t
t S

h 


  . 

Remark 2: If 



Q
t

Q
t

N

Nn

Q
n

Q
t yY

1

, where 
Q

t
N  is the Poisson process, and the hurricane intensity 

is a linear function of the AMO index and the CO2 index 1 1 2 2 3 3
1 2 1 2 1 2( , , )        , the 

pricing formula for the stop-loss reinsurance is as follows: 

1 0

( )
(0) ( ) ( ) ( ) ( )

!

Q
t

t

Q mT
r m Q m m m Q m mt

t t t t t tM C
t m

e
V e y M f y dy y C f y dy

m

   

 

          , 

where 
1 2 * 3 *

2,e (1 )t t t t tAMO COQ t
t

h   


   . 

If the hurricane intensity is only a linear function of the AMO index 

1 1 2 2 3 3
1 2 1 2 1 2( , , 0)         , the hurricane intensity reduces to the model in Elsner et al. 

(2008), and the hurricane intensity under the risk-neutral world becomes 
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1 2 *

e (1 )t t tAMOQ t
t

h  


  . If the hurricane intensity is only a linear function of the CO2 index 

1 1 2 2 3 3
1 2 1 2 1 2( , 0, )         , the hurricane intensity under the risk-neutral world becomes 

1 3 *
2e (1 )t t tCOQ t

t

h  


  . If the hurricane intensity at different states is constant and the same 

1 1 2 2 3 3
1 2 1 2 1 2( 0)           , the hurricane intensity reduces to the traditional Poisson 

model and the hurricane intensity under the risk-neutral world becomes 
1

, e (1 )i

t

Q t
t S

h 


  . 

4.3 Numerical Analysis 

This section evaluates the pricing performance for the stop-loss CAT reinsurance using 

the four alternative hurricane intensity models: RACM, LACM, LAM, and LM. We also look 

into the effect of the regime-switching effects, the AMO effect and the CO2 effect, on the 

reinsurance premium. 

Parameter values 

We assume the following parameter values for the stop-loss reinsurance: protection, 

1M ; cap, 5C ; interest rate, 02.0tr ; and the reinsurance maturity, 1T . 

Furthermore, the hurricane intensity, , t

Q
t S , of the different models in the risk-neutral world 

can be obtained according to the estimated parameter values ( 321 ,,
ttt SSS  ) of RACM, LACM, 

LAM and LM, the th  value implied by Equation (15), and the shape (scale) parameter value 

 ( ) for the gamma distribution during 1961-2006 period. The transition probability at 

hurricane frequencies from state 1 to state 2 is 1781.012 p  and 8219.011 p , respectively, 

for the RACM. Consequently, the probability from state 2 to state 1 is 7484.021 p and

2516.022 p  respectively. Using the transition probability, the transition rate of two states 

can be obtained ( ,5018.01   and 1087.22  ) to capture the leaving length of intensity at 

a different state. 

To compute the sequence of transition probability under the risk-neutral world,
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{ }Q(m,1),m>0 , we adopt the method proposed by Abate and Whitt (1992), who present a 

simple algorithm for numerically inverting probability-generating functions based on the 

Fourier series method to obtain a simple computation with a convenient error bound from the 

discrete Poisson summation formula. Let 1i = - , and let Re ( )z be the real part of z . For 

0 1e< <  and 1m³ ,  

2

2
Q(m,1)-Q(m,1) ,

1

m

m

e
e

£
-

  

where     
1

* * *

1

1
Q(m,1)= ( ,1) ( 1) ( ,1) 2 ( 1) Re( ( exp( ),1))

2

m
m k

m
k

ki
Q Q Q

mm

p
e e e

e

-

=

ùé ú+ - - + -êë úû
å , 

*

0

( ,1) Q(m,1) , 0 1.m

m

Q z z z




    Note that the infinite summation of hurricane events, m, is 

truncated at level m = 20 such that the respective cumulative Poisson probabilities are very 

close to 1. 

Scenario Analysis 

We conduct a scenario analysis to examine the regime-switching effect, the AMO effect 

and the CO2 effect on the value of reinsurance from 2007 to 2009. Table 7 shows the scenario 

analysis of annual hurricane intensity using the different models from 2007 to 2009. Panels A 

and B indicate that the value of reinsurance in the LM, LAM, LCM and LACM are 

underestimated, particularly in the LM. Furthermore, the value of reinsurance in the RACM 

is the largest in 2007 because Hurricane Ike occurs and causes 12.5 billion in insured losses 

in September 2008. Thus, the discounted hurricane loss value and the reinsurance premium 

are highest in that year. However, the stop-loss premium in the LM in 2007 is underestimated 

and fails to capture and forecast future hurricane intensity. This result indicates that the 

regime-switching effect, the CO2 effect and the AMO effect must be considered when pricing 

weather-induced CAT products.  

[Table 7 is here] 
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Measurement Errors 

We obtain the real value ( RV ) of the reinsurance using the actual frequency and loss data 

of hurricane events, and the theoretical value ( TV ) of the reinsurance using estimated 

parameter values from the RACM, LACM, LCM, LAM and LM in 2007, 2008 and 2009. We 

compute two measurements of pricing errors, the MAE and RMSE methods, for purposes of 

comparison.  

Table 8 provides an overview of the MAE and RMSE measurements of pricing errors. 

Panels A and B indicate that the pricing errors under the RACM are all smaller than the 

errors under the LM, LAM, LCM and LACM for the MAE and RMSE measurements. Using 

the MAE in Panel B as an example, the improvement rate of pricing errors using the LCM 

over the LM is only 29.93 percent [(1.4815−1.0380)/1.4815]. The improvement rate rises to 

43.41 (41.33) percent if we use the LAM (LACM). Furthermore, the improvement rate 

increases to 68.40 percent [(1.4815−0.4682)/1.4815] if the hurricane activity is assumed to 

follow the RACM. Our results show that the RACM can reduce pricing errors by 55–70 

percent depending on the MAE and RMSE measurement methods. 

[Table 8 is here] 

 

5. Conclusions 

This paper develops a regime-switching compound Poisson (RSCP) model in which the 

two-state hurricane intensity is a function of a natural climate cycle (AMO index) and global 

warming (CO2 index), to forecast weather-induced CAT intensity and price CAT risk. With 

respect to the regime-switching model, the empirical results indicate that the effect of the 

AMO index and the CO2 index on the frequency of hurricane events would increase in the 

high regime. This result can be explained by the IPCC report (2007), which indicates that 

future climate change may become more serious as a result of human-induced global 

warming and lead to more unanticipated hurricane events. By contrast, the significant 
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influence of the AMO index and/or the CO2 index vanishes in the low regime. Consequently, 

we observe an asymmetric effect of the AMO index on hurricane intensity, and the CO2 index 

affects the hurricane intensity in the high regime. The empirical results of the 

regime-switching model that considers the AMO index and the CO2 effect provide an 

excellent projection average annual U.S. hurricane frequency, with a forecasting error of 

about one.  

With respect to hurricane risk management using TailVaR and the pricing of stop-loss 

reinsurance, we find that insurers can provide the appropriate reserves to manage hurricane 

risk by using the regime-switching model that considers the AMO index and the CO2 effect. 

Furthermore, pricing errors related to stop-loss premiums under the RACM are 55 to 70 

percent less than under the LCM. The regime-switching effect and the AMO effect 

dominate the CO2 effect, and the CO2 effect is the largest in 2008 during Hurricane Ike. 

This result indicates the importance of considering the regime-switching effect, the CO2 

effect and the AMO effect when managing hurricane risk, when modeling and forecasting 

hurricane activity and when pricing weather-induced CAT products.  
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Table 1: Ten Most Costly Catastrophes in the United States.  

   Estimated Insured Losses 

Rank Month/Year Event 

Dollars 

when 

Occurred 

In 2012 Dollars 

($ Billions) 

1 Aug. 2005 Hurricane Katrina $41.100 $48.317 

2 Sep. 2001 World Trade Center & Pentagon 

Terrorist Attacks 
$18.779 $24.345 

3 Oct. 2012 Hurricane Sandy $18.750 $18.750 

4 Aug. 1992 Hurricane Andrew $15.500 $25.364 

5 Jan. 1994 Northridge, CA Earthquake $12.500 $19.365 

6 Sept. 2008 Hurricane Ike $12.500 $13.329 

7 Oct. 2005 Hurricane Wilma $10.300 $12.108 

8 Aug. 2004 Hurricane Charley $ 7.475 $ 9.085 

9 
Apr. 2011 

Flooding and tornados that struck 

Tuscaloosa, AL, & other locations 
$ 7.300 $ 7.451 

10 Sep. 2004 Hurricane Ivan  $ 7.110 $ 8.641 

Sources: Insurance Services Office, Inc. (ISO), 2013. 

Table 2: Descriptive Statistics of Hurricanes and Climate Variables from 1961 to 2010. 

 Frequency AMO CO2 
Change rate 

of CO2 

Mean 4.560 -0.04 348.581 0.004 

Median 3 -0.061 346.713 0.004 

Min 0 -0.061 317.638 0.001 

Max 18 0.383 389.845 0.008 

Std. Dev. 4.550 0.193 21.795 0.002 

Skewness 1.300 0.249 0.268 0.199 

Excess Kurtosis 0.788 -0.46 -1.136 -0.280 

Table 3: Phillips-Perron Unit Root Tests. 

 Intercept Trend & Intercept None 

AMO index -2.36** -2.34 -3.73** 

CO2 index 19.58 5.49 -1.28 

Change rate  

of CO2 
-1.11 -4.92*** -6.54*** 

Asterisks denote statistical significance at the 1% (***) and 5% (**) levels. 
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The p values are reported in parentheses. Asterisks denote statistical significance at the 1% (***), 5% (**) and 10% (*) levels.

Table 4: Parameter Estimates of U.S. Hurricane Intensity in Linear and Regime-switching Models from 1961 to 2010.  

Model 
1
1  1

2  2
1  2

2  3
1  3

2  11p  22p  AIC BIC 

LM 
1.5173 

(0.1292) 
-- -- -- -- -- -- -- -307.5082 -305.5962 

RM 
2.3716 

(0.8674) 

0.7267 

(0.9509)
-- -- -- -- 

1.0000 

(0.976)

0.9888 

(0.990)
-404.8736 -397.2255 

LAM 
1.3778 

(0.8742) 
--- 

4.3723***

(0.0057) 
-- -- -- -- -- -414.3437 -410.5197 

RAM 
1.5596 

(0.8358) 

0.5346 

(0.8614)

4.1638***

(0.0028) 

0.5726*

(0.0944)
-- -- 

0.7786*

(0.0929)

0.2257*

(0.0923)
-415.1772 -411.7051 

LCM 
-0.8222 

(0.9143) 
-- -- -- 

495.9430***

(0.0000) 
-- -- -- -400.1796 -396.3556 

RCM 
1.5849 

(0.8594) 

0.6721 

(0.9264)
-- -- 

157.6834***

(0.0000) 

0.0006 

(0.9884) 

1.0000 

(0.088)

0.9872 

(0.996)
-404.3732 -400.9010 

LACM 
1.3987 

(0.9521) 
-- 

4.3818* 

(0.0658) 
-- 

-5.1481*** 

(0.0000) 
-- -- -- -412.3445 -406.6084 

RACM 
1.3496 

(0.8305) 

1.1381 

(0.8046)

3.7378* 

(0.0615) 

1.0650 

(0.8046)

110.4862***

(0.0000) 

-198.0596***

(0.0000) 

0.7384*

(0.094)

0.2685*

(0.0976)
-416.1342 -411.8380 
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Table 5: Parameter Estimates of Distributions for Hurricane Losses (y) from 1961 to 2010 

(Unit: billion) 

Distribution  Parameters 
Log-likelihood  

Values 

Lognormal  
2

2

(ln )

21
,

2

y

y

y

y y

y

f y e
y



 
 

 

   
***678.9y  

***291.11y  
292.266 

Gamma   11
,

( )

y

f y y e 
 

 


 


  

where ( )  is Gamma function 

***134.0  
**152.0  327.625 

Exponential   1
y

y

y
y

f y e 




  ***021.0y  144.350 

Weibull  
1

( / ),
b

b
y ab y

f y a b e
a a


    

 
 

002.0a  
***206.0b  316.970 

Pareto  
1 1/

1
,

k
ky

f y k 
 

 
   
 

 
***124.5k  

0001.0  
205.871 

Asterisks denote statistical significance at the 5% (**) and 1% (***) levels. 

Table 6: Prediction Errors of U.S. Annual Hurricane Intensity from 2007 to 2010. 

Model 
Panel A 

Prediction Using 
Actual AMO andΔCO2 

 Panel B 
 Prediction Using 

ARMA(1,1) for AMO 
andΔCO2 

 MAE RMSE MAE RMSE 
LM 6.6606  6.6802  6.6606  6.6802 

RM 4.8852  5.2465  4.8852  5.2465 

LAM 1.7966  2.0912  1.4096   1.7027  

RAM 1.5561 1.9161 1.2568 1.5581 

LCM 3.3291   3.3388   3.5181   3.5418 

RCM 2.9263  2.7826  2.9365  2.8936 

LACM 2.7496   2.9484   2.7076    2.9209 

RACM 1.1050  1.2137  1.0848   1.2056  
The table uses mean absolute error (MAE) and the root mean square error (RMSE) methods to measure projection 
performance and the predictive power of the models. The parameter values for loss distribution are: ,129.0

.168.0 The parameters of the LM are: 1.3808.1
1   The parameters of the RM are: ,2535.21

1  .7010.01
2 

The parameters of the LAM are: 1.3506,1
1  4.1807.2

1   The parameters of the RAM are: 1.4567,1
1 

,3788.01
2  4.1216,2

1  0.0001.2
2  The parameters of the LCM are: -0.7233,1

1  461.4121.3
1  The 

parameters of the RCM are: ,898.11
1  ,713.01

2  417.5441,3
1  , .2332.693

2  . The parameters of the LACM 

are: 1.5459,1
1  4.2393,2

1  -5.4527.3
1   The parameters of the RACM are: 1.6618,1

1  1.5884,1
2   

3.9215,2
1  1.0818,2

2  1.1141,3
1  -243.8173,3

2  ,5018.01  ,1087.22  0.8219,11 p 0.2516.22 p  
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Table 7: Scenario Analysis of the Regime-Switching Effect, AMO Effect and CO2 Effect on 

Reinsurance Premiums from 2007 to 2009. 

Model 
Panel A 

 Reinsurance Premiums using 

Actual AMO and ΔCO2 

 Panel B 
Reinsurance Premiums using 
ARMA (1,1) for AMO andΔ

CO2 

 2007 2008 2009 2007 2008 2009 

LM 2.1203  2.1959 2.1198 2.1203 2.1959  2.1198 

LAM 3.3113  2.5536 2.8629 3.5250 3.3285  2.7934 

LCM 2.2722  2.2420 3.7300 2.6402 2.6254  2.5007 

LACM 3.2519  2.4993 3.4281 3.4333 3.2380  2.6998 

RACM 4.1001  3.8693 3.8255 4.1565 4.1033  3.9563 

The parameter values for base valuation are: ,1M ,5C ,02.0tr ,1T ,20m ,129.0 .168.0 The 

parameters of the LM are: 1.3808.1
1  -0.0937,2007 h  -0.0874,2008 h -0.0937.2009 h  The parameters of the 

LAM are: 1.3506,1
1  4.1807,2

1   -0.0755,2007 h -0.0849,2008 h -0.0437.2009 h The parameters of the 

LCM are: -0.7233,1
1  461.4121,3

1  , -0.0933,2007 h -0.0884,2008 h -0.0649.2009 h The parameters of the 

LACM are: 1.5459,1
1  4.2393,2

1  -5.4527.3
1  -0.0755,2007 h -0.0849,2008 h 2009h 0.0440.- The 

parameters of the RACM are: 1.6618,1
1  1.5884,1

2   3.9215,2
1  1.0818,2

2  1.1141,3
1  -243.8173,3

2 
,5018.01  ,1087.22  0.8219,11 p 0.2516.22 p , -0.0097,2007 h -0.0088,2008 h -0.0084.2009 h  The 

parameters of the real value are: ,812007 N ,212008 N ,312009 N 2007h 0.0468,-  -0.0590,2008 h
-0.0575.2009 h  

Table 8: Pricing Errors of CAT Reinsurance under Alternative Intensity Models from 2007- 2009. 

Model 
Panel A 

Theoretical Values using 
Actual AMO andΔCO2 

 Panel B 
Theoretical Values using  

ARMA (1,1) for AMO andΔCO2 

 MAE RMSE MAE RMSE 
LM 1.4815  1.5661  1.4815  1.5662  

LAM 1.0022  1.0896  0.8383  0.4725  

LCM 0.8787  1.0881  1.0380  1.2170  

LACM 0.8121  0.9521  0.8691  0.6297  

RACM 0.5057  0.7127  0.4682  0.5542  

The parameter values for base valuation are: ,1M ,5C ,02.0tr ,1T ,20m ,129.0 .168.0 The 

parameters of the LM are: 1.3808.1
1  -0.0937,2007 h  -0.0874,2008 h -0.0937.2009 h  The parameters of the 

LAM are: 1.3506,1
1  4.1807,2

1   -0.0755,2007 h -0.0849,2008 h -0.0437.2009 h The parameters of the 

LCM are: -0.7233,1
1  461.4121,3

1  , -0.0933,2007 h -0.0884,2008 h -0.0649.2009 h The parameters of the 

LACM are: 1.5459,1
1  4.2393,2

1  -5.4527.3
1  -0.0755,2007 h -0.0849,2008 h 2009h 0.0440.- The 

parameters of the RACM are: 1.6618,1
1  1.5884,1

2   3.9215,2
1  1.0818,2

2  1.1141,3
1  -243.8173,3

2 
,5018.01  ,1087.22  0.8219,11 p 0.2516.22 p , -0.0097,2007 h -0.0088,2008 h -0.0084.2009 h The 

parameters of the real value are: ,812007 N ,212008 N ,312009 N 2007h 0.0468,-  -0.0590,2008 h
-0.0575.2009 h  
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Figure 1: The AMO Index and Hurricane Frequency during 1961-2010 

 

 

Figure 2: The CO2 Index and Hurricane Frequency during 1961-2010 
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Figure 3: TailVaR in Linear and Regime-Switching Models. 

 

 
Figure 4: TailVaR: Regime-Switching Effect, CO2 Effect and AMO Effect 
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Appendix A 

This appendix illustrates the proof for the transition probability and a CAT loss under the 

risk-neutral measure. Let the Esscher transform is as follows: 

 
1

,

1,

1 1 2 2 , 1

1 1 2 2 , 1

( , ,..., , , , )

( , ,..., , , , )

m

t n
n

t

Nt St
t

t n
n Nt St

h y
Q Q Q Q

m m t S t t

m m t S t t
h y

P

dQ y dy y dy y dy N m S i S j e

dP y dy y dy y dy N m S i S j

E e
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




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 
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 

,   (A.1) 

Because that the CAT loss and the transition probability is independent, hence (A.1) can be 

rewritten as follows: 

1 1 2 2 , 1( , ,..., , , , )
t

Q Q Q Q
m m t S t tdQ y dy y dy y dy N m S i S j       

1
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e
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E e
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Thus, we can let ( ) ( )
( )

t nh y
Q

n n
t t

e
f y f y

h
  and 

,

1,

( )
( ,1) ( ,1)
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 
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 
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 to obtain the 

new probability density function ( )Q
nf y  and the new transition probability )1,(mQ  under 

the risk-neutral probability measure. For the new regime switching Poisson process 
tStN ,  

and the matrix of the transition rates   under the risk-neutral probability measure, we let 

   Q(m,1) ( ) exp ( ( ) 1) P(m,1)
m

t t t th h    , and thus we have 
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*

0

( ,1) Q(m,1) m

m

Q z z




     
0

= ( ) exp ( ( ) 1) Q(m,1)
m m

t t t t
m

h h z 




   

                  
0

= ( ( )) exp( ( ( ) 1))Q(m,1).m
t t t t

m

z h h 




   

The unique solution of *( ,1)Q z  is: 

    *( ,1) exp 1 ( ( ) exp ( ( ) 1)t t t tQ z z h h           exp ((1 ) ( ) )t tz h     . 

Hence, the new regime switching Poisson process 
tStN ,  has the new intensity matrix 

( )Q
t th    of weather-induced events and the matrix of the transition rates   remains 

unchanged under the risk-neutral probability measure. 

 

Appendix B 
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Since that  ( ) ( )
( )

t th y
Q

t t
t t

e
f y f y

h
  and y  stands for the gamma distribution with shape 

parameter   and scale parameter  , we have 
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( )1( )
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Therefore, the computation of part B is similar to part A, thus we have 
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