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Abstract 

 

In May of 1997 the average month end P/E ratio for software industry was 44. However, 

the five year historical average was 31. In this study we examine the effect of this 

industry value fluctuation on the effects of option prices. We examine the relationship 

between the level of relative valuation and option pricing via deviations in put-call parity 

and a two factor option pricing model incorporating relative valuation. We find support 

that the increase in relative industry valuation Granger causes put-call parity deviations, 

implying investors price options with greater expectation of downward movement. 

Additionally, we develop a model and find support that the two factor option pricing 

model which incorporates relative industry valuation prices options better than the 

standard Black-Scholes (1973) model. 
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I. Introduction 

Industry valuations vary month to month, sometimes greatly diverging from their time-

series average. For example, the month end industry price-to-earnings (P/E) ratio for software 

firms in May 1997 were 44, but the historical five year moving average at that time was 31. 

Although, by March of 2001, the industry wide P/E ratio dropped to 25 while the five year 

moving average was 44. Many studies examine the relation between P/E ratios and stock pricing.  

However, the option pricing models described in literature assume that these variations in 

relative valuations have no impact on the option prices. In this study we ask the question: “Will 

option buyers adjust the premium they pay when the industry valuation deviates from the 

historical average?” If the industry level valuation is significantly different from the historical 

level, would investors believe that the prices would regress back to historical levels. Thus, if the 

prevailing industry valuation is 42% greater than the historical average, would the market 

participants believe the stock values in the industry have a tendency to decrease? If so, how 

would they protect their investments? Conversely, if the current valuation level is 43% lower 

than the historical average, would the market participants expect the values to increase. And if so, 

could they take advantage of the expected price movements?  We contribute to the existing 

literature by demonstrating the relative industry price-to-earnings ratio Granger causes put-call 

parity deviations in the options market and presenting a model which incorporates the P/E ratio 

into the option price.  The evidence from the model calibration is consistent with P/E ratio being 

priced by option investors.  

There is voluminous literature showing P/E ratios are useful in valuing stocks.   Basu 

(1977, 1983) directly shows that firms with low price to earnings ratio outperform firms with 

high price to earnings ratio. Lie and Lie (2002) demonstrate that pricing multiples are important 
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in valuing firms. Liu, Nissim and Thomas (2002, 2007) find that the price to earnings ratio is the 

most important pricing multiple tool in assessing the value of the firm, even more so than 

multiples based on cash flows measures or dividends. Yee (2004) observes the discounted cash 

flow valuation method to be extremely noisy, and suggests analysts incorporate P/E ratios in 

their final valuation calculations for better precision.  Chua (2013) shows that investment 

bankers price IPOs partially due to the historical price to earnings ratio. The use of P/E 

valuations is not limited to financial industry professionals.  For example, Doran and Wright 

(2010) indicate that Finance professors, despite having extensive knowledge of market anomalies, 

trading strategies, and varieties of stock valuation methods, make investment decisions based 

largely on the price to earnings ratios.  Alford (1992) shows that the industry membership is an 

important criterion in assessing firm value when using the price to earnings ratio, a result that is 

important in relation to our study. Thus, the price to earnings ratio is an important factor in 

determining the value of the stock.  Regardless of the mechanism of price to earnings ratio’s 

effect on the stock returns, there is little doubt in the literature that it does affect the future asset 

returns.   

Based on Gordon (1962), the price to earnings ratio can be interpreted as: 

                                                     
𝑃𝑜

𝑌𝑜
=

(1−𝑏)

𝑘−𝑏𝑟
, (1) 

where 𝑃𝑜  is the current price, 𝑌𝑜 is the earnings, b is the retention rate, k is the cost of capital, and 

br is the earnings growth of the firm. This has been traditionally been interpreted as high (low) 

P/E is attributable to large (small) growth prospects, or 𝑏𝑟 is large (small). Conversely, high (low) 

P/E ratios could have low (high) cost of capital, or where investors have high (low) risk 

tolerances: k is low (high). Thus, if the risk profile of the industry changes because of an event 

that is idiosyncratic to the industry, the P/E of industry firms would adjust accordingly. Thus, if 
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the risk profile of an industry increases then decreases or vice versa, the industry P/E would 

mechanically revert back to the historical levels. 

If large segments of investors (ranging from retail to professional) value stocks based on 

the price to earnings ratios, will the fluctuations of the price to earnings ratio affect the values of 

options?  As Baker and Wurgler (2006, 2007) have shown, something as abstract as the investor 

sentiment is significantly correlated to the future returns of assets. Han (2008) shows that the 

investor sentiment described by Baker and Wurgler (2006, 2007) is indeed accounted for and 

priced in option premiums. Thus, it seems that option investors price in market conditions that 

may affect the future underlying asset price. Motivated by the literature demonstrating the effect 

of P/E ratio on stock prices, we examine the role of the price to earnings ratio and its overall 

effects on option prices. 

Options traditionally have two main functions: first, as a protective hedge against a 

detrimental movement in asset prices, and second, as an instrument to leverage expected price 

movements (Black, 1975). If options traders price such information, then P/E ratios indicating 

stock or industry overvaluation (undervaluation) would cause puts (calls) to become expensive 

relative to calls (puts) as the traders act on this information.    Many studies empirically show 

options have a predictive power over the future returns of the underlying asset. Typically, such 

studies focus on the Black and Scholes (1973) model (BSM) implied volatilities of the options as 

the predictor of future returns. For example, Doran, Peterson, and Tarrant (2007) find the implied 

volatility skew (or smirk, defined as the differences in implied volatilities of out-, at-, and in-the-

money options) of S&P 100 options can predict market crashes and spikes.  In the cross-section 

of stocks, Cremers and Weinbaum (2010) and Xing, Zhang, and Zhao (2010) document that the 

implied volatility spread (deviations in put-call parity) and skew (the slope of the implied 
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volatility smirk), respectively, are predictive of the future equity returns.
1
  Thus, through the 

examination of option implied volatilities, these studies demonstrate that  option traders price 

information into options before it is priced into the underlying stocks.  However, these studies do 

not attempt to examine the sources of stock return predictability.
2
  Using Panel-VAR analysis, 

we find the industry scaled P/E ratio Granger-causes the implied volatility spread in firms' 

options, but not vice-versa.
3
  We also demonstrate both P/E and implied volatility spread 

Granger-cause stock returns.  These results suggest the information contained in deviations in the 

industry scaled P/E ratio is incorporated into options prices, as reflected in the deviations in put-

call parity.  

Further, we develop a closed form option pricing model that includes the relative industry 

valuations and test the relationship of the option prices with the deviation of P/E valuation with 

the historical averages. The framework of most of the studies in options derives its roots from the 

BSM. Underlying in these models the discounted processes fundamentally follow a martingale 

process by which the market participants do not predict the value of the underlying asset rather 

believe that the asset value follows a geometric Brownian motion. However, in many fields in 

Finance, there are many outside factors that are correlated to the returns of stocks. Bates (1991) 

shows that the option market predicted the 1987 market crash two months prior to the event. 

While Bates states that the option traders anticipated the crash, he does not discuss the 

                                                           
1
 For brevity, we do not provide a comprehensive list of studies on the predictive ability of options.  However, 

DeLisle, Lee, and Mauck (2013) provide a thorough discussion of the related literature. 
2
 In addition to stock return predictability, extant literature documents the options market's ability predict corporate 

events.  For example, Patell and Wolfson (1981) investigate implied volatilities prior to earnings announcements, 

and find that their ex ante time series behavior is proportional to stock returns after the announcements.  Levy and 

Yoder (1993), Jayaraman, Frye, and Sabherwal (2001), and Cao, Chen, and Griffin (2005) show how the options 

market can predict merger and acquisition announcements. Futher, Barone-Adesi, Brown, and Harlow (1994) 

demonstrate option-implied volatility can predict the success or failure of the proposed takeover.  These findings 

imply that perhaps options traders are acting on private inside information.  However, it is highly improbable option 

traders have continuous inside information across the entire universe of optionable stocks. 
3
 We focus our tests on the Cremers and Weinbaum implied volatility spread, as Doran and Krieger (2010) find this 

measure to possess the most predictive power over future stock returns.  However, in unreported results, we find 

qualitatively similar results with the implied volatility skew measure of Xing, Zhang and Zhao.  
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mechanism by which the option traders would be able to make such a prediction. Much of the 

current option pricing models expand on the standard BSM to include the price and volatility 

jumps. Bates (2000) shows that these expected jumps are priced into the value of the options, 

especially after the significant market crash of 1987. Pan (2002) shows that the jump risk 

premium is priced in the S&P 500 index options. Eraker (2004) develops a state-dependent 

correlated jump diffusion model where the volatility shocks and the price jumps are correlated. 

However, none of these models predict the direction of the price jump. In our model, the 

investors’ expected direction of the price movement is directly related to the relationship 

between the current and historical P/E valuation. Thus, in the case of the software firm industry 

in May 1997, if the price movement is related to the level of industry overvaluation, will the 

correlated volatility shock be priced in due to industry overvaluation as well?  The results from 

the calibration of our model are consistent with the notion that option traders consider the P/E 

ratio when valuing options. Taken collectively, the evidence from our analyses suggests the 

relative industry valuation is a significant driver in the pricing of options. 

 The rest of the paper is structured as follows: Section II discusses the data and 

methodology. Section III develops the closed form model we test. Section IV discusses the 

findings, and Section V concludes our study. 

 

II. Data and Methodology 

The option data for this study is obtained from OptionMetrics Ivy Database for the period 

from January 1996 through December 2011. Following conventions in the literature, we remove 

options with zero bid prices or open interest, bid-ask spread midpoints of less than $0.125, and 

implied volatilities that are less than 0.03 or greater than 2.  We also limit the sample to options 

with maturities in the range of 7 to 60 days and moneyness (defined as spot price divided by 
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exercise price, S/K) between 0.8 and 1.2.  Stock price valuation is obtained from CRSP. Balance 

sheet and income statement data are obtained from Compustat. Industry classifications are 

obtained from Kenneth French’s website.
4
 At each month end, we collect the previous four 

quarters’ net income for every firm on Compustat. If the sum of the previous four quarters’ net 

income is less than zero then the firm is dropped. Additionally, if the month end per share price 

of the firm is below $5, the firm is also dropped. The firms are then sorted into the 49 Fama and 

French (1997) industries. The industry-specific market value weighted average price to earnings 

ratio is computed for each calendar month end. For each calendar month, the historical valuation 

is estimated as the five year average price to earnings ratios beginning with 6 months prior to the 

current month. Thus the scaled P/E ratio for the issue month is computed as: 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑃/𝐸𝑖𝑛𝑑𝑢𝑠 ,𝑇 =
𝑃/𝐸𝑖𝑛𝑑𝑢𝑠 ,𝑇

 𝑃/𝐸𝑖𝑛𝑑𝑢𝑠 ,𝑇−𝑡
66
𝑡=7

60

. 

  (2) 

 

Since the literature demonstrates both P/E ratio and option traits (particularly implied 

volatility) can forecast stock returns, we wish to determine if options are achieving their stock 

return predictability by pricing in the P/E ratio information.  For parsimony, in this analysis we 

use the put-call parity deviation measure constructed by Cremers and Weinbaum (2010) as the 

variable representing information contained in option prices.  Doran and Krieger (2010) show 

this measure is superior in predicting stock returns to other realized and implied volatility 

measures such as those from Bali and Hovakimian (2009) and Xing, Zhang, and Zhao (2010).  

Cremers and Weinbaum (2010) start with the original put-call parity relation developed by Stoll 

(1969): 

𝐶 − 𝑃 = 𝑆 − 𝑃𝑉 𝐾 ,                                                         (3) 

                                                           
4
 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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where C and P are call and put prices, respectively, with the same expiration date, S is the spot 

price of the stock, PV(·) denotes the present value, and K is the exercise price (the same for both 

the call and put options).  They then show that, if the BSM is used to price the options, this 

relation implies: 

𝐼𝑉𝑐 = 𝐼𝑉𝑝  ,                                                               (4) 

where IV is the Black-Scholes implied volatility and c (p) denotes the call (put) option.  Thus, 

put-call parity deviations can be measured by the differences in the implied volatility of the call 

and put options with the same maturity and exercise price.  We follow Cremers and Weinbaum 

(2010) and at the end of each month on day t for each stock i with traded options we calculate the 

volatility spread (VS): 

𝑉𝑆𝑖 ,𝑡 = 𝐼𝑉𝑖,𝑡
𝑐 − 𝐼𝑉𝑖,𝑡

𝑝 =  𝑤𝑗 ,𝑡
𝑖 (𝐼𝑉𝑗 ,𝑡

𝑐 − 𝐼𝑉𝑗 ,𝑡
𝑝 )

𝑁𝑖 ,𝑡

𝑗=1

, 

(5) 

 

where j denotes pairs of call and put options with the same maturities and exercise prices, there 

are Ni,t pairs of options, and 𝑤𝑗 ,𝑡
𝑖  indicates the weights computed from the average open interest 

in the call and put pair.  Thus, a positive (negative) VS indicates calls (puts) are expensive 

relative to puts (calls). 

 Table 1 presents the summary statistics of the monthly stock returns (Return), the end of 

the month volatility spreads (VS), and the end-of-the month scaled price-to earnings ratios (P/E).  

Panel A shows that there are 56,500 monthly observations.  The mean monthly return, VS, and 

P/E, respectively are 0.012 (120 basis points), -0.008, and 1.048.  Panel B presents the 

correlations between Return, VS, and P/E, as well as the correlations of their lags of up to two 

months. 
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In order to investigate the relation between P/E and VS, we estimate a panel VAR using 

system GMM methodology used by Love and Zicchino (2006), which allows for firm 

heterogeneity and overcomes the restriction that each cross-sectional unit has the same 

underlying structure.  We specify a second-order VAR model as: 

𝑥𝑖 ,𝑡 = 𝜇 +  𝛽𝑗𝑥𝑖,𝑡−𝑗

2

𝑗=1

+ 𝑓𝑖 + 𝑒𝑡 , 

(6) 

 

  where xt  denotes a vector of firm-level variables including month-end VS, P/E, and/or monthly 

stock returns (Return), fi represents firm fixed effects, and et are the residuals.  We then test the 

null hypothesis that, with VSt as the dependent variable, the estimated coefficients of P/Et are 

zero (i.e., 𝛽𝑗 ,𝑃/𝐸 = 0 for all j).  If the null is rejected, then P/Et  Granger-causes VSt.  Similarly, we 

can test if VSt  Granger-causes P/Et.  In addition, we can test the cumulative affect (i.e.,  𝛽2
𝑗=1 𝑗

 = 

0 for all j) to see if the overall effect is in the expected direction.  In this circumstance, if P/Et  

Granger-causes VSt, we hypothesize that overall effect will be negative, as undervaluation 

(overvaluation) as displayed by the P/E should increase (decrease) the volatility spread.  The 

rationale being that option traders with information indicating stock undervaluation 

(overvaluation) expect the underlying stock price to increase (decrease) and drive the price of 

calls (puts) up relative to puts (calls). 

 

III. Panel-VAR Results 

 Table 2 presents the results from various specifications of the base panel-VAR model.  

Panel A displays the results from using only VS and Return in a bivariate model.  These results 

demonstrate that the implied volatility spread Granger-causes returns at the monthly level, and in 

a positive manner (e.g., higher VS causes higher future Return).  This time-series based result is 
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consistent with the portfolio-style analysis results by Cremers and Weinbaum (2010), who show 

VS is predictive of future stock returns.  However, we additionally show that Return also 

Granger-cause VS, and in a negative way.  Thus, as returns get very high (low), future VS 

decreases (increases).  This result suggests the options market consists of contrarian, and not 

momentum, traders.   

 Panel B presents the results from a bivariate model with industry-scaled P/E and VS.  P/E 

strongly Granger-causes VS (p-value<0.0000) and, as predicted by our hypothesis, the 

cumulative effect of P/E on VS is negative.  There is no evidence that VS Granger-causes P/E, 

thus the effect only goes in one direction.  Panel C extends the model in Panel B to a trivariate 

model, and includes Return.  The results show that P/E and Return Granger-cause VS, and both 

have negative impacts on VS.  Both VS and P/E Granger-cause Return (p-value<0.000 and p-

value=0.0759, respectively), but the cumulative effects of each are not statistically significant.  

Neither VS nor Return Granger-cause P/E.  These results suggest that investors take P/E into 

account when pricing options, and, thus, encourage the evaluation of an option pricing model 

which incorporates P/E. 

 

IV. Option Pricing Model with P/E 

 The Granger causality evidence from the panel-VAR analyses suggests the industry-

scaled P/E is not affected by past stock or option prices, but past industry-scaled P/E affects both 

current stock and options prices.  This is consistent with the notion that, not only do investors use 

P/E to value stocks (Basu 1977, 1983; Lie and Lie 2002; Liu et al. 2002, 2007; Doran and 

Wright 2010), but they also use P/E to value options.  Thus, since this study focuses on the 

relationship of the relative valuation and the option prices, we develop a model that relates the 
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observed option prices with the expected price movement due to the relative industry valuation. 

The model is closely related to the Gibson and Schwartz (1990) model, which prices the 

contingent claim of oil with convenience yield.  

We denote that 𝑋𝑡 = ln(𝑆𝑡) and 𝑌𝑡 = ln(𝑆𝑐𝑎𝑙𝑒𝑑 𝑃/𝐸𝑖𝑛𝑑𝑢𝑠 ,𝑡), where 𝑆𝑡  is the stock price 

at time t. Our basic assumption is that the price process is described by the following Stochastic 

Differential Equation: 

𝑑𝑋𝑡 = 𝛼 𝛽 − 𝑌𝑡 𝑑𝑡 + 𝜎𝑑𝑊𝑡 , (7) 

𝑑𝑌𝑡 = 𝑎 𝑏 − 𝑌𝑡 𝑑𝑡 + 𝑘𝑑𝐵𝑡 , (8) 

𝑑𝑋𝑡𝑑𝐵𝑡 = 𝜚𝑑𝑡, (9) 

where α is the speed of adjustment of the stock price to historical industry P/E levels, a is the 

expected speed of adjustment to historical P/E levels priced in to the option value, 𝛽 is the risk 

free rate, 𝜎 is the volatility of the underlying stock, 𝑘 is the volatility of the Scaled Industry P/E, 

𝜚 is the correlation between the underlying stock, the Scaled Industry P/E. b is the value that 

ln(𝑆𝑐𝑎𝑙𝑒𝑑 𝑃/𝐸𝑖𝑛𝑑𝑢𝑠 ,𝑡) is expected to drift toward, dWt and dBt are standard Brownian motion 

increments. Since the paper hypothesizes that the investors expect the option prices to adjust to 

historical values, then b is expected to be zero.  

By redefining: 

𝛿 𝑡 = 𝛼𝑌𝑡 , (10) 

we can see that this model is similar to the Gibson-Schwartz (1990) model,  where: 

𝑑𝑋𝑡 =  𝛼𝛽 − 𝛿𝑡 𝑑𝑡 + 𝜎𝑑𝑊𝑡 , (11) 

𝑑𝛿𝑡 = 𝑎 𝛼𝑏 − 𝛿𝑡 𝑑𝑡 + 𝑘𝛼𝑑𝐵𝑡 . (12) 

Compare this with the results from Bjerksund (1991), we have: 

𝑒−𝑟𝑡𝐸 𝑆𝑡 ℱ𝑡  =  𝑆𝑡  exp [−
1

𝑎
𝛿𝑡 1 − 𝜃 + 𝐴  𝜏 −

1−𝜃

𝑎
 +

𝛼2

4𝑎3
 1 − 𝜃2 ], (13) 
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where: 

𝐴 = −𝛼𝑏 − 𝜚𝜎
𝑘𝛼

𝑎
+

1

2

𝛼2

𝑎2 , (14) 

𝜃 = 𝑒−𝑎𝜏 , (15) 

𝜏 = 𝑇 − 𝑡. (16) 

Thus, the futures price is: 

𝐹𝑡 ,𝑇 = 𝐸[𝑆𝑡|ℱ𝑡]. (17) 

The European Call Option is modeled as: 

𝐶 𝑆𝑡 ,𝑌𝑡 = 𝑒−𝑟𝜏𝐸 (𝑆𝑡 − 𝐾)+ ℱ𝑡 = 𝑒−𝑟𝜏𝐸 𝑆𝑡 ℱ𝑡 𝑁 𝑑1 − 𝑒−𝑟𝜏𝐾𝑁(𝑑2), (18) 

where: 

𝑑1 =
𝑙𝑛

𝐸[𝑆𝑡 |ℱ𝑡 ]

𝐾
+

1

2
𝜎 2

𝜎 
, (19) 

𝑑2 =
𝑙𝑛

𝐸[𝑆𝑡 |ℱ𝑡]

𝐾
−

1

2
𝜎 2

𝜎 
, (20) 

𝜎 2 =  𝜎2 −
2

𝑎
𝑘𝛼𝜎𝜚 +

𝑘2𝛼2

𝑎2  𝜏 + 2  
𝑘𝛼𝜎𝜚

𝑎2 −
𝑘2𝛼2

𝑎3   1 − 𝜃 +
𝑘2𝛼2

2𝑎3 (1 − 𝜃2), (21) 

𝑟 = 𝛼𝛽 +
1

2
𝜎 2 . (22) 

Similarly, the European Put Option is modeled as: 

𝑃 𝑆𝑡 ,𝑌𝑡 = 𝑒−𝑟𝜏𝐸 (𝐾 − 𝑆𝑡)
+ ℱ𝑡 = −𝑒−𝑟𝜏𝐸 𝑆𝑡 ℱ𝑡 𝑁 −𝑑1 + 𝑒−𝑟𝜏𝐾𝑁(−𝑑2). (23) 

 

IV. Model performance 

A. Model fitting 

The parameters of the model were calibrated using the least squares method. Option 

prices with missing implied volatilities are dropped from the sample. In order to be consistent 

with the Panel VAR regressions, the sample was limited to the options where the time to 
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maturity was less than sixty days. Options traded from 1996 to 2010 were included in the 

calibration. The last trading day for each month was included for the sample. For each calendar 

month, the volatility of each stock is estimated using the previous five years. Also, for each 

calendar month, the volatility of the Scaled Industry P/E ratio is estimated using the previous 

five years. The correlation between the each individual stock and Scaled Industry P/E is also 

estimated using the previous five years. Since the model has two explicit forms, the sample was 

separated into the call and put options. 

Table 3 shows the results of the calibration of the parameters of the model. Panel A 

highlights only the call options. The parameter “a” in the model shows the expected speed of 

adjustment of the model. The calibrated parameter is 7518.2, and this shows that the investors 

price the call option with the expectation that the industry P/E ratio will converge to the mean 

ratio very quickly. However, the coefficient for the parameter “b” is estimated to be .0005. The 

parameter α is 8.87, which shows that the call options are priced with the expectations that the 

stock price will converge to the historical industry P/E. Thus, it seems that the investors price the 

call options with the expectations that the industry P/E will converge quickly to the historical 

mean. This finding suggests that investors price the call options with the belief that the industry 

value converge to the historical average P/E. 

In Panel B we examine the results of the model calibration for the put options. We find 

that the parameter "a" is calibrated to .0493. Thus, it seems that the speed of adjustment for the 

put options is lower. Also, the investors seem to price the put option will continually decrease. 

The calibrated value for "b" is -221.8. It seems that investors price the put options with the 

expectation the industry P/E will decrease. This is consistent with the hypothesis that the 

investors purchase put options as a hedge against downward movement. The parameter α is -.01, 
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which shows that the put options are priced with the expectations that the stock price will move 

away from the historical industry P/E, though the magnitude is small. Additionally, consistent 

with the model, the investors increase the premium paid for the put option with the increase in 

the Scaled Industry P/E. 

 

B. In-sample test 

We test the in-sample pricing errors of the model. We examine the results in Table 4. In 

order to calculate the Squared Error, the predicted value of each option is calculated based on the 

calibrated parameters. The Squared Error of the model is computed as: 

 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟𝑚𝑜𝑑𝑒𝑙 = (𝑝 𝑖,𝑚𝑜𝑑𝑒𝑙 − 𝑝𝑖)
2  ,                             (24) 

where 𝑝 𝑖 ,𝑚𝑜𝑑𝑒𝑙  is the predicted option value based on our Scaled Industry P/E model and 𝑝𝑖  is the 

actual premium of the option. The Squared Error based on the Black-Scholes model is likewise 

computed. The historical volatility is used to compute the estimated premium for the Black-

Scholes model. The implied volatility is specifically not used because the implied volatility is the 

value which specifically fits the Black-Scholes model.  

In Panel A, we examine the goodness of fit of the call options. The mean squared error 

for the two factor model is 1.45 and the mean squared error for the Black-Scholes model is 1.51. 

This model which prices the industry level P/E into account is significantly better at pricing the 

options. The mean squared error is 4 percent lower for the two factor model. When the root mean 

squared is computed as: 

 𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟𝑚𝑜𝑑𝑒𝑙 =   (𝑝 𝑖 ,𝑚𝑜𝑑𝑒𝑙 −𝑝𝑖)
2𝑁

𝑖=1

𝑁
 (25) 

This implies that the root mean square for the model is lower by $.027.  
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In Panel B, we examine the goodness of fit for the put options. We find that the mean squared 

error is 1.22 for the two factor model and 1.35 for the Black-Scholes model. This represents a 

decrease in the squared error of 9.4 percent. This also implies that the root mean square for the 

model is lower by $.056. These decreases in pricing error are significant statistically as well as 

economically. We demonstrate that including the relative industry P/E, the model is a better 

predictor of observed option premiums relative to the Black-Scholes model. 

Also, the decrease in the Mean Squared Error is lower with the put model relative to the 

call model. This implies that the ability of the model to predict the price is better with the put 

options. It seems that the option investors may value the put options more extensively based on 

the historical industry P/E. This is expected because one of the main uses for options is as a 

hedge against downward movement and the high scaled industry valuation seems to increase the 

value of the hedge. 

 

C. Out-of-sample test 

We test the out-of-sample pricing errors of the model. For options traded in 2011, we 

selected the sub-sample with the same criteria: The implied volatility must not be missing and 

the maturity of the option must be within sixty days. We examine the results in Table 5. The 

Squared Error of the model and the Black-Scholes is computed similar to above. 

In Panel A we examine the Mean Squared Errors of the call options for this model and 

the Black-Scholes model. We find that the mean of the Squared Error is 1.33 for our Scaled 

Industry P/E model and 1.41 for the Black-Scholes model. This represents a decrease of 5.5 

percent of the Squared Error. This represents a decrease of $.034 in the root mean error. This is 

both statistically and economically significant in the pricing the value of the option. In Panel B, 
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we limit the sample to the put options. We find that the mean of the Squared Error is 1.21 for the 

Scaled P/E model and 1.30 for the Black-Scholes model. The mean Squared Error is lower by 

6.5%. Again, this represents a decrease of $.038 in the root mean error. This difference is both 

statistically and economically significant. We consistently find that the Scaled Industry P/E 

model is also significantly better at predicting the put option valuation. We again show that the 

option pricing model that incorporates the relative industry valuation more accurately predicts 

the prices observed. 

Also, from the out-of-sample findings, the spread between the Scaled Industry P/E model 

and the Black-Scholes model is greater with the put options relative to the call options. This 

implies that the ability of the model to predict the price is better with the put options. It seems 

that the option investors do indeed value the put options more extensively based on the historical 

industry P/E.  

 

V. Conclusion 

Price-to-earnings ratio is an important metric in evaluating investment opportunities. 

Many studies, including Basu (1977, 1983), Lie and Lie (2002), Liu et al. (2002, 2007), Doran 

and Wright (2010) show that retail investors and other finance professionals use the P/E ratio to 

gauge investment opportunities. The P/E ratio has been traditionally been used to denote growth 

or value firms, where firms with high P/E are expected to have large growth opportunities. 

Conversely, the change in the P/E may be attributed to the change in the risk profile of the firm. 

Thus the firm specific P/E ratio in itself will be highly variable based on the changes of the 

firm’s growth prospect and risk profile. These changes may be idiosyncratic or could be industry 

wide. And these industry-wide shocks will inherently affect the P/E of all firms in the industry. 

Thus, in this study we examine if the increase or decrease in industry level P/E is priced into the 



16 
 

option premiums. We expect that the high (low) industry P/E relative to the historical level 

would prompt investors to expect that the price will decrease (increase). Thus, the option 

premiums will reflect the expected price movements of investors.  

We examine the effects of the scaled industry-wide P/E in two ways: The skewness of the 

implied volatility spread and develop a model that incorporates the expected mean reversion of 

the industry level P/E. Consistent with the expectation, we find that the scaled industry P/E 

Granger causes the put-call parity deviation. Also consistent with the expectation, increases in 

scaled industry P/E Granger causes an increase in the implied volatility of the put option and a 

decrease in the implied volatility of the call option. This supports the notion that option investors 

price the scaled industry-wide P/E. 

Additionally, we develop a model which prices the expectation of the industry P/E to 

revert to historical values. Based on the model calibration, the two factor option model is 

significantly better in modeling the observed option prices relative to the standard Black-Scholes 

model. Also, the model is better at predicting the put option relative to the call option. This 

highlights the use of the put option in hedging against the downward movement when the 

industry P/E increases above the historical mean. 
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Table 1 - Summary statistics 

Panel A of this table reports the summary statistics for the monthly stock returns (Return),  the Cremers and Weinbaum (2010) measure of end-of-

month implied volatility spread of the options (VS), and the end-of-month industry-scaled price-to-earnings ratios (P/E).  Panel B reports the 

correlations between these measures and their one- and two-month lags.  The data spans from January 1996 to December 2010. 

 

Panel A:  Summary Statistics 

Variable N Mean 

Standard 

Deviation Minimum 

25
th

 

Percentile 

50
th

 

Percentile 

75
th

 

Percentile Maximum 

Return 56500 0.012 0.106 -0.666 -0.042 0.010 0.063 1.468 

VS 56500 -0.008 0.040 -1.106 -0.022 -0.007 0.007 1.252 

P/E 56500 1.048 0.372 0.205 0.821 0.978 1.196 13.734 

  

 

Panel B:  Correlations 

 

Return (t=0) Return (t=-1) Return (t=-2) VS (t=0) VS (t=-1) VS (t=-2) P/E (t=0) P/E (t=-1) P/E (t=-2) 

Return (t=0) 1 

        Return (t=-1) -0.0237 1 

       Return (t=-2) -0.0377 -0.0269 1 

      VS (t=0) -0.0799 -0.0199 -0.0103 1 

     VS (t=-1) 0.0363 -0.0815 -0.0204 0.0533 1 

    VS (t=-2) -0.0149 0.0379 -0.0840 0.0399 0.0542 1 

   P/E (t=0) -0.0671 0.0589 0.0582 -0.0269 -0.0246 -0.0256 1 

  P/E (t=-1) 0.0347 0.0660 0.0606 -0.0227 -0.0253 -0.0261 0.9343 1 

 P/E (t=-2) 0.0361 -0.0381 0.0681 -0.0215 -0.0209 -0.0268 0.8684 0.9324 1 
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Table 2 - Granger causality tests 

This table reports the results from panel-VAR analyses which are estimated using the GMM method of 

Love and Zicchino (2006).   Returni,t is the monthly return of stock i in month t.  P/Ei,t is the industry-

scaled price-to-earnings ratio for stock i in month t (Panels B and C).  VSi,t is the Cremers and Weinbaum 

(2010) measure of implied volatility spread of the options on stock i at the end of month t.  In each 

analysis, a chi-square test is performed to test the null hypothesis of 𝛽𝑗= 0 for j = 1, 2 (Granger causality 

test).  Additionally, a chi-square test of cumulative significance ( 𝛽𝑗
2
𝑗=1 =0) is performed to determine 

the overall impact on the dependent variable.  

 

Panel A.  VS and Return  

𝑅𝑒𝑡𝑢𝑟𝑛𝑖 ,𝑡 = 𝜇 +  𝛼𝑗𝑅𝑒𝑡𝑢𝑟𝑛𝑖 ,𝑡−𝑗

2

𝑗=1

+  𝛽𝑗

2

𝑗=1

𝑉𝑆𝑖 ,𝑡−𝑗  

H0 :  𝛽𝑗= 0 for j = 1, 2                             χ
2
 (2) = 49.76   p-value = 0.0000 

H0 :   𝛽𝑗
2
𝑗=1 =0;  sum = 0.1115              χ

2
 (1) = 24.86                             p-value = 0.0000 

 

𝑉𝑆𝑖 ,𝑡 = 𝜇 +  𝛼𝑗𝑉𝑆𝑖 ,𝑡−𝑗

2

𝑗=1

+  𝛽𝑗

2

𝑗=1

𝑅𝑒𝑡𝑢𝑟𝑛𝑖 ,𝑡−𝑗  

H0 :  𝛽𝑗= 0 for j = 1, 2                             χ
2
 (2) = 10.24   p-value = 0.0060 

H0 :   𝛽𝑗
2
𝑗=1 =0;  sum = -0.0056              χ

2
 (1) = 7.72                             p-value = 0.0054 

 
 

 

Panel B. Industry scaled P/E and VS  

𝑉𝑆𝑖 ,𝑡 = 𝜇 +  𝛼𝑗𝑉𝑆𝑖 ,𝑡−𝑗

2

𝑗=1

+  𝛽𝑗

2

𝑗=1

𝑃/𝐸𝑖 ,𝑡−𝑗  

H0 :  𝛽𝑗= 0 for j = 1, 2                             χ
2
 (2) = 147.50   p-value = 0.0000 

H0 :   𝛽𝑗
2
𝑗=1 =0;  sum = -0.0146              χ

2
 (1) = 147.27                             p-value = 0.0000 

 

𝑃/𝐸𝑖 ,𝑡 = 𝜇 +  𝛼𝑗𝑃/𝐸𝑖 ,𝑡−𝑗

2

𝑗=1

+  𝛽𝑗

2

𝑗=1

𝑉𝑆𝑖 ,𝑡−𝑗  

H0 :  𝛽𝑗= 0 for j = 1, 2                             χ
2
 (2) = 1.84   p-value = 0.3987 

H0 :   𝛽𝑗
2
𝑗=1 =0;  sum = -0.0320              χ

2
 (1) = 1.82   p-value = 0.1767 

 
 

 

Panel C. Industry scaled P/E, VS, and Return  
 

𝑉𝑆𝑖 ,𝑡 = 𝜇 +  𝛼𝑗𝑉𝑆𝑖 ,𝑡−𝑗

2

𝑗=1

+  𝛽𝑗

2

𝑗=1

𝑃/𝐸𝑖 ,𝑡−𝑗 +  𝛾𝑗

2

𝑗=1

𝑅𝑒𝑡𝑢𝑟𝑛𝑖 ,𝑡−𝑗  

H0 :  𝛽𝑗= 0 for j = 1, 2                             χ
2
 (2) = 135.26   p-value = 0.0000 

H0 :   𝛽𝑗
2
𝑗=1 =0;  sum = -0.0142              χ

2
 (1) = 135.08   p-value = 0.0000 

 
H0 :  𝛾𝑗= 0 for j = 1, 2                             χ

2
 (2) = 7.83   p-value = 0.0200 

H0 :   𝛾𝑗
2
𝑗=1 =0;  sum = -0.0046              χ

2
 (1) = 4.53   p-value = 0.0333 
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𝑃/𝐸𝑖 ,𝑡 = 𝜇 +  𝛼𝑗𝑃/𝐸𝑖 ,𝑡−𝑗

2

𝑗=1

+  𝛽𝑗

2

𝑗=1

𝑉𝑆𝑖 ,𝑡−𝑗 +  𝛾𝑗

2

𝑗=1

𝑅𝑒𝑡𝑢𝑟𝑛𝑖 ,𝑡−𝑗  

H0 :  𝛽𝑗= 0 for j = 1, 2                             χ
2
 (2) = 2.33   p-value = 0.3127 

H0 :   𝛽𝑗
2
𝑗=1 =0;  sum = -0.0368              χ

2
 (1) = 2.31   p-value = 0.1286 

 
H0 :  𝛾𝑗= 0 for j = 1, 2                             χ

2
 (2) = 1.33   p-value = 0.5147 

H0 :   𝛾𝑗
2
𝑗=1 =0;  sum = -0.0098              χ

2
 (1) = 0.61   p-value = 0.4366 

 

𝑅𝑒𝑡𝑢𝑟𝑛𝑖 ,𝑡 = 𝜇 +  𝛼𝑗𝑅𝑒𝑡𝑢𝑟𝑛𝑖 ,𝑡−𝑗

2

𝑗=1

+  𝛽𝑗

2

𝑗=1

𝑉𝑆𝑖 ,𝑡−𝑗 +  𝛾𝑗

2

𝑗=1

𝑃/𝐸𝑖 ,𝑡−𝑗  

H0 :  𝛽𝑗= 0 for j = 1, 2                             χ
2
 (2) = 33.23   p-value = 0.0000 

H0 :   𝛽𝑗
2
𝑗=1 =0;  sum = 0.0321              χ

2
 (1) =  1.93   p-value = 0.1645 

 
H0 :  𝛾𝑗= 0 for j = 1, 2                             χ

2
 (2) = 5.16   p-value = 0.0759 

H0 :   𝛾𝑗
2
𝑗=1 =0;  sum = 0.0048              χ

2
 (1) = 2.14   p-value = 0.1431 
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Table 3 - Option Model Calibration 

This table reports the estimated parameters from calibrating the following models: 

Call option value (Panel A): 

 
𝐶 𝑆𝑡 ,𝑌𝑡 = 𝑒−𝑟𝜏𝐸 (𝑆𝑡 − 𝐾)+ ℱ𝑡 = 𝑒−𝑟𝜏𝐸 𝑆𝑡  ℱ𝑡 𝑁 𝑑1 − 𝑒−𝑟𝜏𝐾𝑁 𝑑2  

 

Put option value (Panel B): 

 
𝑃 𝑆𝑡 ,𝑌𝑡 = 𝑒−𝑟𝜏𝐸 (𝐾 − 𝑆𝑡)

+ ℱ𝑡 = −𝑒−𝑟𝜏𝐸 𝑆𝑡  ℱ𝑡 𝑁 −𝑑1 + 𝑒−𝑟𝜏𝐾𝑁(−𝑑2) 

 

where 

𝑑1 =
𝑙𝑛

𝐸 𝑆𝑡 |ℱ𝑡  

𝐾
+

1

2
𝜎 2

𝜎 
 

𝑑2 =
𝑙𝑛

𝐸[𝑆𝑡 |ℱ𝑡 ]

𝐾
−

1

2
𝜎 2

𝜎 
 

𝜎 2 =  𝜎2 −
2

𝑎
𝑘𝛼𝜎𝜚 +

𝑘2𝛼2

𝑎2
 𝜏 + 2 

𝑘𝛼𝜎𝜚

𝑎2
−
𝑘2𝛼2

𝑎3
  1 − 𝜃 +

𝑘2𝛼2

2𝑎3
 1 − 𝜃2  

 𝑟 = 𝛼𝛽 +
1

2
𝜎 2 

𝜃 = 𝑒−𝑎𝜏  

𝜏 = 𝑇 − 𝑡 

and a is the expected speed of adjustment to historical P/E levels priced in to the option value, 𝛽 is the 

risk free rate, 𝜎 is the volatility of the underlying stock, 𝑘 is the volatility of the Scaled Industry P/E, 𝜚 is 

the correlation between the underlying stock and the Scaled Industry P/E. b is the value that 

ln(𝑆𝑐𝑎𝑙𝑒𝑑 𝑃/𝐸𝑖𝑛𝑑𝑢𝑠 ,𝑡) is expected to drift toward. 

 

Panel A: Call Option Model 

Parameter Estimate Standard error 

a 7518.20 279.800 

α 8.8711 0.0347 

b 0.0005 0.0000 

   Panel B: Put Option Model 

Parameter Estimate Standard error 

a 0.0493 0.00346 

α -0.0103 0.000660 

b -221.80 52.9301 
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Table 4 - In-Sample Option Model Goodness of Fit 

This table reports the mean squared errors from the proposed models and those from the Black-Scholes 

(1973) model.  Predicted values were obtained by using in-sample data used for calibrating the proposed 

model (January 1996 - December 2010).  Panel A reports the mean and median squared errors from both 

call options models, as well as a t-test of the difference in means and a Wilcoxon signed rank test of 

difference in medians.  Panel B reports similar results from the put option models. 

 

     Panel A: Call Option 

Model N Mean 

Standard 

Error Median 

Scaled Industry 

P/E 1611245 1.448 0.019 0.0697 

Black-Scholes 1611334 1.514 0.020 0.0598 

  t-test (0.000) Signed Rank (0.000) 

     Panel B: Put Option 

Model N Mean 

Standard 

Error Median 

Scaled Industry 

P/E 1437853 1.221 0.014 0.0728 

Black-Scholes 1437930 1.347 0.016 0.0693 

  t-test (0.000) Signed Rank (0.000) 
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Table 5 - Out-of-Sample Option Model Goodness of Fit 

This table reports the mean squared errors from the proposed models and those from the Black-Scholes 

(1973) model.  Predicted values were obtained by using out-of-sample data (January 2011 - December 

2011) from that used for calibrating the proposed model (January 1996 - December 2010).  Panel A 

reports the mean and median squared errors from both call options models, as well as a t-test of the 

difference in means and a Wilcoxon signed rank test of difference in medians.  Panel B reports similar 

results from the put option models. 

 

     Panel A: Call Option 

Model N Mean Standard Error Median 

Scaled Industry P/E 105887 1.332 0.024 0.0728 

Black-Scholes 105888 1.410 0.025 0.0778 

  t-test (0.000) Signed Rank (0.000) 

     Panel B: Put Option 

Model N Mean Standard Error Median 

Scaled Industry P/E 104215 1.213 0.023 0.0564 

Black-Scholes 104216 1.297 0.024 0.0586 

  t-test (0.000) Signed Rank (0.000) 

 


