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1. Introduction 

 In the past decade, physics statistics and complex system theories have been 

partially translated into the field of finance. There have been many attempts ranging from 

chaos theory to artificial intelligence to predict financial time series or describe it. 

However, many have focused on the long-term systematic market reversal (i.e. "bubble 

bursts"), which mostly neglect the value of exogenous information without formally 

assuming market efficiency, or have focused entirely on undiscriminating application of 

patter recognition methods on ultra short-term price movements, often taking the form of 

market microstructure analysis. And all have focused on index-based or equity-based 

analysis.  

 To our knowledge, there have been no attempts to utilize a formally and 

clearly-realized rational model with these latest tools of physics statistics to financial 

derivatives in the short-term, which is critical to produce risk-adjusted returns in the asset 

management industry. What we seek to accomplish is to not only apply the JLS model to 

financial derivatives but to also treat the estimated "critical time" as part of the risk 

management and investment horizon determination tools.  This should be critical 

especially to the finite nature of financial derivatives.  

 The benefits of studying with financial derivatives in a short time-horizon are 



 
 

three-fold. First, financial derivatives bear less liquidity and are more susceptible to 

herding effects. Second, taking a practical stance, being able to correctly predict 

short-term movements allows an asset manager to manage a portfolio more effectively 

while minimizing risk, thus decreasing potential volatility and raising risk-adjusted 

returns. Lastly, the argument that the late-stage bubble can be characterized by the 

competition between value-investor and noise traders can be even better-realized due to 

the limited life-span of financial derivatives, meaning that both kinds of traders would 

exhibit contradicting values framed in similar time horizons, making the effects more 

pronounced.  

 This paper is the first to 1) examine the JLS model for short-term bubbles of 

financial derivatives, and 2) apply this model to derivative products.  We take no 

normative view on the best way to prevent a financial crisis or an impending crash; we 

only seek to understand the effectiveness of JLS models in predicting an impending 

turning of a bubble. 

 Predicting an abrupt changes in price trends in the financial market has been an 

important topic; specifically, given the formation of a clearly defined financial bubble, it 

is imperative that regulatory bodies are equipped with proper tools to detect an 

impending crash. In the past decade, many such new tools have been developed for that 



 
 

purpose. A particular method, Log-Periodic Power Law (JLS), developed by Sornette, 

has recently come into spotlight as a grounded, rational-expectation based model that 

aims at detecting crashes through the formation of herding effects.  

 JLS has been examined and modified by several researchers, including xxxxxxxx, to 

varying degrees of success. However, to the author's knowledge, it has never been 

applied to derivative products, which are generally less liquid and thus more susceptible 

to herding effects and sudden price swings. Moreover, such method has never been 

applied to ultra short-term data before. Much of the JLS application has centered on the 

price movements (bubble formation and crash) as consequences of herding effects devoid 

of exogenous news or information. We find that, based on such logic, the JLS model 

might be more suitable when applying to short-term data and treat the price movements 

in isolation.  

 Section 2 discusses the JLS methodology, recent development and parameter 

vulnerabilities. Section 3 discusses the improved methodologies taken in association with 

Li (2010). Section 4 develops the test methodologies, expectations and provides thoughts 

for further developments.  

 

 



 
 

2. The Basic JLS Model 

 Much debate has centered on the proper definition of a financial bubble (Gurkaynak, 

2008), though literature has primarily focused on the statistical methodologies and testing. 

In reality, the formation of a bubble was only apparent after it bursts, a "not knowing it's 

there until it's gone" sentiment. But in theory, a financial bubble can be characterized as a 

persisting and positive deviation of actual asset price from the fundamental value that is 

assumed to exist.  

 A pivotal, if not particularly rigorous, concept in the field of behavioral finance is 

the concept of "bigger fools." This means that an investor would purchase an asset 

despite a clear deviation or a complete absence of fundamental value because she 

believes that there will be a bigger fool to pay a steeper price for such an asset.   

 In essence, the JLS approach characterizes the financial market in the following 

manner: participants of the financial market are hierarchical, meaning there are different 

sizes of investors, and they trade with each other, often competing and taking different 

views. This is especially true in derivatives markets. When the herding effect begins to 

form for any reason (nonlinear interaction) and becomes apparent in the system, a larger 

proportion of investors would choose to follow the trend, and the financial market will 

engage in a large-scale, collective buying spree that would form a self-organized and 



 
 

self-reinforcing bubble regime. When a majority of the market participants becomes 

imitators, the change of price regime then occurs at a critical time. Here, we are interested 

in the continuation of the trend and the timing of the reversal.  

 Note that there need not be a reason for a bubble formation. We merely seek to 

understand that, when the rain happens, the ground is bound to get wet; we do not predict 

the precise timing of precipitation because, from a risk manager's perspective, it is not 

practical and utterly impossible. However, what is unique about JLS is that it does indeed 

provide the potential range of price trend reversals, and this serves as an important tool in 

forming a short-term portfolio of financial derivatives.  

 In terms of data analysis, we are examining the two main features leading up to a 

trend reversal. First, JLS looks for the super-exponential acceleration during a bubble 

formation.  Second, there should be oscillations with accelerating frequency.  

 It is understandable that the very definition of a bubble is subject to debate. Some 

have also argued over the definition of a crash. Due to the nascent nature of the JLS 

model, almost every single aspect has been debated over. From the model extension, to 

the time horizon selection and the starting date, to the model fitting method, ranging from 

the traditional approach of minimizing mean-square error to genetic algorithm, 

bootstrapping and pattern recognition, to even the usage of prices or logged prices. Even 



 
 

the generation of synthetic data to test the robustness of the parameters has caused 

controversy. We foresee the application of the JLS method to financial derivatives as a 

long yet fruitful process, and we have prepared to attempt various methods taking the 

point of view as a risk manager and algorithmic trader.  

Derivation of a Basic JLS Model 

 The basic model is built on a rational expectation setting. Note that the following is 

based on a review paper by Sornette (2013) which examines and compares various 

criticisms and methodologies of the model. Given that there are numerous methods 

involved in this novel approach in finance literature, it is critical that we clarify the 

underlying framework and examine the applicability of JLS to short-term variations of 

derivative prices.  

 First, an asset price is consisted of the fundamental value and the bubble component. 

It is difficult to separate the fundamental and bubble component. In terms of derivatives, 

the case can be different. We deem derivatives a better tool to examine JLS because the 

bubble detection method aims at uncovering finite-time singularity. This coincides with 

the finite nature of financial derivatives; they operate within finite time horizons. 

Mathematically, the JLS model treats the bubble component as independent from the 

fundamental value dynamics. The latter can follow a geometric Brownian motion as 
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hierarchical structure, thus only applicable up to the end of the bubble. Consequently, the 

JLS model makes no prediction beyond the critical time tc.  

 After the establishment of the model, the essential part of the task is to estimate the 

parameters of the model for prediction purposes. This part has been subjected to various 

debates, and different methods were developed. The original paper employed the method 

of minimizing the sum of Squared Residuals.  

3. Methodologies 

 Taking a pragmatic stance, in this paper, we seek to answer the following questions:  

 What is the likelihood that we can predict short-term price reversals in real time?  

 If a given prediction is false, what is the potential loss as a contract holder, and how 

to adjust for such prediction failures?  

These questions must first be answered with a clearly defined, trend reversal detection 

framework. Due to the transitory nature of price movements, an unambiguous price 

bubble definition remains an unsolved task. Its difficulty has two parts: (i) the rise of 

fundamental value is impossible to measure as an aggregate due to different investment 

horizons and methodologies and (ii) it is impossible to distinguish between an 

exponentially growing fundamental price and growing bubble price.  

 Here, due to our novel approach in applying the base JLS model to short-term 



 
 

derivative prices, we posit that the overnight jump of derivative prices are typically 

resulted by the trading activities of informed traders. If there is an overnight rise in price, 

we treat it as a result of information dissimulation.  

 A recent development by Lin and Sornette (2013) has included a stochastic mean 

reversion dynamics of the critical time, capturing the uncertain anticipation and the 

resulting effects by trader interactions.  

 According to Sornette's review paper (2013), there has been a debate regarding the 

reasonable value of m. Bree & Joseph (2013) proposes a relaxation of a so-called 

reasonable value because if the best-fitted parameters have exponents beyond a 

reasonable range, then there can be an added information to the price series.  We will 

follow Bree & Joseph's reasoning in order to capture as much price information as 

possible. Moreover, aside from limiting arbitrarily the value of m, methods such as 

bootstrap and ensemble have been developed. We seek to examine all methods in its 

application in financial derivative time series.  

Super exponential movements based on the JLS model 

 A conceptual concept of JLS is that, different from standard financial bubble models, 

is that a bubble follows super exponential growth. Logically, a bubble price occurs when 

price rises above an asset's fundamental value. But given that it is difficult to ascertain 



 
 

the fundamental price, the benefit of JLS is that it describes a bubble as a price growth 

that is so drastic that it is unlikely to be based on any fundamental changes of underlying 

assets but based on a feedback mechanism among traders, creating a regime that is 

intrinsically transient.  

 There have been debates and justifications regarding the type of bubbles that a JLS 

model can detect. Sornette (2013) claims that the JLS model is used for endogenous 

bubbles, meaning a bubble that is generated by positive feedback mechanism. However, 

due to the long horizon that Sornette examines, it is difficult to determine what 

information constitutes exogenous shocks and what kind of news can be disregarded as 

irrelevant. Here we disagree with their claim that the JLS model is only used for 

endogenous bubbles because it is difficult and arbitrary to determine the bubble type. Our 

approach to apply this method to short-term derivative data would be a more appropriate 

setting for JLS model because, during a super exponential price growth within a single 

trading day, during the trading hours, it is less likely that such growth is caused by an 

universal exogenous news or fundamental changes.  

JLS model extensions 

 Because the expression (6) is a standard JLS model, which is a special case of a 

more general, second-order JLS Landau formula, it has been shown that the more general 



 
 

form of JLS model (also the extension) provides better and more timely fitting results 

(Sornette 2013). Here, we will use both the first-order form and the second order JLS 

Landau-type JLS model as described by Sornette and Johansen (1997) as well as a 

non-parametric method proposed by Sornette and Zhou (2003). 

Parameter Estimation 

 Two major challenges of fitting the JLS model are the non-linearity nature of the 

model and the existence of several local minima. In this paper, we will employ a taboo 

search (Cvijovic, Klinowski, 1995) to solve the multiple minima problem and a 

traditional Levenberg-Marquart search algorithm for find solution for non-linear 

problems to obtain approximation of model parameters.  The taboo search is useful in a 

way that it provides a preliminary screening and gives a space of possible solutions.  

 In order to test the robustness of the parameters, we follow the test methods by 

Johansen (1999, 2000) to test on GARCH-generated synthetic time series. Zhou and 

Sornette (2002) recommended tests using synthetic time series with different types of 

noises, including the ones generated based on the power law distributions. For our 

purpose, we deem it critical to conduct the robustness test, akin to the Monte Carlo 

analysis but with data generated specifically for power-law cases.   



 
 

 The most special feature of JLS model is the ability to predict a critical time at 

which a bubble stops growing. It is an interesting feature in the way that, from a capital 

allocation point of view, theoretically one can take advantage of the continued rise of a 

bubble and then exit when the critical time arrives. If the JLS model parameter 

estimations are robust, then whether the ending of the bubble takes the form of a crash or 

gradual decline, asset managers can still take advantage of such prediction whether to 

reverse their trade thesis.  

 From the model, a distribution of tc is obtained. We will use a nonparametric 

method detailed by Li and Racine (2006) to obtain the most probable time tc for the end 

of the bubble. Sornette (2013) also recommends employing the bootstrap method to 

generate bootstraps in which the residuals of the first model calibration on the time series 

are used to generate synthetic time series through reshuffled blocks of residuals.  

4. Empirical Approach and Expectation  

 Though there has been much debate over model fitting methodologies and even the 

very definitions of bubbles and crashes, here we aim at examining the validity of such 

methods in short-term financial derivatives. Despite the various methods and 

methodologies, a major assumption is that an endogenous bubble can be detected based 

on the price time series and a critical time can be extrapolated and estimated. Based on 



 
 

Sornette's claim (2013), if JLS model is specifically used for an endogenous bubble, 

implying that a price growth is purely due to herding behavior without exogenous news, 

then by limiting the examination to a shorter horizon during trading hours, we should 

have better prediction rates.  

 For the next revision, we will provide the empirical results when the JLS and the 

chosen methodologies above are applied to the KOSPI products, including stock options 

and futures. We will also provide alternative methodologies to complement the shorter 

time horizon and address the price jumps and overnight price movements.   
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