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Abstract 

Consistent with the cost-of-carry argument, term structure of futures prices is viewed 

as a structure and modeled by term structure models to price and hedge crude oil 

futures options. After examining several competing models, two-factor models in 

conjunction with specification of time to maturity in volatility function consistently 

outperform one-factor models in in-sample, out-of-sample, and hedging. While 

more-parameter models tend to provide better in-sample fitting than less-parameter 

models, they tend to overfit to option prices across strikes. Confirmed by the close 

relationship between futures price/volatility and time to maturity, all term structure 

models with various volatility functions perform better than the Black’s model, but 

they tend to miss-specify to a certain scale due to the presence of mispricing. 
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Pricing and Hedging Crude Oil Futures Options with Term Structure Models 

 

1. Introduction 

In the last three decades, option pricing has witnessed an explosion of new models 

and each relax some of the restrictive Black-Scholes assumptions (See the discussion 

of Bates, 1996; Bakshi et al., 1997; survey of option pricing model of Bates, 2003). 

Most works focused on how to improve to be quantitative consistent with the time 

series property of the underlying asset and option prices. One category of works 

considers stochastic nature of option variables (such as stochastic volatility).1 The 

other category looks at deterministic variable, but attempts to relax the geometric 

Brownian motion assumption of Black-Scholes.2 While both categories of models 

have their own strengths and weaknesses, it is important to ask whether it is necessary 

to have more realistic features with additional costs of complexity and implementing 

difficulties. 

 

Even if implementation issues are ignored, the model with realistic feature is not free 

of problems. For instance, Bates (2003) states that standard stochastic volatility 

models with plausible parameters cannot easily match observed volatility smiles and 

smirks, and thud Bakshi et al. (1997) identified that extremely high levels of 

volatility-return correlation and volatility variation are required. Although 

incorporating a random jump into stochastic volatility model improves pricing 

S&P500 option across strikes, Bakshi et al. (1997) found that the incorporation does 

not seem to improve the stochastic volatility model’s hedging performance further. 

Further, the results of Bakshi et al. (1997) show that even a model with stochastic 

volatility and jump is still highly misspecified in terms of internal consistency 

between model's implied parameters and (a) the S&P 500 returns, (b) the (implied) 

volatility, and (c) the spot interest rate. Jarrow et al. (2007) found that stochastic 

volatility and jump model cannot remove volatility smile when using interest rate cap. 

 

Due to the limitation and problems reported by past literature, this study considers the 

model with deterministic volatility. In fact, we examine term structure models in 

pricing and hedging futures options. Under cost of carry argument, futures price and 

volatility with different time to maturity should contain some relationship. To model 

the relationship, term structure model (or interest rate model), originally used to 

describe evolution of interest rates, may be used. Carr and Jarrow (1994) show that 

                                                      
1 The stochastic-volatility models include Heston (1993), Hull and White (1987), Melino and 

Turnbull (1990, 1995), Scott (1987), Stein and Stein (1991), and Wiggins (1987). 
2 Those models include the jump-diffusion pure jump models of Bates (1991), Madan and 

Chang (1996), and Merton (1976). 
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virtually any spot or futures options, such as stock/stock index, currency, commodity 

futures options, can be priced by term structure models with stochastic underlying 

asset price and stochastic interest rates. Unlike stochastic volatility model, option 

valuation generally requires a market price of risk parameter, which among other 

things, is difficult to estimate. While the volatility under term structure model is non 

stochastic, risk-neutral valuation of contingent claims can be maintained.  

 

There are several strengths for term structure models. First, volatility functions, 

described the term structure of volatility, can be freely specified, and thus provide a 

tremendous opportunities for examining its validity. Second, to accommodate more 

diverse shape of volatility function and reconcile the recent empirical finding 

supporting multifactor models3, the models can be extended to models with several 

factors. Third, under term structure models, futures options can be priced with 

stochastic futures prices and stochastic interest rates. However, the underlying asset 

price process of term structure model is non-Makov, option valuation with a lattice 

approach will have a non-recombined tree. Past empirical examination of interest rate 

options show relative few steps of tree can generate a converged value.4 

 

This study compares alternative term structure models, nested in a general volatility 

function and the models are extended to multifactor framework. These models are 

evaluated with their time-series performance in terms of in-sample fitting, 

out-of-sample prediction, and hedging crude oil options across strikes and maturiies. 

Models are judged based on which model can produce the consistently smallest 

pricing or hedging errors. For comparison, the Cox, Ross, and Rubinstein (1979), a 

binomial version of Black’s model is considered, and as the benchmark model.  

 

The paper is organized as follow. The second section illustrates the term structures of 

futures price and volatility of crude oil options. Models and data are introduced and 

explained. Next, data and volatility parameters estimated are provided. The third 

section provides in-sample, out-of-sample, and hedging results. Finally, conclusion is 

provided.  

 

2. Term structure of futures price and volatility 

 

                                                      
3  See Driessen, et al. (2003); Gupta and Subrahmanyam (2005); and Jarrow et al. (2007), 

Christoffersen, et al. (2009). 
4 For example, Amin and Morton (1994) found that to price Eurodollar futures options using Heath, 

Jarrow, Morton model, 10 steps of non-recombined tree is needed for one-factor model. Similar finding 

is documented by Kuo and Paxson (2006) who found that 6 steps of tree is necessary for obtaining a 

convergence value for two-factor Heath, Jarrow, and Morton model. 
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Options are products with payoffs and prices dependent upon the stochastic evolution 

of the asset prices and associated underlying financial variables. Commodity futures 

options with various maturities thus are subject to term structure of futures prices and 

volatilities. The characteristics are displayed in Figure 1.  

Figure 1 offers 4 graphs of term structure of crude oil future price and volatility. The 

crude oil futures traded in CME contain a rich term structure seen in Panel A. The 

hump-shape curve observed on 14 April 2011, reflects that convenience yield 

becomes important when holding spot assets whereas long term crude oil futures 

provide no benefit for immediate uses. The time series of futures prices shown in 

Panel B is based on 60 days obtained from interpolation of adjacent prices. The crude 

oil futures reach to the peak of nearly $150 per barrel in June 2008, and decline 

sharply subsequently due to global financial crises.  

 

We also see the upward curve of the term structure of future prices of volatility shown 

in Panel C, consistent to the prediction of the cost of carry theory. The term structure 

of implied volatility is obtained from ATM call options across the spectrum of 

maturity on 17 November 2010, using Black’s model. We see the upward shape of the 

structure in which the long-term futures price is more volatile than short-term 

counterparts. Panel D displays volatility smile for calls and puts. Call smile appears to 

show a U-shape where ITM volatility is greater than OTM volatility, but it is not 

asymmetric around zero. Nevertheless, for put smile, an opposite pattern is found.  

 

 

Figure 1 Term Structure of futures price and volatility 
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A number of option valuation models are capable of explaining the behavior 

documented in Figures 1. The stochastic volatility of Heston (1993), for example, can 

explain this behavior when the asset price and volatility are negatively correlated. The 

negative correlation is what produces the asymmetric volatility smile observed in 

Figure 1, not the stochastic feature itself (Dumas, et al. 1998). Similarly, the jump 

model of Bates (1996) can generate these patterns if the average jump is negative. It is 

simplest to consider the term structure model with various volatility functions because 

apart from volatility parameters embedded in volatility functions, there are no 

additional unobservable parameters that need to be estimated.  

 

2.2  Model 

Interest rate models are used to model the term structure of interest rates and are used 

to price and hedge interest rate contingent claims. Commodity futures, such as crude 

oil futures prices containing a rich term structure of futures prices, can also apple this 

concept to describe term structure of futures price. To model futures price, the Heath, 

Jarrow, and Morton (1990, 1992) equation (hereafter called term structure model) can 

be specified as, 

 

𝑑𝐹(𝑡, 𝑇) = 𝜇(𝑡, 𝑇)𝑑𝑡 + ∑ 𝜎𝑖(𝑡, 𝑇, 𝐹(𝑡, 𝑇))𝑑𝑍𝑛
𝑖=1                        (1) 

 

where F(t,T) is the futures price for the contract maturing at T and traded on date t. 

𝜇(𝑡, 𝑇) is the drift of instantaneous futures price and σ(𝑡, 𝑇, 𝐹(𝑡, 𝑇)) represents the 

instantaneous standard deviation of the futures price with maturity T at date t, which 

can be chosen rather arbitrarily, dz follows a one-dimension Brownian motion. The 

expression i=1,…, n indicates the number of factor.  

 

When a number of regularity conditions and a standard no-arbitrage condition are 

satisfied, then the drift of the futures price under the risk-neutral measure is unique 
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determined by the volatility functions, 

 

𝜇(𝑡, 𝑇)𝑑𝑡 = ∑ 𝜎𝑖(𝑡, 𝑇, 𝐹(𝑡, 𝑇)) ∫ 𝜎𝑖(𝑡, 𝑇, 𝐹(𝑡, 𝜇))
𝑇

𝑡
𝑑𝑢𝑛

𝑖=1                 (2) 

 

Thus, the futures price processes are completely governed by their volatility function, 

where the volatility function can be chosen freely. Equation (2) provides the general 

volatility functions, which contains special cases for most existing option valuation 

models. If the volatility is specified with a constant number, it turns out to be the case 

of Black’s model. If the volatility function is specified with a parameter and a portion 

of square root of futures price, then it is the case of Cox, et al. (1985).  

 

Since equations (1) and (2) are originally specified with interest rates, the futures 

option price can be determined by stochastic futures price and stochastic interest rates. 

Valuation of futures options using term structure models implies that futures price and 

interest rates are stochastic. To implement this term structure model, one can use 

binomial tree method with a number of steps to determine option value. Since the 

term structure model is path dependent, the recombined tree cannot be obtained. Carr 

and Jarrow (1994) indicate that discrete version of this continuous version process 

within the framework of one-factor model can be described as the log price relatives 

that is: 

 

𝐹(𝑡 + Δ, 𝑇) = {
𝐹(𝑡, 𝑇)𝑒𝜇(𝑡,𝑇)Δ+𝜎(𝑡,𝑇,𝐹(𝑡,𝑇))√Δ            𝑖𝑓   ′𝑢𝑝′

𝐹(𝑡, 𝑇)𝑒𝜇(𝑡,𝑇)Δ−𝜎(𝑡,𝑇,𝐹(𝑡,𝑇))√Δ        𝑖𝑓 ′𝑑𝑜𝑤𝑛′
                    (3) 

    

  

𝜇(𝑡, 𝑇) has the interpretation as the instantaneous expected growth rate in F(t,T) and 

σ(t,T) has the interpretation as the instantaneous expected volatility of relative change 

in F(t,T). Δ refers as the length of each time step. The probability of the up move is  

  

𝜋𝑡 =
1−𝑒𝑥𝑝 (𝜇(𝑡,𝑇))𝛥−𝜎(𝑡,𝑇,𝐹(𝑡,𝑇))√𝛥

𝑒𝑥𝑝 (𝜇(𝑡,𝑇)𝛥+𝜎(𝑡,𝑇,𝐹(𝑡,𝑇))√𝛥−𝑒𝑥𝑝 (𝜇(𝑡,𝑇)𝛥−𝜎(𝑡,𝑇,𝐹(𝑡,𝑇))√𝛥
                    (4) 

 

The probability of down movement is 1-πt. 

 

When 𝜇(𝑡, 𝑇) = −
𝜎(𝑡,𝑇,𝐹(𝑡,𝑇))2

2
𝛥, 𝜋𝑡 can be set to be 1/2. 
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Similarly, the equations (3) and (4) can be modified to multifactor models. Under the 

two-factor model, there will be three directions at a subsequent step with 3n nodes,5 

and four directions with 4n nodes for three-factor models for n steps. 

 

2.2 Principal Component Analysis (PCA) 

 

Under the model in equations (1) and (2), the change in futures price is completely 

determined by the volatility function where the function can be freely chosen. Jarrow 

(2002) and Driessen et al. (2003) suggest that one can use PCA to extract volatility 

function of the underlying asset returns. Christoffersen et al. (2009) apply PCA to 

obtain the number of factors, which governs the volatility smile. Hence, we run PCA 

from the return of historical underlying prices and option prices across strike prices to 

determine the volatility function and the number of factors. Figure 2 plots the average 

of the volatility function from PCA calculated based on weekly return of crude oil 

futures prices with the maturity from 30 to 270 days within the sample period in this 

study. Return of each futures prices series is computed with two steps. First, each day 

interpolation from two nearest maturity of futures prices is applied to obtain the 

desired maturity of futures price. In this step, we obtain 9 time series of futures prices 

with an increment of 30 days of maturity. Second, futures price return is computed 

from the log difference of futures price.  

 

The result show that the first component explains 88.45% of the variation of the data, 

and that the first two components together explain over 98% of the variation in the 

data. The results therefore seem to suggest that a two-factor model may be a good 

representation of the data. The first factor explains the major volatility function, 

which governs the remaining time to maturity for futures prices whereas the second 

factor explains the decaying structure of volatility. Thus, the first factor may be called 

a level factor and the second factor may relate to the curvature. Since we use a rolling 

horizon strategy to determine futures price, the estimated volatility functions change 

weekly, but the shapes of these volatility functions turn out to be quite constant over 

time. Hence, it is unnecessary to price options by switching one volatility function to 

the next. 

 

Figure 2 Principal Component Analysis 

The principal component is calculated based on the return of weekly Crude oil futures prices from 10 

January 2007 to 27 April 2011 where the return is obtained from the logarithm of price difference. 

 

                                                      
5 See chapter 15 in Jarrow (2002) for the procedure of the two-factor model. 
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Following Christoffersen et al. (2009), PCA is implemented again from Black’s 

implied volatilities across moneyness where moneyness is defined as futures price 

over strike price for calls and strike price over futures price for puts. To do that, each 

Wednesday we fit into a linear regression with the regressor of moneyness, square of 

moneyness, and day to maturity. Second, given the coefficients, then we calculate 

implied volatilities across moneyness (8 series) between 0.8 and 1.2 with 30-day 

maturity of option. In total we have 204 weekly time series from our sample period. 

  

Figure 3 Principal Component Analysis according Moneyness 

 

 

Figure 3 depicts the pattern for the average of volatility function based on volatility 

across moneyness. The volatility function turns out to be quite similar as that 

produced by futures price return. The results confirm that there are two factors 
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explaining the volatility smile of crude oil futures options, which control 99% of 

variation of volatility smile, with the first factor explaining about 95% and the second 

factor explains the rest. In summary, to capture the stylized facts of term structure of 

futures price and options across moneyness, models with two factors should be 

needed.   

 

 

2.3 Specification of Volatility Function 

Since the change of futures prices in term structure model is completely governed by 

volatility function, the specification of the function matters performance of term 

structure model. One approach is to compare several competing functions guided by 

the PCA. Table 1 expresses the specification of volatility function selected in this 

paper. Model 1 is the simplest model, making volatility of futures prices to be 

constant across the spectrum of time to maturity. Model 2 allows the volatility 

function to be proportional to the futures prices. Since the first factor obtained from 

PCA is affected by time of maturity of futures prices, Model 3 and 4 allow volatility 

to be linearly or nonlinear affected by time to maturity of futures price. Model 5 and 6 

incorporate a second factor to capture more diverse shapes of term structure of futures 

price volatility where the correlation between first and second factor is assumed to be 

independent.    

 

Specifically, we consider the general form of volatility function as follows: 

𝜎(𝑡, 𝑇) = {𝜎1𝐹(𝑡, 𝑇) + 𝜎2(𝑇 − 𝑡) × 𝑒𝑥𝑝 [−𝜆(𝑇 − 𝑡)]}               (5) 

 

 

Table 1 Models Used in This Study 

The volatility function σ(t, T, F(t, T)) is simplified as σ(t, T) where t is the time for futures contract 

traded on date t and matured on date T. 

Model  Specification 

Model 1 (Absolute): σ(t, T) = σ1 

Model 2 (Proportional): σ(t, T) = σ1 × F(t, T) 

Model 3 (Exponential): σ(t, T) = σ1 × exp −λ×(T−t) 

Model 4 (linear proportional) σ(t, T) = σ1 + σ2 × (T − t) 

Model 5 σ1(t, T)=σ1 

σ2(t, T)=σ2 + σ3 × (T − t) 

Model 6 σ1(t, T)=σ1 

σ2(t, T)=σ2 × exp −λ×(T−t) 
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3 Data and Methodology 

3.1 Data 

To price and hedge commodity options using term structure models, we need to select 

those options which are actively traded. Light sweet crude oil options are traded in 

New York Mercantile exchange which is currently listed in Chicago Mercantile 

Exchange. The advantage of using crude oil options is that the underlying asset is 

futures contract rather than spot assets and thus convenience yield can be ignored. 

More importantly, crude oil futures contain a rich term structure and their option 

prices critically depends upon the term structure of volatility, which provides a good 

opportunity to test ability of term structure models. 

 

In this paper, light sweet crude oil options between 23 May 2007 and 28 April 2011 

are selected. Three exclusionary criteria are imposed for selecting the observations. 

First, we exclude the contracts with no trading volume for the concern of price 

discreteness. Second, those options with less than 6 and more than 180 days are 

excluded in the sample. Contracts beyond 180 days are infrequently traded and less 

than 6 days that may contain microstructure effect (such as expiry effect). Third, we 

exclude options with moneyness outside the range of 0.8 and 1.2 where moneyness is 

defined as futures price divide strike price for calls and strike price divide futures 

price for puts. Finally, those option prices below 0.4 are excluded since they are 

infrequently traded and these options may incorrectly magnify our percentage of 

pricing or hedging errors.  

 

Table 2 offers a summary of the characteristics of the transactions contained in the 

205-week sample period. Of the 21,472 transactions, 11,415 were call option 

transactions and 10,057 were puts. The at-the-money options appear to have been the 

most active, with 50 percent of the call option trades and 51 percent of the put 

optionOut-of-the-money options were more active than in-the-money options, which 

have 40 percent and 10 percent of total trades for calls and 45 percent to 5 percent for 

puts, respectively. Over 60 percent of the transactions were on options with maturities 

han 90 days, verifying that most of the trading activity was in the nearest contract 

month.  

 

The yield on the U.S. Treasury bill maturing on the contract month expiration day was 

used to proxy for the riskless rate on interest. The yields were computed weekly on 

the basis of the average of the T-bill's bid and ask discounts reported in the Wall Street 

Journal. 
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Table 2 Data Description 

Weekly light sweet crude oil futures options between 23 May 2007 and 28 April 2011 
are selected using four criteria given in the text. ITM, ATM, and OTM denote 
in-the-money options, at-the-money option, and out-of-the-money option, respectively. 
No. Obs. is number of observation. Tra. Vol is the trading volume and OI is open 
interest of options.  

  Maturity   0-90 day 90-180 day 

  Money Indicator No.Obs Tra. Vol. OI No.Obs Tra. Vol. OI 

Call 1.1<F/K≦1.2 ITM1 340 247 4720 160 213 3724 

  1.05<F/K≦1.1 ITM2 520 180 5176 170 128 4243 

  1<F/K≦1.05 ATM1 1662 382 4166 906 270 3180 

  0.95<F/K≦1 ATM2 2031 572 4660 1130 304 4169 

  0.9<F/K≦0.95 OTM1 1283 532 5168 928 323 5045 

  0.8<F/K≦0.9 OTM2 840 635 5900 1445 395 5922 

Put 1.1<K/F≦1.2 ITM1 145 193 5037 41 93 5251 

  1.05<K/F≦1.1 ITM2 251 191 4487 64 170 4437 

  1<K/F≦1.05 ATM1 1207 337 3423 567 271 568 

  0.95<K/F≦1 ATM2 2097 581 4196 1173 353 3604 

  0.9<K/F≦0.95 OTM1 1321 680 6251 799 426 5885 

  0.8<K/F≦0.9 OTM2 992 713 7590 1400 541 5874 

Futures       8927 12690   2881 107994 

 

   

3.2 Volatility Parameters Estimation 

To price and hedge crude oil futures options, one has to estimate volatility parameters 

embedded in each volatility function. One can obtain volatility parameters from 

historical approach based on the underlying futures price or from option prices. The 

latter approach is adopted since implied volatility of option prices represents average 

market assessments of future volatility during the life of options.  

 

Two stages are used to estimate volatility parameters. First, we estimate initial term 

structure of futures prices, which can be obtained from crude oil futures prices with 

different maturities. Second, given all relevant variables, we estimate implied 

volatility parameters by minimizing the sum of squared difference between market 

and model prices. 

 

Specifically, each Wednesday we take initial term structure of futures prices from 
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traded futures prices. Let 𝜑 = [𝐹(𝑡, 𝑇1), 𝐹(𝑡, 𝑇2), … . , 𝐹(𝑡, 𝑇𝑤)] be the initial term 

structure of futures prices where 𝑇1, 𝑇2, … . . 𝑇𝑤  are the maturity date for various 

futures contracts. Then, given an initial guess of volatility parameters, a futures price 

tree is built forward using equation (3). Second, we build an American option price 

tree calculating backward. Let 𝐶𝑖 = (𝐶1, 𝐶1, … , 𝐶𝑞) be the number of options traded 

in the day and 𝜎𝑗 = (𝜎1, 𝜎1, . . . , 𝜎𝑚)  for representing the number of volatility 

parameters in the volatility function. For each exercise price K and maturity T, the 

market and model option prices are denoted 𝐶𝑖(𝜎𝑗, 𝐾, 𝑇)  and 𝐶𝑖(𝜎𝑗̃, 𝐾, 𝑇) , 

respectively. An iterative procedure is conducted to produce updated volatility 

parameters until the sum of squared differences between market and model prices are 

minimized, which are 

 

𝑚𝑖𝑛 ∑ [𝐶𝑖(𝜎𝑗, 𝐾, 𝑇) − 𝐶𝑖(𝜎𝑗̃, 𝐾, 𝑇)]
2𝑞

𝑖=1                   (6) 

 

This procedure is repeated for each model and on each Wednesday until the end of 

sample period.  

 

For computing option price with stochastic interest rates, we need to estimate initial 

interest rate and volatility function required for HJM model where the rate is obtained 

from Treasury bill rate and volatility function is given from the function of the model. 

Then, equations (3) and (4) and (6) are applied, where F(t,T) is replaced by the 

forward rate f(t,T), to determine the discount rate required for computing option value. 

Under stochastic interest rates, three lattice trees are needed, namely futures price tree, 

forward rate tree, and option price tree.   

 

3.3 Parameter Stability 

Table 3 shows value, the change, and autocorrelation of volatility parameters for 

Model 6. Since volatility parameters in a model are embedded in a volatility function, 

volatility parameters between each other in a model are likely to be highly correlated. 

It is not possible to precisely examine stability of each parameter purely from their 

change in parameter value. However, we may see that sensitivity of each parameter to 

the general volatility level. Except Model 1 and Model 2, there is only parameter in a 

volatility function.  

 

We see different scales of sensitivity of volatility parameters for Model 6 in Table 3. 

According standard deviation and their change in parameter value, the decay 

parameter, 𝜆, the most sensitive parameters, and 𝜎2 is the most stable one. The 
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autocorrelation value generally appears to decline when the lag increases, indicating 

that parameters on date t are more related to the value on previous day, but less related 

to the value of distant trading day.  

 

Table 3 Parameter Estimation for Model 6 

 
Mean Stdev 𝜌1 𝜌2 𝜌3 𝜌10 𝜌50 𝜌100 

𝜎1 0.077 0.086 0.69 0.59 0.58 0.34 -0.25 -0.01 

Δ𝜎1 -2.1E-05 0.067 -0.33 -0.16 -0.22 -0.24 -0.06 -0.13 

𝜎2 0.171 0.076 0.70 0.54 0.58 0.46 -0.19 -0.12 

Δ𝜎2 1.4E-05 0.059 -0.24 -0.33 -0.16 -0.15 -0.18 0.14 

𝜆 -3.003 1.238 0.23 -0.17 -0.01 -0.03 -0.19 0.15 

Δ𝜆 5.0E-05 1.538 -0.24 -0.37 -0.19 -0.2 -0.23 0.22 

 

To explicitly observe the time variation of parameter value, Figure 4 sows the value 

and its change in parameter for Model 1. From one week to the next, the volatility 

parameter changes across time, reaching to the peak at 0.6735 on 17 Dec 2008 during 

the period of the bankruptcy of the Lehman Brother. The change in value also exhibits 

different scales, particularly very large during the American subprime crisis during the 

second half of 2007 and 2008.  

 

Figure 4 Parameter value across time for Model 1 
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The purpose of this study is to examine whether term structure models can able to 

capture crude oil futures options prices across maturities and strikes. For comparison, 

the binomial tree model proposed by Cox, Ross, and Rubinstein (1979) is used to fit 

into weekly option prices as those used in term structure models. Each Wednesday, 

volatility parameters are obtained by using option across strikes and maturities to fit 

into each model until the sum of squared differences between market and model 

prices are minimized. This procedure is repeated each day and each model until the 

sample period is terminated. The difference between market and model price then is 

the in-sample error. 

 

The advantage of term structure models is that not only the underlying futures prices 

are stochastic, but also the interest rates are stochastic. Table 4 shows in-sample 

performance of all models where Panel A displays results with stochastic interest rates 

and Panel B give results without stochastic interest rates. Three measures are used to 

evaluate in-sample performance of models, which are mean, absolute mean, and 

relative absolute. Mean is the average error between market and model price, absolute 

mean error is obtained from the absolute difference between the market and model 

price, and the relative absolute error is the difference of market and model price over 

market price.  

 

The term structure model with or without stochastic interest rates gives some impacts 

on option prices. The stochastic interest rates are generated by Heath, Jarrow, and 

Morton (1990, 1992) model6, which affect the discounting process of option price 

when calculating option price forward using the lattice approach. If the term structure 

model contains no stochastic interest rates, then the binomial tree of option price is 

discounted with constant interest rates, proxied by Treasury bill rates.7 We see that 

the results with stochastic interest rates in Panel A generally give lower absolute and 

percentage error than those without stochastic interest rates in Panel B. The reduction 

of in-sample error varies between 1 and 3 percent across all models. Similar results 

are confirmed by Melino and Turnbull (1995) who found that pricing short-term 

options without stochastic interest rates is not serious problem. Amin and Bodhurtha 

(1991) who present evidence that long-term option prices can be significantly affected 

                                                      
6 To implement Heath, Jarrow, and Morton model to estimate appropriate discount rate for option price 

calculation, initial interest rates and volatility function should be provided. The initial interest rates 

(forward rates) are obtained from Treasury bill rates. To simplify the estimation, the volatility function 

is assumed to be consistent with the function of each competing model. For example, Model 2 is the 

model with volatility function governed by proportion of futures price. We also use this function as the 

volatility function for interest rate model. The volatility parameter is given from the estimation of term 

structure models, using Equation (6).   
7 To match the remaining time of options, Treasury bill rates are linearly interpolated to obtain the 

desired period of days. 
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by stochastic rates.   

 

Fitting performance with and without stochastic interest rates shows that the volatility 

function of oil options critically depends upon time to maturity of options contracts. 

We see that Model 1, specified with constant volatility, which gives a fixed volatility 

for different maturity of futures. In other words, 3-month futures and 1-year futures 

contracts are priced with the same maturity. The unrealistic nature of the model 

produces greater error, which shows the relative absolute error for all options being 

about 29% (Panel A). Model 2 also demonstrates that even the volatility function is 

proportional with futures prices, which cannot improve the fitting performance. The 

mean error is 0.179, which is the greatest among all models.  

 

In contrast, those models with the volatility function relate to time to maturity, which 

experience greater fitting performance. Model 3 specified with exponential function 

of time to maturity significantly improves the fitting performance by 10 percent 

compared with Model 1 and Model 2. With linear time to maturity in volatility 

function in Model 4, 5, and 6, we experience a further reduction of 1% to 2%. The 

in-sample results confirm that the volatility function for oil futures options is better 

written with the structure of time to maturity of options. 

 

Next, we also see two distinctive patterns from in-sample results. First, call absolute 

errors estimated from all models appear to be smaller than puts (except Model 2), but 

different results exist when the error is measured with relative error. The relative error 

may be biased since they are in a percentage form and may be magnified with smaller 

option prices. Second, when we compare all term structure models to CRR model, 

which has not considered the term structure effect of volatility function. According all 

measures, all models perform much lower fitting error than binomial tree model. 

Finally, adding an additional factor into one-factor model shows marginal 

improvement of fitting errors. For example, Model 5 reduces the relative absolute 

error by 1% (or 0.02 in absolute error) compared to Model 4, and Model 6 improves 

by 0.5% (or 0.04 in absolute error) over Model 3. 

 

Table 4 In-Sample Performance  

This Table has two panels where Panel A shows in-sample error for all term structure models 

containing stochastic interest rates and Panel B gives the results without considering stochastic interest 

rates. The implementation procedure for term structure models with/without stochastic interest rate can 

be found in the text. Three measures are used to calculate in-sample error. Mean is the average fitting 

error where fitting error is defined as the difference between market and model price. Abs is the 

average absolute fitting error. Rel Abs is the average relative absolute error calculated by the absolute 

fitting error divided by market option price.  

Panel A With stochastic interest rates 
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All Call 

  
Put 

 
Model Mean Abs Rel Abs Mean Abs Rel Abs Mean Abs Rel Abs 

Model 1 0.120 0.582 0.290 0.125 0.597 0.274 0.114 0.565 0.308 

Model 2 0.179 0.598 0.293 0.128 0.578 0.256 0.237 0.621 0.334 

Model 3 0.074 0.371 0.184 0.085 0.393 0.170 0.063 0.347 0.201 

Model 4 0.044 0.341 0.163 0.057 0.366 0.152 0.029 0.312 0.175 

Model 5 -0.055 0.364 0.152 -0.245 0.411 0.152 0.160 0.312 0.151 

Model 6 0.060 0.410 0.179 -0.187 0.435 0.172 0.212 0.382 0.186 

CRR 0.458 0.730 0.303 0.431 0.711 0.275 0.489 0.752 0.334 

Panel B No Stochastic interest rate 

Model 1 0.115 0.616 0.312 0.135 0.612 0.296 0.121 0.596 0.311 

Model 2 0.185 0.639 0.332 0.136 0.602 0.275 0.235 0.633 0.342 

Model 3 0.065 0.391 0.196 0.096 0.422 0.178 0.074 0.349 0.242 

Model 4 0.051 0.361 0.172 0.069 0.385 0.159 0.036 0.327 0.182 

Model 5 -0.057 0.375 0.163 -0.266 0.423 0.168 0.016 0.329 0.162 

Model 6 -0.001 0.436 0.196 -0.275 0.462 0.191 0.236 0.395 0.196 

 

Evaluation of term structure models should be looked at time series performance of 

options, but also be looked at their fitting performance of cross sections of options. 

For this reason, Figure 5 display fitting performance across moneyness separately 

with 2 maturities categories. The range of moneyness is based on the definition in the 

section of data.  

 

Figure 5 In-Sample Performance based on Category of Moneyness 
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Surprisingly, all term structure models cannot fully capture oil option prices across 

strikes. For the category of 0-90 days (short-term), as shown in Panel A (calls) and B 

(puts) most models tend to undervalue ITM and OTM options relative to market 

prices, but overvalue ATM options relative to market prices. This suggests that 

volatility should be increased for pricing short-term ITM and OTM options, but the 

volatility should be decreased for pricing ATM options. For the 91-180 day category, 

a different story appears in which call options series are uniformly undervalued by 

one-factor models, but overvalued by two-factor models (See Panel C). In the case of 

puts in Panel D undervalued options relative to market prices are systematically 

produced by most models. These results suggest that to fit options prices across 

moneyness, models should incorporate a variable that allow volatility to be various 

across strikes. Such as the volatility function suggested by Dumas et al. (1998) who 

incorporate strike prices (or moneyness) into the volatility or allowing return in 

futures price to have a random jump.  

 

4.2 Pricing Options with Lagged Volatility 

 

In this section, we examine out-of-sample performance of all term structure models. 

This approach is implemented by using implied volatility obtained from current week 

as an input to price options next week. There are two objectives to run this test. First, 

this approach helps examine time series stability of each model. The model could 

price better than the other model on current day, but becomes worse on the other day. 

The instability of model performance could arise since the model can overfit into 

options across strikes and maturity. An overfitting problem may be detected when the 

model goes out of sample. If the model consistently provides stable performance, it is 

like to be adopted by researchers and practitioners. Second, we use this approach to 

investigate the predictability of each model. If we believe that the implied volatility of 

futures options follows a Markov process, then current implied volatility is the best 

prediction of future volatility. It is can be true that market assessments of future 
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volatility changes over time and thus current volatility is the best forecast of future 

volatility.  

 

To fulfill these objectives, each model is fitted into option prices across strikes and 

maturities traded on current Wednesday until the termination of sample period. The 

volatility, obtained from the minimization of sum of squared differences between 

market and model prices at the first stage, then is used to price crude oil option traded 

on next Wednesday. Table 5 shows the pricing performance with lagged implied 

volatility. Using all measures as in in-sample pricing, the general results are that 

pricing with a lagged volatility for all models produces greater errors than pricing 

with a current volatility. A consistent result reveals that while instability of volatility 

produces a strong impact on model pricing performance, a model performs well in the 

sample that also performs well out of sample.  

 

When using volatility on date t to price volatility on date t+7, absolute out-of-sample 

error increases from 0.1 to 0.3 and relative error increases from 2% to 7% on average 

for all options. Model 1 and Model 2 are the most stable models showing that relative 

error increases from 29% and 29.3% to 31.1 and 33%, respectively. However, Model 

4, 5 and Model 6 are the most unstable models, where the relative error increases by 

5.3%, 7%, and 6.4%, respectively. The increase of out-of-sample error from in-sample 

error shows that the best fitting models, such as Model 4 and 5, are more affected by 

change in volatility. In contrast, the poor fitting models, such as Model 1 and Model 2 

are more stable than the better fitting models. It may be suspicious to say that Model 4 

and Model 5 may be overfitted. 

 

Table 5 Pricing Performance with lagged volatility 

This table shows average pricing errors for all competing term structure models with stochastic interest 

rate using lagged volatility. Pricing error on current Wednesday is defined as the difference between 

market and model prices where volatility for the model price is given on previous Wednesday. The 

three measures, mean, abs, and rel abs are described in Table 4. 

 
All 

 
Call 

  
Put 

 
Model Mean Abs Rel Abs Mean Abs Rel Abs Mean Abs Rel Abs 

Model 1 0.634  0.632  0.311  0.296  0.646  0.296  0.125  0.620  0.329  

Model 2 0.680  0.468  0.330  0.305  0.669  0.305  0.237  0.693  0.358  

Model 3 0.469  0.448  0.229  0.216  0.489  0.216  0.069  0.447  0.244  

Model 4 0.449  0.678  0.216  0.207  0.474  0.207  0.031  0.421  0.226  

Model 5 0.478  0.476  0.221  0.226  0.525  0.226  0.157  0.425  0.216  

Model 6 0.517  0.515  0.242  0.239  0.546  0.239  0.213  0.485  0.246  

CRR 0.811  0.808  0.352  0.323  0.791  0.323  0.481  0.832  0.386  

 



19 
 

Although the well-performing model in the in-sample measure suffers more from the 

change in volatility, they remain the better performing model in out-of-sample pricing. 

Models 4 and 5 still provide lowest pricing errors for all three measures when all 

options are estimated on average, or are estimated separately by calls or puts.  

 

Two findings may be worthy to note. First, the binomial model, which does not take 

term structure of futures prices and volatility into account, remains the worst 

performing model in out-of-sample pricing. Second, incorporating an additional factor 

into a one-factor model does not improve out-of-sample error. For example, adding a 

second factor into Model 4 increases the out-of-sample error from 21.6% to 22.1% 

(Model 5). In addition, when including an extra factor into Model 3, the error for 

Model 6 turns to 24.2% from 22.9%, suggesting that two-factor model may suffer 

from instability of volatility parameters more than one-factor models.  

 

 

4.3 Testing equal conditional predictive ability 

 

To formally assess the statistical significance of the superior out-of-sample 

performance of the competing option pricing models over the CRR model, we employ 

the equal conditional predictive ability test of Giacomini and White (2006) and report 

the testing results in Table 6. The test of Giacomini and White (2006) mainly 

improves Diebold and Mariano (1995) that has been in widespread use in predictive 

evaluation by several aspects. First, their test can exist in an environment where the 

sample is finite. Second, their model accommodates conditional predictive evaluation, 

in the way that we can predict which forecast was more accurate at a specific future 

day. In other words, it nests the unconditional predictive evaluation that only predicts 

which forecast was more accurate on average. Third, it captures the effect of 

estimation uncertainty on relative forecast performance. 

 To be specific, for a given loss function calculated with out-of-sample absolute 

error, the null hypothesis of equal conditional predictive ability of forecast function f 

and g for the target date 𝑡 + 𝜏 can be:  

 

H0: E[𝐿𝑡+𝜏(𝑌𝑡+𝜏, 𝑓𝑡) − 𝐿𝑡+𝜏(𝑌𝑡+𝜏, 𝑔̂𝑡)|𝐼𝑡] ≡ E[∆𝐿𝑡+𝜏|𝐼𝑡] = 0   

 

where 𝑌𝑡+𝜏 is the variable of interest, here it should be market price 𝐶𝑖(𝜎𝑗 , 𝐾, 𝑇). 𝑓𝑡 

and 𝑔̂𝑡 can be anyone of competing term structural model 𝐶𝑖(𝜎𝑗̃, 𝐾, 𝑇). For a given 

chosen test function ℎ𝑡 that is 𝑞 × 1 vector, a Wald-type test statistic responding to 
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the null hypothesis is:8 

𝑇 = 𝑛 (𝑛−1 ∑ ℎ𝑡

𝑇−1

𝑡=1

∆𝐿𝑡+1) 𝛺̂𝑛
−1 (𝑛−1 ∑ ℎ𝑡

𝑇−1

𝑡=1

∆𝐿𝑡+1) 

                = n𝒁̅′𝛺̂𝑛
−1𝒁̅          

(7) 

where 𝒁̅ = 𝑛−1 ∑ 𝑍𝑡+1
𝑇−1
𝑡=1 , 𝑍𝑡+1 = ℎ𝑡∆𝐿𝑡+1 , and 𝛺̂𝑛 = 𝑛−1 ∑ 𝑍𝑡+1

𝑇−1
𝑡=1 × 𝑍𝑡+1

′  is    

𝑞 × 𝑞 matrix that consistently estimates the variance of 𝑍𝑡+1. 𝑛 is the number of 

out-of-sample forecasts. A level of 𝛼 test can be conducted by rejecting the null 

hypothesis of equal conditional predictive ability whenever 𝑇 > 𝜒𝑞,1−𝛼
2 , where 

𝜒𝑞,1−𝛼
2  is the 1 − 𝛼 quantile of a 𝜒𝑞

2 distribution. 

 

As shown in Table 6, the equal conditional predictive abilities between the term 

structural models and the CRR model have been rejected, indicating there are 

statistical significances of the superior out-of-sample performance of the term 

structural models over the CRR model. As we turn our interests to compare these 

competing term structural models, we find that Model 3, 4, 5 and 6 predicts 

significantly better than Model 1 and 2. We obtain the consistent results even though 

the loss function is measured by square error. The results based on in-sample, 

out-of-sample error and significance test in Table 4, 5, and 6 show that a model with 

specification of time to maturity in volatility function is crucial in pricing crude oil 

options across time to maturity and moneyness.  

  

Table 6 Pair of Performance Comparison 

This Table tests whether one model predicts significantly better than the other model, using 
the test of Giacomini and White (2006). The loss function in this table is evaluated by absolute 
error where the absolute error on current Wednesday is determined by absolute value of the 
difference between market and model price where the model price is obtained from the 
volatility parameters on previous Wednesday. The test function ℎ𝑡  is chosen as ℎ𝑡 =
(1, ∆𝐿𝑡  )′ . The 95% significance level of a 𝜒𝑞,1−𝛼

2  distribution with 𝑞 = 2  degree of 
freedom is 5.99.  

 
Model 2 Model 3 Model 4 Model 5 Model 6 CRR 

Model 1 5.390  14.468  11.784  5.544  7.764  29.048  

Model 2 
 

15.379  14.126  6.661  8.702  23.409  

Model 3 
  

1.864  3.097  3.944  32.609  

Model 4 
   

4.689  4.629  31.462  

Model 5 
    

0.285  28.099  

Model 6 
     

30.397  

                                                      
8 ℎ𝑡 can be chosen by the researcher to include variables that thought to help distinguish between the 

forecast performance of two methods. For instance, one can consider their past relative performance 

such as lagged loss differences or moving average of past loss differences, or business cycle indicators. 
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4.4 Hedging Performance 

 

Pricing performance is to measure whether a model is able to fit into the skew of the 

underlying asset distribution. To examine the pricing ability of each model, we 

calibrate each model with market option prices across strikes and maturities every 

Wednesday. Hence, it enables us to examine time series and cross sections pricing 

performance of each model. If a model consistently outperforms the other model, it 

should perform better than the other this week and the consecutive week.  

 

Next, a model can be evaluated based on the option pricing paradigm that 

theoretically correct risk management emerges naturally, that the model is derived 

from absence of arbitrage. The risk-neutral valuation underlying the option model is 

derived from constructing the portfolio with a short position of call (put) and purchase 

(sell) a delta portion of underlying assets. In theory, to maintain the delta neutral at all 

time, the underlying asset price should be rebalanced at an instant of time that asset 

price changes. In reality, a continuous hedge is infeasible and a discrete rebalancing is 

normally conducted. Hence, part of hedging errors occurs due to infrequent 

rebalancing. The other part of hedging error is due to the model misspecification. 

Apart from the error of infrequent hedging, Green and Figleswi (1999) indicate that 

part of hedge error is due to model misspecification, deriving from incorrect 

assumption of the underlying asset process and incorrect input unobservable 

parameters.  

 

The hedging error is determined as 

∆𝐻𝑡+∆ = (𝐶𝑡+∆ − 𝐷𝑡+∆ × 𝐹𝑡+∆) − (𝐶𝑡 − 𝐷𝑡 × 𝐹𝑡) × 𝑒𝑟𝑡×∆       (8) 

 

where 𝐶𝑡 , 𝐷𝑡 , and  𝐹𝑡  is the call option value, delta, and futures price on t. ∆ 

indicates a rebalanced interval, which is one week in this case. ∆𝐻𝑡+∆ is the change 

of delta hedge portfolio over a week. If delta computed from each option model is 

correct, the hedge error should be zero when rebalancing continuously. Here, we 

rebalance once a week until the desired period is reached. To avoid any offsetting 

hedging error over a long hedging period, we compute absolute hedge error and 

percentage absolute hedge error, expressed as,  

 

𝐴𝐻𝐸 =
1

𝑛
∑ |∆𝐻𝑡+𝑖∆|𝑛

𝑖=1                          (9) 

 



22 
 

 

𝑃𝐻𝐸 =
1

𝑛
∑ |

∆𝐻𝑡+𝑖∆

𝐻𝑡+(𝑖−1)∆
|𝑛

𝑖=1                        (10) 

where 𝐴𝐻𝐸  and 𝑃𝐻𝐸  are average absolute error and average percentage error, 

respectively, for the period of n week. 

 

Table 7 shows hedging performance of all competing models for the period of 2, 5, 

and 10 weeks. The major finding is that two-factor models tend to outperform 

one-factor models. The AHE for Model 5 and 6 for 2-week hedging period is 0.304 

and 0.309, but the best performing one-factor model are Model 3 and Model 4, which 

produce the AHE 0.420 and 0.421, respectively. When the error is estimated with PHE, 

the relative difference seems not as large as AHE. In general, the difference between 

2-factor model and 1-factor model is about 1 percent. The measure of PHE is so low 

since the hedge error is divided a large portfolio value. Similar patterns of relative 

performance are repeated for 2-factor and 1-factor models for 5-week and 10-week 

hedging period.  

 

The relative hedging performance for 2-factor model and 1-factor models seem to be 

larger than the relative pricing performance of both models. These results are 

consistent to Gupta and Subrahmanyam (2005) and Driessen to al. (2003), showing 

that more complex models outperform simple models. Two-factor models are 

preferable over one-factor models in hedging than pricing probably because the 

change in term structure of futures prices generated by 2-factor models is imperfectly 

correlated, consistent to the term structure of volatility for crude oil price options 

across maturities. 

 

Three observable patterns are worthy to note. First, the model with the volatility 

function incorporating time to maturity tends to perform better than the model has no 

this feature. As an example, the AHE of Model 3 and 4 for the 5-week hedging period 

is 0.356 and 0.354, compared to 0.382 and 0.392 for Model 1 and 2. Next, we see that 

the CRR model outperforms one-factor model, but underperform two-factor model. 

Finally, the results from the spectrum of the hedge period show that the longer the 

hedging period, the lower average hedge error for all models.    
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Table 7 Hedging Performance 

This table presents AHE and PHE, which are average absolute hedge error and average percentage 

hedge error using equations (9) and (10). This is done by building a delta neutral portfolio and 

rebalanced weekly until the desired period is reached.  

Period 

(weeks) 
2 

 
5 

 
10 

 

 
AHE PHE AHE PHE AHE PHE 

M1 0.455 0.027 0.382 0.032 0.259 0.026 

M2 0.460 0.038 0.392 0.035 0.261 0.029 

M3 0.420 0.023 0.356 0.029 0.239 0.021 

M4 0.421 0.024 0.354 0.029 0.238 0.021 

M5 0.304 0.019 0.243 0.017 0.131 0.011 

M6 0.309 0.019 0.254 0.017 0.138 0.011 

CRR 0.412 0.046 0.347 0.034 0.233 0.016 

 

To break out the aggregate hedging error into different ranges of moneyness and 

maturities, Table 8 display AHE (absolute hedging error) for 5-week hedging period 

across 5 ranges of moneyness and 2 ranges of maturities. The general results show 

that within the category of 0-90 days, term structure models perform the best for 

in-the-money options whereas within the range of 91-180 days these models produce 

lowest errors for out-the-money options. However, the CRR model, which has not 

considered term structure of futures price, produces inconsistent results across 

moneyness and maturities, but the model performs best for in-the-money calls among 

all competing models.  

 

The results in Table 7 and 8 also reveal that number of factors matter for performance 

of hedging for term structure model. Two-factor models, particularly model 5, 

generally outperform all one-factor models across most ranges of moneyness. The 

performance of two-factor models also depends upon the specification of volatility 

function. It is found that the function with time to maturity performs better than the 

model, which do not contain this variable. Thus, in the category of two-factor models 

model 5 for most moneyness series produces lower errors than Model 6, and Model 4 

performs best among all competing one-factor models.  
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Table 8 Hedging error across Moneyness and Maturities 

This table shows average absolute hedge error rebalancing for 5 weeks. The hedge error is grouped and 

averaged according moneyness and maturities. 

  Day Money M1 M2 M3 M4 M5 M6 BS 

Call 0-90 1.1<F/K≦1.2 0.200  0.126  0.220  0.217  0.220  0.164  0.331  

  
1.05<F/K≦1.1 0.448  0.472  0.399  0.414  0.378  0.394  0.482  

  
1<F/K≦1.05 0.353  0.358  0.307  0.308  0.314  0.338  0.318  

  
0.95<F/K≦1 0.400  0.406  0.372  0.367  0.348  0.362  0.365  

  
0.9<F/K≦0.95 0.531  0.526  0.476  0.470  0.444  0.466  0.467  

  
0.8<F/K≦0.9 0.578  0.564  0.497  0.496  0.446  0.475  0.448  

 
91-180 1.1<F/K≦1.2 0.391  0.467  0.363  0.334  0.437  0.454  0.481  

  
1.05<F/K≦1.1 0.502  0.456  0.469  0.461  0.451  0.454  0.508  

  
1<F/K≦1.05 0.450  0.456  0.429  0.433  0.417  0.426  0.416  

  
0.95<F/K≦1 0.408  0.413  0.387  0.390  0.384  0.389  0.382  

  
0.9<F/K≦0.95 0.422  0.435  0.414  0.406  0.368  0.374  0.362  

  
0.8<F/K≦0.9 0.380  0.410  0.350  0.350  0.318  0.329  0.307  

Put 0-90 1.1<K/F≦1.2 0.383  0.385  0.364  0.361  0.293  0.307  0.303  

  
1.05<K/F≦1.1 0.233  0.316  0.238  0.241  0.247  0.343  0.230  

  
1<K/F≦1.05 0.340  0.357  0.342  0.336  0.330  0.360  0.343  

  
0.95<K/F≦1 0.309  0.305  0.265  0.261  0.281  0.297  0.274  

  
0.9<K/F≦0.95 0.366  0.394  0.347  0.346  0.344  0.360  0.368  

  
0.8<K/F≦0.9 0.500  0.442  0.448  0.452  0.468  0.504  0.480  

 
91-180 1.1<K/F≦1.2 0.435  0.477  0.324  0.293  0.266  0.291  0.277  

  
1.05<K/F≦1.1 0.406  0.387  0.404  0.412  0.402  0.409  0.429  

  
1<K/F≦1.05 0.357  0.374  0.338  0.334  0.334  0.337  0.335  

  
0.95<K/F≦1 0.323  0.331  0.301  0.298  0.311  0.315  0.317  

  
0.9<K/F≦0.95 0.296  0.292  0.267  0.264  0.260  0.269  0.280  

    0.8<K/F≦0.9 0.319  0.342  0.301  0.302  0.311  0.317  0.317  

 

 

5. Conclusion 

Term structure models are originally used for modeling term structure of interest rates 

and price interest rate contingent claims. Based on the cost of carry argument, futures 

prices should be related with time to maturity and can be viewed as a structure and 

can be modeled by the term structure models. Pricing and hedging futures options 

with term structure models contain the stochastic futures prices and stochastic interest 

rates, which relaxes the assumption of the constant interest rates behind the 

Black-Scholes model. This paper contributes to option pricing literature by examining 

the term structure models in pricing and hedging futures options. Light Sweet crude 
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oil futures options from 2007 and 2011 are selected to test several competing models 

in in-sample, out-of-sample, and hedging performance. 

 

Results have shown that the term structure models incorporating stochastic interest 

rates reduce in-sample fitting performance between 1% and 3%. One-factor models 

appear to be more superior in in-sample fitting and out-of-sample prediction, whereas 

two-factor models are preferable for hedging. In addition, volatility function with time 

to maturity outperform than those models without this feature for all measures, but 

they tend to overfit into spurious options prices. Taken together, two-factor models 

with time to maturity of futures prices in volatility function perform the best among 

all models, but correctly specifying one-factor model may replace two-factor models 

with incorrect volatility function.  

 

Although all term structure models outperform the CRR model significantly in 

out-of-sample prediction, but they tend to overvalue short-term ATM options and 

undervalued other options. For longer options, different scales of mispricing still 

persist across models, suggesting that these models may be mis-specified to a certain 

extent. However, it is too early to judge their usefulness unless full scales of tests are 

conducted. To reduce mispricing of term structure models, these models with 

volatility functions incorporating a second-order polynomial of strike price and 

maturity suggested by Dumas et al. (1998) may considered. We left this work for 

future research. 
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