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Arithmetic Average Futures Contracts 

Aa A Hedge Against Expiration day Effects 

 

Abstract 

In this paper, I define and price arithmetic average (AV) futures contracts, show how 

they can reduce price manipulation, and explore their features as investment choices.  

They offer a number of advantages, the fore most important of which is protecting 

investors against price manipulation by reducing the level of price manipulation and 

manipulators’ profits.  The study also shows that the mean and the variance of the price 

of an AV futures contract are functions of its reference dates and that it can be flexibly 

designed to meet various hedging needs of investors.  With these features, AV futures can 

serve as a good complement to existing futures. 
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In general, stock prices and trading volumes undergo high volatility when financial 

instruments such as index futures and options approach their expiration dates.  This 

‘expiration day effect’ is a phenomenon common in the U.S., Germany, Canada, Spain, India, 

and Taiwan and is used to account for the flurry of activity such as price reversals or 

excessive volatility of stock prices as options and futures traders unwind their positions 

before these contracts expire, wary of the impact this might have on volume and price 

(Chamberlain et al. (1989), Hsieh (2009), Illueca and Lafuente (2006), Schlag (1996), Stoll 

and Whaley (1987), and Vipul (2005)).  Index arbitrage and price manipulation are seen 

as the culprits here (Hsieh (2009), Hsieh and Ma (2009), and Stoll and Whaley (1997)).  

Since price manipulation is difficult to detect and index arbitrage is likely to remain 

popular, plain vanilla futures will be subject to expiration day effects in the future, too. 

Besides, plain vanilla futures might not always meet the various hedging needs of a 

range of individuals or firms.  For instance, global exporters like Apple and Toyota do not 

receive their payments in Euros or US dollars on some specific day.  They sell iPhones and 

Camrys in foreign countries throughout the year and receive Euros or dollars year round.  

Therefore, to hedge their exchange rate risks, they need to convert foreign currencies into 

their own domestic currencies at an average exchange rate over a time period such as a 

quarter.  For this reason, not plain vanilla futures but average price futures (AV futures) 

might better serve the needs of those exporters and importers in hedging their exchange 

rate risks over a given period. 

I find that the volatilities of AV futures contracts are in fact a function of their multiple 

reference dates, so the risk profiles could be flexibly, optimally determined, thereby 



 4 

increasing investors’ utility and attracting new investors to the market.1  In addition, this 

research on AV futures contracts can shed some light on pricing of currently available 

index futures such as CAC40 futures in France, Ibex35 futures in Spain, HIS futures in Hong 

Kong, and MSCI TW futures in Taiwan since each of these is a kind of AV futures contract 

with an average of multiple prices on its expiration day being its final settlement price.  

To date, however, their accurate, no-arbitrage pricing has never been proposed yet.  This 

paper, therefore, will also discuss how accurate pricing of such futures contracts can be 

achieved. 

Meanwhile, if average price options offer more benefits to certain investors, I believe 

that average price futures will do so, too.  It is well known that average price options have 

been not only traded in developed economies as shown in Hull (2012, page 112) but also 

researched academically as in Kemna and Vorst (1990), Milevsky and Posner (1998), and 

Turnbull and Wakeman (1991).  In fact, arithmetic average futures have many advantages 

over arithmetic average options in that the former, with closed form solutions, are easier to 

understand, easier to price, and easier to use.  Therefore, AV futures contracts can be even 

a better financial instrument for hedgers or speculators than average price options can. 

In this paper, I will define and price AV futures contracts, show how they can reduce the 

risk of expiration day effects, and explore their features as investment choices.2  I will 

show that an AV futures’ potential for reducing price manipulation and its financial 

                                           
1 The reference dates of arithmetic average futures are the pre-specified dates that determine the final 
settlement price of the futures at expiry. 
2 I interchangeably use the theoretical value of a forward and that of a corresponding futures contract.  
In fact, the two values are the same when interest rates are constant, as we assume in this paper (Hull 
(2009), pages 126-127).  Also, “an AV futures” and “AV futures” are short forms of “an AV futures 
contract” and “AV futures contracts.”  In fact, whenever I use a, an, this, etc. before the word “futures,” I 
mean one “futures contract.” 
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instrument qualities are functions of its reference dates and that it can, therefore, be 

designed to meet the unique needs of different investors.  The remainder of the paper is 

organized as follows.  In Section 1, I will define and price AV futures contracts.  In 

Section 2, I will show how they reduce the risk of price manipulation.  In Section 3, I will 

explore important features of AV futures as financial instruments, and in Section 4, I will 

conclude the paper. 

 

1. Pricing of Arithmetic Average Futures 

 

  The notation used in this paper is as follows. 

① n: the number of reference dates to determine the settlement price of an  

AV futures at expiry (n = 1, 2, 3, …)3 

② T (= T1); the expiry date of AV futures  

③ T1, T2, … , Tn: reference dates for AV futures, where Tn < Tn−1 < ⋯ < T2 < T1 

④ r: risk-free interest rate per annum (assumed to be constant) 

⑤ 𝑆𝑡: the market price at time t of the underlying asset of AV futures 

⑥ 𝐹𝑋,𝑡,𝑇𝐻:  the theoretical value of a futures contract X at time t 

⑦ 𝐹𝑋,𝑡:  the market price of a futures contract X at time t 

 

First, we define AV futures. 

 

Definition 1 (AV futures with n reference dates):  A futures contract with the final 

                                           
3 Plain vanilla futures contracts are a special kind of AV futures contracts with n = 1. 
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settlement price at expiry 𝑇1 being 
1

𝑛
∙ ∑ (𝑆𝑇𝑖)

𝑛
𝑖=1 , where 𝑇𝑛 < 𝑇𝑛−1 < ⋯ < 𝑇2 < 𝑇1. 

 

𝑇1, 𝑇2, … , 𝑇𝑘 can be k different times on 𝑚 different days, where 𝑚 ≤ 𝑘.  For instance, 

they will be k different times on an expiration day if 𝑚 = 1.  In this sense, 𝑇1 should be 

appropriately named “expiration time,” but we call 𝑇1  by the more familiar term, 

“expiration date.”  To price an AV futures contract with n reference dates, we replicate its 

cash flow at expiry, 
1

𝑛
∙ ∑ 𝑆𝑇𝑖

𝑛
𝑖=1 , assuming that 𝑇𝑘+1  ≤ 𝑡 < 𝑇𝑘, where 𝑡 is the current 

time and 1 ≤ 𝑘 ≤ 𝑛 − 1 , which is case 𝑖𝑖)  of Proposition 1.  First, let us divide 

1

𝑛
∙ ∑ (𝑆𝑇𝑖)

𝑛
𝑖=1  into two parts such that A =

1

𝑛
∙ ∑ (𝑆𝑇𝑖)

𝑘
𝑖=1 and B =  

1

𝑛
∙ ∑ (𝑆𝑇𝑖)

𝑛
𝑖=𝑘+1 .  As of 

time 𝑡, A is unknown and B is known since 𝑇𝑘+1  ≤ 𝑡 < 𝑇𝑘.  Accordingly, to secure B at 

expiry, one should invest the dollar amount of B ∙ 𝑒−𝑟(𝑇1−𝑡) in a risk-free asset and hold it 

until 𝑇1.  To secure A at expiry, investors should buy 
1

𝑛
∙ ∑ (𝑒−𝑟(𝑇1−𝑇𝑖))𝑘

𝑖=1 𝑠ℎ𝑎𝑟𝑒𝑠 now, and, 

at each future time 𝑇𝑖 , sell 
1

𝑛
∙ 𝑒−𝑟(𝑇1−𝑇𝑖) shares and invest the proceeds, 

1

𝑛
∙ 𝑒−𝑟(𝑇1−𝑇𝑖) ∙ 𝑆𝑇𝑖 , 

in a risk-free asset and hold it until 𝑇1.  Since this transaction at each 𝑇𝑖 will secure them 

a cash flow of (
1

𝑛
∙ 𝑒−𝑟(𝑇1−𝑇𝑖) ∙ 𝑆𝑇𝑖) ∙ 𝑒

𝑟(𝑇1−𝑇𝑖) =
1

𝑛
∙ 𝑆𝑇𝑖  at 𝑇1 , ultimately, they will get 

1

𝑛
∙ ∑ (𝑆𝑇𝑖)

𝑘
𝑖=1 = 𝐴 at 𝑇1.  Lastly, the total cost of this replication of the AV futures contract 

as of time 𝑇1 is: 

[B ∙ 𝑒−𝑟(𝑇1−𝑡) + (
1

𝑛
∙∑(𝑒−𝑟(𝑇1−𝑇𝑖))

𝑘

𝑖=1

)𝑆𝑡] 𝑒
𝑟(𝑇1−𝑡) = B + (

1

𝑛
∙∑(𝑒𝑟(𝑇𝑖−𝑡))

𝑘

𝑖=1

)𝑆𝑡 

=
1

𝑛
(∑ 𝑆𝑇𝑖

𝑛
𝑖=𝑘+1 + ∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)𝑘
𝑖=1 ) as in 𝑖𝑖) of Proposition 1.  Case 𝑖𝑖𝑖) is simpler and 
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similarly derived, and case 𝑖) is trivial. 

 

Proposition 1 (Theoretical price of an AV futures at t with n reference dates): 

 𝑖)  
1

𝑛
∙∑𝑆𝑇𝑖

𝑛

𝑖=1

,                                                                                                         𝑤ℎ𝑒𝑟𝑒 𝑡 =  𝑇1

𝑖𝑖) 
1

𝑛
( ∑ 𝑆𝑇𝑖

𝑛

𝑖=𝑘+1

+∑𝑆𝑡 ∙ 𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

) ,            𝑤ℎ𝑒𝑟𝑒 𝑇𝑘+1  ≤ 𝑡 < 𝑇𝑘, 1 ≤ 𝑘 ≤ 𝑛 − 1

𝑖𝑖𝑖)  
1

𝑛
∙∑𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑛

𝑖=1

,                                                                               𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑡 < 𝑇𝑛

 

 

Notice that Proposition 1 generally holds as long as 𝑇𝑛 < 𝑇𝑛−1 < ⋯ < 𝑇2 < 𝑇1  is 

satisfied, which implies that AV futures can be created in a very flexible way, depending on 

the various needs of their users.  For instance, n reference dates could be set equally 

spaced as T1 – T2 = T2 – T3 = … = Tn-1 – Tn = t.4  But even if the intervals are not set as 

such, Proposition 1 still holds only if 𝑇𝑛 < 𝑇𝑛−1 < ⋯ < 𝑇2 < 𝑇1 is satisfied.  If the market 

price of an AV futures contract is different from Proposition 1, investors can take advantage 

of the difference and make an arbitrage profit, the proof of which is provided in the 

Appendix. 

 

2. Reduction of Price Manipulation 

 

As Kemna and Vorst (1990) claimed, it is intuitively appealing that average value 

                                           
4 For instance, t could be a day, a week, 10 days, etc. 
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derivative securities reduce the risk of price manipulation at expiry.  In addition to this 

generally accepted but yet to be proven claim, we show how AV futures contracts reduce 

the risk.  Price manipulation can occur in various ways while it is not clearly documented 

how it is being actually done.  Thus this study on how AV futures can serve as a 

mechanism for reducing price manipulation has to be based on following assumptions: 

 

First, in the general economy, a representative stock S exists along with its arithmetic 

average futures contract 𝐹𝑘 with k reference dates, where 1 ≤ k.  𝑆𝑡 and 𝐹𝑘,𝑡 refer 

to the time-t market prices of S and 𝐹𝑘, respectively; 

Second, the stochastic process of S is,  𝑆 =  ∙ 𝑆 ∙  𝑡 +  ∙ 𝑆 ∙   , where   and   are 

the mean and the standard deviation of the continuously compounded returns of 𝑆𝑡, 

and  𝑡 is a standard Brownian motion; 

Third, 𝐹𝑘′𝑠 contract size and expiration date are N shares of S and 𝑇1, respectively. 

Also, 𝐹𝑘′𝑠 reference dates are 𝑇𝑘, 𝑇𝑘−1, … , 𝑇2, 𝑇1, where 𝑇𝑘 < 𝑇𝑘−1 < … < 𝑇2 < 𝑇1; 

Fourth, there is a (male) risk-neutral, representative price manipulator, M;   

Fifth, if M takes a position in 𝐹𝑘 at any time before 𝑇1 − ∆t, he can try to manipulate 

𝑆𝑇1 at time 𝑇1 − ∆t, where ∆t is the shortest time to execute one’s order in the stock 

market5; 

Sixth, for convenience, we assume that M takes a long position in one futures contract 

at the price of 𝐹𝑘,𝜏 at time τ, where 0 ≤ τ < 𝑇1 − ∆t; 

Seventh, if M buys up the shares worth 𝛼 ∙ 𝑢(𝛼) at time 𝑇1 − ∆t, he can push up 

                                           
5 There is no point in manipulating the price at a non-reference date(time), and time 𝑇1 is the common 
reference date (time) for all futures contracts with k reference dates. 
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𝑆𝑇1  by 𝛼, where 𝑢(𝛼) is the average cost of $1 manipulation of 𝑆𝑇1  given 𝛼 and 𝑆𝑇1−∆t;  

Finally, we assume 
𝜕𝑢(𝛼)

𝜕𝛼
> 0 because the cost of $1 manipulation increases as 

𝛼 increases ceteris paribus.6   In particular, we assume 𝑢(𝛼) = c ∙ 𝛼, where 𝑐 > 0; 

 

Suppose that the share price to be realized at 𝑇1 without M’s manipulation is 𝑆𝑇1 .  The 

conditional mean, 𝑆𝑇1 at 𝑇1 − ∆t, is 𝐸𝑇1−∆t[𝑆𝑇1] =  𝑆𝑇1−∆t ∙ 𝑒
𝜇∙∆t , as shown in Section III.  

If 𝐹𝑘 = 𝐹1 and M manipulates 𝑆𝑇1  by spending 𝛼 ∙ 𝑢(𝛼) = 𝑐 ∙ 𝛼2, his wealth (W) at 𝑇1 will 

be: 𝑊 = 𝑁(𝐹1,𝑇1 − 𝐹1,𝜏) − c ∙ 𝛼2 = 𝑁(𝑆𝑇1 + 𝛼 − 𝐹1,𝜏) − c ∙ 𝛼2 = 𝑁 ∙ 𝑆𝑇1 + 𝑁(𝛼 − 𝐹1,𝜏) − c ∙

𝛼2.  Thus, 

𝐸𝑇1−∆t[𝑊] =  𝐸𝑇1−∆t[𝑁 ∙ 𝑆𝑇1 +𝑁(𝛼 − 𝐹1,𝜏) − c ∙ 𝛼2] 

=  𝑁 ∙ 𝐸𝑇1−∆t[𝑆𝑇1] + 𝑁(𝛼 − 𝐹1,𝜏) − c ∙ 𝛼2 =  𝑁 ∙ 𝑆𝑇1−∆t ∙ 𝑒
𝜇∙∆t + 𝑁(𝛼 − 𝐹1,𝜏) − c ∙ 𝛼2. 

To maximize the effect, the first order condition with respect to 𝛼 is 𝑁 − 2c𝛼 = 0 or 𝛼∗ =

 
𝑁

2𝑐
.  The maximized incremental profit for M due to the price manipulation by 𝛼 is  

𝑁𝛼∗ − c ∙ (𝛼∗)2 = 𝑁 ∙
𝑁

2𝑐
− c ∙ (

𝑁

2𝑐
)
2

=
𝑁2

2𝑐
−
𝑁2

4𝑐
=
𝑁2

4𝑐
> 0. 

Next, suppose everything is the same but 𝐹𝑘 = 𝐹𝑛, where 2 ≤ n.  If M manipulates 𝑆𝑇1 

by spending 𝛼 ∙ 𝑢(𝛼) = 𝑐 ∙ 𝛼2, 𝐹𝑛,𝑇1 = 
(𝑆𝑇1+𝛼) + ∑ (𝑆𝑇𝑖)

𝑛
𝑖=2

𝑛
, and  

𝑊 =  𝑁 ∙ (𝐹𝑛,𝑇1 − 𝐹𝑛,𝜏) − c ∙ 𝛼2 = 𝑁 ∙ [
(𝑆𝑇1+𝛼)+∑ (𝑆𝑇𝑖)

𝑛
𝑖=2

𝑛
 −  𝐹𝑛,𝜏] − c ∙ 𝛼2.  Thus  

𝐸𝑇1−∆t[𝑊] =  𝐸𝑇1−∆t [𝑁 (
(𝑆𝑇1 + 𝛼) + ∑ (𝑆𝑇𝑖)

𝑛
𝑖=2

𝑛
 − 𝐹𝑛,𝜏) − c ∙ 𝛼2] 

                                           
6 M can manipulate 𝑆𝑇1only by buying the shares up.  Then a higher 𝛼 leads to a higher average price 

of the shares he should buy up than does a lower 𝛼 does, which implies a higher average cost of $1 
manipulation of 𝑆𝑇1. 
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= 
𝑁

𝑛
∙ 𝐸𝑇1−∆t[𝑆𝑇1] +  𝑁 (

𝛼 + ∑ (𝑆𝑇𝑖)
𝑛
𝑖=2

𝑛
 − 𝐹𝑛,𝜏) − c ∙ 𝛼2 

= 
𝑁 ∙ 𝑆𝑇1−∆t ∙ 𝑒

𝜇∙∆t

𝑛
+ 𝑁(

𝛼 + ∑ (𝑆𝑇𝑖)
𝑛
𝑖=2

𝑛
− 𝐹𝑛,𝜏) − c ∙ 𝛼2. 

The first order condition with respect to 𝛼 is 
𝑁

𝑛
− 2c𝛼 = 0 or 𝛼∗ = 

1

𝑛
∙
𝑁

2𝑐
, and the 

maximized incremental profit for M from this price manipulation is 

𝑁

𝑛
∙ 𝛼∗ − c ∙ (𝛼∗)2 =

𝑁 ∙
1

𝑛
∙
𝑁

2𝑐

𝑛
− c ∙ (

1

𝑛
∙
𝑁

2𝑐
)
2

=
1

𝑛2
∙
𝑁2

2𝑐
−

1

𝑛2
∙
𝑁2

4𝑐
=

1

𝑛2
∙
𝑁2

4𝑐
> 0. 

Accordingly, the size of the manipulation of 𝐹𝑛,𝑇1 will be  

𝑆𝑇1  + 𝛼
∗  +  ∑ (𝑆𝑇𝑖)

𝑛
𝑖=2

𝑛
 − 

𝑆𝑇1  +  ∑ (𝑆𝑇𝑖)
𝑛
𝑖=2

𝑛
=
𝛼∗

𝑛
=  

1

𝑛
∙
𝑁

2𝑐

𝑛
=  

1

𝑛2
∙
𝑁

2𝑐
. 

Table 1 summarizes these results. 

 

Table 1 (Price Manipulation Risk of Two Futures Contracts)  

Type of Futures(𝐹𝑘,𝑇1) Manipulation of 𝑆𝑇1 Manipulation of 𝐹𝑘,𝑇1 Manipulation Profit 

Plain vanilla (k=1) 
𝑁

2𝑐
   

𝑁

2𝑐
   

 𝑁2

4𝑐
 

AV (k=n)  
1

𝑛
∙
𝑁

2𝑐
   

1

𝑛2
∙
𝑁

2𝑐
   

1

𝑛2
∙
 𝑁2

4𝑐
 

 

As in Table 1, when the AV contract 𝐹𝑛 is traded, price manipulation decreases in many 

respects, compared with the case of 𝐹1.  The sizes of price manipulation of stock and 

futures decrease to 
1

𝑛
 times and 

1

𝑛2
 times, respectively, while M’s manipulation profit also 

decreases to 
1

𝑛2
 times.  For instance, if n is set at 4, the manipulation sizes of stock and 

futures and M’s manipulation profit will decrease to 
1

4
 times, 

1

16
 times, and 

1

16
 times, 
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respectively, compared with the plain vanilla futures case.  This implies that investors in 

an AV futures contract and its underlying asset would suffer much less from price 

manipulation than they would in a plain vanilla futures contract and its underlying asset. 

So far, M’s manipulation target is set at expiry (= 𝑆𝑇1) only.  Even with a more flexible 

approach, however, the risk of price manipulation decreases in a similar manner.  For 

instance, suppose M manipulates 𝑆𝑇𝑘 , for his existing position in 𝐹𝑛  at time 𝜏, where 

1 < 𝑘 < 𝜏 ≤ n.  Then the results will be fundamentally the same as above.7  Also, M 

might have to pay an invisible cost at each attempt of price manipulation since, in reality, 

price manipulation takes not only money but also time and energy.  Then, with a higher 

total cost per $1 manipulation, M’s optimal manipulation size and profit would decrease 

further.  A smaller profit would, in its turn, reduce the manipulation incentive for M.  M 

might give up manipulation for a profit lower than a certain level since, in reality, price 

manipulators tend to act for a significant amount of profit only.  In this sense, AV futures 

contracts could reduce not only bad effects of price manipulation ex post but also attempts 

of price manipulation ex ante.  Lastly, the most important result will still hold for index 

arbitrage, another major cause of expiration day effects.  Like price manipulation at 𝑇1, 

unwinding positions in an index arbitrage at 𝑇1 can change the stock index drastically, but 

𝐹𝑛,𝑇1 will change only 
1

𝑛
 times as much. 

 

3. Features of AV Futures as Financial Instruments 

 

                                           
7 I make similar assumptions.  For instance, if M spends 𝛼 ∙ 𝑣(𝛼) at time 𝑇𝑘 − ∆t, he can push up 𝑆𝑇𝑘 

by 𝛼 given 𝛼 and 𝑆𝑇𝑘−∆t, where 𝑣(𝛼) =  ∙ 𝛼 ( > 0). 
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In this section, we explore important features of AV futures as financial instruments.  

Investors with long or short positions in a futures contract do not usually hold them to 

expiry; rather, they often unwind them at a future time prior to its maturity.  But the 

market price of an AV futures contract at a future time is a stochastic process and cannot 

be predicted perfectly.  This is why the expected value and the variance of an AV futures 

contract’s possible price at a future time might matter to investors.  Besides, they might 

be more interested in future profits than in future prices.   In this section, I solve for the 

mean and the variance of an AV futures contract’s possible price or profit at a future time.  

First, I find that the variance of either the price or the profit is decreasing in n, the number 

of reference dates of the AV futures.  Second, expected future prices or profits of AV 

futures are also decreasing in n.  Third, the current price of an AV futures contract 

decreases with n until its earliest reference date.  To explore all these features of AV 

futures, I review the log-normal distribution first. 

 

3.1. Log-normal Distribution 

 

As in the Black-Scholes option pricing model, I assume that 𝑆𝑡 follows an Ito process: 

    =  ∙  ∙   +  ∙  ∙   ,       (1) 

where  and  are the mean and the standard deviation of the continuously compounded 

returns of 𝑆𝑡, and Bt is a Wiener process or a standard Brownian motion.  I assume that  

and r are constants, where 0 < r <.  The current time is 0, and the stochastic process of 

the natural logarithm of 𝑆𝑡 follows (2) by Ito’s Lemma: 



 13 

 [   ] = ( −
 

 
   )  +  ∙   .        (2) 

(2) implies (3).  

 [  ( )] =   (  +  ) −   (  ) ~ 𝑵 (( −  

 
  )  ,   ∙   ) , ∀ .   (3) 

Then,  

[𝑙𝑛(𝑆𝑑𝑡) − 𝑙𝑛(𝑆0)] + [𝑙𝑛(𝑆2𝑑𝑡) − 𝑙𝑛(𝑆𝑑𝑡)] + ⋯+ [𝑙𝑛(𝑆𝑡−𝑑𝑡) − 𝑙𝑛(𝑆𝑡−2𝑑𝑡)] 

+[𝑙𝑛(𝑆𝑡) − 𝑙𝑛(𝑆𝑡−𝑑𝑡)] 

=   (  ) −   ( 𝟎) ~ 𝑵 (( −  

 
  ) ,   ∙  ).8      (4) 

𝑆0 and 𝑙𝑛(𝑆0) are known constants at t = 0, so (4-1) and (4-2) hold. 

𝑙𝑛(𝑆𝑡) ~ 𝑁(𝑙𝑛(𝑆0) + ( −
1

2
 2)𝑡,  2 ∙ 𝑡).     (4-1) 

𝑙𝑛(𝑆𝑡) = 𝑙𝑛(𝑆0) + ( − 1

2
 2)𝑡 +  ( 𝑡 −  0).     (4-2) 

Meanwhile, a lognormal random variable X with mean m and variance v2 has the following 

moments. 

ln(𝑋)~ 𝑁(𝑚, 𝑣2)  →   𝐸[𝑋] =  𝑒𝑚+
𝑣2

2 and 𝑉𝑎𝑟[𝑋] = 𝑒2𝑚+𝑣2(𝑒𝑣
2
− 1).   (5) 

By (4-1) and (5), the expected value and the variance of 𝑆𝑇 as of time zero are as follows. 

𝐸[𝑆𝑇] =  𝑆0 ∙ 𝑒
𝜇∙𝑇 , and 𝑉𝑎𝑟[𝑆𝑇] = (𝑆0)

2 ∙ 𝑒2𝜇∙𝑇(𝑒𝜎
2∙𝑇 − 1), ∀𝑇 > 0.   (6) 

Also, the covariance between any two future prices is as follows. 

 

Lemma 1 (Covariance between two futures prices at Tk and Tm): 

𝐶𝑜𝑣[𝑆𝑇𝑚 , 𝑆𝑇𝑘]  =  (𝑆0)
2𝑒𝜇(𝑇𝑚+𝑇𝑘)(𝑒𝜎

2∙Min[𝑇𝑚,𝑇𝑘] −  1), ∀ 𝑇𝑚,  𝑇𝑘 > 0.    

                                           
8 This result is due to the fact that dB is i.i.d. N(0, dt). 



 14 

 

As a corollary of (6) and Lemma 1, I have some methods to compare variances or 

covariances. 

 

Corollary 1 (Comparison of variances and covariances): 

𝑉𝑎𝑟[𝑆𝑇𝑘] <𝑉𝑎𝑟[𝑆𝑇𝑚] if 𝑇𝑘 < 𝑇𝑚, and     

𝐶𝑜𝑣[𝑆𝑇𝑚 , 𝑆𝑇𝑘] <  𝐶𝑜𝑣 [𝑆𝑇𝑝 , 𝑆𝑇𝑞] if {
𝑇𝑚 + 𝑇𝑘 < 𝑇𝑝 + 𝑇𝑞 𝑎𝑛   𝑀𝑖𝑛[𝑇𝑚, 𝑇𝑘] ≤ 𝑀𝑖𝑛[𝑇𝑝, 𝑇𝑞]

𝑜𝑟
𝑇𝑚 + 𝑇𝑘 ≤ 𝑇𝑝 + 𝑇𝑞 𝑎𝑛   𝑀𝑖𝑛[𝑇𝑚, 𝑇𝑘] < 𝑀𝑖𝑛[𝑇𝑝, 𝑇𝑞]

}.  

 

Corollary 1 will be used to compare the variances of the prices of AV futures with different 

numbers of reference dates.  Although Corollary 1 does not list all possible cases where 

𝐶𝑜𝑣[𝑆𝑇𝑚 , 𝑆𝑇𝑘] <  𝐶𝑜𝑣 [𝑆𝑇𝑝 , 𝑆𝑇𝑞], it is sufficient for the proofs in this paper. 

 

3.2. Volatility of AV Futures 

 

Here I calculate and compare variances of AV futures contracts’ possible prices at a 

future time t.  For convenience, first I refer to Var[X] as 𝑉[𝑋] and Cov[X, Y] as 𝐶𝑣[𝑋, 𝑌], 

hereafter.  Second, I assume that the market price at time t of an AV futures is equal to its 

theoretical value at t in Proposition 1 by the no-arbitrage principle.  Hence 𝐹𝑋,𝑡,𝑇𝐻 = 𝐹𝑋,𝑡.  

Third, plain vanilla futures contracts are a special case of AV futures contracts with n = 1, 

so I specify X of 𝐹𝑋 in terms of “n” only.  That is, 𝐹𝑛,𝑡 denotes the market price at t of an 

AV futures, for which the final settlement price is 
1

𝑛
∙ ∑ (𝑆𝑇𝑖)

𝑛
𝑖=1 .  Fourth, the variance of a 
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stock price at a future time or the covariance between stock prices at two different times is 

always calculated as of now or time 0 unless stated otherwise.  That is, 𝑉[𝑆𝑡|𝐼0] =  𝑉[𝑆𝑡],

𝑉[𝐹𝑛,𝑡|𝐼0] = 𝑉[𝐹𝑛,𝑡],  and 𝐶𝑣[𝑆𝑇𝑚 , 𝑆𝑇𝑘|𝐼0] =  𝐶𝑣[𝑆𝑇𝑚 , 𝑆𝑇𝑘], where 𝑡, 𝑇𝑘, 𝑇𝑚 > 0and 𝐼0  = the 

information set available at time 0. 

Next, for Proposition 2, I need Lemma 2, the proof of which is provided in the Appendix. 

 

Lemma 2 (Variance of (the average of) a series of random variables): 

𝐿𝑒𝑡 𝐹𝑛 =
1

𝑛
[∑𝑎𝑖

𝑛

𝑖=1

] , where 𝑎𝑖 and 𝑎𝑗  have covariance 𝐶𝑣[𝑎𝑖, 𝑎𝑗], ∀𝑖, 𝑗 ≤ 𝑛. 

Then,  

𝑉[𝐹𝑛] − 𝑉[𝐹𝑛−1] 

=
1

𝑛2(𝑛 − 1)2
[∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑛] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+ 2(𝑛 − 1)∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

]. 

 

Using Lemma 2, I obtain Proposition 2.  The proposition compares variances of two AV 

futures contracts with different reference dates at a future time t, and its proof is provided 

in the Appendix. 

 

Proposition 2 (Variances of time-t prices of AV futures): 

The variance of the price of an AV futures contract with more reference dates at any future 

time t is smaller than that with fewer reference dates given 𝑻𝒌+ ≤   < 𝑻𝒌. 

𝑉[𝐹𝑛,𝑡] − 𝑉[𝐹𝑛−1,𝑡] 
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=
1

𝑛2(𝑛 − 1)2
 

    × [∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑛] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+ 2(𝑛 − 1)∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

] < 0,  

    where 𝐶𝑣[𝑎𝑖, 𝑎𝑗] =

{
 
 

 
 𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒

𝑟(𝑇𝑖+𝑇𝑗−2𝑡),                   𝑖, 𝑗 ≤ 𝑘

𝐶𝑣 [𝑆𝑡, 𝑆𝑇𝑗] 𝑒
𝑟(𝑇𝑖−𝑡),        𝑖 ≤ 𝑘, 𝑗 ≥ 𝑘 + 1

𝐶𝑣[𝑆𝑇𝑖 , 𝑆𝑡]𝑒
𝑟(𝑇𝑗−𝑡),        𝑖 ≥ 𝑘 + 1, 𝑗 ≤ 𝑘

𝐶𝑣 [𝑆𝑇𝑖 , 𝑆𝑇𝑗] ,                            𝑖, 𝑗 ≥ 𝑘 + 1}
 
 

 
 

.  

 

Meanwhile, investors in AV futures might be interested in not only the volatility of prices 

but also that of profits.  Determining the variance of trading profits, however, cannot be 

done with complete accuracy as of today since there are uncertainties in cash flows to 

investors’ margin accounts while they hold futures positions(from today to liquidation 

time).  Specifically, the profit from trading a futures contract is a function of not only the 

change in its price but also (the opportunity costs of) its initial margin and future daily 

cash flows from marking-to-market, which is unknown today.  Therefore, in order to 

compare profits of trading two different AV futures, one assumption is needed:  we ignore 

(uncertain) future daily cash flows in investors’ margin accounts and focus on two prices: 

the current one and the one at a future liquidation time.  That is, I compare the variance 

of 𝐹𝑛,𝑡 − 𝐹𝑛,0 with that of 𝐹𝑛−1,𝑡 − 𝐹𝑛−1,0.  This could be at least partly justified if daily 

cash flows to an investor’s margin account, including initial margins, are small relative to 

𝐹𝑛,𝑡, 𝐹𝑛−1,𝑡, 𝐹𝑛,0, and 𝐹𝑛−1,0.  More importantly, these daily cash flows themselves are not a 

relevant factor in comparing profits from trading different AV futures because they will all 

be eventually recovered when positions in AV futures are liquidated(except for the case of 
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a margin call).9  The relevant cash flows in comparing profits from two AV futures are the 

incremental cash flows, which are investors’ opportunity costs (benefits) of those daily cash 

flows, i.e., the interest expenses (revenues) from the cash flows.  These opportunity costs 

are much smaller than 𝐹𝑛,𝑡, 𝐹𝑛−1,𝑡, 𝐹𝑛,0, or 𝐹𝑛−1,0, and almost negligible.10  In this sense, 

comparing two profits from trading two different AV futures without taking into account 

(opportunity costs of) daily cash flows might not be very problematic. 

Next, the volatility of the profit from trading an AV futures contract is the same for a long 

or a short position since 𝑉𝑎𝑟[𝐹𝑛,𝑡 − 𝐹𝑛,0] =  𝑉𝑎𝑟[𝐹𝑛,0 − 𝐹𝑛,𝑡] = 𝑉𝑎𝑟[𝐹𝑛,𝑡], where 𝐹𝑛,0 is 

known as of today.  Thus assuming either a long or a short position would not matter. 

Hence, Corollary 2 is presented here as a corollary of Proposition 2: 

 

Corollary 2 (Variance of profit at a future time t): 

𝑉[𝐹𝑛,𝑡 − 𝐹𝑛,0] − 𝑉[𝐹𝑛−1,𝑡 − 𝐹𝑛−1,0] = 𝑉[𝐹𝑛,𝑡] − 𝑉[𝐹𝑛−1,𝑡] < 0,

where 2 ≤ 𝑛 and 0 < 𝑡 ≤ 𝑇1. 

 

3.3. Expected Prices of AV Futures 

 

Here I first compute and compare current or projected future prices of the futures of 

                                           
9 Suppose that an investor takes a long position in an AV futures with n reference dates and that the 

future liquidation time t is m (trading) days from now.  If δ denotes the length of one day or δ =
1

260
, 

the cumulative cash flows to her margin account up to t would be (𝐹𝑛,𝛿 − 𝐹𝑛,0) + (𝐹𝑛,2𝛿 − 𝐹𝑛,𝛿) + ⋯+

(𝐹𝑛,(𝑚−1)𝛿 − 𝐹𝑛,(𝑚−2)𝛿) + (𝐹𝑛,𝑚𝛿 − 𝐹𝑛,(𝑚−1)𝛿) =  𝐹𝑛,𝑚𝛿 − 𝐹𝑛,0 = 𝐹𝑛,𝑡 − 𝐹𝑛,0, which is the trading profit in 

our discussion.  The initial margin would be similarly recovered at t, too.  
10 For instance, the three-month LIBOR is 0.0023 per annum as of July 1, 2014.  Note that 0.0023 per 
annum of daily cash flows is “much much” smaller than 𝐹𝑛,𝑡 since daily cash flows to margin accounts 
are already much smaller than 𝐹𝑛,𝑡.    
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different reference dates as in Proposition 3.  Later I work on expected prices or profits of 

the futures.  As before, the expected value of 𝑆𝑡 or 𝐹𝑛,𝑡 is calculated as of time 0 unless 

stated otherwise.  That is, 𝐸[𝑆𝑡|𝐼0] =  𝐸[𝑆𝑡]  and 𝐸[𝐹𝑛,𝑡|𝐼0] =  𝐸[𝐹𝑛,𝑡],  where 0 < 𝑡 , 

and 𝐼0 is the information set available at time 0. 

In particular, 𝑖) of Proposition 3 means that, of the two AV futures being compared, an 

AV futures contract with fewer reference dates is more expensive than the other at any 

time prior to 𝑇𝑛, the earliest reference date of the two futures.  Accordingly, any AV 

futures with n reference dates costs less than its corresponding plain vanilla futures prior 

to 𝑇𝑛, where n > 1.  This can be a meaningful feature of AV futures since investors are 

more likely to take an initial position in an AV futures before 𝑇𝑛 for an effective hedge 

than after 𝑇𝑛.  For convenience, this paper is based on the assumption that an investor 

takes an initial position at time 0 unless specified otherwise. 

 

Proposition 3 (Time-t prices of AV futures with different reference dates): 

An AV futures contract with more reference dates is cheaper than one with fewer reference 

dates prior to the earliest reference date (case i). 
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𝐹𝑛,𝑡 − 𝐹𝑛−1,𝑡

=

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖)

𝑆t𝑒
𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

< 0,                             𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑡 < 𝑇𝑛

𝑖𝑖) 
1

𝑛
(𝑆𝑇𝑛  −  

1

𝑛 − 1
∙∑(𝑆t𝑒

𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

) ,                        𝑤ℎ𝑒𝑟𝑒 𝑇𝑛 ≤  𝑡 < 𝑇𝑛−1

𝑖𝑖𝑖) 
1

𝑛
(𝑆𝑇𝑛 −

1

𝑛 − 1
( ∑ 𝑆𝑇𝑖

𝑛−1

𝑖=𝑘+1

 +∑(𝑆t𝑒
𝑟(𝑇𝑖−𝑡))

𝑘

𝑖=1

)) ,𝑤ℎ𝑒𝑟𝑒 𝑇𝑛−1 ≤ 𝑡 < 𝑇1

                                                                       𝑜𝑟 𝑇𝑘+1 ≤  𝑡 < 𝑇𝑘 𝑎𝑛  1 ≤ 𝑘 ≤ 𝑛 − 2

𝑖𝑣) 
1

𝑛
(𝑆𝑇𝑛 −

1

𝑛 − 1
∙∑𝑆𝑇𝑖

𝑛−1

𝑖=1

) ,                                                            𝑤ℎ𝑒𝑟𝑒 𝑡 = 𝑇1
}
 
 
 
 
 
 

 
 
 
 
 
 

 . 

 

Next, expected prices of AV futures can be shown as in Proposition 4.  I find that AV 

futures contracts’ expected prices always decrease with n.  

 

Proposition 4 (Expected price at time t of an AV futures): 

The expected price at any future time t of an AV futures contract with more reference dates 

is lower than that with fewer reference dates. 
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𝐸[𝐹𝑛,𝑡] − 𝐸[𝐹𝑛−1,𝑡]

=

{
 
 
 
 
 
 

 
 
 
 
 
 𝑖)

𝑆0 ∙ 𝑒
𝜇∙𝑡+𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
∙ ∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

< 0,                                                                𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑡 < 𝑇𝑛

𝑖𝑖) 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙  ∑(1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

< 0,                                                      𝑤ℎ𝑒𝑟𝑒 𝑇𝑛 ≤  𝑡 < 𝑇𝑛−1

𝑖𝑖𝑖) 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
[ ∑ (1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛)) +

𝑛−1

𝑖=𝑘+1

∑(1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))

𝑘

𝑖=1

] < 0, 𝑤ℎ𝑒𝑟𝑒 𝑇𝑛−1 ≤ 𝑡 < 𝑇1

                                                                                                            𝑜𝑟 𝑇𝑘+1 ≤  𝑡 < 𝑇𝑘 𝑎𝑛  1 ≤ 𝑘 ≤ 𝑛 − 2

𝑖𝑣) 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

< 0,                                                                                 𝑤ℎ𝑒𝑟𝑒 𝑡 = 𝑇1
}
 
 
 
 
 
 

 
 
 
 
 
 

 . 

 

Lastly, let me define the profit from trading an AV futures contract with n reference dates 

as 𝐹𝑛,𝑡 − 𝐹𝑛,0, assuming a long position.  Its expected value is 𝐸[𝐹𝑛,𝑡|𝐼0] − 𝐹𝑛,0.  Then 

Proposition 5 holds, the proof for which is provided in the Appendix. 

 

Proposition 5 (Expected profits in AV futures trading): 

[𝐸[𝐹𝑛,𝑡] − 𝐹𝑛,0] − [𝐸[𝐹𝑛−1,𝑡] − 𝐹𝑛−1,0] < 0, 𝑤ℎ𝑒𝑟𝑒 2 ≤ 𝑛. 

 

4. Conclusion 

 

Most plain vanilla futures, whose settlement prices are set for a specific time or day,  

are subject to expiration day effects, and will therefore fail to meet various hedging needs 

of many investors.  AV futures, on the other hand, are much less risky in this regard.  

Compared with arithmetic or geometric average options, AV futures are also easy to 
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understand, price, and use, and they can be designed to meet the flexible needs of investors.  

In this paper, I create and price arithmetic average futures as a complement to existing 

futures, show how these contracts will reduce the risk of price manipulation, explore their 

features as investment choices, and discuss their market implications.  I find that the 

mean and the variance of an arithmetic average futures’ price or profit at a future time are 

lower than those of its corresponding existing futures and that, in particular, its price or 

profit volatility is decreasing in the number of reference dates.  I also believe that the 

pricing formulas can shed some light on the pricing of currently available futures such as 

CAC40 futures, Ibex35 futures, HIS futures, and MSCI TW futures, each of which is a kind of 

arithmetic average futures contract.  

To my knowledge, this paper is the first attempt to price arithmetic average futures 

contracts, and I hope that further academic and practical research on this subject will 

continue until a range of these futures are actively traded in over-the-counter or exchange-

traded markets. 
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Appendix 

Proof of Proposition 1 (no arbitrage price)  

The current time is 𝑡, where 𝑇𝑘+1  ≤ 𝑡 < 𝑇𝑘 and 1 ≤ 𝑘 ≤ 𝑛 − 1.  Suppose the current 

market price of an AV futures contract with n reference dates, 𝐹𝑛,𝑡, is lower than in 

Proposition 1 by  (> 0).  That is 𝐹𝑛,𝑡 = 
1

𝑛
(∑ 𝑆𝑇𝑖

𝑛
𝑖=𝑘+1 + ∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)𝑘
𝑖=1 ) −  .  In order 

to take advantage of this opportunity, an arbitrager can take a long position in the futures, 

whose settlement payoff at 𝑇1 will be (assuming 1 as the contract size of 𝐹𝑛,𝑡) 

𝐹𝑛,𝑇1 − 𝐹𝑛,𝑡 = 
1

𝑛
(∑𝑆𝑇𝑖

𝑛

𝑖=1

) − (
1

𝑛
( ∑ 𝑆𝑇𝑖

𝑛

𝑖=𝑘+1

+∑𝑆𝑡 ∙ 𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

) −  ) 

=
1

𝑛
(∑𝑆𝑇𝑖

𝑘

𝑖=1

) − (
1

𝑛
∑𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

) +  . 

To lock in the arbitrage profit,  , he should trade the underlying shares at time t such that 

his payoff at 𝑇1 from the shares will be −
1

𝑛
(∑ 𝑆𝑇𝑖

𝑘
𝑖=1 ) + (

1

𝑛
∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)𝑘
𝑖=1 ) = (𝑙𝑒𝑡) 𝐴 +  .  

For this purpose, he should sell short 
1

𝑛
(∑ 𝑒−𝑟(𝑇1−𝑇𝑖)𝑘

𝑖=1 ) shares at time t, invest the 

proceeds, 
1

𝑛
(∑ 𝑒−𝑟(𝑇1−𝑇𝑖)𝑘

𝑖=1 )𝑆𝑡, in a risk-free asset and hold it until 𝑇1.  This risk-free 

investment will generate 
1

𝑛
(∑ 𝑒−𝑟(𝑇1−𝑇𝑖)𝑘

𝑖=1 )𝑆𝑡 ∙ 𝑒
𝑟(𝑇1−𝑡) =

1

𝑛
(∑ 𝑒𝑟(𝑇𝑖−𝑡)𝑘

𝑖=1 )𝑆𝑡 =   dollars at 

𝑇1 and a short position in 
1

𝑛
(∑ 𝑒−𝑟(𝑇1−𝑇𝑖)𝑘

𝑖=1 ) shares after time t.  Next, to eliminate this 

short position by 𝑇1 and create A at 𝑇1, he borrows 
1

𝑛
𝑆𝑇𝑖 ∙ 𝑒

−𝑟(𝑇1−𝑇𝑖) dollars at each 

𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑘) , immediately buys 
1

𝑛
∙ 𝑒−𝑟(𝑇1−𝑇𝑖)  shares, and delivers them to the 

counterparty of his short position in the 
1

𝑛
𝑒−𝑟(𝑇1−𝑇𝑖) shares.  This series of transactions 
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at each 𝑇𝑖 (= borrowing, buying and delivering, 1 ≤ 𝑖 ≤ 𝑘) will collectively eliminate his 

short position in 
1

𝑛
(∑ 𝑒−𝑟(𝑇1−𝑇𝑖)𝑘

𝑖=1 ) shares completely, and make him liable for the total 

debt of 
1

𝑛
[∑ (𝑆𝑇𝑖 ∙ 𝑒

−𝑟(𝑇1−𝑇𝑖))𝑘
𝑖=1 𝑒𝑟(𝑇1−𝑇𝑖)] =

1

𝑛
(∑ 𝑆𝑇𝑖

𝑘
𝑖=1 ) dollars at 𝑇1.  That is, his payoff 

at 𝑇1 from this series of transactions at each 𝑇𝑖 will be collectively −
1

𝑛
(∑ 𝑆𝑇𝑖

𝑘
𝑖=1 ) = 𝐴.  

This completes the proof. 

Meanwhile, if 𝐹𝑛,𝑡 = 
1

𝑛
(∑ 𝑆𝑇𝑖

𝑛
𝑖=𝑘+1 + ∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)𝑘
𝑖=1 ) +  ,where  > 0,  an arbitrager 

can take advantage of this arbitrage opportunity by taking a short position in one AV 

futures contract at t.  His short position in the futures will lead to the cash flow at 𝑇1 of  

−𝐹𝑛,𝑇1 + 𝐹𝑛,𝑡 = − 
1

𝑛
(∑𝑆𝑇𝑖

𝑛

𝑖=1

) + (
1

𝑛
( ∑ 𝑆𝑇𝑖

𝑛

𝑖=𝑘+1

+∑𝑆𝑡 ∙ 𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

) +  ) 

= −
1

𝑛
(∑𝑆𝑇𝑖

𝑘

𝑖=1

) + (
1

𝑛
∑𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

) +  . 

To lock in the arbitrage profit,  , he should also trade the underlying shares at t such that 

his payoff at 𝑇1 from the shares will be 
1

𝑛
(∑ 𝑆𝑇𝑖

𝑘
𝑖=1 ) − (

1

𝑛
∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)𝑘
𝑖=1 ) = (𝑙𝑒𝑡) 𝐴 +  .  

For this, he should borrow (
1

𝑛
∑ 𝑆𝑡 ∙ 𝑒

−𝑟(𝑇1−𝑇𝑖)𝑘
𝑖=1 )  dollars and buy (

1

𝑛
∑ 𝑒−𝑟(𝑇1−𝑇𝑖)𝑘
𝑖=1 ) 

shares at time t.  As a result, he should pay back (
1

𝑛
∑ 𝑆𝑡 ∙ 𝑒

−𝑟(𝑇1−𝑇𝑖)𝑘
𝑖=1 ) 𝑒𝑟(𝑇1−𝑡) =

(
1

𝑛
∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)𝑘
𝑖=1 ) dollars at 𝑇1, which will create   successfully.  Meanwhile, he has 

(
1

𝑛
∑ 𝑒−𝑟(𝑇1−𝑇𝑖)𝑘
𝑖=1 ) shares at t.  At each time 𝑇𝑖(1 ≤ 𝑖 ≤ 𝑘), he sells 

1

𝑛
𝑒−𝑟(𝑇1−𝑇𝑖) shares 

for 
1

𝑛
𝑒−𝑟(𝑇1−𝑇𝑖) ∙ 𝑆𝑇𝑖 dollars and invests the proceeds in a risk-free asset and hold it until 

𝑇1.  These transactions enable him to consume all the shares he has and receive 
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1

𝑛
[∑ (𝑒−𝑟(𝑇1−𝑇𝑖) ∙ 𝑆𝑇𝑖)𝑒

𝑟(𝑇1−𝑇𝑖)𝑘
𝑖=1 ] =

1

𝑛
(∑ 𝑆𝑇𝑖

𝑘
𝑖=1 ) dollars at 𝑇1, which is A.  Therefore, his 

ultimate total cash flow at 𝑇1 from these transactions of shares will be 

A +  =
1

𝑛
(∑ 𝑆𝑇𝑖

𝑘
𝑖=1 ) − (

1

𝑛
∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)𝑘
𝑖=1 ) dollars.  This completes the proof.∎ 

 

Proof of Lemma 2  

𝐹𝑛 = 
1

𝑛
[∑𝑎𝑖

𝑛

𝑖=1

] .   Then 𝑉[𝐹𝑛] =  
1

𝑛2
[∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑖=1

𝑛

𝑗=1

] .  Therefore, 

𝑉[𝐹𝑛] − 𝑉[𝐹𝑛−1] 

= 
1

𝑛2
[∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑖=1

𝑛

𝑗=1

] −
1

(𝑛 − 1)2
[∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

] 

= 
1

𝑛2(𝑛 − 1)2
[(𝑛 − 1)2∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑖=1

− 𝑛2 ∙ ∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

𝑛

𝑗=1

] 

= (𝑙𝑒𝑡)
1

𝑛2(𝑛 − 1)2
[𝐴]. 

Now, 

𝐴 = (𝑛 − 1)2∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑖=1

− 𝑛2 ∙ ∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

𝑛

𝑗=1

 

   =  (𝑛2 − 2𝑛 + 1)∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑖=1

− 𝑛2 ∙ ∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

𝑛

𝑗=1

 

   = (𝑛2) [∑∑𝐶𝑣[𝑎𝑖 , 𝑎𝑗]

𝑛

𝑖=1

−∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

𝑛

𝑗=1

] + (1 − 2𝑛)∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑖=1

𝑛

𝑗=1
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   = (𝑛2) [[∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛

𝑗=1

+∑𝐶𝑣[𝑎𝑖, 𝑎𝑛]

𝑛

𝑖=1

− 𝐶𝑣[𝑎𝑛, 𝑎𝑛]]

−∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

]  + (1 − 2𝑛)∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑖=1

𝑛

𝑗=1

 

= (𝑛2) [∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛

𝑗=1

+∑𝐶𝑣[𝑎𝑖, 𝑎𝑛]

𝑛

𝑖=1

− 𝐶𝑣[𝑎𝑛, 𝑎𝑛]] + (1 − 2𝑛)∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑖=1

𝑛

𝑗=1

 

= 2𝑛2 ∙∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛

𝑗=1

− 𝑛2 ∙ 𝐶𝑣[𝑎𝑛, 𝑎𝑛] + (1 − 2𝑛)∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑖=1

𝑛

𝑗=1

 

(since∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛

𝑗=1

=∑𝐶𝑣[𝑎𝑖, 𝑎𝑛]

𝑛

𝑖=1

) 

= 2𝑛2 [𝐶𝑣[𝑎𝑛, 𝑎𝑛] +∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛−1

𝑗=1

] − 𝑛2 ∙ 𝐶𝑣[𝑎𝑛, 𝑎𝑛] + (1 − 2𝑛)∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑖=1

𝑛

𝑗=1

 

= 𝑛2 ∙ 𝐶𝑣[𝑎𝑛, 𝑎𝑛] + 2𝑛2 ∙ ∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛−1

𝑗=1

 

   +(1 − 2𝑛) [∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛

𝑗=1

+∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛−1

𝑗=1

+ 𝐶𝑣[𝑎𝑛, 𝑎𝑛]] 

= (𝑛2 + 1 − 2𝑛)𝐶𝑣[𝑎𝑛, 𝑎𝑛] + (2𝑛2 + 1 − 2𝑛)∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛−1

𝑗=1

+ (1 − 2𝑛) [∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛

𝑗=1

] 

= (𝑛 − 1)2 ∙ 𝐶𝑣[𝑎𝑛, 𝑎𝑛] + (2𝑛2 + 1 − 2𝑛)∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛−1

𝑗=1

 

    +(1 − 2𝑛) [∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+∑𝐶𝑣[𝑎𝑖, 𝑎𝑛]

𝑛−1

𝑖=1

] 
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= (𝑛 − 1)2 ∙ 𝐶𝑣[𝑎𝑛, 𝑎𝑛] + (2𝑛2 + 1 − 2𝑛)∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛−1

𝑗=1

 

    +(1 − 2𝑛) [∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛−1

𝑗=1

] 

= (𝑛 − 1)2 ∙ 𝐶𝑣[𝑎𝑛, 𝑎𝑛] + (2𝑛2 + 1 − 2𝑛 + 1 − 2𝑛)∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛−1

𝑗=1

 

    +(1 − 2𝑛)∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

 

= (𝑛 − 1)2 ∙ 𝐶𝑣[𝑎𝑛, 𝑎𝑛] + 2(𝑛 − 1)2∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛−1

𝑗=1

− (2𝑛 − 1)∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

 

= ∑∑𝐶𝑣[𝑎𝑛, 𝑎𝑛]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+ 2(𝑛 − 1) [∑∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

] − (2𝑛 − 1)∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

 

(∵𝐶𝑣[𝑎𝑛, 𝑎𝑛] is a constant with respect to 𝑖 or 𝑗, and so is 𝐶𝑣[𝑎𝑛, 𝑎𝑗] with respect to 𝑖) 

= ∑∑𝐶𝑣[𝑎𝑛, 𝑎𝑛]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+ 2(𝑛 − 1)∑∑𝐶𝑣[𝑎𝑛, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

− [2(𝑛 − 1) + 1]∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

 

= ∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑛] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+ 2(𝑛 − 1)(∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

). 

Hence, 

𝑉[𝐹𝑛] − 𝑉[𝐹𝑛−1] =
1

𝑛2(𝑛 − 1)2
[𝐴] 

= 
1

𝑛2(𝑛 − 1)2
× [∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑛] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+ 2(𝑛 − 1)∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

]. 

∎ 
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Proof of Proposition2  

① Suppose that k+2 ≤ n.  Given 𝑇𝑘+1 ≤ 𝑡 < 𝑇𝑘, this implies 𝑇𝑛−1 ≤ 𝑡 < 𝑇1.  And 

𝐹𝑛,𝑡 = 
1

𝑛
[ ∑ 𝑆𝑇𝑖

𝑛

𝑖=𝑘+1

+ ∑𝑆𝑡𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

] = (𝑙𝑒𝑡)
1

𝑛
[∑𝑎𝑖

𝑛

𝑖=1

],  

𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 = {
𝑆𝑡𝑒

𝑟(𝑇𝑖−𝑡),        1 ≤ 𝑖 ≤ 𝑘
𝑆𝑇𝑖 ,        𝑘 + 1 ≤ 𝑖 ≤ 𝑛

} by Proposition 1.  Then, 

𝑉[𝐹𝑛,𝑡] =  
1

𝑛2
[∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑖=1

𝑛

𝑗=1

],  

𝑤ℎ𝑒𝑟𝑒 𝐶𝑣[𝑎𝑖, 𝑎𝑗] =

{
 
 

 
 𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒

𝑟(𝑇𝑖+𝑇𝑗−2𝑡),            𝑖, 𝑗 ≤ 𝑘

𝐶𝑣 [𝑆𝑡, 𝑆𝑇𝑗] 𝑒
𝑟(𝑇𝑖−𝑡),        𝑖 ≤ 𝑘, 𝑗 ≥ 𝑘 + 1

𝐶𝑣[𝑆𝑇𝑖 , 𝑆𝑡]𝑒
𝑟(𝑇𝑗−𝑡),        𝑖 ≥ 𝑘 + 1, 𝑗 ≤ 𝑘

𝐶𝑣 [𝑆𝑇𝑖 , 𝑆𝑇𝑗] ,                            𝑖, 𝑗 ≥ 𝑘 + 1}
 
 

 
 

.   

Also, by Lemma 2,  

𝑉[𝐹𝑛,𝑡] − 𝑉[𝐹𝑛−1,𝑡] 

=
1

𝑛2(𝑛 − 1)2
[∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑛] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+ 2(𝑛 − 1)∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

]. 

 

Then, given 𝑇𝑛 < 𝑇𝑛−1 < ⋯ < 𝑇𝑘+1 ≤ 𝑡 < 𝑇𝑘 < ⋯ < 𝑇2 < 𝑇1 and by Corollary 1,  

𝐶𝑣[𝑎𝑛, 𝑎𝑛] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗] 

=

{
 
 

 
 𝐶𝑣[𝑆𝑇𝑛 , 𝑆𝑇𝑛]  −   𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒

𝑟(𝑇𝑖+𝑇𝑗−2𝑡),                                     𝑖, 𝑗 ≤ 𝑘

𝐶𝑣[𝑆𝑇𝑛 , 𝑆𝑇𝑛]  −  𝐶𝑣 [𝑆𝑡, 𝑆𝑇𝑗] 𝑒
𝑟(𝑇𝑖−𝑡), 𝑖 ≤ 𝑘, 𝑘 + 1 ≤ 𝑗 ≤ 𝑛 − 1

𝐶𝑣[𝑆𝑇𝑛 , 𝑆𝑇𝑛]  −  𝐶𝑣[𝑆𝑇𝑖 , 𝑆𝑡]𝑒
𝑟(𝑇𝑗−𝑡),          𝑘 + 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑗 ≤ 𝑘

𝐶𝑣[𝑆𝑇𝑛 , 𝑆𝑇𝑛]  −  𝐶𝑣 [𝑆𝑇𝑖 , 𝑆𝑇𝑗] ,                             𝑘 + 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 }
 
 

 
 

< 0. 

Similarly,  

𝐶𝑣[𝑎𝑛, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗] 
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=

{
 
 

 
 𝐶𝑣[𝑆𝑇𝑛 , 𝑆𝑡]𝑒

𝑟(𝑇𝑗−𝑡)  −  𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒
𝑟(𝑇𝑖+𝑇𝑗−2𝑡),                                     𝑖, 𝑗 ≤ 𝑘

𝐶𝑣 [𝑆𝑇𝑛 , 𝑆𝑇𝑗]             −  𝐶𝑣 [𝑆𝑡, 𝑆𝑇𝑗] 𝑒
𝑟(𝑇𝑖−𝑡), 𝑖 ≤ 𝑘, 𝑘 + 1 ≤ 𝑗 ≤ 𝑛 − 1

𝐶𝑣[𝑆𝑇𝑛 , 𝑆𝑡]𝑒
𝑟(𝑇𝑗−𝑡) −  𝐶𝑣[𝑆𝑇𝑖 , 𝑆𝑡]𝑒

𝑟(𝑇𝑗−𝑡),          𝑘 + 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑗 ≤ 𝑘

𝐶𝑣 [𝑆𝑇𝑛 , 𝑆𝑇𝑗]             −  𝐶𝑣 [𝑆𝑇𝑖 , 𝑆𝑇𝑗] ,                             𝑘 + 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1}
 
 

 
 

< 0. 

Therefore, 𝑉[𝐹𝑛,𝑡] − 𝑉[𝐹𝑛−1,𝑡] < 0 𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 𝑘 + 2. 

②  If n = k + 1, which implies 𝑇𝑛 ≤ 𝑡 < 𝑇𝑛−1 given 𝑇𝑘+1 ≤ 𝑡 < 𝑇𝑘, 

𝐹𝑛,𝑡 = 
1

𝑘 + 1
[𝑆𝑇𝑘+1 + ∑𝑆𝑡𝑒

𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

] and 𝐹𝑛−1,𝑡 = 
1

𝑘
[∑𝑆𝑡𝑒

𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

] .  Then, 

𝑉[𝐹𝑛,𝑡] =  
1

(𝑘 + 1)2
[∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑘+1

𝑖=1

𝑘+1

𝑗=1

],  

𝑤ℎ𝑒𝑟𝑒 𝐶𝑣[𝑎𝑖, 𝑎𝑗] =

{
 
 

 
 𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒

𝑟(𝑇𝑖+𝑇𝑗−2𝑡),                     𝑖, 𝑗 ≤ 𝑘

𝐶𝑣[𝑆𝑡, 𝑆𝑇𝑘+1]𝑒
𝑟(𝑇𝑖−𝑡),        𝑖 ≤ 𝑘, 𝑗 = 𝑘 + 1

𝐶𝑣[𝑆𝑇𝑘+1 , 𝑆𝑡]𝑒
𝑟(𝑇𝑗−𝑡),       𝑖 = 𝑘 + 1, 𝑗 ≤ 𝑘

𝐶𝑣[𝑆𝑇𝑘+1 , 𝑆𝑇𝑘+1],                        𝑖, 𝑗 = 𝑘 + 1}
 
 

 
 

.   

Also, 

𝑉[𝐹𝑛−1,𝑡] =  
1

𝑘2
[∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑘

𝑖=1

𝑘

𝑗=1

] =  
1

𝑘2
[∑∑𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒

𝑟(𝑇𝑖+𝑇𝑗−2𝑡)

𝑘

𝑖=1

𝑘

𝑗=1

].  

Then, by Lemma 2,  

𝑉[𝐹𝑛,𝑡] − 𝑉[𝐹𝑛−1,𝑡] 

=
1

(𝑘 + 1)2 ∙ 𝑘2
[∑∑[𝐶𝑣[𝑎𝑘+1, 𝑎𝑘+1] − 𝐶𝑣[𝑎𝑖 , 𝑎𝑗]]

𝑘

𝑖=1

𝑘

𝑗=1

+ 2𝑘∑∑[𝐶𝑣[𝑎𝑘+1, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑘

𝑖=1

𝑘

𝑗=1

]. 

Then, given 𝑇𝑘+1 ≤ 𝑡 < 𝑇𝑘 < ⋯ < 𝑇2 < 𝑇1 and by Corollary 1,  

𝐶𝑣[𝑎𝑘+1, 𝑎𝑘+1] − 𝐶𝑣[𝑎𝑖 , 𝑎𝑗] = 𝐶𝑣[𝑆𝑇𝑘+1 , 𝑆𝑇𝑘+1] − 𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒
𝑟(𝑇𝑖+𝑇𝑗−2𝑡) < 0,where 𝑖, 𝑗 ≤ 𝑘. 

Also,  
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𝐶𝑣[𝑎𝑘+1, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗] = 𝐶𝑣[𝑆𝑇𝑘+1 , 𝑆𝑡]𝑒
𝑟(𝑇𝑗−𝑡) − 𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒

𝑟(𝑇𝑖+𝑇𝑗−2𝑡) < 0,where 𝑖, 𝑗 ≤ 𝑘. 

Therefore, 𝑉[𝐹𝑛,𝑡] − 𝑉[𝐹𝑛−1,𝑡] < 0, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 𝑘 + 1. 

③ Suppose that n ≤  k, which implies 𝑡 < 𝑇𝑛 given 𝑇𝑘+1 ≤ 𝑡 < 𝑇𝑘.  

Then, by Proposition 1, 

𝐹𝑛,𝑡 = 
1

𝑛
∑𝑆𝑡𝑒

𝑟(𝑇𝑖−𝑡)

𝑛

𝑖=1

= (𝑙𝑒𝑡)
1

𝑛
∑𝑎𝑖

𝑛

𝑖=1

.   

And, 

𝑉[𝐹𝑛,𝑡] =  
1

𝑛2
[∑∑𝐶𝑣[𝑎𝑖, 𝑎𝑗]

𝑛

𝑗=1

𝑛

𝑖=1

] , where𝐶𝑣[𝑎𝑖, 𝑎𝑗] = 𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒
𝑟(𝑇𝑖+𝑇𝑗−2𝑡).   

Also, by Lemma 2,  

𝑉[𝐹𝑛,𝑡] − 𝑉[𝐹𝑛−1,𝑡] 

=
1

𝑛2(𝑛 − 1)2
[∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑛] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+ 2(𝑛 − 1)∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

]. 

Given 𝑇𝑛 < 𝑇𝑛−1 < ⋯ < 𝑇𝑘+1 ≤ 𝑡 < 𝑇𝑘 < ⋯ < 𝑇2 < 𝑇1 and by Corollary 1,  

𝐶𝑣[𝑎𝑛, 𝑎𝑛] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗] 

= 𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒
𝑟(𝑇𝑛+𝑇𝑛−2𝑡) − 𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒

𝑟(𝑇𝑖+𝑇𝑗−2𝑡) < 0,where 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 ≤ 𝑘 − 1. 

Similarly,  

𝐶𝑣[𝑎𝑛, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗] 

= 𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒
𝑟(𝑇𝑛+𝑇𝑗−2𝑡) − 𝐶𝑣[𝑆𝑡, 𝑆𝑡]𝑒

𝑟(𝑇𝑖+𝑇𝑗−2𝑡) < 0,where 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 ≤ 𝑘 − 1. 

Therefore,  

𝑉[𝐹𝑛,𝑡] − 𝑉[𝐹𝑛−1,𝑡] < 0,where 𝑛 ≤ 𝑘. 

④ Suppose 𝑡 = 𝑇1.  Then  
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𝐹𝑛,𝑡 = 
1

𝑛
[∑𝑆𝑇𝑖

𝑛

𝑖=1

] and 𝐹𝑛−1,𝑡 = 
1

𝑛 − 1
[∑𝑆𝑇𝑖

𝑛−1

𝑖=1

]  by Proposition 1.   Then, 

𝑉[𝐹𝑛,𝑡] =  
1

𝑛2
[∑∑𝐶𝑣 [𝑆𝑇𝑖 , 𝑆𝑇𝑗]

𝑛

𝑖=1

𝑛

𝑗=1

].  

Also, by Lemma 2,  

𝑉[𝐹𝑛,𝑡] − 𝑉[𝐹𝑛−1,𝑡] 

=
1

𝑛2(𝑛 − 1)2
[∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑛] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

+ 2(𝑛 − 1)∑∑[𝐶𝑣[𝑎𝑛, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗]]

𝑛−1

𝑖=1

𝑛−1

𝑗=1

]. 

Then, given 𝑇𝑛 < 𝑇𝑛−1 < ⋯ < 𝑇2 < 𝑇1 and by Corollary 1,  

𝐶𝑣[𝑎𝑛, 𝑎𝑛] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗] =𝐶𝑣[𝑆𝑇𝑛 , 𝑆𝑇𝑛]  − 𝐶𝑣 [𝑆𝑇𝑖 , 𝑆𝑇𝑗] < 0, ∀𝑖, 𝑗 ≤ 𝑛 − 1. 

Similarly,  

𝐶𝑣[𝑎𝑛, 𝑎𝑗] − 𝐶𝑣[𝑎𝑖, 𝑎𝑗] =𝐶𝑣 [𝑆𝑇𝑛 , 𝑆𝑇𝑗]  −  𝐶𝑣 [𝑆𝑇𝑖 , 𝑆𝑇𝑗] < 0, ∀𝑖 ≤ 𝑛 − 1. 

Therefore, 𝑉[𝐹𝑛,𝑡] − 𝑉[𝐹𝑛−1,𝑡] < 0 𝑤ℎ𝑒𝑟𝑒 𝑡 = 𝑇1. 

And this completes the proof.         ∎ 

 

Proof of Proposition 3 

i) 0 ≤ 𝑡 < 𝑇𝑛: 

𝐹𝑛,𝑡 = 
1

𝑛
∙∑𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑛

𝑖=1

=
1

𝑛
∙ (𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑛−𝑡) +∑𝑆𝑡 ∙ 𝑒
𝑟(𝑇𝑖−𝑡)

𝑛−1

𝑖=1

) .  Thus, 

𝐹𝑛,𝑡 − 𝐹𝑛−1,𝑡 = 
1

𝑛
∙ (𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑛−𝑡) +∑𝑆𝑡 ∙ 𝑒
𝑟(𝑇𝑖−𝑡)

𝑛−1

𝑖=1

) −
1

𝑛 − 1
∙∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑛−1

𝑖=1
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= 
𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑛−𝑡)

𝑛
+ (

1

𝑛
−

1

𝑛 − 1
) ∙∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑛−1

𝑖=1

 

= 
𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑛−𝑡)

𝑛
 − 

1

𝑛(𝑛 − 1)
∙∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑛−1

𝑖=1

 

= 
(𝑛 − 1) ∙ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
 − 

1

𝑛(𝑛 − 1)
∙∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑛−1

𝑖=1

 

= 
1

𝑛(𝑛 − 1)
 ∙ ∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑛−𝑡)

𝑛−1

𝑖=1

− 
1

𝑛(𝑛 − 1)
∙∑𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑛−1

𝑖=1

 

(𝑠𝑖𝑛𝑐𝑒 𝑆𝑡 ∙ 𝑒
𝑟(𝑇𝑛−𝑡) 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑖)  

= 
𝑆t𝑒

𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

< 0,where 𝑡 < 𝑇𝑛 < 𝑇𝑖 , ∀𝑖 ≤ 𝑛 − 1. 

ii) 𝑇𝑛 ≤  𝑡 < 𝑇𝑛−1: 

𝐹𝑛,𝑡 − 𝐹𝑛−1,𝑡 =
1

𝑛
(𝑆𝑇𝑛 +∑𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑛−1

𝑖=1

) −
1

𝑛 − 1
∙∑𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑛−1

𝑖=1

 

=
1

𝑛
(𝑆𝑇𝑛 + (1 −

𝑛

𝑛 − 1
) ∙∑ 𝑆𝑡 ∙ 𝑒

𝑟(𝑇𝑖−𝑡)

𝑛−1

𝑖=1

) 

=
1

𝑛
(𝑆𝑇𝑛  −  

1

𝑛 − 1
∙∑(𝑆t𝑒

𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

) ,where𝑇𝑖 − 𝑡 > 0, ∀𝑖 ≤ 𝑛 − 1.  

The sign of 𝐹𝑛 − 𝐹𝑛−1can be anything, depending on the realized values of 𝑆𝑇𝑛  and 𝑆𝑡. 

iii) 𝑇𝑘+1 ≤  𝑡 < 𝑇𝑘(1 ≤ 𝑘 ≤ 𝑛 − 2): 

𝐹𝑛,𝑡 − 𝐹𝑛−1,𝑡 =
1

𝑛
( ∑ 𝑆𝑇𝑖

𝑛

𝑖=𝑘+1

+∑𝑆𝑡𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

) −
1

𝑛 − 1
( ∑ 𝑆𝑇𝑖

𝑛−1

𝑖=𝑘+1

+∑𝑆𝑡𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

) 



 32 

=
1

𝑛
(𝑆𝑇𝑛 + ∑ 𝑆𝑇𝑖

𝑛−1

𝑖=𝑘+1

+∑𝑆𝑡𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

) −
1

𝑛 − 1
( ∑ 𝑆𝑇𝑖

𝑛−1

𝑖=𝑘+1

+∑𝑆𝑡𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

) 

=
1

𝑛
(𝑆𝑇𝑛 + (1 −

𝑛

(𝑛 − 1)
) ∙ ∑ 𝑆𝑇𝑖

𝑛−1

𝑖=𝑘+1

+∑𝑆𝑡𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

) 

=
1

𝑛
(𝑆𝑇𝑛 −

1

(𝑛 − 1)
( ∑ 𝑆𝑇𝑖

𝑛−1

𝑖=𝑘+1

+∑𝑆𝑡𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

)). 

The sign of 𝐹𝑛 − 𝐹𝑛−1can be anything, depending on the realized values of 𝑆𝑇𝑖′𝑠 and 𝑆𝑡, 

where k + 1 ≤ 𝑖 ≤ 𝑛. 

iv) 𝑡 = 𝑇1: 

𝐹𝑛,𝑡 − 𝐹𝑛−1,𝑡 =
1

𝑛
∙∑𝑆𝑇𝑖

𝑛

𝑖=1

−
1

𝑛 − 1
∙∑𝑆𝑇𝑖

𝑛−1

𝑖=1

 

=
1

𝑛
(𝑆𝑇𝑛 +∑𝑆𝑇𝑖

𝑛−1

𝑖=1

) −
1

𝑛 − 1
∙∑𝑆𝑇𝑖

𝑛−1

𝑖=1

 

=
1

𝑛
(𝑆𝑇𝑛 + (1 −

1

𝑛 − 1
) ∙∑ 𝑆𝑇𝑖

𝑛−1

𝑖=1

) 

=
1

𝑛
(𝑆𝑇𝑛 −

1

𝑛 − 1
∙∑𝑆𝑇𝑖

𝑛−1

𝑖=1

) . 

Again, the sign of this can be anything, depending on the realized values of 𝑆𝑇𝑖′𝑠, where 

1 ≤ 𝑖 ≤ 𝑛, and this completes the proof.      ∎ 

 

Proof of Proposition 4 

𝑖) 0 ≤  𝑡 < 𝑇𝑛: 
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𝐸[𝐹𝑛,𝑡] − 𝐸[𝐹𝑛−1,𝑡] = 𝐸[𝐹𝑛,𝑡 − 𝐹𝑛−1,𝑡] 

=  𝐸 [
𝑆t𝑒

𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

] (by Proposition 3) 

= 𝐸[𝑆t] ∙
𝑒𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
∙ (∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

) 

= 
𝑆0 ∙ 𝑒

𝜇∙𝑡+𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
∙ (∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

) < 0, 𝑤ℎ𝑒𝑟𝑒 𝑇𝑛 < 𝑇𝑖,   ∀𝑖 ≤ 𝑛 − 1. 

𝑖𝑖) 𝑇𝑛 ≤  𝑡 < 𝑇𝑛−1: 

𝐸[𝐹𝑛,𝑡] − 𝐸[𝐹𝑛−1,𝑡] = 𝐸 [
1

𝑛
(𝑆𝑇𝑛  −  

1

𝑛 − 1
∙∑(𝑆t𝑒

𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

)] (by Proposition 3) 

= 𝐸 [
1

𝑛
(

1

𝑛 − 1
∙ (𝑛 − 1)𝑆𝑇𝑛  −  

1

𝑛 − 1
∙∑(𝑆t𝑒

𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

)] 

= 𝐸 [
1

𝑛
(

1

𝑛 − 1
∙∑𝑆𝑇𝑛

𝑛−1

𝑖=1

 −  
1

𝑛 − 1
∙∑(𝑆t𝑒

𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

)] 

= 𝐸 [
1

𝑛
(

1

𝑛 − 1
∙∑(𝑆𝑇𝑛  − 𝑆t𝑒

𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

)] 

=
1

𝑛(𝑛 − 1)
∙ 𝐸 [∑(𝑆𝑇𝑛  − 𝑆t𝑒

𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

] 

=
1

𝑛(𝑛 − 1)
∙∑𝐸(𝑆𝑇𝑛  − 𝑆t𝑒

𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

 

=
1

𝑛(𝑛 − 1)
∙∑[𝐸(𝑆𝑇𝑛) − 𝐸(𝑆t𝑒

𝑟(𝑇𝑖−𝑡))]

𝑛−1

𝑖=1
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=
1

𝑛(𝑛 − 1)
∙∑[𝑆0𝑒

𝜇∙𝑇𝑛 − 𝑆0𝑒
𝜇∙𝑡+𝑟(𝑇𝑖−𝑡)]

𝑛−1

𝑖=1

 

=
1

𝑛(𝑛 − 1)
∙∑[𝑆0𝑒

𝜇∙𝑇𝑛(1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))]

𝑛−1

𝑖=1

 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙  ∑(1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

< 0,𝑤ℎ𝑒𝑟𝑒 𝑇𝑛 ≤ 𝑡 < 𝑇𝑛−1 < 𝑇𝑛−2 < ⋯ < 𝑇1. 

𝑖𝑖𝑖) 𝑇𝑛−1 ≤ 𝑡 < 𝑇1: 

In other words, the range of 𝑡 is 𝑇𝑘+1 ≤ 𝑡 < 𝑇𝑘 , 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑘 ≤ 𝑛 − 2.  

𝐸[𝐹𝑛,𝑡] − 𝐸[𝐹𝑛−1,𝑡] 

=  𝐸 [
1

𝑛
(𝑆𝑇𝑛 −

1

𝑛 − 1
( ∑ 𝑆𝑇𝑖

𝑛−1

𝑖=𝑘+1

 +∑𝑆t𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

))] (by Proposition 3) 

=  𝐸 [
1

𝑛
(

1

𝑛 − 1
∙∑𝑆𝑇𝑛

𝑛−1

𝑖=1

−
1

𝑛 − 1
( ∑ 𝑆𝑇𝑖

𝑛−1

𝑖=𝑘+1

 +∑𝑆t𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

))] 

=  𝐸 [
1

𝑛
(

1

𝑛 − 1
(∑𝑆𝑇𝑛

𝑛−1

𝑖=1

− ∑ 𝑆𝑇𝑖

𝑛−1

𝑖=𝑘+1

−∑𝑆t𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

))] 

=
1

𝑛(𝑛 − 1)
∙  𝐸 [∑ 𝑆𝑇𝑛

𝑛−1

𝑖=1

− ∑ 𝑆𝑇𝑖

𝑛−1

𝑖=𝑘+1

−∑𝑆t𝑒
𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

] 

=
1

𝑛(𝑛 − 1)
[∑𝐸[𝑆𝑇𝑛]

𝑛−1

𝑖=1

− ∑ 𝐸[𝑆𝑇𝑖]

𝑛−1

𝑖=𝑘+1

−∑𝐸[𝑆t𝑒
𝑟(𝑇𝑖−𝑡)]

𝑘

𝑖=1

] 

=
1

𝑛(𝑛 − 1)
[∑𝑆0𝑒

𝜇∙𝑇𝑛

𝑛−1

𝑖=1

− ∑ 𝑆0𝑒
𝜇∙𝑇𝑖

𝑛−1

𝑖=𝑘+1

−∑𝑆0𝑒
𝜇∙𝑡+𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

] 

=
1

𝑛(𝑛 − 1)
[( ∑ 𝑆0𝑒

𝜇∙𝑇𝑛

𝑛−1

𝑖=𝑘+1

+∑𝑆0𝑒
𝜇∙𝑇𝑛

𝑘

𝑖=1

) − ∑ 𝑆0𝑒
𝜇∙𝑇𝑖

𝑛−1

𝑖=𝑘+1

−∑𝑆0𝑒
𝜇∙𝑡+𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

] 
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=
1

𝑛(𝑛 − 1)
[ ∑ 𝑆0𝑒

𝜇∙𝑇𝑛

𝑛−1

𝑖=𝑘+1

− ∑ 𝑆0𝑒
𝜇∙𝑇𝑖

𝑛−1

𝑖=𝑘+1

+∑𝑆0𝑒
𝜇∙𝑇𝑛

𝑘

𝑖=1

−∑𝑆0𝑒
𝜇∙𝑡+𝑟(𝑇𝑖−𝑡)

𝑘

𝑖=1

] 

=
1

𝑛(𝑛 − 1)
[ ∑ 𝑆0𝑒

𝜇∙𝑇𝑛

𝑛−1

𝑖=𝑘+1

(1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛)) +∑𝑆0𝑒
𝜇∙𝑇𝑛

𝑘

𝑖=1

(1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))] 

= 
1

𝑛(𝑛 − 1)
[𝑆0𝑒

𝜇∙𝑇𝑛 ( ∑ (1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛)) +

𝑛−1

𝑖=𝑘+1

∑(1− 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))

𝑘

𝑖=1

)] 

=
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
[ ∑ (1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛)) +

𝑛−1

𝑖=𝑘+1

∑(1− 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))

𝑘

𝑖=1

] < 0, 

where 𝑇𝑛 < 𝑡, 𝑇𝑛 < 𝑇𝑖, ∀𝑖 ≤ 𝑛 − 1, and 𝑡 < 𝑇𝑖, ∀𝑖 ≤ 𝑘. 

𝑖𝑣) 𝑡 = 𝑇1: 

𝐸[𝐹𝑛,𝑡] − 𝐸[𝐹𝑛−1, 𝑡] =  𝐸 [
1

𝑛
(𝑆𝑇𝑛 −

1

𝑛 − 1
∙∑𝑆𝑇𝑖

𝑛−1

𝑖=1

)] (by Proposition 3) 

=  𝐸 [
1

𝑛
(

1

𝑛 − 1
∙∑𝑆𝑇𝑛

𝑛−1

𝑖=1

−
1

𝑛 − 1
∙∑𝑆𝑇𝑖

𝑛−1

𝑖=1

)] 

=  𝐸 [
1

𝑛
(

1

𝑛 − 1
∙∑(𝑆𝑇𝑛−𝑆𝑇𝑖)

𝑛−1

𝑖=1

)] =  
1

𝑛(𝑛 − 1)
∙ 𝐸 [∑(𝑆𝑇𝑛−𝑆𝑇𝑖)

𝑛−1

𝑖=1

] 

= 
1

𝑛(𝑛 − 1)
∙∑(𝐸[𝑆𝑇𝑛]−𝐸[𝑆𝑇𝑖])

𝑛−1

𝑖=1

= 
1

𝑛(𝑛 − 1)
∙∑(𝑆0𝑒

𝜇∙𝑇𝑛−𝑆0𝑒
𝜇∙𝑇𝑖)

𝑛−1

𝑖=1

 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

< 0, where 𝑇𝑛 < 𝑇𝑖, ∀𝑖 ≤ 𝑛 − 1. 

This completes the proof of Proposition 4.      ∎ 

 

Proof of Proposition 5 
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Suppose 𝑇𝑘+1 ≤  𝑡 < 𝑇𝑘, where 1 ≤ 𝑘 ≤ 𝑛 − 2.  This means 𝑘 + 2 ≤ 𝑛 and 𝑇𝑛−1 ≤ 𝑡 < 𝑇1, 

and this case belongs to case 𝑖𝑖𝑖) of Proposition4.  Then 

[𝐸[𝐹𝑛,𝑡] − 𝐹𝑛,0] − [𝐸[𝐹𝑛−1,𝑡] − 𝐹𝑛−1,0] = 𝐸[𝐹𝑛,𝑡] − 𝐸[𝐹𝑛−1,𝑡] − [𝐹𝑛,0 − 𝐹𝑛−1,0] 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
( ∑ (1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛)) +

𝑛−1

𝑖=𝑘+1

∑(1− 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))

𝑘

𝑖=1

) 

    −
𝑆0𝑒

𝑟∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

 (by 𝑖𝑖𝑖) of Proposition 4 and 𝑖) of Proposition 3) 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
( ∑ (1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛)) +

𝑛−1

𝑖=𝑘+1

∑(1− 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))

𝑘

𝑖=1

) 

   +
1

𝑛(𝑛 − 1)
∙∑(𝑆0𝑒

𝑟∙𝑇𝑖 − 𝑆0𝑒
𝑟∙𝑇𝑛)

𝑛−1

𝑖=1

 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
× 

( ∑ (1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛)) +

𝑛−1

𝑖=𝑘+1

∑(1− 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))

𝑘

𝑖=1

+∑(𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛)

𝑛−1

𝑖=1

) 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
( ∑ (1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛) + 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛)

𝑛−1

𝑖=𝑘+1

+∑(1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡) + 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛)

𝑘

𝑖=1

) 

 

= (𝑙𝑒𝑡)
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
[ ∑ 𝐴𝑖

𝑛−1

𝑖=𝑘+1

+∑ 𝑖

𝑘

𝑖=1

],  

𝑤ℎ𝑒𝑟𝑒 𝐴𝑖 =  1 − 𝑒𝜇∙(𝑇𝑖−𝑇𝑛) + 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛 

𝑎𝑛   𝑖 =  1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡) + 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛  . 
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I will show [𝐸[𝐹𝑛,𝑡] − 𝐹𝑛,0] − [𝐸[𝐹𝑛−1,𝑡] − 𝐹𝑛−1,0] < 0  by demonstrating that 𝐴𝑖 <

0 𝑎𝑛   𝑖 < 0, ∀𝑖.  To prove 𝐴𝑖 < 0 , let us say  = 𝑟 + 𝛼, 𝑎𝑛  𝑇𝑖 = 𝑇𝑛 + 𝛽𝑖, where 0 <

𝛼 and 0 < 𝛽𝑖 given 𝑘 + 1 ≤ 𝑖 ≤ 𝑛 − 1.  Then, 

𝐴𝑖 =  1 − 𝑒(𝑟+𝛼)𝛽𝑖 + 𝑒−(𝑟+𝛼)𝑇𝑛+𝑟(𝑇𝑛+𝛽𝑖) − 𝑒−(𝑟+𝛼)𝑇𝑛+𝑟∙𝑇𝑛  

=  1 − 𝑒(𝑟+𝛼)𝛽𝑖 + 𝑒−𝛼∙𝑇𝑛+𝑟∙𝛽𝑖 − 𝑒−𝛼∙𝑇𝑛 

= 𝑒𝑟∙𝛽𝑖(−𝑒𝛼∙𝛽𝑖 + 𝑒−𝛼∙𝑇𝑛) − 𝑒−𝛼∙𝑇𝑛 + 1 

< 𝑒𝑟∙𝛽𝑖(−𝑒𝛼∙𝛽𝑖 + 𝑒−𝛼∙𝑇𝑛) − 𝑒−𝛼∙𝑇𝑛 + 𝑒𝛼∙𝛽𝑖 = (𝑒𝑟∙𝛽𝑖 − 1)(−𝑒𝛼∙𝛽𝑖 + 𝑒−𝛼∙𝑇𝑛) < 0,   

since 𝑒𝑟∙𝛽𝑖 > 1, (−𝑒𝛼∙𝛽𝑖) < (−1),  and 𝑒−𝛼∙𝑇𝑛 < 1. 

Next, I prove  𝑖 < 0,where 1 ≤ 𝑖 ≤ 𝑘.  Let us say 

𝑇𝑖 − 𝑇𝑛 = (𝑇𝑖 − 𝑡) + (𝑡 − 𝑇𝑛) = 𝛽𝑖1 + 𝛽𝑖2 = 𝛽𝑖 , where𝑇𝑖 − 𝑡 = 𝛽𝑖1 > 0, ∀𝑖 ≤ 𝑘, and 

𝑡 − 𝑇𝑛 = 𝛽𝑖2 > 0.  Then 

 𝑖 =  1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡) + 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛 

=  1 − 𝑒(𝑟+𝛼)𝛽𝑖2+𝑟∙𝛽𝑖1 + 𝑒−(𝑟+𝛼)∙𝑇𝑛+𝑟∙(𝑇𝑛+𝛽𝑖) − 𝑒−(𝑟+𝛼)∙𝑇𝑛+𝑟∙𝑇𝑛  

=  1 − 𝑒𝛼∙𝛽𝑖2+𝑟∙𝛽𝑖 + 𝑒−𝛼∙𝑇𝑛+𝑟∙𝛽𝑖 − 𝑒−𝛼∙𝑇𝑛 

= (1 − 𝑒𝛼∙𝛽𝑖2+𝑟∙𝛽𝑖) + 𝑒−𝛼∙𝑇𝑛(𝑒𝑟∙𝛽𝑖 − 1) 

< (1 − 𝑒𝛼∙𝛽𝑖2+𝑟∙𝛽𝑖) + 𝑒−𝛼∙𝑇𝑛(𝑒𝑟∙𝛽𝑖+𝛼∙𝛽𝑖2 − 1) = (1 − 𝑒𝛼∙𝛽𝑖2+𝑟∙𝛽𝑖)(1 − 𝑒−𝛼∙𝑇𝑛) < 0, 

where 𝛼, 𝛽𝑖2, 𝑟, 𝛽𝑖, and 𝑇𝑛 > 0. 

Next, suppose 𝑇𝑛 ≤  𝑡 < 𝑇𝑛−1,  which belongs to case 𝑖𝑖)  of Proposition 4.  Then 

[𝐸[𝐹𝑛,𝑡] − 𝐹𝑛,0] − [𝐸[𝐹𝑛−1,𝑡] − 𝐹𝑛−1,0] = 𝐸[𝐹𝑛,𝑡] − 𝐸[𝐹𝑛−1,𝑡] − [𝐹𝑛,0 − 𝐹𝑛−1,0] 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙  ∑(1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

−
𝑆0𝑒

𝑟∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

 

     (by 𝑖𝑖) of Proposition 4 and 𝑖) of Proposition 3) 
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= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙  ∑(1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

+
1

𝑛(𝑛 − 1)
∙∑(𝑆0𝑒

𝑟∙𝑇𝑖 − 𝑆0𝑒
𝑟∙𝑇𝑛)

𝑛−1

𝑖=1

 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙  ∑(1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡))

𝑛−1

𝑖=1

−
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛)

𝑛−1

𝑖=1

 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡) + 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛)

𝑛−1

𝑖=1

 

= (𝑙𝑒𝑡)
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑ 𝑖,

𝑛−1

𝑖=1

  where 𝑖 =  1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡) + 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛 . 

I will show [𝐸[𝐹𝑛,𝑡] − 𝐹𝑛,0] − [𝐸[𝐹𝑛−1,𝑡] − 𝐹𝑛−1,0] < 0 by showing that  𝑖 < 0, ∀𝑖.    

Again,  = 𝑟 + 𝛼, 𝑇𝑖 − 𝑡 = 𝛽𝑖1 > 0, 𝑡 − 𝑇𝑛 = 𝛽𝑖2 > 0   

and 𝑇𝑖 − 𝑇𝑛 = (𝑇𝑖 − 𝑡) + (𝑡 − 𝑇𝑛) = 𝛽𝑖1 + 𝛽𝑖2 = 𝛽𝑖 > 0 given 1 ≤ 𝑖 ≤ 𝑛 − 1.  Then, 

 𝑖 =  1 − 𝑒𝜇(𝑡−𝑇𝑛)+𝑟(𝑇𝑖−𝑡) + 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛 

=  1 − 𝑒(𝑟+𝛼)𝛽𝑖2+𝑟∙𝛽𝑖1 + 𝑒−(𝑟+𝛼)∙𝑇𝑛+𝑟∙(𝑇𝑛+𝛽𝑖) − 𝑒−(𝑟+𝛼)∙𝑇𝑛+𝑟∙𝑇𝑛  

=  1 − 𝑒𝛼∙𝛽𝑖2+𝑟∙𝛽𝑖 + 𝑒−𝛼∙𝑇𝑛+𝑟∙𝛽𝑖 − 𝑒−𝛼∙𝑇𝑛 

= (1 − 𝑒𝛼∙𝛽𝑖2+𝑟∙𝛽𝑖) + 𝑒−𝛼∙𝑇𝑛(𝑒𝑟∙𝛽𝑖 − 1) 

< (1 − 𝑒𝛼∙𝛽𝑖2+𝑟∙𝛽𝑖) + 𝑒−𝛼∙𝑇𝑛(𝑒𝑟∙𝛽𝑖+𝛼∙𝛽𝑖2 − 1) = (1 − 𝑒𝛼∙𝛽𝑖2+𝑟∙𝛽𝑖)(1 − 𝑒−𝛼∙𝑇𝑛) < 0, 

where 𝛼, 𝛽𝑖2, 𝑟, 𝛽𝑖, and 𝑇𝑛 > 0. 

Next suppose 0 ≤  𝑡 < 𝑇𝑛, which belongs to case 𝑖) of Proposition 4.  Then 

[𝐸[𝐹𝑛,𝑡] − 𝐹𝑛,0] − [𝐸[𝐹𝑛−1,𝑡] − 𝐹𝑛−1,0] = 𝐸[𝐹𝑛,𝑡] − 𝐸[𝐹𝑛−1,𝑡] − [𝐹𝑛,0 − 𝐹𝑛−1,0] 

= 
𝑆0𝑒

𝜇∙𝑡+𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

−
𝑆0𝑒

𝑟∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

 

     (by 𝑖) of Proposition 4 and 𝑖) of Proposition 3) 
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= 
𝑆0𝑒

𝜇∙𝑡+𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

−
𝑆0𝑒

𝜇∙𝑡+𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
∙∑(𝑒−𝜇∙𝑡+𝑟∙𝑡 − 𝑒−𝜇∙𝑡+𝑟∙𝑡−𝑟(𝑇𝑛−𝑇𝑖))

𝑛−1

𝑖=1

 

= 
𝑆0𝑒

𝜇∙𝑡+𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛) − 𝑒−𝜇∙𝑡+𝑟∙𝑡 + 𝑒−𝜇∙𝑡+𝑟∙𝑡−𝑟(𝑇𝑛−𝑇𝑖))

𝑛−1

𝑖=1

 

= (𝑙𝑒𝑡)
𝑆0𝑒

𝜇∙𝑡+𝑟(𝑇𝑛−𝑡)

𝑛(𝑛 − 1)
∙∑𝐴𝑖 ,

𝑛−1

𝑖=1

  where𝐴𝑖 =  1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛) − 𝑒−𝜇∙𝑡+𝑟∙𝑡 + 𝑒−𝜇∙𝑡+𝑟∙𝑡−𝑟(𝑇𝑛−𝑇𝑖). 

Again,  = 𝑟 + 𝛼 and  𝑇𝑖 = 𝑇𝑛 + 𝛽𝑖, 𝑤ℎ𝑒𝑟𝑒 0 < 𝛼 and 0 < 𝛽𝑖  𝑔𝑖𝑣𝑒𝑛 1 ≤ 𝑖 ≤ 𝑛 − 1.  Then, 

𝐴𝑖 =  1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛) + 𝑒𝑟(𝑇𝑖−𝑇𝑛)+𝑡(𝑟−𝜇) − 𝑒𝑡(𝑟−𝜇) 

     =  1 − 𝑒𝑟∙𝛽𝑖 + 𝑒𝑟∙𝛽𝑖−𝑡𝛼 − 𝑒−𝑡𝛼  

     =  (1 − 𝑒𝑟∙𝛽𝑖) − 𝑒−𝑡𝛼(1 − 𝑒𝑟∙𝛽𝑖) 

     =  (1 − 𝑒𝑟∙𝛽𝑖)(1 − 𝑒−𝑡𝛼) < 0, 𝑠𝑖𝑛𝑐𝑒 1 − 𝑒𝑟∙𝛽𝑖 < 0, and 1 − 𝑒−𝑡𝛼 > 0. 

Last, suppose 𝑡 = 𝑇1, which belongs to case 𝑖𝑣) of Proposition 4.  Then 

[𝐸[𝐹𝑛,𝑡] − 𝐹𝑛,0] − [𝐸[𝐹𝑛−1,𝑡] − 𝐹𝑛−1,0] = 𝐸[𝐹𝑛,𝑡] − 𝐸[𝐹𝑛−1,𝑡] − [𝐹𝑛,0 − 𝐹𝑛−1,0] 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

−
𝑆0𝑒

𝑟∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝑟(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

 

     (by 𝑖𝑣) of Proposition 4 and 𝑖) of Proposition 3) 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛))

𝑛−1

𝑖=1

−
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖)

𝑛−1

𝑖=1

 

= 
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑(1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛) + 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛)

𝑛−1

𝑖=1

 

= (𝑙𝑒𝑡)
𝑆0𝑒

𝜇∙𝑇𝑛

𝑛(𝑛 − 1)
∙∑ 𝑖,

𝑛−1

𝑖=1

  where  𝑖 =  1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛) + 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛 . 

Again,  = 𝑟 + 𝛼 and  𝑇𝑖 = 𝑇𝑛 + 𝛽𝑖, where 0 < 𝛼 and 0 < 𝛽𝑖given 1 ≤ 𝑖 ≤ 𝑛 − 1.  Then 
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 𝑖 =  1 − 𝑒𝜇(𝑇𝑖−𝑇𝑛) + 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑖 − 𝑒−𝜇∙𝑇𝑛+𝑟∙𝑇𝑛 

=  1 − 𝑒(𝑟+𝛼)𝛽𝑖 + 𝑒−(𝑟+𝛼)∙𝑇𝑛+𝑟∙(𝑇𝑛+𝛽𝑖) − 𝑒−(𝑟+𝛼)∙𝑇𝑛+𝑟∙𝑇𝑛  

=  1 − 𝑒𝛼∙𝛽𝑖+𝑟∙𝛽𝑖 + 𝑒−𝛼∙𝑇𝑛+𝑟∙𝛽𝑖 − 𝑒−𝛼∙𝑇𝑛 

= (1 − 𝑒𝛼∙𝛽𝑖+𝑟∙𝛽𝑖) + 𝑒−𝛼∙𝑇𝑛(𝑒𝑟∙𝛽𝑖 − 1) 

< (1 − 𝑒𝛼∙𝛽𝑖+𝑟∙𝛽𝑖) + 𝑒−𝛼∙𝑇𝑛(𝑒𝑟∙𝛽𝑖+𝛼∙𝛽𝑖 − 1) = (1 − 𝑒𝛼∙𝛽𝑖+𝑟∙𝛽𝑖)(1 − 𝑒−𝛼∙𝑇𝑛) < 0, 

      where 𝛼, 𝛽𝑖, 𝑟, and 𝑇𝑛 > 0. 

Then, [𝐸[𝐹𝑛,𝑡] − 𝐹𝑛,0] − [𝐸[𝐹𝑛−1,𝑡] − 𝐹𝑛−1,0] < 0 for any future time t and for any AV 

futures with 2 ≤ n.  This concludes the proof.        ∎ 
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