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Abstract

This paper studies robust portfolio management of an ambiguity-averse fund manager

who has risk limits. Contrary to traditional investment rules, optimal portfolio man-

agement takes different forms in which it is significantly affected by the presence of risk

limits and ambiguity aversion. With reasonably calibrated market parameters, we find

that the loss amount induced by a Value-at-Risk (VaR) constraint or an expected short-

fall (ES) constraint decreases as ambiguity aversion increases. When we consider the VaR

constraint together with ambiguity aversion, the risky investment is substantially lower

compared to that without ambiguity aversion. Furthermore, the robust portfolio man-

agement amplifies the effect of the ES constraint, and, thus, the investment strategy of

ambiguity-averse fund managers tends to become increasingly similar to the one without

the ES constraint as ambiguity aversion increases.
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1 Introduction

Ambiguity is an uninsurable risk. We can purchase insurance to help deal with loss

from most risky events. We can lay-off risk, spread risk and avoid risky situations.

Although ambiguity is a form of risk, there is no way to insure against it. ...

The key to overcoming ambiguity is for participants to adopt a risk appropriate

asset allocation and stick to it. Ambiguous events come and go. If participants

let the fear of ambiguous outcomes affect their decision-making, they will never

implement an allocation strategy that is aggressive enough. (Employee Benefit

News, February 25, 2014)

The above quote emphasizes the importance of developing a robust portfolio management

strategy in which the effects of ambiguity are appropriately considered. Since the seminal

paper of Hansen and Sargent (1995) robust portfolio choice problems against uncertainty

about the equity return process have been actively studied. Gilboa and Schmeidler (1989)

axiomatize max-min utility, and Hansen and Sargent (2001) and Hansen et al. (2006) extend

the model of Gilboa and Schmeidler (1989) to a continuous time robust consumption and

portfolio choice problem. Maenhout (2004) introduce homothetic robustness through which

analytical results of robust consumption and portfolio rules are derived and the equity pre-

mium puzzle can be resolved. Various types of robustness such as recursive smooth ambiguity

have resolved various puzzles in finance (Liu et al., 2005; Zhu, 2001; Ju and Miao, 2012).

Fund managers are exposed to uncertainty and risk about equity returns. In particular,

Anderson et al. (2009) find that uncertainty is a key determinant of the equity returns than

risk, and verify that there exists a significant uncertainty-return trade-off. An ambiguity-

averse fund manager’s portfolio selection problem can be formulated within the standard

mean-variance portfolio optimization and empirical analysis (Garlappi et al., 2007) shows

that robust portfolio rules against the ambiguity aversion about the expected rate of stock

returns are more efficient than classical models in terms of stability and Shapre ratio.

Fund managers are significantly affected by various portfolio constraints. There is a strand

of literature regarding optimal portfolio strategy with portfolio constraints. Cvitanić and

Karatzas (1992), Cuoco (1997), and Cuoco and Liu (2000) show that the optimal trading

strategy of fund managers heavily depends on portfolio constraints. Moreover, Grossman and
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Vila (1989), Basak (1995), and Grossman and Zhou (1996) constrain the optimal portfolio

choice to consider portfolio insurance in which fund manager’s terminal wealth is always

maintained above pre-specified level. Recently, Dai et al. (2011) investigate how optimal

trading strategy is affected by the joint of portfolio constraints characterized by position

limits and transaction costs.

We make significant contributions to the fund manager’s portfolio management by finding

an optimal portfolio strategy in the presence of both portfolio constraints and ambiguity. We

focus on the joint considerations of risk limits represented by Value-at-Risk (VaR) constraint

or expected shortfall (ES) constraint1 and ambiguity. VaR is the lowest tail percentile for

losses from the distribution of profit and loss, and ES imposes the percentile for the first

moment of losses. Portfolio management based on VaR has been a popular standard choice

by industry regulations (Jorion, 2006). Hull (2005) states that fund managers and financial

institutions use VaR as the relevant risk measure. Empirically, Berkowitz and O’brien (2002)

show the superiority of the VaR estimates relative to the 99th percentile from the distribution

of profit and loss in terms of the performance by examining the statistical accuracy of the VaR

forecasts. However, there exist some literature which find that VaR might not be appropriate

as a risk measure because it would generate large losses during economic downturns (Basak

and Shapiro, 2001). Instead of using VaR, ES has been used as an alternative risk measure in

the context of modern portfolio management (Artzner et al., 1997; Acerbi and Tasche, 2002;

Frey and McNeil, 2002; Tasche, 2002; Inui and Kijima, 2005; Yamai and Yoshiba, 2005).

This paper follows the framework of Basak and Shapiro (2001) in that we include the

VaR constraint or the ES constraint in the portfolio optimization problem and that a fund

manager must satisfy the constraint at the terminal time. In particular, we do not consider

any reevaluation of VaR or discrete reporting VaR.2 The large difference between our model

and the model of Basak and Shapiro (2001) is to be attributed to the fund manager’s am-

1Expected shortfall is well known the so-called conditional value at risk, average value at risk, and expected

tail loss.
2Cuoco and Liu (2006) determine an optimal investment strategy for financial institutions in which they

must report their VaR given some discrete reporting periods. They show that VaR-based capital requirements

contribute significantly to reducing financial institutions’ portfolio risk. Cuoco et al. (2008) overcome the

assumption of static or dynamically inconsistent VaR constraints as existing literature considered and conclude

that a trader subject to the VaR constraints takes lower risky investment than an unconstrained trader does.
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biguity aversion against the uncertainty about the first moment of stock returns. We derive

analytical results about the robust portfolio management strategy for the ambiguity-averse

fund manager. This is our technical contribution. Contrary to traditional investment rules,

optimal portfolio management takes different forms in which it is significantly affected by the

presence of risk limits and ambiguity aversion.

Basak and Shapiro (2001) have a negative point of view of using VaR-based risk man-

agement, because it leads to severe losses during economic downturns. However, this is not

necessarily true when one considers the ambiguity-averse fund manager. With reasonably

calibrated market parameters, we find that the loss amount due to our robust portfolio man-

agement with the VaR constraint significantly decreases as the ambiguity aversion increases.

Hence, in that case the VaR constraint can be an effective tool in risk management. In the

presence of the ES constraint, the fund manager cares about big losses, so that in unfavorable

states the losses are significantly smaller than the case of the VaR constraint. Our numerical

experiments confirm the intuition of Basak and Shapiro (2001) that the fund manager con-

strained by the ES constraint is more reluctant to allow the shortfall than the fund manager

with the VaR constraint is, and show that when we consider the ambiguity aversion of the

fund manager, the loss amount decreases as ambiguity aversion increases.

The interesting observation of our model is that in Basak and Shapiro (2001) the fund

manager with the VaR constraint attempts to have her wealth to be above the constraint by

investing aggressively in the stock, but our robust portfolio management suggests that if the

fund manager formulates her investment strategy by considering the VaR constraint together

with her ambiguity aversion, then her risky investment is substantially lower compared to that

of Basak and Shapiro (2001). Relative to the ES constraint, in Basak and Shapiro (2001) the

fund manager formulates an investment strategy that reduces the stock investment to satisfy

the ES constraint. Our robust portfolio management amplifies the effect of the ES constraint,

and, thus, the strategy of the ambiguity-averse fund managers tends to become increasingly

similar to the one without the ES constraint as ambiguity aversion increases. In this sense,

the ambiguity aversion may be a more significant factor in portfolio management than are

risk limits such as the VaR and the ES constraint.

This paper is organized as follows. In Section 2 we clarify our problem concerning the

robust portfolio management with risk limits. Section 3 suggests the solution to the problem
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and provides analytical results relative to optimal strategies. Section 4 shows the numerical

implications with reasonably calibrated market parameters. We conclude in Section 5.

2 The Model

2.1 Benchmark Portfolio Management

We consider a fund manager who wants to find the maximal score of her constant relative

risk aversion utility preference for terminal wealth at time T ∈ (0,∞). The fund manager

can trade two assets in a financial market: a risk-free asset (e.g., a bond) and a risky asset

(e.g., a stock). The bond price grows at a continuously compounded, constant rate r > 0.

The stock price St follows

dSt = µStdt+ σStdBt,

where µ > r is the expected rate of the stock return, σ > 0 is the volatility of the return

on the stock, and Bt is a standard Brownian motion defined on an appropriate probability

space. We assume that r, µ, σ are constant, i.e., that investment opportunity is constant.

The wealth process Wt of the fund manager with an initial wealth W0 = w > 0 is given

by

dWt = {r + πt(µ− r)}Wtdt+ πtσWtdBt,

where πt is the fraction of wealth invested in the stock at time t. Then, the objective function

(or value function) is to maximize

max
π

E
[W 1−γ

T

1− γ

]
,

where γ > 0 is the coefficient of relative risk aversion.

Merton (1969) derived the following Hamilton-Jacobi-Bellman (HJB) equation to solve

the optimization problem:

0 = max
π

[
Vt + {r + π(µ− r)}wVw +

1

2
π2σ2w2Vww

]
, (1)

where V (t, w) is the value function, and Vt, Vw, and Vww are its partial derivatives with

respect to time t and initial wealth w with boundary condition

V (T,w) =
w1−γ

1− γ
. (2)
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Then the value function V (t, w) follows

V (t, w) = f(t)
w1−γ

1− γ
,

where

f(t) = ea(T−t), a = (1− γ)
(
r +

κ2

2γ

)
,

where κ = (µ− r)/σ represents the Sharpe ratio. Moreover, the optimal fraction π∗
t of wealth

invested in the stock is given by

π∗
t =

κ

γσ
,

which is exactly same as in Merton (1969).

2.2 Robust Portfolio Management in the Absence of Risk Limits

To incorporate ambiguity aversion (or model uncertainty) we adopt the robust preference

structure of Anderson et al. (2003). Specifically, the wealth process of the fund manager who

prefers robustness is given by

dWt = {r + πt(µ− r + σht)}Wtdt+ πtσWtdBt, (3)

where πt is the fraction of wealth invested in the stock at time t, and ht is an endogenous

drift adjustment. The drift adjustment is chosen to minimize the sum of three terms; the first

term is equation (1), the second one is the additional drift component in the wealth process

(3), and the third one is an entropy penalty (Anderson et al., 2003). Specifically, ht is chosen

as the following:

ht = argmin
h

[
Vt + {r + π(µ− r)}wVw +

1

2
π2σ2w2Vww + πσwhVw +

1

2θ̂
πσwh2

]
,

where θ̂ ≥ 0 measures the strength of the preference for robustness.3 We replace θ̂ by Ψ(w, t)

as a first step to get the homothetic property of robustness (Maenhout, 2004). Then HJB (1)

can be

0 = max
π

inf
h

[
Vt + {r + π(µ− r)}wVw +

1

2
π2σ2w2Vww + πσwhVw +

1

2Ψ(w, t)
πσwh2

]
. (4)

The optimality condition for h gives

h∗ = −ΨVw.

3See Anderson et al. (2003) for the details of entropy and θ̂.
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Substituting h∗ into HJB (4) yields

0 = max
π

[
Vt + {r + π(µ− r)}wVw +

1

2
π2σ2w2Vww − 1

2
Ψπ2σ2w2(Vw)

2
]
,

with the boundary condition (2). Optimal risky investment π∗ is given by the necessary

optimality condition as

π∗ = − Vw

w
(
Vww −Ψ(Vw)2

) κ
σ
.

Following Maenhout (2004), we use

Ψ(t, w) =
θ

(1− γ)V (w, t)
> 0,

which is called the homothetic robustness (or ambiguity aversion). Then HJB (4) becomes

0 = Vt + rwVw − 1

2
κ2

(Vw)
2(

Vww −Ψ(Vw)2
) − 1

2
Ψκ2

(Vw)
4(

Vww −Ψ(Vw)2
)2 . (5)

If we conjecture the solution form of V as

V (t, w) = g(t)
w1−γ

1− γ
, (6)

then g(t), h∗ and π∗ are obtained

g(t) = eb(T−t), b = (1− γ)
[
r +

1

2

γ

(γ + θ)2
κ2

]
,

h∗ = − κθ

γ + θ
, and π∗ =

κ

σ(γ + θ)
. (7)

Note that the optimal risky investment π∗ is exactly same as the one of Maenhout (2004)

with the coefficient γ of relative risk aversion is replaced by γ + θ.

2.3 Robust Portfolio Management In the Presence of Risk Limits

In the previous section, we derived robust portfolio management as Maenhout (2004) sug-

gested. Now we consider robust portfolio management with two risk limits: VaR and ES.

2.3.1 With Value-at-Risk constraints

We consider the VaR constraint in the robust portfolio management. Basak and Shapiro

(2001) consider the following VaR constraint:

P{WT ≥ W} ≥ 1− α, 4 (8)

4The VaR constraint considered in this paper reduces to the case of portfolio insurance, which constrains

the terminal wealth to be above the level W always (Grossman and Vila, 1989; Basak, 1995; Grossman and
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which means that the fund manager will lose more than w−W with probability 0 ≤ α < 1.5

Then the ambiguity-averse fund manager with VaR constraint would like to maximize her

expected utility of terminal wealth

V (t, w) = max
π

E
[W 1−γ

T

1− γ

]
, (9)

subject to P{WT ≤ W} ≤ α,

which is equivalent to the representation of the VaR constraint in (8). The value function

V (t, w) still satisfies HJB (5), but the separation in the conjectured solution V of (6) is no

longer applied to this robust portfolio management problem in the presence of VaR constraint.

2.3.2 With expected shortfall constraints

Although financial risk management frequently uses the VaR constraint, it has severe short-

comings in terms of the appropriateness of risk measure and in that VaR-based risk man-

agement would result in large losses during economic downturns.6 Instead of using the VaR

constraint, now we introduce the expected shortfall (ES) constraint as an alternative risk

measure. The ES constraint focuses on the first moment of losses, not on their amount.

Specifically, under the shortfall constraint the fund manager is constrained as the following:

E
[
ξ̃T

(
W −WT

)
1{WT≤W}

]
≤ α, (10)

where ξ̃ is a state price density (or stochastic discount factor) induced by market completeness.

Then the ambiguity-averse fund manager with ES constraint has the following value function:

V (t, w) = max
π

E
[W 1−γ

T

1− γ

]
, (11)

Zhou, 1996), when α = 0. The case of 0 < α < 1 allows the terminal wealth to be below W with a probability

α. The VaR constraint is never binding when α = 1.
5See Basak and Shapiro (2001) for the details of modeling the VaR constraint.
6Following Artzner et al. (1999), VaR is not a coherent risk measure because the subadditivity property

does not hold. Furthermore, the VaR-based risk management would generate large losses in unfavorable states

(Basak and Shapiro, 2001). Alexander and Baptista (2002, 2004) imply that economic agents could take

portfolios with larger standard deviations when they use VaR as a risk measure in certain conditions. Hence,

many researchers have suggested to use ES as an alternative risk measure to remedy the shortcomings in VaR

(Artzner et al., 1997; Acerbi and Tasche, 2002; Frey and McNeil, 2002; Tasche, 2002; Inui and Kijima, 2005;

Yamai and Yoshiba, 2005).
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which is subject to the ES constraint (10).

Basak and Shapiro (2001) characterize optimal strategy of a fund manager as a function

of the unique state price density, but in this paper the state price density is difficult to

characterize explicitly, due to the ambiguity aversion. Therefore, the martingale approach is

not easily applicable to our problem. Instead, we utilize the dynamic programming approach

developed by Kraft and Steffensen (2013) for the portfolio selection problem with various

portfolio constraints to solve our robust portfolio management problem with risk limits.

3 Solution

3.1 Optimal Wealth Process without Risk Limits

The fund manager’s optimal wealth process Xt in the absence of risk limits can be

dXt = (r +
κκθ
γ + θ

)Xtdt+
κ

γ + θ
XtdBt, X0 = x > 0.

where κθ = κ− κθ
γ+θ is the ambiguity-adjusted Sharpe ratio. It is followed by substituting the

drift adjustment h∗ and optimal risky investment π∗ given as in (7) into the wealth process

(3). We then can express the optimal wealth process W ∗
t in the presence of the risk limits

constraint as a function ϕ(t, x) of time t and wealth x (Kraft and Steffensen, 2013) as

W ∗
t = ϕ(t, x) = EQ

t,x[e
−r(T−t)g(XT )],

which satisfies

ϕt(t, x) = rϕ(t, x)− rxϕx(t, x)−
1

2

( κ

γ + θ

)2
x2ϕxx, ϕ(T, x) = g(x), (12)

where Q is a risk-neutral measure and g(x) is a claim of x to be determined depending upon

the risk limits. Equation (12) implies that optimal wealth process W ∗
t is the option value

corresponding to the claim g at time t. Accordingly, the initial wealth w of the fund manager is

equivalent to the option price ϕ(0, x). Basak and Shapiro (2001) interpret the wealth process

with the VaR constraint from two points of view: a combination of a portfolio insurance

and a short position in binary options; a portfolio strategy without the VaR constraint and

an appropriate position in corridor options. They also show that the wealth with the ES

constraint is equivalent to an option contingent upon a minimum of two securities; one is
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risky and the other is riskless. Determining the appropriate form of g(x) corresponding to

the risk limits is equivalent to deriving a robust portfolio management strategy according to

the risk limits.

3.2 Robust Portfolio Management with VaR Constraint

In this section, we specify the risk limits. The first consideration for the risk limits is the VaR

constraint. By purchasing a put option on the terminal wealth, the fund manager maintains

her terminal wealth to be above the level W in all states. This is the so-called portfolio

insurance strategy. However, this strategy is somewhat expensive because in favorable states

the probability that wealth is significantly lower than W is very small. Therefore, we can

consider robust portfolio management that applies VaR constraint. Specifically, in addition

to purchasing the put option selling a put option with a lower strike price than the purchased

put option gives cheaper price than purchasing the portfolio insurance, and satisfies the VaR

constraint. In this sense, the appropriate form of g(x) that corresponds to the VaR constraint

is determined by

g(x) = x+ (W − x)1{x<W} − (kα − x)1{x<kα} − (W − kα)1{x<kα}, (13)

where kα is a constant to be determined and is regarded as the strike price of the put option

in which the VaR constraint is satisfied. The third and fourth terms of the right hand side

in (13) have negative values and imply that a large loss can happen during unfavorable

states. Furthermore, the losses due to the robust portfolio management may be significantly

increased or decreased due to the ambiguity aversion of fund managers. Thus, how and how

much ambiguity aversion affects the portfolio management must be investigated, especially

in unfavorable states.

By utilizing the Lagrangian method, we can obtain the unconstrained portfolio selection

problem; its objective function is

V (t, w) = U(t, x) = Et,x

[
ũ
(
g(XT )

)]
,

where

ũ(x) =
x1−γ

1− γ
− λα1{x<W}.

Here, λα is a Lagrange multiplier that accounts for the VaR constraint.
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We state a theorem concerning value function V , optimal wealth process ϕ, and optimal

risky investment π∗
t . First, we introduce the classical Black and Scholes (1973) model. We

denote the call option value by

Call(t, x, r, σ,K) = N
(
d1(t, x, r, σ,K)

)
x−N

(
d2(t, x, r, σ,K)

)
Ke−r(T−t),

where

d1(t, x, r, σ,K) =
1

σ
√
T − t

[
ln

( x

K

)
+
(
r+

σ2

2

)
(T−t)

]
, d2(t, x, r, σ,K) = d1(t, x, r, σ,K)−σ

√
T − t,

and N(·) is the cumulative distribution function of the standard normal distribution. Here, x

is the price of the underlying asset at time t, r is the risk-free interest rate, σ is the volatility

of returns of the underlying asset, and K is the strike price. The put option value is given by

put-call parity as

Put(t, x, r, σ,K) = N
(
− d2(t, x, r, σ,K)

)
Ke−r(T−t) −N

(
− d1(t, x, r, σ,K)

)
x.

Theorem 3.1 The value function V (t, w) is characterized by

U(t, x) =
er̃(T−t)

1− γ

[
x1−γ + Put

(
t, x1−γ , r̃,

(1− γ)κ

γ + θ
,W 1−γ

)
− Put

(
t, x1−γ , r̃,

(1− γ)κ

γ + θ
, k1−γ

α

)]
− er̃(T−t)

1− γ
(W 1−γ − k1−γ

α + (1− γ)λα)e
−r̃(T−t)Pt,x{XT < kα},

(14)

where

r̃ = (1− γ)
(
r +

1

2

κκθ
γ + θ

)
,

and kα and λα are constants to be determined. The optimal wealth process W ∗
t is given by

ϕ(t, x) = x+ Put
(
t, x, r,

κ

γ + θ
,W

)
− Put

(
t, x, r,

κ

γ + θ
, kα

)
− (W − kα)e

−r(T−t)PQ
t,x{XT < kα}.

(15)

Moreover, if we assume that

−xUxx

Ux
= −xϕxx

ϕx
+ γ, (16)

then optimal risky investment π∗
t is given by

π∗
t =

µ− r

σ2

ϕx

ϕ

1[
γ
x + θ

(1−γ)U(t,x)Ux

] . (17)
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Proof. See Appendix 6.1. Q.E.D.

Note that

d1(t, x
1−γ , r̃,

(1− γ)κ

γ + θ
,K1−γ) = d1(t, x, r,

κ

γ + θ
,K).

Then

∂

∂x

[
N
(
− d2(t, x

1−γ , r̃,
(1− γ)κ

γ + θ
,W 1−γ)

)
W 1−γe−r(T−t) −N

(
− d1

(
t, x1−γ , r̃,

(1− γ)κ

γ + θ
,W 1−γ)

)
x1−γ

]
= (1− γ)x−γ ∂

∂x

[
N
(
− d2(t, x, r,

κ

γ + θ
,W )

)
We−r(T−t) −N

(
− d1(t, x, r,

κ

γ + θ
,W )

)
x
]
.

(18)

A straightforward calculation gives

e−r(T−t) ∂

∂x
PQ
t,x{XT < kα} =

x

kα
N ′(d1(t, x, r, κ

γ + θ
, kα)

)
d′1(t, x, r,

κ

γ + θ
, kα), (19)

and

e−r̃(T−t) ∂

∂x
Pt,x{XT < kα} =

1

k−γ
α

x−γe−r(T−t) ∂

∂x
PQ
t,x{XT < kα}. (20)

Substituting equations (18), (19), and (20) into the derivatives of optimal wealth (15) and

the fund manager’s value function (14) with respect to x yields

Ux(t, x) = er̃(T−t)x−γϕx(t, x), (21)

where
W 1−γ

1− γ
− k1−γ

α

1− γ
+ λα = (W − kα)k

−γ
α .

With the above relationship, the two unknown constants kα and λα are attained by P{g(XT ) <

W} = α. Note that relationship (21) implies assumption (16).

Optimal wealth process ϕ formulated by (15) is equivalent to the option price correspond-

ing to claim g at time t. At the optimum, the ambiguity-averse fund manager has wealth x

at time t in the absence of the VaR constraint, which is the first term of the right hand side

in (15). To satisfy the VaR constraint, the manager should take a long position in the put

option with strike W and a short position in the put option with strike kα, which is lower

than W . These actions are reflected in the second and third terms. The last term stems from

the fact that the VaR constraint allows the situation in which the terminal wealth can be

lower than W with a probability α. Contrary to portfolio insurance, the fund manager does

not mind large losses, in which case XT < kα is allowed with probability α. The manager
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can then be exposed to large losses during unfavorable states; this is the meaning of the last

term in the optimal wealth (15).

Optimal risky investment π∗
t suggested by (17) takes different forms compared to the

classical risky investment obtained from Merton (1969). The value of π∗
t may be significantly

affected by the presence of both the VaR constraint and the ambiguity aversion θ. Without

the preference for robustness (θ = 0) risky investment is generated mainly by the optimal

wealth ϕ and reduces to the one formulated by Maenhout (2004), whereas in the presence of

the robustness (θ > 0) the value function U directly affects the risky investment.

3.3 Robust Portfolio Management with ES Constraint

Under the risk-neutral measure Q, the optimal wealth process Xt without the risk limits

follows

dXt = rXtdt+
κ

γ + θ
XtdBt, X0 = x > 0.

Because the financial market is complete, a unique state price density7 ξt exists; it follows

dξt = −rξtdt− κθdBt, ξ0 = ξ > 0.

Then the fund manager is constrained as

E[ξT (W −XT )1{XT≤W}] ≤ α.

Utilizing the dynamic programming approach to the constrained portfolio (Kraft and

Steffensen, 2013) gives the following optimal wealth process W ∗
t in the presence of the ES

constraint:

W ∗
t = ϕ(t, x) = EQ

t,x[e
−r(T−t)g(XT )],

where g(x) is a claim of x depending upon the ES constraint and should be determined

corresponding to that constraint.8 We guess the claim g(x) as the following:

g(x) = x+ (W − x)1{x<W} −
W

kα
(kα − x)1{x<kα},

7In the previous subsection, we argued that formulating the state price density explicitly is difficult due to

the ambiguity aversion. Specifically, because the endogenous drift term ht in the wealth process (3) should be

chosen, before that we cannot know the exact form of the state price density. However, given that the drift

term is determined to be h∗
t we can easily characterize the unique state price density.

8For notational simplicity, we use the same notations of optimal wealth process W ∗(t), ϕ(t, x), the claim

g(x) according to the ES constraint, and the constants kα, λα, which are described in Section 3.2.
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where kα is a constant to be determined according to the ES constraint. In the presence

of the ES constraint, the fund manager cares about big losses, so that in unfavorable states

the losses are significantly smaller than in the presence of the VaR constraint. The robust

portfolio management strategy with the ES constraint has lower costs than does the portfolio

insurance strategy, and allows the fund manager to effectively cope with the big losses that

occur during the unfavorable states.

The fund manager’s problem in the presence of ES constraint is formulated as

U(t, x, ξ) = Et,x

[
ũ
(
g(XT )

)]
,

where

ũ(x, ξ) =
x1−γ

1− γ
− λαξ(W − x)1{x≤W},

and λα is a Lagrangian multiplier induced by the ES constraint.

We provide a theorem relative to value function U , optimal wealth process ϕ, and optimal

risky investment π∗
t in the presence of the ES constraint.

Theorem 3.2 The value function U(t, x, ξ) follows

U(t, x, ξ) =
er̃(T−t)

1− γ

[
x1−γ + Put

(
t, x1−γ , r̃,

(1− γ)κ

γ + θ
,W 1−γ

)
−

(W
kα

)1−γ

Put
(
t, x1−γ , r̃,

(1− γ)κ

γ + θ
, k1−γ

α

)]
− λα

W

kα
ξPut

(
t, x, r,

κ

γ + θ
, kα

)
,

where kα and λα are constants to be determined. The optimal wealth process ϕ(t, x) is given

by

ϕ(t, x) = x+ Put
(
t, x, r,

κ

γ + θ
,W

)
− W

kα
Put

(
t, x, r,

κ

γ + θ
, kα

)
. (22)

If we assume that

− xUxx

Ux − Uξxξ
= −xϕxx

ϕx
+ γ, (23)

then optimal risky investment, π∗
t , is given by

π∗
t =

µ− r

σ2

ϕx

ϕ

1[
γ
x + θ

(1−γ)Ux

] .
Proof. See Appendix 6.2. Q.E.D.

By calculating the derivatives of U , one can obtain the following relationship:

Ux − Uξxξ = er̃(T−t)x−γ
[
1 +

∂

∂x
Put

(
t, x, r,

κ

γ + θ
,W

)
−
(W
kα

)1−γ ∂

∂x
Put

(
t, x, r,

κ

γ + θ
, kα

)]
.
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Furthermore, using the derivatives of ϕ assumption (23) can be rewritten as

0 =
(γ
x
(Ux − Uξxξ) + Uxx

)
ϕx − ϕxxUx

=
[ ∂

∂x
Put

(
t, x, r,

κ

γ + θ
, kα

) ∂2

∂x2
Put

(
t, x, r,

κ

γ + θ
,W

)
− ∂2

∂x2
Put

(
t, x, r,

κ

γ + θ
, kα

)
− ∂2

∂x2
Put

(
t, x, r,

κ

γ + θ
, kα

) ∂

∂x
Put

(
t, x, r,

κ

γ + θ
,W

)][
λα

W

kα
ξ − er̃(T−t)ξ−γ

{W

kα
−
(W
kα

)1−γ}]
.

Then, due to the relationship ξt = ξ0e
−r̃t(Xt/x)

−γ we can obtain

λα = x−γer̃T
{
1−

(W
kα

)−γ}
. (24)

Because the unknown constant kα is obtained by P{g(XT ) < W} = α, the unknown constant

λα is also attained using (24).

Theorem 3.2 explains how at optimum the fund manager takes robust portfolio manage-

ment strategy by taking positions of put options with different strike prices, and shows the

dependence of risky investment on the fund manager’s ambiguity aversion θ. More specif-

ically, relative to the optimal wealth ϕ(t, x) the fund manager has the wealth x at time t.

Because she is constrained by the ES constraint, the second term of the right hand side in (22)

represents the purchase of a put option with strike price W . This is the portfolio insurance

strategy. This strategy comes expensive because the losses are not frequent; according to

the ES constraint the fund manager takes a short position of W/kα put options with strike

price kα, which is reflected in the last term in (22). The sum of wealth x, a long and a short

position in put options is the robust portfolio management with the ES constraint.

4 Implications

4.1 Optimal Strategies with VaR constraint

Optimal terminal wealth with the VaR constraint is a discontinuous function of terminal

wealth XT without the VaR constraint (Figure 1). A discontinuity occurs at kα; this dis-

continuity implies that at maturity the fund manager with the VaR constraint protects a

shortfall of her wealth compared to the minimum wealth level W only if the terminal wealth

XT without the VaR constraint lies between kα and W . The manager allows the shortfall for

the case where XT is below kα and this means that she lets her wealth be exposed to large

losses with probability α. In this sense, kα can be regarded as a tolerance for loss.9 When

9Note that kα is attained by P{g(XT ) < W} = α.
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we consider the ambiguity aversion of the fund manager, the fund manager with the VaR

constraint is willing to protect against more losses, or equivalently, has a higher tolerance

for loss kα (Figure 1 (B)). The amount of loss is less severe for the ambiguity-averse fund

manager than for one who is not ambiguity-averse.

[Insert Figure 1 here.]

Figure 1 seems to imply that the severe losses may happen in the bad-states when fund

management uses the VaR constraint. To quantify expected losses, we define a loss amount

as the ratio between the present value of expected losses and the product of the pre-specified

probability α and the initial wealth w. The fund manager can be exposed to large losses with

probability α. We use Wkα ≡ ϕ(t, kα) to denote the fund manager’s tolerance for loss with

probability α.

Theorem 4.1 We define a loss amount as

L(x;w, θ) = E
[ξT
ξ0

(
Wkα − g(XT )

)
1{g(XT )<kα}

]/
(α× w).

Then L(·) is computed as

L(x;w, θ) =
1

ξ0(α× w)

[
N
(
− d2(0, x, r,

κ

γ + θ
, kα)

)
kαe

−rT −N
(
− d1(0, x, r,

κ

γ + θ
, kα)

)
x
]

+ (Wkα − kα)E
[ξT
ξ0

1{XT≤kα}

]/
(α× w),

where initial wealth w = ϕ(0, x).

Proof. See Appendix 6.3. Q.E.D.

Basak and Shapiro (2001) have a negative point of view of using VaR-based risk man-

agement, because it leads to severe losses during economic downturns. However, this is not

necessarily true when one considers the ambiguity-averse fund manager. The loss amount

L(·) is dependent on ambiguity aversion and we can infer from Figure 1 that the largest losses

may not be severe when the fund manager exploits a robust portfolio management strategy.

Now we turn to investigate the effect of ambiguity aversion on the loss amount L(·). L(·) is

sensitive to changes of ambiguity aversion θ and initial wealth x without the VaR constraint

(Table 1). L(·) decreases significantly as ambiguity aversion θ increases. For instance, when
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x = 0.5, the loss amount is up to 126.1% in the absence of ambiguity aversion (θ = 0),

whereas it has substantially lower losses of 66.8% in the presence of high ambiguity aversion

(θ = 5). Hence, our robust portfolio management with the VaR constraint can address the

shortcoming that the VaR constraint can cause severe losses when happen, and we assert that

in that case the VaR constraint can be an effective tool in risk management. The loss amount

decreases as initial wealth x without the VaR constraint increases, because in that case large

losses are not frequent.

[Insert Table 1 here.]

Optimal wealth process W ∗
t has a one to one relation with the wealth process Xt without

the VaR constraint (Figure 2). When Xt is less than kα, W
∗
t reveals a linear relationship with

Xt; this linearity occurs because the fund manager with the VaR constraint does not protect

against large losses. W ∗
t exceeds Xt where it lies between kα and W . At the optimum, the

manager tries very hard to protect against small losses, so she increase her wealth to be higher

than W . The difference between W ∗
t and Xt increases as ambiguity aversion θ increases and

a moderate value of θ may even lead to a discontinuous shape of optimal wealth, which is

observed at maturity. In the higher values of Xt, W
∗
t is again linear with respect to Xt.

[Insert Figure 2 here.]

The optimal risky investment π∗
t is not a constant function of wealth Wt (Figure 3). To

maintain the manager’s wealth to be above W , she increases her risky investment when Wt

lies between Wkα and W . The manager attempts to have her wealth reach the level W by

investing aggressively in the stock. The manager with ambiguity aversion invests a signifi-

cantly lower fraction of her wealth in the stock than the manager without ambiguity aversion

does.10 Basak and Shapiro (2001) demonstrate that VaR-based portfolio management al-

lows the fund manager to have a larger risky investment than the fund manager without

VaR constraint does, so that the VaR-based management strategy incurs severe losses during

economic downturns. However, our robust portfolio management suggests that if the fund

manager formulates her investment strategy by considering the VaR constraint together with

10We support the results suggested by Maenhout (2004) in that the stock investment has a negative rela-

tionship with ambiguity aversion.
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her ambiguity aversion, then her risky investment is substantially lower compared to that

without the ambiguity aversion, and consequently mitigates the large losses.

[Insert Figure 3 here.]

4.2 Optimal Strategies with ES constraint

With the ES constraint optimal terminal wealth W ∗
T is a piecewise linear function of XT (Fig-

ure 4). The optimal terminal wealth is continuous, and consequently does not suffer from large

losses compared to the VaR constraint case. As the fund manager with the VaR constraint

does, the fund manager with the ES constraint tends to insure against small losses when XT

lies between kα and W . She allows the shortfall when XT is below kα with probability α,

which induces large losses for the case of the VaR constraint, but due to the continuity of

optimal terminal wealth the severe losses are not always followed. The ambiguity aversion

of fund manager allows her to have smaller risk tolerance, or equivalently, larger kα, when

compared with the one in the absence of the ambiguity aversion (Figure 4 (B)). This implies

that the ambiguity-averse fund manager with the ES constraint may be less exposed to losses

than the fund manager without ambiguity aversion.

[Insert Figure 4 here.]

ES-based risk management has been regarded as an alternative risk measure to address

the shortcomings of VaR-based risk management. Indeed, a fund manager who uses robust

portfolio management with the ES constraint experiences a substantial loss reduction com-

pared to that given by VaR-based portfolio management. Moreover, our robust portfolio

management with the ES constraint has a superiority in that the ambiguity aversion of fund

manager reduces losses significantly, compared to the ES-based risk management formulated

by Basak and Shapiro (2001).

As we defined in the previous section, we introduce the following loss amount and compute

it:

Theorem 4.2 We define a loss amount as

L(x;w, θ) = E
[ξT
ξ0

(
W − g(XT )

)
1{g(XT )<kα}

]/
(α× w).
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Then L(·) is computed as

L(x;w, θ) =
W

kαξ0(α× w)

[
N
(
− d2(0, x, r,

κ

γ + θ
, kα)

)
kαe

−rT −N
(
− d1(0, x, r,

κ

γ + θ
, kα)

)
x
]
.

Proof. See Appendix 6.4. Q.E.D.

In this case, L(·) is relatively insensitive to changes of ambiguity aversion θ and initial

wealth x without the ES constraint (Table 2). As we expected by the implications derived from

the optimal terminal wealth, the fund manager with the ES constraint achieves significant

loss reduction compared to the loss induced by the VaR-based portfolio management. In

particular, the loss amount is significantly less sensitive to changes of wealth x. This implies

that the fund manager who adopts the ES constraint is more reluctant to allow the shortfall

from the lower bound W than the fund manager with the VaR constraint is. Furthermore,

when we consider the ambiguity aversion of a fund manager, the loss amount decreases as

the ambiguity aversion increases. Apparently, the effect of ambiguity aversion on the loss

reduction is somewhat small, but our robust portfolio management is certainly effective for

reducing losses, especially it can substantially decrease the severe losses caused by the VaR

constraint. (Table 1).

[Insert Table 2 here.]

Optimal wealth process W ∗
t is a one to one correspondence with Xt (Figure 5). In contrast

to the VaR constraint case (Figure 2), the optimal wealth W ∗
t has no discontinuity when Xt

is between kα and W . This is the case when we consider the ambiguity aversion of a fund

manager; it implies that the ambiguity-averse fund manager is not willing to allow large losses,

which would not happen when the manager is constrained by the VaR constraint.

[Insert Figure 5 here.]

Optimal risky investment strategy with the ES constraint is not a constant function of

Xt (Figure 6). The fund manager formulates her investment strategy to reduce the stock

investment in the intermediate region of Wt. This is opposite to the strategy of the manager

with the VaR constraint, and consistent with the result suggested by Basak and Shapiro

(2001), in which the fund manager never increases her stock investment to satisfy the ES
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constraint. Furthermore, the investment strategy of the ambiguity-averse fund manager with

the ES constraint tends to become increasingly similar to the one without the constraint as

ambiguity aversion increases; this implies that at the optimum the highly-ambiguity averse

fund manager may not care about her risk limits. In this sense, the ambiguity aversion may

be a more significant factor in portfolio management than are risk limits such as the VaR and

the ES constraint.

[Insert Figure 6 here.]

5 Conclusion

We present robust portfolio management with risk limits. We formulate an optimal portfolio

strategy in the presence of both portfolio constraints and ambiguity aversion. We jointly

consider risk limits represented by Value-at-Risk (VaR) constraint or expected shortfall (ES)

constraint and ambiguity, and show quantitatively that these limits are significant. Contrary

to traditional investment rules, optimal portfolio management takes different forms in which

it is significantly affected by the presence of risk limits and ambiguity aversion.

With reasonably calibrated market parameters, we find that the loss amount due to our

robust portfolio management with the VaR constraint significantly decreases as ambiguity

aversion increases. Hence, in that case the VaR constraint can be an effective tool in risk

management. Our numerical experiments confirm the intuition of Basak and Shapiro (2001)

that the fund manager constrained by the ES constraint is more reluctant to allow the shortfall

from the lower bound W than the fund manager with the VaR constraint is, and show that

when we consider the ambiguity aversion of the fund manager, the loss amount with the ES

constraint decreases as the ambiguity aversion increases.

Interestingly, our robust portfolio management suggests that if the fund manager formu-

lates her investment strategy by considering the VaR constraint together with her ambiguity

aversion, then her risky investment is substantially lower compared to that of Basak and

Shapiro (2001). Relative to the ES constraint, the robust portfolio management amplifies

the effect of the constraint, and, thus, the investment strategy of the ambiguity-averse fund

manager tends to become increasingly similar to the one without the ES constraint as the

ambiguity aversion increases. In this sense, the ambiguity aversion may be a more significant
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factor in portfolio management than are risk limits such as the VaR and the ES constraint.

6 Appendix

6.1 The Proof of Theorem 3.1

Utilizing g(x) given in (13) gives

ϕ(t, x) = EQ
t,x[e

−r(T−t){XT + (W −XT )1{XT<W} − (kα −XT )1{XT<kα} − (W − kα)1{XT<kα}}]

= x+N
(
− d2(t, x, r,

κ

γ + θ
,W )

)
We−r(T−t) −N

(
− d1(t, x, r,

κ

γ + θ
,W )

)
x

− {N
(
− d2(t, x, r,

κ

γ + θ
, kα)

)
kαe

−r(T−t) −N
(
− d1(t, x, r,

κ

γ + θ
, kα)

)
x}

− (W − kα)e
−r(T−t)PQ

t,x{XT < kα}

= x+ Put
(
t, x, r,

κ

γ + θ
,W

)
− Put

(
t, x, r,

κ

γ + θ
, kα

)
− (W − kα)e

−r(T−t)PQ
t,x{XT < kα}.

We then calculate U(t, x) as

U(t, x) = Et,x[ũ(g(XT ))]

= Et,x

[ 1

1− γ

{
XT + (W −XT )1{XT<W} − (kα −XT )1{XT<kα} − (W − kα)1{XT<kα}

}1−γ

− λα1{x<kα}

]
=

er̃(T−t)

1− γ

[
x1−γ +N

(
− d2(t, x

1−γ , r̃,
(1− γ)κ

γ + θ
,W 1−γ)

)
W 1−γe−r̃(T−t)

−N
(
− d1

(
t, x1−γ , r̃,

(1− γ)κ

γ + θ
,W 1−γ)

)
x1−γ − {N

(
− d2(t, x

1−γ , r̃,
(1− γ)κ

γ + θ
, k1−γ

α )
)
k1−γ
α e−r̃(T−t)

−N
(
− d1

(
t, x1−γ , r̃,

(1− γ)κ

γ + θ
, k1−γ

α )
)
x1−γ}

]
− er̃(T−t)

1− γ
(W 1−γ − k1−γ

α + (1− γ)λα)e
−r̃(T−t)Pt,x{XT < kα},

=
er̃(T−t)

1− γ

[
x1−γ + Put

(
t, x1−γ , r̃,

(1− γ)κ

γ + θ
,W 1−γ

)
− Put

(
t, x1−γ , r̃,

(1− γ)κ

γ + θ
, k1−γ

α

)]
− er̃(T−t)

1− γ
(W 1−γ − k1−γ

α + (1− γ)λα)e
−r̃(T−t)Pt,x{XT < kα}.

Now we verify that the value function V (t, w) formulated by (9) is characterized by U(t, x).

We know from the terminal condition that

U(T, x) = ũ
(
g(x)

)
= ũ

(
ϕ(T, x)

)
= V (T,w).
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One can show that U(t, x) satisfies

Ut(t, x) = −
(
r +

κκθ
γ + θ

)
xUx(t, x)−

1

2

( κ

γ + θ

)2
x2Uxx(t, x),

U(T, x) = ũ
(
g(x)

)
.

If we denote V ∗ by V ∗(t, ϕ(t, x)) = U(t, x), then V ∗(t, ϕ(t, x)) is the value function by solving

HJB (5) when V is replaced by V ∗. Furthermore, if we assume that

−xUxx

Ux
= −xϕxx

ϕx
+ γ,

then optimal risky investment π∗
t is given by

π∗
t =

µ− r

σ2

ϕx

ϕ

1[
γ
x + θ

(1−γ)U(t,x)Ux

] .
6.2 The Proof of Theorem 3.2

A straightforward calculation gives the optimal wealth process ϕ(t, x) and the value function

U(t, x, ξ):

ϕ(t, x) = EQ
t,x

[
e−r(T−t)

{
XT + (W −XT )1{XT<W} −

W

kα
(kα −XT )1{XT<kα}}

]
= EQ

t,x

[
e−r(T−t)

{
− W

kα
(kα −XT )1{XT<kα} + (W −XT )1{XT<W} +XT

}]
= x+N

(
− d2(t, x, r,

κ

γ + θ
,W )

)
We−r(T−t) −N

(
− d1(t, x, r,

κ

γ + θ
,W )

)
x

− W

kα

[
N
(
− d2(t, x, r,

κ

γ + θ
, kα

)
kαe

−r(T−t) −N
(
− d1(t, x, r,

κ

γ + θ
, kα)

)
x
]

= x+ Put
(
t, x, r,

κ

γ + θ
,W

)
− W

kα
Put

(
t, x, r,

κ

γ + θ
, kα

)
.

U(t, x, ξ) = Et,x

[
ũ
(
g
(
(XT )

)
, ξT

)]
= Et,x

[ 1

1− γ

{
XT + (W −XT )1{XT<W} −

W

kα
(kα −XT )1{XT<kα}

}1−γ

− λαξT

(
W − W

kα
XT

)
1{XT≤W}

]
= Et,x

[ 1

1− γ

{
X1−γ

T + (W 1−γ −X1−γ
T )1{X1−γ

T <W 1−γ} −
(W
kα

)1−γ

(k1−γ
α −X1−γ

T )1{X1−γ
T <k1−γ

α }

}]
− λα

W

kα
Et,x

[
ξT (kα −XT )1{XT<kα}

]
=

er̃(T−t)

1− γ

[
x1−γ +N

(
− d2(t, x

1−γ , r̃,
(1− γ)κ

γ + θ
,W 1−γ)

)
W 1−γe−r̃(T−t)
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−N
(
− d1(t, x

1−γ , r̃,
(1− γ)κ

γ + θ
,W 1−γ)

)
x1−γ −

(W
kα

)1−γ{
N
(
− d2(t, x

1−γ , r̃,
(1− γ)κ

γ + θ
, k1−γ

α )
)
k1−γ
α

× e−r̃(T−t) −N
(
− d1(t, x

1−γ , r̃,
(1− γ)κ

γ + θ
, k1−γ

α )
)
x1−γ

}]
− λα

W

kα
ξ
[
N
(
− d2(t, x, r,

κ

γ + θ
, kα)

)
× kαe

−r(T−t) −N
(
− d1(t, x, r,

κ

γ + θ
, kα)

)
x
]

=
er̃(T−t)

1− γ

[
x1−γ + Put

(
t, x1−γ , r̃,

(1− γ)κ

γ + θ
,W 1−γ

)
−
(W
kα

)1−γ

Put
(
t, x1−γ , r̃,

(1− γ)κ

γ + θ
, k1−γ

α

)]
− λα

W

kα
ξPut

(
t, x, r,

κ

γ + θ
, kα

)
.

The remainder of the proof is similar to that of Theorem (3.1).

The remaining task is to verify that U(t, x, ξ) is indeed the value function V (t, w) given

by (11). From the terminal condition,

U(T, x, ξ) = ũ
(
g(x), ξ

)
= ũ

(
ϕ(T, x), ξ

)
= V (T,w),

one can calculate that U satisfies the following differential equation:

Ut(t, x, ξ) = −
(
r +

κκθ
γ + θ

)
xUx(t, x, ξ)−

1

2

( κ

γ + θ

)2
x2Uxx(t, x) + rξUξ(t, x, ξ)

− 1

2
κ2θUξξ(t, x, ξ) +

κκθ
γ + θ

Uξx(t, x, ξ).

If we define V ∗ by V ∗(t, ϕ(t, x, ), ξ) = U(t, x, ξ), then V ∗(t, ϕ(t, x, ), ξ) is the value function

by solving HJB (1) when V is replaced by V ∗. Moreover, if we assume that

− xUxx

Ux − Uξxξ
= −xϕxx

ϕx
+ γ,

then optimal risky investment π∗
t follows

π∗
t =

µ− r

σ2

ϕx

ϕ

1[
γ
x + θ

(1−γ)Ux

] .
6.3 The Proof of Theorem 4.1

One can show that

L(x;w, θ) = E
[ξT
ξ0

(
Wkα − g(XT )

)
1{g(XT )<kα}

]/
(α× w)

= E
[ξT
ξ0

(
Wkα − g(XT )

)
1{XT<kα}

]/
(α× w)

= E
[ξT
ξ0

(Wkα −XT )1{XT<kα}

]/
(α× w)
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= E
[ξT
ξ0

(kα −XT )1{XT≤kα}

]/
(α× w) + E

[ξT
ξ0

(Wkα − kα)1{XT≤kα}

]/
(α× w)

=
1

ξ0(α× w)

[
N
(
− d2(0, x, r,

κ

γ + θ
, kα)

)
kαe

−rT −N
(
− d1(0, x, r,

κ

γ + θ
, kα)

)
x
]

+ (Wkα − kα)E
[ξT
ξ0

1{XT≤kα}

]/
(α× w).

6.4 The Proof of Theorem 4.2

A straightforward calculation yields

L(x;w, θ) = E
[ξT
ξ0

(
W − g(XT )

)
1{g(XT )<kα}

]/
(α× w)

= E
[ξT
ξ0

(
W − g(XT )

)
1{XT<kα}

]/
(α× w)

= E
[ξT
ξ0

(
W − W

kα
XT

)
1{XT<kα}

]/
(α× w)

=
W

kαξ0(α× w)
E
[
ξT (kα −XT )1{XT<kα}

]
=

W

kαξ0(α× w)

[
N
(
− d2(0, x, r,

κ

γ + θ
, kα)

)
kαe

−rT −N
(
− d1(0, x, r,

κ

γ + θ
, kα)

)
x
]
.
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θ \ x 0.5 0.7 0.9 1.1 1.3

0 126.1 96.5 64.7 35.6 17.9

1 109.6 79.1 47.5 18.8 5.6

2 89.6 61.7 33.3 9.1 2.5

3 78.3 52.1 25.5 4.8 1.9

4 71.4 46.2 20.7 2.9 1.8

5 66.8 42.2 17.5 2.0 1.6

Table 1: The sensitivity of the (%) loss amount L(x;w, θ) to changes of ambiguity

aversion θ and initial wealth x without the VaR constraint. Parameter values are set

as follows: γ = 2, α = 0.01, W = 1, r = 0.05, κ = 0.4, σ = 0.2, T = 1, and ξ0 = 1.

θ \ x 0.5 0.7 0.9 1.1 1.3

0 19.3 19.2 18.3 16.3 14.1

1 9.2 9.2 9.0 7.9 6.7

2 5.8 5.8 5.7 5.0 4.3

3 4.2 4.2 4.1 3.6 3.1

4 3.3 3.3 3.2 2.8 2.4

5 2.7 2.7 2.6 2.3 1.9

Table 2: The sensitivity of the (%) loss amount L(x;w, θ) to changes of ambiguity

aversion θ and initial wealth x without the ES constraint. Parameter values are set

as follows: γ = 2, α = 0.01, W = 1, r = 0.05, κ = 0.4, σ = 0.2, T = 1, and ξ0 = 1.
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(A) θ = 0

(B) θ = 2

Figure 1: Optimal terminal wealth W ∗
T as a function of XT . Parameter values are set

as follows: γ = 2, α = 0.01, x = 0.9, W = 1, r = 0.05, κ = 0.4, σ = 0.2, and T = 1.
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Figure 2: Optimal wealth process W ∗
t as a function of Xt. Parameter values are set as

follows: γ = 2, α = 0.01, x = 0.9, W = 1, r = 0.05, κ = 0.4, σ = 0.2, T = 1, and t = 0.5.

Figure 3: Optimal risky investment π∗
t as a function of Wt. Parameter values are set

as follows: γ = 2, α = 0.01, x = 1.1, W = 1, r = 0.05, κ = 0.4, σ = 0.2, T = 1, and t = 0.5.
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(A) θ = 0

(B) θ = 2

Figure 4: Optimal terminal wealth W ∗
T as a function of XT . Parameter values are set

as follows: γ = 2, α = 0.01, x = 0.9, W = 1, r = 0.05, κ = 0.4, σ = 0.2, and T = 1.
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Figure 5: Optimal wealth process W ∗
t as a function of Xt. Parameter values are set as

follows: γ = 2, α = 0.01, x = 0.9, W = 1, r = 0.05, κ = 0.4, σ = 0.2, T = 1, and t = 0.5.

Figure 6: Optimal risky investment π∗
t as a function of Wt. Parameter values are set

as follows: γ = 2, α = 0.01, x = 1.1, W = 1, r = 0.05, κ = 0.4, σ = 0.2, T = 1, and t = 0.5.
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