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Abstract 

We use bivariate GARCH-DCC and FIGARCH-DCC models to investigate intraday 
long memory volatility spillovers between the Japanese (TOPIX) and Korean (KOSPI 
200) markets, based on analysis of two sets of 30-min. and a one-hour interval data. Our 
empirical results identify strong dynamic volatility correlation and long memory 
volatility transmission between TOPIX and KOSPI 200 intraday returns. Additionally, 
we find the bivariate FIGARCH-DCC model provides superior forecasting performance 
to alternative univariate and bivariate GARCH model specifications. We conclude that 
the bivariate FIGARCH-DCC model provides a useful structure for modeling and 
forecasting long memory spillover effects in the volatility of intraday returns.  
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1. Introduction  
The volatility of financial asset prices often exhibits persistence or long memory, 

whereby autocorrelations of absolute and squared time series returns are characterized 

by very slow decay. This long memory characteristic is crucial in asset risk management, 

investment portfolios, and the pricing of derivative securities, as its presence is closely 

connected to the predictability of volatility (Poon and Granger, 2003).  

Based on the fractionally integrated process of Granger (1980) and Hosking (1981), 

Baillie, Bollerslev and Mikkelsen (1996) extend the standard GARCH model to allow 

for these long memory properties in conditional variances. The fractionally integrated 

GARCH (FIGARCH) model approach allows for fractional orders of integration, I(d), d 

being between zero and one, and estimates a process intermediate to that of the GARCH 

and IGARCH processes. The FIGARCH model also provides superior value-at-risk and 

out-of-sample forecasts to the stationary GARCH model (Caporin, 2008; Tang and 

Shieh, 2006; Kang, Kang and Yoon, 2009; Kambououdis, 2009; Kasman, Kasman and 

Torun, 2009). 

Understanding cross-market price and volatility spillover effects is another issue of 

interest, particularly in studies of financial market integration. Financial spillover effects 

are important concepts for international portfolio and risk managers when building 

optimal risky portfolios (Kenourgios, Samitas and Paltalidis, 2011; Syllignakis and 

Kouretas, 2011; Roboreod, 2014). The dynamics of price spillover effects provide price 

predictions and an opportunity for exploitable trading strategies, which provide 

evidence against market efficiency (Pati and Rajib, 2011; Dimpfi and Jung, 2012). 

Additionally, information about volatility spillover effects may be useful in applications 

that rely on estimates of conditional volatility, such as option pricing, portfolio 

optimization, management of value-at-risk, and risk hedging (Arouri, Jouini and 

Nguyen, 2011, 2012; Aragó and Salvador, 2011).  

Recent econometric studies have developed advanced techniques to capture spillover 

effects, in the form of multivariate generalized autoregressive conditional 

heteroskedasticity (multivariate GARCH) models (Bauwens, Laurent and Rombouts, 

2006; Wang and Wu, 2012; Chang, McAleer and Tansuchat, 2012; Gjika and Horáth, 

2013; Zhang, Li and Yu, 2013; Lean and Teng, 2013, others).  However, as they have 
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utilized low-frequency data, precluding the capture of uncovered intraday information 

transmission between financial markets, these previous studies have been limited in 

their ability to detect spillover effects. With developments in information technology 

(IT), researchers can more easily access and analyze high-frequency data, which 

provides more reliable information for examining the spillover effect over short time 

periods.  

In this paper, we focus on the issue of price and volatility spillovers between the 

Tokyo Stock Price Index (TOPIX) and Korea’s Composite Stock Price Index 200 

(KOSPI 200). To do so, we apply the bivariate GARCH and FIGARCH models, using a 

dynamic conditional constant (DCC) approach, to two intraday data sets. These data sets 

are based on 30-minute and one-hour intervals. This provides important insights into 

intraday long memory volatility spillover effects between the two markets.  

This paper differs from the extant literature in the following ways. First is through 

exploration of the intraday volatility spillover between the TOPIX and KOSPI 200 

markets. Second is in use of high frequency data to consider linkages through long 

memory volatility spillover effects between these equity markets. Finally, this study 

analyzes the forecasting results of univariate and multivariate GARCH-type models 

over multiple forecasting horizons―one, five, and 20 trading days―in order to assess if 

any model displays superior performance.  

The rest of this paper is organized as follows. Section 2 briefly discusses the literature 

on financial market spillover effects. Section 3 provides descriptive statistics for the 30-

min intraday data. Section 4 discusses the econometric methodologies used in this study. 

Section 5 provides results. Conclusions are discussed in Section 6. 

 

2. Literature Review 
 

An extensive empirical literature evaluates inter-market information transmission or 

volatility spillovers (Hamao, Masulis and Ng, 1990; Koutmos and Booth, 1995; Kanas, 

1998; In et al., 2001). Such volatility spillovers are usually attributed to cross-market 

hedging and changes in shared information, which may simultaneously alter 

expectations across markets (Arouri, Jouini and Nguyen, 2011, 2012; Aragó and 
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Salvador, 2011). In addition, the existence of volatility spillovers provides evidence of 

market contagion; that is, a shock increases volatility not only in its own asset or market, 

but also in other assets or markets (Chiang, Jeon and Li, 2007; Poshakwale and Aquino, 

2008; Dean, Faff and Loudon, 2010; Zhao, 2010; Ding and Pu, 2012).  

Recently, empirical studies have analyzed the impact of the 2008 global financial 

crisis (GFC) on information transmission amongst equity markets. Syllignakis and 

Kouretas (2011) capture contagion effects between US and German stock returns and 

CEE stock returns during the GFC using the DCC approach. Hwang et al. (2013) 

examine patterns of crisis spillover between stock returns of ten emerging economies 

and those of the US using an EGARCH-DCC model. This allows them to identify 

distinct patterns in dynamic correlations associated with crisis spillover for sub-groups 

from a ten country sample. These include: contagion, herding, and post-crisis 

adjustment; contagion and herding; and simple contagion. Dimitriou, Kenourgios and 

Simos (2013), using a FIAPARCH-DCC model, provide evidence of decoupling of 

some BRICS’ markets during the GFC, followed by increased post-GFC coupling 

between the US and BRICS’ markets.  

Few studies have focused on spillover effects in intraday returns. Wu, Li and Zhang 

(2004) find bi-directional volatility spillovers between intraday US and UK futures 

markets. Chiang, Yu and Wu (2009), using both ten-min. and 30-min. interval returns, 

find a positive dynamic conditional correlation between the DJIA spot and Nasdaq 

futures markets. Pati and Rajib (2011) suggested that five-min. intraday futures prices 

lead spot prices and so futures markets make the major contribution to price discovery 

in the Indian market. Kang, Cheong and Yoon (2013) and Kim and Ryu (2014) identify 

intraday bi-directional volatility spillover effects between the Korean spot and futures 

markets using the asymmetric GARCH-BEKK model.   

 

3. Data and descriptive statistics 
 

This study considers two sets of high frequency intraday price data, based on 30-

min. and one-hour time intervals, for both the TOPIX and KOSPI 200 markets. The data 

sets cover the period from January 4 2011 to December 28 2012, and were obtained 
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from the SIRCA database. The high-frequency price series were converted into 

logarithmic return series for each of the sample indices; that is, ( ) 100/ln 1,,, ×= −tititi PPr , 

where tir ,  denotes the continuously compounded percentage returns for index i  at time 

t  and ,i tP  denotes the price level of index i  at time t .  

The TOPIX and KOSPI 200 equity markets have a homogenous trading period with 

a 9:00 am opening and a 3:00 pm closing. However, the TOPIX trading day consists of 

two sessions, a morning session (9:00 am to 11:30 am) and an afternoon session (12:30 

pm to 3:00 pm), whereas the KOSPI 200 market trades over the full 9:00 am to 3:00 pm 

period. We therefore remove lunch-break observations (11:30 a.m. to 12:30 p.m.) to 

match trading time intervals between the two markets. 

Figure 1 shows average standard deviations of returns (volatility) across the 30-min. 

intervals.  Average volatility for the TOPIX is higher at the opening of both the morning 

and afternoon sessions, declining significantly during the remainder of each session. For 

the TOPIX, volatility starts at about 0.9% at the beginning of the morning session and is 

just under half of this level for the opening of the afternoon session. This results in two 

distinct inverted J-shape patterns over the trading day.  

In the KOSPI 200 market, volatility starts at about 1.03 % in the initial 30-min 

interval and then drops to its lowest level by mid-day, rising slightly towards the close. 

Daily trading activities show an inverted J-shaped pattern across the 30-min intervals 

for every trading day as a result of the market opening effects. A similar pattern in 

intraday series can be also founded in Andersen, Bollerslev and Cai (2000), Wu, Li and 

Zhang (2005), Haniff and Pok (2010), and Kang, Cheong and Yoon (2013).  
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Figure 1. Average standard deviations for 30-min intraday data 

 

 

Note: Trading activities clearly exhibit a double inverted J-shaped pattern for the TOPIX market and a 
single inverted J-shaped pattern for the KOSPI 200 market. 

 

Table 1 shows descriptive statistics and results for unit root tests for the two sets of 

TOPIX and KOSPI 200 intraday return series. As shown in Panel A of Table 1, both 

sets of intraday return series (30-min. and 1-hour) display similar descriptive statistics. 

This includes all return series displaying a leptokurtic distribution with a higher peak 

and a fatter tail than the case of a normal distribution, as evidenced in the skewness, 
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excess kurtosis, and Jarque-Bera (J-B) test results. Additionally, calculated values of the 

Ljung-Box statistic, ( )52Q , for the squared return series are extremely high, indicating 

rejection of the null hypothesis of no serial correlation. Thus, the return series display 

ARCH-type dependencies, confirming the appropriateness of a GARCH-type model 

formulation in analyzing intraday volatility.  

 

Table 1. Descriptive statistics and results of unit root tests 
 TOPIX  KOSPI 200  
 30-min 1-hour 30-min 1-hour 
Panel A: Descriptive statistics 
Mean -0.0103 -0.0019 -0.0069 -0.0012 
Std. Dev. 3.5309 0.4801 4.0055 0.5330 
Maximum 3.7669 4.7195 3.6324 3.5996 
Minimum -6.1185 -6.8100 -5.5663 -5.7299 
Skewness -1.7599 -1.3550 -1.6812 -1.2817 
Kurtosis 56.265 40.732 41.808 24.662 
 J-B 615860*** 168750.7*** 344920*** 56110.5*** 

( )52Q  263.53*** 923.13*** 222.37*** 125.97*** 
Panel B: Results of unit root tests 
ADF -65.906*** -49.676*** -68.640*** -49.810*** 
PP -65.784*** -49.758*** -68.674*** -49.828*** 
KPSS 0.2285 0.2103 0.0605 0.0616 

Notes: The J-B (Jarque-Bera) test was used for the null hypothesis of normality in the sample return 
distribution. The Ljung-Box statistic, )5(2Q , was used to check for the presence of serial correlation in 
squared returns up to the 10th order. MacKinnon’s 1% critical value is –3.435 for the ADF and PP tests. 
*** indicates the rejection of the null hypothesis at the 1% level of significance. 
 

Panel B of Table 1 provides the results of two types of unit root test for stationarity 

of the individual return series: standard parametric augmented Dickey-Fuller (ADF) 

tests; and non-parametric Phillips-Peron (PP) tests. Large negative values for the ADF 

and PP test for each series support rejection of the null hypothesis of a unit root at the 

one per cent level of significance. Thus, each of the intraday return series may be 

regarded as stationary. 

To examine the presence of long memory property in both 30-min. and one-hour 

intraday returns, we use three long-memory tests. The first is Lo’s (1991) modified R/S 
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analysis. The second and third are two semi-parametric estimators of the long-memory 

parameter, the log-periodogram regression (GPH) of Geweke and Porter-Hudak (1983) 

and the Gaussian semi-parametric (GSP) of Robinson and Henry (1999). 1 

Table 2 summarizes the results of the long memory tests for all absolute and squared 

(as a proxy for volatility) intraday return series for the TOPIX and KOSPI 200 time 

series, respectively. The results of Lo’s R/S test, presented in Panel A of Table 2, 

displays strong evidence of persistence for both 30-min. and one-hour intraday returns. 

Similarly, Panels B and C of Table 2 report the estimation results for the semi-

parametric GSP and GPH tests. Note that the results of the GPH and GSP tests for long 

memory are sensitive to the size of the bandwidth. In order to ensure the robustness of 

the GSP and GPH tests, the GPH test was implemented with different bandwidths:
5.0Tm =  and 6.0Tm = , and the GSP test statistic was also estimated with diverse 

bandwidths: 4/Tm = , 16/Tm = , 64/Tm = .  

The estimated long memory results for the GSP and GPH tests support rejection of 

the null hypothesis of short memory in volatility for each set of intraday returns. On the 

whole, the volatilities of both 30-min. and one-hour intraday returns seem to be well-

matched to being modelled as fractionally integrated processes. This supports exploring 

use of the FIGARCH model to identify the long-memory property in the intraday 

volatility process for both equity markets.    

 

 

 

 

1 In the case of Lo’s modified R/S test, the Hurst exponent ( )H is calculated using the R/S statistic. If 
0.5H = , then this exponent indicates a random walk process indicating short memory. If 0 0.5H≤ < , it 

suggests that the series is anti-persistent process (i.e., a long-range negative dependence). Finally, if 
0.5 1H< ≤ , the series is a persistent process. To test for the statistical significance of the H estimates, we 
use the t -statistic, where the null hypothesis is 0 : 0.5H H = and the alternative hypothesis is 1 : 0.5H H ≠ . 
In the case of the GSP and GPH methods, test is of the null hypothesis 0 : 0H d =  versus 1 : 0H d ≠ using 
the t -test statistic. If 0d = , the series is a random walk or has a short-memory process. If 0.5 0d− < < , it 
is an anti-persistent process. If 0 0.5d< < , the series displays long memory. Finally, if 0.5 1d< < , the 
series is non-stationary. 
 

 8 

                                            



Table 2. Results of the long memory tests for intraday absolute and squared returns 
 TOPIX  KOSPI 200  
 30-min 1-hour 30-min 1-hour 
Panel A: Lo’s modified R/S test 
Absolute return     
( 1)q =  2.2572*** 2.1213*** 6.1847*** 5.1074*** 
( 5)q =  2.2996*** 2.2834*** 5.4616*** 5.4058*** 
Squared return     
( 1)q =  2.4848*** 2.4555*** 4.0486*** 3.8816*** 
( 5)q =  2.0605*** 1.7968* 3.9128*** 3.9595*** 
Panel B: GSP Robinson (1995) test 
Absolute return     

4/Tm =  0.2324 
(0.0139)*** 

0.1729 
(0.0187)*** 

0.2387 
(0.0138)*** 

0.1611 
(0.0187)*** 

16/Tm =  0.5191 
(0.0277)*** 

0.4631 
(0.0375)*** 

0.4433 
(0.0277)*** 

0.4516 
(0.0375)*** 

Squared return     
4/Tm =  0.2168 

(0.0139)*** 
0.1961 
(0.0187)*** 

0.1206 
(0.0138)*** 

0.0832 
(0.0187)*** 

16/Tm =  0.5651 
(0.0277)*** 

0.3227 
(0.0375)*** 

0.2730 
(0.0277)*** 

0.3004 
(0.0375)*** 

Panel C: GPH (1983) test 
Absolute return     

5.0Tm =  0.1874 
(0.0131)*** 

0.1836 
(0.0180)*** 

0.0636 
(0.0131)*** 

0.1848 
(0.0180)*** 

6.0Tm =  0.4819 
(0.0519)*** 

0.4125 
(0.0634)*** 

0.4751 
(0.0519)*** 

0.4685 
(0.0634)*** 

Squared return     
5.0Tm =  0.1380 

(0.0131)*** 
0.1884 
(0.0180)*** 

0.1628 
(0.0131)*** 

0.0995 
(0.0180)*** 

6.0Tm =  0.3476 
(0.0519)*** 

0.2273 
(0.0634)*** 

0.2937 
(0.0519)*** 

0.4190 
(0.0634)*** 

Note: The critical values of the Hurst-Mandelbrot R/S test and Lo’s modified R/S analysis are 2.098 at 
the 1% significance level. The numbers in parentheses are the standard deviation of the estimates. “ q ” in 
Lo’s modified R/S test is the number of lag of autocorrelation. ( )m  denotes the bandwidth for the GSP 
and the GPH tests. ** and *** indicate the significance at the 5% and1% levels, respectively. 
 

 

4. Methodology 
 

4.1. Fractional integrated GARCH (FIGARCH) model  
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We assume that the return-generating process can be described by an AR(1) model in 

which the dynamics of current stock returns are explained by their lagged returns. The 

AR (1) model is defined as follows 

tititi rr ,1,1, εψµ ++= −  , Ν∈t                                                                                 

with 

ttt hz=ε ,  )1,0(~ Nzt                                                                                (1)  

where [ )∞∈ ,0µ , 11 <ψ , and the innovations{ }tz  are an independently and identically 

distributed (i.i.d) process. The conditional variance th  is positive with probability one 

and is a measurable function of the variance-covariance matrix, ∑ −1t .  

The standard GARCH ( )qp,  model of Bollerslev (1986) is as follows:  

( ) ( ) 2
,

2
,

2
, tititi hLLh βεαω ++= ,                                                                                  (2)  

where 0>ω , 0≥α , 0≥β , L  denotes the lag or backshift operator, 

( ) q
q LLLL αααα +⋅⋅⋅++≡ 2

21 , and ( ) p
p LLLL ββββ +⋅⋅⋅++≡ 2

21 . In Equation (2), 

the persistence of conditional variances is measured by the sum ( )βα + . A common 

empirical finding is that the sum ( )βα +  is quite close to one, thereby implying that 

shocks are infinitely persistent, which corresponds to the integrated GARCH 

(IGARCH) process of Engle and Bollerslev (1986).  

Baillie, Bollerslev and Mikkelsen (1996) developed the fractional IGARCH 

(FIGARCH) model, which nests the GARCH and IGARCH models. The FIGARCH 

model allows for fractional orders of integration between zero and one, and thus 

captures the presence of long memory behavior in the conditional variance. The 

FIGARCH ( )qdp ,,  model can be presented as follows 

( )( ) ( )[ ]( )2
,

2
,

2
, 11 tititi

d hLLL −−+=− εβωεφ                                                                (3) 

where the long memory parameter d satisfies the condition 10 ≤≤ d , ( )Lφ  and ( )Lβ  

are finite order lag polynomials with roots assumed to lie outside the unit circle, and the 
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fractional differencing operator ( )dL−1 is defined as 

( ) ( ) ( )( ) +−−−−+−=− 3
1

2 31
!3

11
!2

111 LdddLLddLL d

                                         (4) 

The conditional variance process or the ARCH ( )∞ representation of the FIGARCH 

model is given by 

( ) ( )[ ] ( )( ) ( )[ ] ( ) 2
,

12
,

2
,

2
,

2
, 111 titi

d
tititi LLLLLhLh εϕβωεφεββω +−=−−−++= −           (5) 

where ( ) ∑∞

=
=

1i
i

iLL ϕϕ and ( ) 11 =ϕ for every d . The FIGARCH model provides greater 

flexibility for modeling the conditional variance, because it accommodates the 

covariance stationary GARCH model (when 0=d ) and the IGARCH model (when 

1=d ) as special cases. In the FIGARCH model the persistence of shocks to the 

conditional variance, or degree of long memory, is measured by the fractional 

differencing parameter d . Thus, the attraction of the FIGARCH model is that, for 

10 << d , it is sufficiently flexible to allow for an intermediate range of persistence 

(Baillie, Bollerslev and Mikkelsen, 1996).  

 

4.2. Bivariate FIGARCH-DCC model  

In order to evaluate the volatility spillovers, we apply a bivariate FIGARCH model 

to the two sets of intraday market returns. The structure of conditional correlations is 

modelled by using the DCC approach of Engle (2002), allowing investigation of the 

time-varying correlations between the two markets while ensuring positive definiteness 

in the variance-covariance matrix ( )tH  under the simple conditions imposed on specific 

parameters. Parameterization of the FIGARCH-DCC model allows direct inference of 

the time-varying correlations between intraday TOPIX and KOSPI 200 market returns, 

and dealing with a relatively large number of variables in the system without having a 

numerical convergence problem at the estimation stage. In the multivariate case which 

we use, the variance-covariance matrix of residuals is defined as follows: 
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tttt DRDH =                                                                                                                (6) 

where tD is an ( )22× diagonal matrix of time-varying conditional standard deviation of 

the residuals, obtained from taking the square root of the conditional variance modelled 

by univariate AR(1)-GARCH(1,1) and AR(1)-FIGARCH models, respectively. tR  is a 

matrix of time-varying conditional correlations, given by: 

( )( ) ( )( ) 2/12/1 −−= tttt QdiagQQdiagR                                                                           (7) 

That is 

 














































=

22

11

2221

1211

11

11

10

01

10

01

q

q
qq
qq

q

qRt  

The covariance matrix [ ]tijt qQ ,=  of the standardized residual vector 

( )',, ,2,1 ttt εεε = is denoted as:  

( ) ( ) 1
'

11

_
1 −−− ++−−= tdccttdccdccdcct QQQ βεεαβα                                                          (8) 

with dccα , 0>dccβ and 1<+ dccdcc βα . }{
_

,

_

tijt qQ = denotes the unconditional covariance 

matrix of tε . The coefficients, dccα and dccβ , are the estimated parameters depicting the 

conditional correlation process. diag tt qQ ,11}{ = is a diagonal matrix containing the 

square root of the i th diagonal elements of tQ . The dynamic correlation can be 

expressed as:  

( )

( ) ( )[ ]1,22
2

1,2221,11
2

1,111

_

1,121,21,112

_

,12

11

1

−−−−

−−−

++−−



 ++−−

++−−
=

tdcctdccdccdcctdcctdccdccdcc

tdccttdccdccdcc
t

qqqq

qq

βεαβαβεαβα

βεεαβα
ρ      (9) 

Significance of dccα and dccβ implies that the estimators obtained from the DCC-

GARCH and DCC-FIGACH model are dynamic and time-varying. dccα indicates the 

short-run volatility impact, implying the persistency of the standardized residuals from 

the previous period. dccβ  measures the lingering effect of the impact of a shock on 
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conditional correlations, which indicates persistence in the conditional correlation 

process. tij ,ρ  indicates the direction and strength of correlation. If the estimated tij ,ρ is 

positive, the correlation between return series is positive and vice-a-versa (see Engle 

2002 for further details).  

We estimate the DCC model using the quasi-maximum likelihood (QML) estimation 

method proposed by Bollerslev and Wooldridge (1992), in which the log-likelihood can 

be expressed as: 

( )[ ]∑
=

−+++−=
T

t
tttt RRDkL

1

1'loglog22log
2
1 εεπ                                                  (10) 

The DCC model’s design allows for two-stage estimation of the conditional 

covariance matrix tH . In the first stage, we fit a univariate GARCH-type model to each 

set of intraday returns, then the estimates of tiih , are obtained. In the second stage, we 

transform the return series using their estimated standard deviation, the result from the 

first stage, with this information being used to estimate the parameters of the 

conditional correlation.  

 

5. Empirical results 
 

5.1. Estimates of univariate GARCH type models 

Tables 3 and 4 report the estimation results of the univariate GARCH and 

FIGARCH specifications with Student-t distributions used to capture long memory in 

the volatility of intraday returns. All specifications are estimated using the OxMetrics 

package (results for GARCH-type models with normal distribution are available by 

request from the corresponding author). This section also compares the performance of 

the GARCH and FIGARCH models with regard to the capture of long memory in both 

30-min. and one-hour intraday volatility.  

Table 3 indicates that all estimated parameters of the standard GARCH model are 

significant for both 30-min. and one-hour intraday returns. The sum of ARCH and 

 13 



GARCH terms are quite close to unity, implying that the volatility is highly persistent in 

both sets of intraday returns. Diagnostic tests ( ( )52Q  and ARCH (5)) show that the 

GARCH models with Student-t distribution are well specified, as standardized residuals 

are not subject to both serial correlation and ARCH effects.   

 
 

Table 3. Estimation results and diagnostic tests for univariate GARCH (1,1) models 
 

 TOPIX KOSPI 200 
 30-min 1-hour 30-min 1-hour 
Panel A: estimation results 
Const ( )m  -0.0335 

(0.0199)* 
-0.0058 
(0.0041) 

0.0562 
(0.0277)** 

0.0053 
(0.0052) 

AR(1) 0.0475 
(0.0103)*** 

0.0413 
(0.0280)*** 

0.0674 
(0.0114)*** 

0.0905 
(0.0144)*** 

Const ( )ν  0.2335 
(0.1237)* 

0.0084 
(0.0009)*** 

0.2022 
(0.1668) 

0.0475 
(0.0503) 

ARCH 0.1106 
(0.0581)* 

0.0194 
(0.0023)*** 

0.0295 
(0.0209) 

0.2899 
(0.2847) 

GARCH 0.9851 
(0.0033)*** 

0.9392 
(0.00058)*** 

0.9867 
(0.0027)*** 

0.9745 
(0.0042)*** 

Student-df 2.0111 
(0.0052)*** 

2.0028 
(0.0003)*** 

2.1134 
(0.0720)*** 

2.0202 
(0.0193)*** 

Log-likelihood -11057.3 -721.521 -12143.3 -1115.59 
Panel B: diagnostic tests 
AIC 4.265779 0.515038 4.684504 0.793629 
Hannan-Quinn 4.268431 0.520347 4.687156 0.798938 

( )52Q  1.2566 
[0.7394] 

2.9346 
[0.4018] 

4.5508 
[0.2077] 

9.009 
[0.0291] 

ARCH (5) 0.2505 
[0.9397] 

0.5775 
[0.7173] 

0.9464 
[0.4495] 

1.4747 
[0.8310] 

Notes:  Const ( )m  and Const ( )ν  are the constants of the mean and variance processes, respectively. 
( )52Q  is the empirical statistics of Ljung-Box test applied to squared standardized residuals.  

P-values are in brackets. Student-t values are reported in parentheses. *, ** and *** indicate significance 
at the 10%, 5% and1% levels, respectively. 

 
 

The estimation results for the FIGARCH model, reported in Table 4, suggest that the 

FIGARCH model captures the long memory property in the volatility processes of both 

30-min and 1-hour intraday returns. In fact, the long memory parameters (d) are 

significant at l% level, suggesting that both intraday volatility processes are persistent 

over time. With respect to diagnostic tests, the lower values of both information criteria 
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(AIC and Hannan-Quinn) show the superiority of FIGARCH model relative to the 

GARCH model. Similar to the GARCH cases, the FIGARCH model is well specified to 

capture the long memory property in the conditional variances of intraday returns due to 

insignificance of diagnostic tests ( )52Q  and ARCH (5).  

 

Table 4. Estimation results and diagnostic tests for univariate FIGARCH (1,1) models 
 

 TOPIX  KOSPI 200  
 30-min 1-hour 30-min 1-hour 
Panel A: estimation results 
Const ( )m  -0.0348 

(0.0201)* 
-0.0068 

(0.0041)* 
0.0580 

(0.0280)*** 
0.0038 

(0.0051) 
AR(1) 0.0621 

(0.0103)*** 
0.0325 

(0.0107)*** 
0.1003 

(0.0127)*** 
0.0928 

(0.0144)*** 
Const ( )ν  0.1900 

(0.0473)*** 
0.0685 

(0.0208)*** 
0.4742 

(0.1119)*** 
0.0086 

(0.0058) 
ARCH 0.5419 

(0.0403)*** 
0.1940 

(0.0452)*** 
0.7070 

(0.0230)*** 
0.1739 

(0.0888)** 
GARCH 0.9072 

(0.0175)*** 
0.8361 

(0.0416)*** 
0.9045 

(0.0137)*** 
0.9493 

(0.0294)*** 
d-Figarch 0.5752 

(0.0623)*** 
0.6474 

(0.0842)*** 
0.4125 

(0.0468)*** 
0.8487 

(0.0879)*** 
Student-df 2.0912 

(0.0162)*** 
2.1104 

(0.0249)*** 
2.3743 

(0.0376)*** 
2.2646 

(0.0351)*** 
Log-likelihood -11057.3 -720.159 -12126 -1114.52 
Panel B: diagnostic tests 
AIC 4.264676 0.513368 4.678224 0.791886 
Hannan-Quinn 4.267770 0.517919 4.681318 0.796435 

( )52Q  1.4793 
[0.6870] 

2.3836 
[0.4966] 

6.4082 
[0.0933] 

6.8620 
[0.0764] 

ARCH (5) 0.2981 
[0.9141] 

0.4805 
[0.7911] 

1.3659 
[0.2338] 

1.4403 
[0.2065] 

Notes:  Const ( )m  and Const ( )ν  are the constants of the mean and variance processes, respectively. 
)5(2Q  is the empirical statistics of Ljung-Box test applied to squared standardized residuals. P-values are 

brackets. Student-t values are reported in parentheses. *, ** and *** indicate the significance at the 10%, 
5% and1% levels, respectively. 

 

Overall, the FIGARCH model most accurately represents the long-memory property 

in the conditional variance of both sets of intraday returns. The presence of long 

memory in intraday volatility implies dependencies between distant observations over 

short time intervals. These dependencies may be used in predicting future values of 

volatility, providing evidence against weak-form market efficiency. 
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5.2 Estimate of bivariate GARCH-type models 

This subsection considers volatility spillover effects between two market intraday 

returns (30-min and 1-hour), using bivariate GARCH-type models. Tables 5 and 6 

report estimates from bivariate GARCH(1,1)-DCC and bivariate FIGARCH ( )1,,1 d -

DCC models based on Student-t distributions.  

 

Table 5. Estimation results and diagnostic tests for bivariate GARCH (1,1) models 
 

 30-min 1-hour 
 TOPIX KOSPI 200 TOPIX KOSPI 200 
Panel A: estimation results 
Const ( )m  -0.0248 

(0.0207) 
0.0416 

(0.0265) 
-0.0036 
(0.0042) 

0.0025 
(0.0052) 

AR(1) 0.0638 
(0.0100)*** 

0.0714 
(0.0109)*** 

0.0464 
(0.0107)*** 

0.0847 
(0.0127)*** 

Const ( )ν  0.3013 
(0.1105)*** 

0.2042 
(0.1132)* 

0.0497 
(0.1732) 

0.0388 
(0.1469)*** 

ARCH 0.0190 
(0.0072)*** 

0.0342 
(0.0156)** 

0.1631 
(0.5586) 

0.2711 
(0.9710) 

GARCH 0.9841 
(0.0028)*** 

0.9869 
(0.0024)*** 

0.9678 
(0.0062)*** 

0.9703 
(0.0092)*** 

Student-df 2.1013 (0.0372)*** 2.0277 (0.0956)*** 
Log-likelihood -22005.6 -1033.91 
Panel B: Dynamic conditional correlation 
Average CORij  0.3425 (0.0449)*** 0.5393 (0.0233)*** 

dccα  0.0011 (0.0005)** 0.0543 (0.0914) 

dccβ  0.9984 (0.0006)*** 0.9214 (0.1087)*** 
Panel C: diagnostic tests 

( )52Q  0.7088 
[0.9824] 

2.8919 
[0.7166] 

0.8700 
[0.9723] 

7.4330 
[0.1903] 

AIC 0.007805 0.011570 
Hannan-Quinn 0.014877 0.023706 
Hosking (5) 13.819 [0.9998] 12.075 [0.8432] 
McLeod-Li (5) 13.846 [0.9998] 12.084 [0.8429] 
Notes:  Const ( )m  and Const ( )ν  are the constants of the mean and variance processes, respectively. 

( )52Q  is the empirical statistics of Ljung-Box test applied to squared standardized residuals. P-values are 
brackets. Student-t values are reported in parentheses. Hosking (1980) and McLeod and Li (1983) 
multivariate Portmanteau statistics test the null hypothesis of no serial correlation in squared standardize 
residuals (5 lags). *, ** and *** indicate significance at the 10%, 5% and1% levels, respectively. 
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Panel A of Table 5 presents the estimation results of the bivariate GARCH-DCC 

model between TOPIX and KOSPI 200 intraday returns. The estimation results in Panel 

A indicate similarity in the estimates for the univariate GARCH models in both markets. 

For example, the sum of ARCH and GARCH terms are very close to unity, implying 

volatility persistence or volatility clustering in both 30-min. and one-hour intraday 

returns. In addition, Panel A of Table 6 reports the estimations of bivariate FIGARCH-

DCC model based on the Student-t distribution for the two sets of intraday returns. The 

fractional integrated coefficient (d) is highly significant for both 30-min. and one-hour 

intraday returns, revealing a high level of persistence in conditional variances. The 

KOSPI 200 market displays higher persistence for both 30-min. and one-hour intraday 

return intervals.  

Panel B of Tables 5 and 6 present estimates of the dynamic conditional correlation 

model (DCC). The ARCH effect ( dccα ) is positive and significant for both intraday 

returns, underlying the importance of shocks between the TOPIX and KOSPI 200 

markets. For the GARCH effects ( dccβ ), the parameters are significant and very close to 

one for both sets of intraday returns, confirming a high level of volatility persistence 

between the TOPIX and KOSPI 200 markets. Overall, the parameters (d), dccα  and dccβ  

indicate the significance of the dynamic and time-varying long memory estimates from 

the FIGARCH model. In particular, the average conditional correlations between the 

TOPIX and KOSPI 200 markets are all positive and significant at the one per cent level, 

indicating bidirectional causality between TOPIX and KOSPI 200 market intraday 

returns. This bidirectional causal relationship between the two intraday returns becomes 

stronger as the time interval increases from 30-min. to one-hour.  

According to the diagnostic tests (Panel C of Tables 5 and 6), the Ljung-Box ( )52Q  

test statistics for the squared standardized residuals do not support rejection of the null 

hypothesis of no serial correlation, providing evidence of no misspecification in the 

GARCH and FIGARCH models. Additionally, the Hosking and Mcleod and Li test 

results suggest acceptance of the null hypothesis of no serial correlation in the bivariate 

models, and so there is no evidence of statistical misspecification in the bivariate 

GARCH-DCC and FIGARCH-DCC models. Lower values for both the AIC and 
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Hannan-Quinn information criteria indicate the superiority of the bivariate FIGARCH-

DCC model compared to the bivariate GARCH-DCC model. 

 
Table 6. Estimation results and diagnostic tests for bivariate FIGARCH ( )1,,1 d models 

 
 30-min 1-hour 
 TOPIX KOSPI 200 TOPIX KOSPI 200 
Panel A: estimation results 
Const ( )m  -0.0222 

(0.0210)*** 
0.0463 

(0.0269)* 
-0.0046 
(0.0042) 

0.0014 
(0.0048) 

AR(1) 0.0797 
(0.0107)*** 

0.0980 
(0.0116)*** 

0.0454 
(0.0112)*** 

0.0857 
(0.0129)*** 

Const ( )ν  0.8234 
(0.1909)*** 

0.6573 
(0.1678)*** 

0.0375 
(0.0089)*** 

0.0058 
(0.0049) 

ARCH 0.6907 
(0.0362)*** 

0.7432 
(0.0321)*** 

0.3244 
(0.0811)*** 

0.9657 
(0.0249)*** 

GARCH 0.8071 
(0.0186)*** 

0.8890 
(0.0167)*** 

0.7226 
(0.0613)*** 

0.1088 
(0.0975) 

d-Figarch 0.1896 
(0.0766)** 

0.3686 
(0.0465)*** 

0.4073 
(0.1408)*** 

0.9530 
(0.0972)*** 

Student-df 2.3474 (0.0428)*** 2.2664 (0.0327)*** 
Log-likelihood -22022.6 -1034.23 
Panel B: Dynamic conditional correlation 
Average CORij 0.4915 (0.0123)*** 0.5425 (0.0226)*** 

dccα  0.0329 (0.0144)** 0.0153 (0.0169) 
Beta 0.5415 (0.1739)*** 0.9221 (0.1136)*** 
Panel C: diagnostic tests 

( )52Q  0.3913 
[0.9955] 

5.0890 
[0.4051] 

0.5384 
[0.9906] 

6.3286 
[0.2755] 

AIC 0.007035 0.010156 
Hannan-Quinn 0.013224 0.020775 
Hosking (5) 13.829 [0.9998] 9.5421[0.9458] 
McLeod-Li (5) 13.857 [0.9998] 9.5531[0.9455] 
Notes: Const ( )m  and Const ( )ν  are the constants of the mean and variance processes, respectively. ( )52Q  
is the empirical statistics of Ljung-Box test applied to squared standardized residuals. P-values are 
brackets. Student-t values are reported in parentheses. Hosking (1980) and McLeod and Li (1983) 
multivariate Portmanteau statistics test the null hypothesis of no serial correlation in squared standardize 
residuals (5 lags). *, ** and *** indicate significance at the 10%, 5% and1% levels, respectively. 
 
5.3. Forecasting evaluations 

This section evaluates the forecasting performance of the two competing GARCH-

class models: univariate and bivariate GARCH and FIGARCH models. To assess the 

predictive accuracy of these volatility models, we use two forecasting evaluation criteria 
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(loss functions). These are the root mean square error (RMSE) and the mean absolute 

error (MAE). For the univariate case, these criteria are respectively defined as:      
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where T  is number of forecasting data points. 2
, taσ  is the realized volatility and 2

, tfσ  is 

the volatility forecast obtained from a GARCH-class model. A rolling forecasting 

methodology is used to implement the one-, five-, and twenty-day out-of-sample 

forecasts of the GARCH-type models considered.  

Similarly, forecasting error statistics related to the bivariate GARCH-type models are:  
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where tayxCov ,),(  is the actual covariance of market index intraday returns (x=TOPIX 

and y=KOSPI 200), and tfyxCov ,),(  is the covariance forecasts estimated from the 

bivariate volatility models.  

Table 7 reports the forecasting performance of the univariate GARCH-type models 

for the two intraday data sets. Given its lower values for each of the two forecasting 

error functions, the FIGARCH model with Student-t distribution provides more accurate 

volatility predictions than the GARCH models for both 30-min. and one-hour intraday 

data over all forecasting horizons. This implies that these long memory volatility 

models are superior for modelling intraday volatility, consistent with Kang et al. (2009) 

who find superior forecasting ability for FIGARCH models in crude oil markets.   

Similarly, the forecasting results for the bivariate model, reported in Table 8, show 

that the DCC-FIGARCH model has the lowest error functions for both 30-min. and one-

hour pairs of intraday returns. In particular, for longer horizon forecasts, the long 

memory volatility (FIGARCH) model produces forecasts of the covariance matrix that 

are statistically more accurate than those produced by the short volatility (GARCH) 

model. These findings indicate that the ability of DCC-FIGARCH model to incorporate 
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long memory and cross-market volatility spill overs contributes to improved forecasting 

and of the intraday volatility process. Several empirical studies suggest that such 

predictive powers assists investors in solving optimal portfolio design, risk hedging and 

asset allocation issues (Ferreira and Lopez, 2005; Chkili et al., 2012; Harris and Nguyen, 

2013).  

 
Table 7. Empirical forecast evaluations for one-, five- and 20-day forecasting horizons 
 
 GARCH FIGARCH 
 RMSE MAE RMSE MAE 
Panel A: 30-min intraday returns 
1-day horizon     
TOPIX 249.535 238.461 54.6524 52.2437 
KOSPI 200  37.2311 36.1347 6.61549 6.16746 
5-day horizon     
TOPIX 245.618 243.652 59.6442 56.1992 
KOSPI 200  38.6230 37.2856 10.1655 7.82163 
20-day horizon     
TOPIX 212.125 209.625 66.6559 56.6010 
KOSPI 200  38.2057 37.0776 9.51294 7.86489 
Panel B: 1- hour intraday returns 
1-day horizon     
TOPIX 23.8840 22.0385 0.64164 0.60226 
KOSPI 200  2.32630 2.14685 0.28924 0.25709 
5-day horizon     
TOPIX 22.6512 22.6392 0.60503 0.58198 
KOSPI 200  2.05825 2.05087 0.28002 0.27270 
20-day horizon     
TOPIX 19.8494 19.7449 0.62739 0.52312 
KOSPI 200  2.20756 2.19568 0.27591 0.26784 
Note: the lowest values in bond face indicate the best-performing model.    
 

Table 8. Covariance forecasts for one-, five- and 20-day forecasting horizons 
 
 RMSE MAE RMSE MAE 
Panel A: 30-min intraday returns  
1-day horizon 12.9404 12.5618 4.48566 4.15320 
5-day horizon 16.3690 14.3679 11.2644 6.75348 
20-day horizon 17.1313 13.5076 13.4340 5.83151 
Panel B: 1-hour intraday returns 
1-day horizon 1.10148 1.02280 0.12374 0.13871 
5-day horizon 1.09867 1.08066 0.22901 0.17642 
20-day horizon 5.18324 1.04370 0.45382 0.14285 
Note: the lowest values in bond face indicate the best-performing model. 
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6. Conclusions 
In this paper, we have examined the issues of price and volatility spillovers between 

two important Asian equity markets, the Tokyo Stock Price Index (TOPIX) and Korea’s 

Composite Stock Price Index 200 (KOSPI 200). In doing so the contributions of this 

paper are a focus on intraday rather than longer-term volatility spillovers, and thus also 

in the associated use of intraday 30-minute and one-hour interval return data. Analysis 

is based on results from univariate and bivariate GARCH-DCC and FIGARCH-DCC 

models. This has allowed us to provide insights into intraday long memory volatility in 

TOPIX and KOSPI 200 returns, intraday long memory spillover effects between these 

sets of market returns, and the performance of alternative specifications of GARCH and 

GARCH-DCC models. 

We identify the presence of long memory in return volatility in both the TOPIX and 

KOSPI 200 returns, which is suggestive of evidence against weak-form market 

efficiency. Following this we find that the long memory volatility process in one market 

positively influences that of its counterpart in real time; that is, the existence of financial 

spillover effects in volatility between the TOPIX and KOSPI 200. Thus, intraday traders 

should account for the identified positive long memory volatility relationship between 

these two markets, even over short time intervals, in assessing investment and portfolio 

risk. 

Finally, we provide analysis of the forecasting performance of the two competing 

GARCH-class models: univariate and bivariate GARCH and FIGARCH models. We 

assess the predictive accuracy of these models through use of the root mean square error 

(RMSE) and the mean absolute error (MAE) (as loss functions). We find the FIGARCH 

model with Student-t distribution provides more accurate volatility predictions than the 

GARCH models for both 30-min. and one-hour intraday data over all forecasting 

horizons.  Similarly, we find that the bivariate FIGARCH-DCC model has the lowest 

error functions for both 30-min. and one-hour pairs of intraday returns. This reflects that 

the long memory volatility FIGARCH-style models produce forecasts for the 

covariance matrix that are statistically more accurate than those produced by the short 

volatility GARCH-style models. This implies that long memory volatility models based 
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on the FIGARCH specification are superior for modelling intraday volatility and 

forecasting long memory spillover effects in the volatility of intraday returns. 
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