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Abstract    

To manage the risk of mismatch between the actual and anticipated claim amounts in a motor 

insurance pool, we introduce new concepts such as motor loss rate options and motor loss 

rate swaps.  These hybrid derivatives can transfer the motor insurance loss rate risks to the 

capital markets.  For the valuation of the motor loss rate-linked securities, we assume that 

motor insurance aggregate claims follow a compound Poisson distribution.  Using the 

Fourier transform, we derive integral expressions for the price of a ratchet option and a fixed-

for-floating plain vanilla swap on the motor loss rate. 
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1. Introduction 

 

Motor loss rate risk has long been a major concern for motor insurers.  Usually the amount 

of future claims may not be predicted completely.  The motor insurers want to manage the 

risk of mismatch between the actual claims and the anticipated claim amounts.  If the actual 

motor loss rates increase more than the expected loss rates, motor insurers will have to make 

additional payments during the contract period.  This will lead to losses on their motor 

insurance business.  The insurers may need additional, low-cost tools to manage motor loss 

exposure.  The insurer will profit if the realized losses from the motors insured decrease 

below the expected level.  The recent concept of insurance securitization provides additional 

creative options for insurers to transfer insurance risks within the insurance/reinsurance 

industry or to the capital market.  Motor insurance companies attempt to transfer the loss 

rate risks to the capital market where there is greater capacity to absorb these risks compared 

to the reinsurance market.  Insurance companies may use tradable financial securities that 

have little or no correlation with the original risk itself.  

The traditional methods of reinsurance are still dominant, but some innovative applications of 

securitization have been gradually introduced into the market. Chang et al. (2011) calculate 

the prices of catastrophe equity put options using a Markov Modulated Poisson processes. 

More discussions on catastrophe bonds can be found in Lakdawalla and Zanjani (2011), 

Härdle and Cabrera (2010), Barrieu and Loubergé (2009), and Lee and Yu (2002). Cummins 

and Weiss (2009) provide a survey on the recent developments of various types of 

insurance/financial instruments. Klein and Wang (2009) examine and compare regulatory and 

other government policies on the financing of catastrophe risks in the United States and the 



EU.  For a motor insurance example, AXA introduced motor insurance securitization, 

selling EUR 200 million of bonds in 2005. 1   Bae et al. (2009) illustrate the motor 

securitization methods based on a concept similar to CDOs.  Tranches of bonds are 

constructed on the basis of the expected loss ratio from groups of motor insurance 

policyholders.  They develop motor loss rate bonds using the structure of synthetic CDOs 

such that the coupon payments of each tranche depend on the level of the loss rates of the 

underlying motor insurance pool.  They show the pricing methods of the tranches and the 

pricing formulas where the loss distribution is modeled with a discounted compound Poisson 

process. 

There are several motivating factors for the securitization of motor insurance portfolio risks.  

These include the issuer gaining an alternative source of financing, a channel of risk transfer, 

and a method of capital management that helps improve the solvency of the company.  

Securitization also allows the insurer to eliminate counterparty risks by accessing traditional 

asset-backed securities investors.  Also, it allows the insurer to access those tools that are 

used by banks for risk management and anticipate the expected evolution of solvency rules.  

These transactions will also optimize the insurer’s business and balance sheet with respect to 

volume, pricing, and terms.  Motor insurance securitization creates new investment 

opportunities for the investors by providing greater diversification of traditional portfolios.  

Such groups of investors are the insurer’s policyholders, the government, the companies and 

                                                           
1
For more detailed information and discussion see Deringer (2006), De Mey (2007), AXA Financial Protection 

(2005), and Towers Perrin, Tillinghast (2006).   

Also, empirical evidences of movements toward further securitization have been observed from the market. In 

June 2007, AXA has launched its second securitization of motor insurance risks based on individual motor 

policies underwritten by its German, Belgian, Italian, and Spanish operations.  The first one, based on the 

French motor insurance portfolio, was a great success. AXA's second one went one step further by combining 

individual motor portfolios from four countries into a global portfolio providing diversification of motor 

insurance loss risks. This movement presents significant implications for the future of motor insurance-linked 

securities (MILS) toward the creation of standardized markets, where risk concentration should be avoided. 

 



organizations related to the motoring industry, and the general investors who seek high-yield 

securities. 

In this paper, we show the stochastic loss rate models and introduce some new concepts in 

motor loss rate-linked securities such as the motor insurance loss rate options and swaps.  

The characteristics of these securities are described and the pricing methods are derived using 

the martingale method. 

We first describe the characteristics of a motor loss rate ratchet option and swap and the 

stochastic motor loss rate models.  Then, the pricing methods are shown, and a few 

numerical examples are enumerated.  The conclusion includes discussions and suggestions 

on the issues of these new securities.  

 

 

 

2. Characteristics of Motor Insurance Loss Rate Swap and Option 

 

A motor loss rate swap is a contract to exchange cash flows in the future based on the 

outcome of at least one presumably random motor loss rates.  The objective is for insurers to 

hedge motor loss rate risks by exchanging one or more future cash flows, at least one of 

which is random.  

 

Definition 1.  A motor loss rate swap is an agreement between two parties to exchange 

payments involving at least one random motor loss rate dependent payment for a certain 

period of time. 

 



In a simple case, a motor loss rate swap involves the exchange of a single fixed payment for a 

single random motor loss rate-dependent payment.  Suppose that at time 0, two parties enter 

into an agreement to exchange a pre-fixed value kt for a random value St that is dependent on 

the realized motor loss rate at some future time t.  The fixed amount kt may depend on the 

past empirical history on loss experiences.  St is the actual loss amount realized until time t.  

Therefore, it is a random variable at time 0.  It can be related to the number of accidents 

from time 0 to time t and the realized loss amounts for each accident from a specified 

reference motor insurance pool.  It is reasonable for the two parties to make an agreement 

that they would exchange only the net difference between the two payment amounts.  For 

example, party A pays party B a value of kt – St if kt > St, or party B pays party A a value of 

St – kt if St > kt.  In this case, party A benefits when the realized loss amount St is higher than 

the pre-fixed amount kt.  It makes losses if St turns out to be lower than kt.  Therefore, Party 

A has a long position to St, whereas party B has a short position to St.   

Insurance companies may use motor loss rate swaps to exploit natural hedging across their 

motor insurance businesses.  

 

When an insurer is particularly interested in managing extreme loss rate risks, a swap 

contract seems to be inappropriate.  In this case, the insurer has a higher chance to make a 

payment rather than to be paid at each settlement point.  Even though the corresponding 

swap rate may be determined based on the historical data, both parties would like to enter 

into a swap contract when they expect a fair chance of getting paid.  Alternatively, a motor 

loss rate ratchet option can be used to protect the motor insurance providers against the risks 

of higher motor loss rates but without giving up the possible benefits of lower motor loss 

rates.  In other words, a motor loss rate ratchet option “insures” the motor insurance 

providers.  The cost of the motor loss rate option is the “insurance premium.” 



  

 

Definition 2.  A motor loss rate ratchet option is a series of call options on motor loss rates 

where strike thresholds are reset periodically.  

 

A motor loss rate ratchet option is a right, not an obligation, to exchange cash flows related to 

motor loss rates.  On each exercise date, the option holder receives the excess amount of 

loss above the pre-specified strike threshold.  It is important to reset strike thresholds 

periodically based on the realized loss rate of the previous period.  By doing this, both 

counterparties are eager to remain in the contract even when they experience extreme loss 

events in some periods.   

   

These hybrid derivatives have several advantages over motor loss rate bonds.  They can be 

arranged at lower transaction costs than a bond issue.  The proposed swap and option cover 

multiple time periods.  Thus, it is more efficient than buying a series of stop loss 

reinsurances.  They are more flexible and can be tailor-made.  Most of the arrangements 

are private placements.  They do not need a liquid market.  It involves willing 

counterparties who exploit their comparative advantages or trade views on the development 

of motor loss rate over time.  Their flexibility and low costs provide motor insurers with 

advantages over the traditional reinsurance treaties. 

  

 

3. Motor Insurance Loss Rate Models 



The following section describes the derivation involved in the securities pricing via the 

pricing formulas for the stop loss premiums.  We assume that the aggregate claims for motor 

insurance follow a marked point process.2  

Denote the Poisson process with the parameter t by Nt, for any time t  0. On a probability 

space ),,( PF , we assume that the aggregate loss St is  
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where Ti’s are jump times of the Poisson process Nt and the magnitudes iX ’s of positive 

random shocks are independently and identically distributed with the distribution function 

)(xFX .  The random shock iX  arrived at time t results in a claim measured by a 

continuous function ),( xtg defined on RT ],0( , which is increasing in x.  Here, we 

further assume that Nt and iX are independent for model simplicity.  Note that N(du, dx) is 

a Poisson random measure with the mean measure 

)(),( dxdudxdum u , 

 where )()( xdFdx Xuu    is the Lévy measure. 

 

The following theorem can be shown by using standard machinery in the probability theory.  

See also Lemma 4.3 of Resnik (1986).   

Theorem 1. For any continuous bivariate function )],0((  RTCg  such that 
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 For modelling the aggregate losses, losses will be accumulated from the date of issue to maturity. 



     =  




  

],0(

),( )(1exp
T R

X

xug

u duxdFe .                   (2) 

 

We assume that the Poisson process Nt is a time homogeneous process characterized by 

the constant rate parameter  , and the claim size distribution is a discounted random 

shock XeXug ru),( .  Then, the aggregate loss process (1) is also referred to as a 

discounted compound Poisson process.  See Delbaen and Haezendonck (1987), Paulsen 

(1993), and Nilsen and Paulsen (1996) for more details on the distribution of a 

discounted compound Poisson process.  

Mapping techniques, such as Fourier transform and its inverse transform, will be employed in 

calculating the market prices of stop loss premiums and other relevant securities. 

 

Corollary 2. Let us denote the distribution function of St by ),( txFS .  The Fourier transform 

of the distribution of St for a given t is expressed as  
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where )(ˆ ufX  is the Fourier transform of the distribution of a claim size random variable X.  

 

 Numerous risk neutral probability measures are present because the market is 

incomplete, and each probability measure does not result in any arbitrage price for insurance 

risks.  The Esscher transform is suitable for such changes in probability measures because of 

certain specific characteristics.  The Esscher transform is known as the minimal entropy 

martingale probability measure in a geometric Levy process model.  The Esscher transform 



maximizes the expected power utility function.3  The response of the market to insurance 

risks can be interpreted by the Esscher parameter h of the Esscher transform, which can be 

obtained under the martingale state.  The real interest rate of zero reflects the constant risk 

adjustment parameter h  (as determined by martingale condition).  In this study, the risk 

adjustment parameter is a time invariant function due to the discounting effect.  For each 

maturity t > 0 and under a filtered probability space {Ft | t > 0}, we define a probability 

measure Q whose Radon-Nikodym derivative is 
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when ][ tt ShP eE  exists.  Note that th  is non-negative deterministic function that satisfies 

the martingale condition described below in Eq. (*).4 

 

By corollary 2, we have, 
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 See Gerber and Shiu (1994) or Miyahara and Fujiwara (2003) for details. 

4
 Once maturity t is fixed, th  is determined and assumed to be constant over the period (0, ]t . For notational 

convenience, it is denoted by
*h . 



Equation (5) can be represented as follows.  This enables us to identify the distribution of St 

under the changed measure Q. 
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Remark 1. By comparing the above with (3), for each fixed maturity t, we can conclude the 

following:  

(i) The Poisson parameter λ has changed to )(ˆ * rsP

X

Q

s eihf   , s ≤  t ; 

(ii) The distribution of the claim size, )(xdF P
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Note that the Lévy measure under Q is 

   *( ) ( , ) exp{ } ( )Q Q Q rs P

s s X Xdx dF x s h e x dF x     .   ■ 

 

For each t,  

**

*

* * *

0

[ ]
[ ] ( , ) {log [ ]}

[ ] [ ]

t

t

t t

h SPh x
h SQ P Pt

t Sh S h SP P

E S exe
E S dF x t E e

hE e E e




  
 .          (6) 

Because ),(ˆ][ *
*

tihfeE P

S

ShP t  , the latter can be reduced to 









t

rsP

Xt

Q dseihf
h

SE
0

*

*
)(ˆ][   

    XehPXhP rt

eEeE
rh




**

*


.                   (7) 

   



The second equality can be obtained via Corollary 2 by changing the order of integration and 

expectation.  

 

The arbitrage free price of stop loss contract can be determined with a retention level 

of d for the motor loss rate option pricing.  Mathematically this is represented as 




 
d

Q

St

Q txdFdxdSE ),()(])[( .                    (8) 

 

The following equation is obtained by applying Theorem 3.4 in Dufresne et al. (2009): 
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Here, PV   refers to the Cauchy principle value integral. 

Substitution of (5) and (7) into (9) results in an Esscher no-arbitrage price formula for stop 

loss contract.5  

 

If there is no arbitrage between insurance market and capital market, the discounted 

surplus process should be a martingale under a risk neutral measure Q. 6  We define the 

accumulated surplus process as follows, 

tU = t

rt

t

rtrt SeCeeu 0 ,                        (10) 

where 0u  is the initial surplus, r is the risk free rate compounded continuously, and tC  is 

the time zero value of the risk-adjusted aggregated premiums collected on [0, t].  We define 

                                                           
5
 Price of a stop loss contract under the compound Poisson distribution can be calculated by using the numerical 

method or recursion such as the Panjer recursion formula. See Covens et al. (1979), Bühlmann (1984), Gerber 

(1982), and Panjer (1981) for reference. The Esscher change of measure, the general form of the Laplace 

transforms, and the expectations of these processes are well studied in the literature such as Jacod and Shiryaev 

(2003) and Dufresne et al. (2009). 
6
 Same idea is used in Jang and Krvavych (2004). 
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with a risk adjustment parameter 0 .  We denote the continuous premium rate by 

][)1( XEC P and the present value of continuously paying annuities by 
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We can find an equivalent martingale measure Q that satisfies the following:7 
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for any 0 s t.  By (7), for the maturity t, we can show that th  is the solution of the 

following equation.  This also satisfies the existence of the Esscher transform (4).  
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Using L’hopital’s rule, it can be shown that   
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Eq. (11) and the above identity imply that if the risk adjusted parameter   = 0 or 

][XEC P , then 0th , which means that the market takes the risk fully. 

 

It can be shown that the constant Esscher parameter is the solution to the equation below 

(similar to (11)) in the presence of zero real interest rate. 
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C
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From Eqs. (5) and (11), the moment generating function of the claim size distribution 

plays a crucial role in determining mathematical tractability of the price formula.  Setting 

                                                           
7
 We can find a martingale measure Q or the Esscher parameter ht directly from the market when the market 

becomes active and mature. This approach can be an alternative when the market is new and young. 



aside empirical studies on the motor insurance claim size data, we illustrate a tractable 

example, 8 which is also practical. 

 

 

 

Example 1. Generalized Erlang(n) claim size distribution 

Let us assume that X follows a generalized Erlang(n) distribution with parameters 
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This condition may hold when the interest rate r is small and the maturity t is short.  

The expectation of discounted claims under Q is  
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Note that the Esscher parameter, if any, must be smaller than  n/1  in order to guarantee 

the existence of the moment generating function or the Esscher transform.  It can be shown 

that the Esscher parameter *h  is a solution of the following polynomial equation. 9 
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 Exponential (or Gamma) distribution is often used in generalized linear models on aggregated insurance data. 

See Smyth and Jorgensen (2002) for examples. 
9
 We assume that the Esscher parameter is constant once the maturity t is fixed. Thus, we drop t in the 

expression. 
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is smaller than n/1  as illustrated in Figure 1.  

 

 

 

Figure 1 Finding h
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Note that the exponential distribution is a special case when n =1.  The Esscher parameter 

in this case is   
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For notational simplicity, we denote 
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Then, the Fourier transform of the distribution of St can be written as  
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Substituting the above into (9) gives the market price of the stop loss contract. 

■ 

 



4. Risk Neutral Distribution of Increment of Loss Processes and a Ratchet 

Option Price 

We now derive the Fourier transform of the risk neutral distribution of the increment of the 

loss process.  The price formula of a ratchet option is shown.  

For a fixed 0  and ,0 Ttl   let us consider a general increment of the loss process, 
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 As noted in the Remark 1, under Q, the jump process follows an inhomogeneous 

Poisson process with the intensity function )(ˆ * rsP

X

Q

s eihf   , which depends on time.  

The claim size distribution )(
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 is also a function of time.  

Fortunately, the distribution still has an independent increments property.  The first and the 

second terms in (17) are non-overlapping and thus independent under both measures P and Q. 

Based on Theorem 1, the property provides the following expression for the Fourier 

transform of )(, tlZ  under Q.  

 

Corollary 3. For a fixed 0  and ,0 Ttl    the Fourier transform of risk neutral 

distribution of the general increment process )(, tlZ  is expressed as  
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The expectation of )(, tlZ is 
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By substituting the Fourier transform (18) and the expectation (19) into the stop-loss price 

formula (9), we can obtain  
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Example continued: Generalized Erlang(n) claim size distribution  

The expectation of )(, tlZ is 









  
 






n

k

n

k

rl

k

rt

k

n

k

ktl

Q heheh
rh

ZE
1 1

1*1*

1

1*

*, )1()1()1()1()]([ 


 . 

Recalling Eq. (15), the Fourier transform (18) can be written as   
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By substituting these formulae into the price formula (20), we can obtain an integral 

expression of stop loss contract where the threshold depends on the loss history.  ■ 



 

Ratchet option on motor loss rate 

The actual loss ratio is defined as the actual aggregate loss divided by the total gross 

premium over a period of time [0, t].  In practice, the fixed loss rate is essentially 

determined by the historical claims data and is usually accomplished by simulating the future 

loss that can be assumed to be retained by the insurance companies. 

We denote gross aggregate premium collected on [0, t] by 
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where   is a risk adjustment parameter, and   is a security loading factor (expense rate). 

Let us denote the actual cumulative loss rate by tq , 
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where  tL = rt

teS  is the cumulative loss until the time t; and 
|t

a  and 
| |

rt

t t
s e a  are the 

present value and the accumulated value, respectively, of continuously paying annuities with 

unit of annual payment. 

 

For each settlement point, the threshold of the ratchet option is defined as 
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Note that the threshold evolves over time and depends on the actual loss of the previous 

settlement point.  The parameter )1(   determines the level of the subsequent strike 

thresholds and must be specified upfront.  If an insurer would like to hedge the extreme 

losses above the previous period’s realized loss, a large   is preferred.  



 

At each settlement date, the protection seller (issuer) will pay the premium collected 

multiplied by the excess loss rate beyond the prefixed threshold.  Thus, a no-arbitrage price 

of the n-year ratchet option is given as  
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where ),( 1 ii tt   = 
11

1







i

i

rt

rt

e

e
.                                                                                                              

If we assume ),()1( 1 ii tt   , then from (20) we obtain an integral expression of each 

summand in the ratchet option price formula (24).   

 

5.  Pricing Motor Loss Rate Swaps  

 

Plain Vanilla Motor Loss Rate Swaps  

First, we consider a fixed-for-floating plain vanilla motor loss rate swap settled in arrears.  

Even though we have a continuous time loss rate model, we consider only the finite 

collection of discrete future dates {Tj, j = 0, 1, …, n} with T0 = 0.  The dates T0,…,Tn-1 are 

known as reset dates, and the dates T1,…,Tn are known as settlement dates.  The payments 

are made on the settlement dates and the number of payments n is called the length of a swap.  

The first date T0 is referred to as the start date of a swap, and we assume it is today for the 

sake of simplicity.  The period [Tj-1, Tj] is called the j-th accrual period.  We assume that 



Party A agrees to pay Party B a fixed amount of losses derived from a pre-agreed fixed loss 

ratio denoted by 
jTq̂  at each settlement date Tj, j = 1, …, n.  In return, Party B agrees to pay 

Party A a floating amount of losses realized until each settlement date Tj, j = 1, …, n.  The 

two parties usually need to pay the net amount, that is, the difference between the two mutual 

obligations.  Therefore, Party B should pay when the actual loss ratio exceeds the 

predetermined fixed loss ratio 
jTq > (1+s) 

jTq̂ , where s is a real number to be determined.  

That is, 
jTq > (1+s)

jTq̂  implies that 
jTL > (1+s)

jTq̂ G
|jT

s , and Party B should pay 
jTL  

(1+s)
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|jT
s .  If 

jTq   (1+s)
jTq̂ , then Party A should pay (1+s)

jTq̂ G
|jT

s   
jTL  at time 

Tj.   

We consider the value of a motor loss rate swap as a function of a real number s at 

time 0 = T0,  
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We know that a swap value is zero at initiation; therefore, we naturally define the spread of a 

motor loss rate swap. 

 

Definition 3.  The spread of a motor loss rate swap is the value of s that makes the value of 

a motor loss rate swap zero, i.e., the value of s for which MS(s) = 0. 

 

Using definition 3, we obtain an explicit formula for a motor loss rate swap spread, 
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When we consider only a one-period swap, that is, n = 1, the price is 

s = 
1

1
 1

ˆ

1

1


Tq

. 

If the expected loss rate 
1

ˆ
Tq  is produced well enough to predict the real loss rate for the next 

period, then the swap prices should be zero and the expense rate should be 

  = 1
ˆ

1

1


Tq

. 

Given the value of s determined above, we can calculate the market price of the swap at any 

time t ≥ T0.   The following Corollary 4 of Theorem 1 can be shown based on the fact that 

the loss distribution tS still has the property of independent increments after the change in 

measure.  This can also be seen in remark 1 in the previous section. 

 

Corollary 4. Under the Esscher transformed measure Q, the Fourier transform of the 

conditional distribution tS  given by yS l  has the following expression: 
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Then, the conditional expectation can be written as  
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By using the above conditional expectation under the measure Q, the market price of the 

swap at a time in the j-th accrual period, ),( 1 jj TTt  , can be expressed as  
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6. Numerical Examples and Problems 

Here, we consider some numerical examples under certain specific assumptions on the 

distribution of the discounted losses and the parameters.
10

 We also discuss a few issues on 

the development of motor insurance-linked securities (MILS).  For example, we assume that 

the losses follow a discounted compound Poisson process with generalized Erlang(2) claim 

size distribution.  We assume that the Poisson parameter λ =12, ,15,5 21   11 and 

maturity T = 5. 

                                                           
10

 Numerical integrations are implemented using the R-function integrate.  A hundred thousand simulations of 

tS  are conducted under Q based on Remark 1.For each simulation, risk neutral arrival times of the 

inhomogeneous Poisson process with rate function t  are simulated by a thinning algorithm. For each arrival 

time, a risk neutral claim amount is generated by the density  ),( txf Q

X  using rejection algorithm. See Ross 

(2002) for details on these algorithms. 
11

 The choice of loss frequency and claim size parameters is more or less arbitrary.  We roughly use the 2007 

US private passenger insurance losses data given by Insurance Information Institute, in Auto Insurance (2009), 



Table 1 summarizes the risk adjusted premium rate ][)1( XEC P  and the Esscher 

parameter 5

* hh   for several different choices of the risk adjustment parameter   and the 

interest rate r. 

Table 1  Premium rate and Esscher parameters 

Ө r C *h  

0.1 

0.01 

264 

0.002967 

0.03 0.003108 

0.05 0.003248 

0.07 0.003386 

0.2 

0.01 

288 

0.005534 

0.03 0.005802 

0.05 0.006066 

0.07 0.006326 

0.3 

0.01 

312 

0.007828 

0.03 0.008207 

0.05 0.008581 

0.07 0.008946 

 

 

                                                                                                                                                                                     
available at http://www.iii.org/media/facts/statsbyissue/auto/. Statistics indicate that the frequency of liability 

claims is about 5 per 100 vehicles, and the average claim severity is about $15,000 when we add bodily injury 

and property damage.  For collision and comprehensive coverage, the frequency is about 7 per 100 vehicles 

and the average per claim severity is roughly $5,000.  We use the Poisson parameter  = 12 (= 5+7), 1 = 5 

and 2 = 15 for illustrative purposes. The results may vary when the assumptions are changed. 

http://www.iii.org/media/facts/statsbyissue/auto/


It is evident from Table 1 that the Esscher parameter increases in both the loading 

factor and the interest rate.  The risk adjustment parameter and the interest rate are the two 

main input components that determine the riskiness of the underlying loss process.  The 

higher value of the Esscher parameter results in a shift of loss distribution to the right.  

Figure 2 shows the evolution of the discounted loss distribution tS over time and 

compares the two densities ),( txf P

S  and ),( txf Q

S  when  =0.2 and r = 0.03.   

 

Figure 2 Evolution of loss process  
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Figures 2 and 3 show that the distribution of the discounted losses under the Esscher 

transform are translated to the right and have a slightly heavier left tail and a lighter right tail.  

This implies that the Esscher transform puts more weight on smaller extreme values.   

 



Figure 3 qq-plots 

 

 

The second plot of Figure 3 compares the distributions of S(1) and S(5) under P.  We 

see that the left tail of S(5) is heavier, and the right tail becomes thinner than that of S(1).  

This is because of the effect of discounting.  In other words, the discounted values of claims 

that happen in the fifth year contribute less to the total aggregated loss than claims that arrive 

in the first year.       

Table 2 gives the time zero prices of five-year ratchet options for different choices of 

  corresponding to different coverage levels  .   We assume that the interest rate r is 

0.03. 

 

Table 2 Time zero price of five-year ratchet options 

Ө   V( ;0) Ө   V( ;0) 

0.1 

0.0 183.65 

0.3 

0.0 201.59 

0.1 80.27 0.1 83.81 

0.2 40.29 0.2 40.62 

0.3 22.84 0.3 22.36 

0.4 14.02 0.4 13.34 



0.5 9.11 0.5 8.42 

0.6 6.18 0.6 5.56 

0.7 4.35 0.7 3.81 

0.8 3.15 0.8 2.70 

0.2 

0.0 192.85 

0.4 

0.0 209.84 

0.1 82.14 0.1 85.27 

0.2 40.49 0.2 40.69 

0.3 22.61 0.3 22.09 

0.4 13.68 0.4 13.00 

0.5 8.76 0.5 8.10 

0.6 5.86 0.6 5.28 

0.7 4.07 0.7 3.57 

0.8 2.91 0.8 2.49 

 

 

High-risk adjustment parameters make the option price large for moderate coverage 

levels ( = 0, 0.1, or 0.2).  The prices become smaller for extreme coverage cases.  This is 

because the left tail of the Esscher transformed distribution becomes heavier as the risk 

adjustment parameter gets larger. 

Figure 4 shows that the option prices decrease rapidly as the coverage rate   

increases when  = 0.2 and r = 0.03.  

 

Figure 4 Market prices of five-year ratchet options according to   



 

 

Swap spread depends on the trigger tq̂ , which determines the level of insurance 

coverage of the swap contract.  In this example, we use percentile values of the loss ratio 

process tq  under the physical measure P.   

 

Table 3 Evolution of percentiles of loss ratio under P ( 1.0,03.0,2.0   r ) 

 

 

 

 

 

 

 

 

 

 

 

Percentiles  yr1 yr2 yr3 yr4 yr5 

10% 0.42 0.51 0.56 0.58 0.60 

20% 0.52 0.59 0.62 0.64 0.65 

30% 0.59 0.65 0.67 0.68 0.69 

40% 0.67 0.70 0.71 0.72 0.72 

50% 0.73 0.75 0.75 0.75 0.75 

60% 0.81 0.80 0.79 0.79 0.78 

70% 0.88 0.85 0.84 0.83 0.82 

80% 0.98 0.92 0.89 0.87 0.86 



Table 3 provides the percentiles of the loss ratio process at the end of each year.  We 

can see that the lower percentiles increase and upper percentiles decrease with time.  This is 

also the effect of discounting.  

 

Table 4 Swap spreads for 1.0,03.0,2.0   r  

   

 For given parameters, Table 4 gives the five-year swap spread for each percentile-

based threshold tq̂ .  Let us choose the 80
th

 percentile for the trigger 98.0ˆ
1 q .  Then, the 

protection seller should pay 1.025*0.98* G
1|

s  to the protection buyer if the actual loss ratio 

is greater than 1.025*0.98.  The protection buyer has to pay the same amount when the 

actual loss ratio is less than 1.025*0.98. 

 

As one can see from the spread formula (26), a fair spread has an inverse relationship with 

the expense rate   and the trigger tq̂ .  In general, counterparties can agree to use 

arbitrary thresholds.  For some cases, the spread can even be negative when the expense rate 

is chosen to be much higher than the ideal level.  The spread can be equal to zero when the 

expense rate   = 1ˆ
1

|
1

|




n

j
TT

n

j
T jjj

aqa .  When the P-percentile-based thresholds are used 

(as in this example), the effect of the increase in expense rate is cancelled out due to the 

decrease in the threshold at the same rate.  Thus, the swap spread remains unchanged 

q̂  10%tile 20%tile 30%tile 40%tile 50%tile 60%tile 70%tile 80%tile 

s 0.616 0.458 0.358 0.280 0.213 0.152 0.090 0.025 



regardless of the choice of expense rates.  This suggests that P-percentile is a sensible 

choice for the trigger tq̂ .  

 

Now, a few issues on the MILS12 are presented.  Bae et al. (2009) derived the theoretical 

framework and methodology and showed the usefulness of motor loss rate securitization.  

There are certain benefits of using options and swaps over the existing market instruments for 

motor insurance securitization.  The main advantages of the hybrid derivatives over tranche 

notes are their easiness and flexibility.  They can design the derivatives according to their 

needs.  The swaps and options are over-the-counter contracts; they would require smaller 

transaction costs.  However, over-the-counter contracts may have counterparty risks, and 

this can be a disadvantage.     

For tranche notes with fixed loss rate trigger, there would be possibility of moral hazard by 

insurers.  As maturity approaches, insures may mark up their insurance losses ratio to obtain 

reimbursement from the protection seller (investors).  Also, it is possible that motor insurers 

may put less effort in underwriting and loss assessment to minimize insurance losses.  These 

moral hazards can be reduced by establishing independent special purpose vehicles (SPVs) 

responsible for auditing the determination of loss ratio as well as issuing and pricing the 

securities.  The motor insurance loss rate ratchet option proposed in this paper dissuades 

insurers from inflating their insurance losses in the middle of the security tenure.  The multi-

term ratchet option resets the loss trigger periodically according to the realized loss ratios of 

the previous years.  The insurer may obtain benefits by manipulating the loss ratio of one 

period.  However, the benefit will be cancelled in the following period due to a high loss 

                                                           
12

 We briefly discuss a few issues in this paper. More detailed discussions regarding MILS can be found in Bae 

and Kim (2010).   

 

 



rate trigger.  Also, there can be legal issues in almost all aspects of the MILS operation.  

They can resolve the legal issues using regulations or laws.  In particular, regulators should 

focus on the financial soundness of issuers and market participants.  

Motor insurance-linked securities can be an effective alternative to the reinsurance markets, 

which have a strong development potential for high-risk groups that may not be (re)insured 

under the current insurance/reinsurance practices.  Capital market investors are likely to 

welcome the risks expecting high returns as compensation for taking risks.  Insurance 

companies benefit from the securitization because they can expand the risk pool by accepting 

high-risk groups that are otherwise uninsurable.  In addition, the ability to insure the high-

risk groups makes the insurance industry competitive and gives it a level playing field with 

other financial institutions such as banks.  

 

7. Conclusions 

 

When an insurer decides to sell motor insurance contracts covering the losses from motor 

accidents, it should consider appropriate models to estimate the expected amount of annual 

claims.  However, the insurer can be exposed to the risk of the actual loss rate being higher 

than expected.   As a hedging method, we suggest the use of hybrid derivatives for motor 

insurance loss rate risk transfer.  We consider a few motor insurance-linked derivatives such 

as motor insurance loss rate options and swaps, which can be traded over the counter in a 

capital market.  They are designed not only to provide the insurer with innovative hedging 

methods for its loss rate risks but also to give more investment choices to the potential 

investors in the financial market.  



The insurer may want to exchange random cash flows in the future based on the outcome of 

motor loss rates with prefixed values.  In this case, the insurance company would use motor 

loss rate swaps.  When an insurer is particularly interested in managing extreme loss rate 

risks, a swap contract would be inappropriate.  Alternative methods considered is a motor 

loss rate ratchet option that can be used to protect the motor insurance providers against the 

risks of higher motor loss rates without giving up the possible benefits of lower motor loss 

rates.  The pricing formulas of a ratchet option and swaps on motor insurance loss rates are 

given under a few assumptions made on the aggregate loss process.  We choose the Esscher 

transform to link between the insurance market and capital market.  The risk neutral pricing 

formulas for the ratchet option and swaps are obtained by using Fourier inversion and are 

expressed in integral forms.   

We show numerical examples using numerical integration and simulation methods to 

illustrate the derivative prices and their characteristics when the claim amount distribution 

follows a generalized Erlang distribution. 
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