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Abstract

A simple Hawkes model have been developed for the price tick structure dynamics incorporating market
microstructure noise and trade clustering. In this paper, the model is extended with random mark to deal
with more realistic price tick structures of equities. We examine the impact of jump in price dynamics
to the future movements and dependency between the jump sizes and ground intensities. We also derive
the volatility formula based on stochastic and statistical methods and compare with realized volatility in
simulation and empirical studies. The marked Hawkes model is useful to estimate the intraday volatility
similarly in the case of simple Hawkes model.
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1. Introduction

In this paper, we model the tick dynamics of stock prices observed at ultra-high-frequency level
based on the symmetric marked Hawkes process and examine the empirical properties of the price
dynamics. It is known that the simple self and mutually excited Hawkes model for the price dynamics
with unit jump size incorporates the stylized facts of the ultra-high-frequency financial data such as
market microstructure noise and order clustering. However, we observe random size jumps, i.e., not a
constant jump as in the simple Hawkes model, in the tick structure of equity markets, especially when
there is a high ratio between the stock price and minimum tick size. Combining the Hawkes model with
a mark structure, additional information to each event, we propose more realistic model of the tick price
dynamics to deal with random size jumps.

The recent studies on (ultra)-high-frequency data and the market microstructure have developed in
several ways. There is growing literature on the financial theory of market microstructure and limit order
book (Roşu, 2009), and the role of algorithmic trading at high-frequency rate (Foucault, 2012; Chaboud
et al., 2014; Hoffmann, 2014). A number of researches focused on the reduced form or stochastic modeling
of the limit order dynamics and order executions, see Lo et al. (2002), Cont et al. (2010), Malo and
Pennanen (2012), Cont and De Larrard (2013), Abergel and Jedidi (2013).

The statistical property of ultra-high-frequency data is also an important subject as they exhibit
the distinctive characteristics from the macro price dynamics. For example, one need to be careful
with applying the typical statistical methods to ultra-high-frequency data, when computing the realized
volatility (Andersen et al., 2003) due to the microstructure noise which refers to the mean reverting
properties of price processes at high frequency level. Aı̈t-Sahalia et al. (2005), Zhang et al. (2005), Hansen
and Lunde (2006) and Aı̈t-Sahalia et al. (2011) devoted to measure the volatility of the return in the
presence of the market microstructure noise. Huth and Abergel (2014) examined the lead/lag relationship
between asset prices and showed that there are significant cross correlations in the futures/stock at high-
frequency contrast with the daily data cases where the cross correlations are negligible. The lead/lag
relationship among international index futures of different countries are also observed by Alsayed and
McGroarty (2014).

The financial asset price time series in ultra-high-frequency level exhibits several autocorrelations that
are not observed on a daily basis. Under the tick structure with minimum tick size of price variation,
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the price dynamics is a pure jump process that consists of up jumps and down jumps. First, the
frequency of up movements tends to increase as the frequency of the past down movements increase
and vice versa. This causes the mean reverting property in price dynamics although the correlations
last less than a few seconds. Second, there are also autocorrelations between the movements of the
same direction. This cause the volatility clustering however different from the clustering in macro level,
typically modeled by GARCH (Bollerslev, 1986) or the stochastic volatility model (Heston, 1993), as the
clustering properties only last a few seconds. The durations of the autocorrelations are much shorter
than that of the autocorrelation observed in daily level.

These properties are well incorporated into the Hawkes model, which belongs to the class of point
process and is introduced by Hawkes (1971), and hence there has been growing related work of modeling
price dynamics based on the Hawkes process. Hewlett (2006) introduced the bivariate Hawkes process
to model the buy and sell oder arrivals and examined the impact of orders to future prices. Bacry et al.
(2012) explained the non-parametric estimation method for the symmetric Hawkes process based on
high-frequency futures data. Based on mutually exciting Hawkes process, Bacry et al. (2013) suggested
the mathematical framework that incorporate the market microstructure noise and the Epps effect, the
correlation between the returns of two different assets at high sampling frequency. Trade clustering
properties of the price dynamics in micro level is well incorporated by the self excited Hawkes process
(Da Fonseca and Zaatour, 2014b). Da Fonseca and Zaatour (2014a) derived the formulas for the moments
and correlation function for the self and mutually excited Hawkes process. Bacry and Muzy (2014)
introduced a multivariate Hawkes process for the up and down price movements and buy and sell orders
to explain the stylized facts of the market impact and microstructure. Zheng et al. (2014) suggested a
multivariate constrained Hawkes process to describe the dynamics of the bid and ask prices. Lee and Seo
(2014) focused on the daily and intraday volatility estimation based on the symmetric Hawkes process
and compared with the realized volatility.

The previous work mainly focused on the simple point process model where the jump size is constant.
We extend the existing simple Hawkes model to the marked Hawkes model to handle more realistic price
movements in stock markets where we observe the random size jumps (marks). The future effects of
marks depend on the absolute sizes of the marks and hence to deal with the future impact of the mark, a
linear impact function is introduced. Our empirical study shows that the estimates of the slope parameter
of the impact function are significant positive values in stock markets. This implies that the larger marks
tends to magnify the future intensities more than the smaller marks. For the distribution of the mark, we
do not assume a specific distribution in this paper but we use the empirical distribution for estimations
and volatility calculation. Our model is not limited to the independent mark as the empirical studies
shows the intensity dependent mark distribution.

The rest of the paper is organized as follows. In Section 2, the marked Hawkes model is proposed
to describe the tick price dynamics of equities. We show simulation results in Section 3 and empirical
studies in Section 4. Section 5 concludes the paper. Mathematical proofs are in Appendix.

2. Symmetric marked Hawkes model

2.1. Marked point process

In this subsection, we introduce the basic concepts of marked point processes. Our mathematical
framework is in line with Daley and Vere-Jones (2003). With given complete separable metric state space
X , a point process is a measure to count a number of random events that occur in an open set which
belongs to the σ-field of X ’s Borel set, BX . To deal with random events, we introduce a probability
space (Ω,P). Then a point process N(ω) for ω ∈ Ω, or simply N , is the counting measure on BX , i.e.,
N(A) = N(ω,A) is a random non-negative finite integer for any bounded A ∈ BX . In other words, N(A)
is a random variable that counts the number of events in A. From now on, we omit the term ω for the
notational simplicity.

A marked point process is a more complex model and is introduced to describe not only the location
of random events but also additional information, called mark, attached to each event. A marked point
process is a point process {(t`, k(t`))} with locations t` ∈ R and marks k(t`) in a mark space K. The
location space is not necessarily R, but in this paper, to model the price movements over time, the space
is defined as a real line. In addition, the mark space K = Z+, the space of price jump sizes. This implies
that the absolute jump sizes of the price movements are represented by positive integer multiples of a
minimum jump size, δ.
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For the price dynamics modeling, there are two marked point processes N1 and N2 which represent up
and down movements, respectively. We assume that the probabilistic properties of k1 and k2, the mark
size of N1 and N2, respectively, are the same. For each i = 1, 2, the ground process Ngi(·) = Ni(·,Z+),
the marginal process for locations, is itself a point process. Each ground process Ngi describes the arrival
times of up or down price movements.

We assume that the price process is represented by a two dimensional marked Hawkes point process,
which belongs to the marked point processes. Let λgi(t) be the conditional intensity of Ngi upon a
filtration Ft− which is the minimal σ-algebra generated by the history of the marked point processes of
N1 and N2 on (−∞, t). The conditional intensities are Ft-adapted stochastic processes and, heuristically
speaking, satisfy

λgi(t)dt = E[Ngi(t+ dt)−Ngi(t)|Ft−].

Due to the discontinuity, the intensities may not be unique at the discontinuities and we consider λgi(t)
are the left continuous modifications in general, but if the intensities are used as integrators of some
stochastic integrations, then we use the right continuous modification of λgi as the integrators.

The marked Hawkes process assumption implies that, for each i = 1, 2, the intensities of the ground
processes satisfy

λgi(t) = µ+
∑
j=1,2

qij

∫
(−∞,t)×Z+

gij(kj)φij(t− u)Nj(du× dk)

= µ+
∑
j=1,2

qij
∑

−∞<u`<t

gij(kj(u`))φij(t− u`).

The Hawkes processes generated by the above intensities are defined by the ancestor-offspring argument
(as long as the intensities are finite). The immigrant ancestor of type i with mark k arrives the system
from outside in a Poisson process at rate µ. These ancestor generate offspring and generated offspring
become new ancestor to generate new offspring. Due to the ancestor type j born at time u with mark k,
whether immigrant or not, type i offspring are generated by a Poisson process with rate qijgij(k)φij(t−u)
at time t. The Poisson rate is emphasized by gij(k) at time u and diminishes with φij(t−u) as t increase.
Since the combination of qijgij(k(u))φij(t − u) is not unique, a normalization method to determine
qij , gij(k) and φij(t− u) is used in general.

We assume the exponential decay kernel for φij(t − u) = φ(t − u) = βe−β(t−u), β > 0, which is
normalized such that ∫ ∞

0

φ(τ)dτ = 1.

The impact of mark gij is also normalized in the sense that E[gij(k)] = 1. In addition, qij > 0 are called
branching coefficients and Q := {qij}i,j=1,2 is called branching matrix. With an exponential decay kernel,
(λg1, λg2) is Markovian and the computations in this paper largely depends on this property.

In this paper, We consider the case that the distribution of mark of type i may depend on λgi
and hence the conditional distribution of the mark is represented by f(ki(t)|λgi(t)). If the marks are
independent given the ground processes, then the analysis is rather straightforward with given analysis on
non-marked Hawkes processes from Lee and Seo (2014). Indeed, the dependency assumption is consistent
with the empirical study in Section 4. However, throughout the paper, we do not assume the specific
parametric distribution for the mark except in simulation studies. We perform the estimation procedures
and volatility analysis without specifying the mark distribution.

The counting measure Ni can be interpreted as a stochastic jump process. To apply the stochastic
integration theory later, without notational confusion, we define the associated jump processes by

Ni(t) =

∫
(0,t]×Z+

kiNi(du× dki)

where in the l.h.s., the stochastic process Ni is represented with the sole parameter t and in the r.h.s., the
measure Ni is represented with both location t and mark size k. In the stochastic process representation,
Ni(t) counts the the number of events over (0, t] with weight k. The jump processes Ni(t) are considered
as right continuous with left limit. Similarly, the ground processes also have the stochastic process
representations:

Ngi(t) =

∫
(0,t]×Z+

Ni(du× dki)
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which counts the number of events over (0, t] without considering the jump size k. As a jump process,
the ground process is also regarded as right continuous with left limit.

2.2. Linear impact function

The impact function gij and the distribution of the mark should satisfy some additional criteria so
that the marked Hawkes process does not blow up.

Assumption 1. (i) The ground intensities λgi are assumed to be stationary.
(ii) The impact functions have the same formula for all i, j and linear with slope parameter η:

g(k) := gii(k) = gji(k) =
1 + (k − 1)η

E[1 + (k − 1)η]
.

(iii) The branching matrix is symmetric with

qs := q11 = q22 =
αs
β
E[1 + (k − 1)η], qc := q12 = q21 =

αc
β
E[1 + (k − 1)η].

(iv) For some constant K > 0, we assume

E[kiλgi(t)] = KE[λgi(t)] (1)

and

{1 + (K − 1)η}
(
αs
β

+
αc
β

)
< 1. (2)

The condition (2) is similar to the existence condition of the simple symmetric Hawkes process except
that we have additional term {1 + (K − 1)η}. We additionally assume that the ground intensity process
is represented by

λg1(t) = µ+ qs

∫
(−∞,t)×Z+

g(k1)βe−β(t−u)N1(du× dk1)

+ qc

∫
(−∞,t)×Z+

g(k2)βe−β(t−u)N2(du× dk2), (3)

λg2(t) = µ+ qc

∫
(−∞,t)×Z+

g(k1)βe−β(t−u)N1(du× dk1)

+ qs

∫
(−∞,t)×Z+

g(k2)βe−β(t−u)N2(du× dk2). (4)

The point process (N1, N2) defined under the above ground intensity is then two dimensional marked
self and mutually excited Hawkes process with a linear impact function.

Assuming the integrand of the following formula is integrable, a predictable finite variation process∫ t

·
E[g(ki)|λgi(u)]λgi(u)βe−β(t−u)du

is a compensator for ∫
(·,t)×Z+

g(ki)βe−β(t−u)Ni(du× dki),

and hence ∫
(·,t)×Z+

g(ki)βe−β(t−u)Ni(du× dk1)−
∫ t

·
E[g(ki)|λgi(u)]λgi(u)βe−β(t−u)du
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is a martingale. Thus, by taking the unconditional expectation for the ground intensity formulas in
Eqs. (3) and (4), we have

E[λg1(t)] = µ+ qs

∫ t

−∞
E[E[g(k1)|λg1(u)]λg1(u)]βe−β(t−u)du

+ qc

∫ t

−∞
E[E[g(k2)|λg2(u)]λg2(u)]βe−β(t−u)du,

E[λg2(t)] = µ+ qc

∫ t

−∞
E[E[g(k1)|λg1(u)]λg1(u)]βe−β(t−u)du

+ qs

∫ t

−∞
E[E[g(k2)|λg2(u)]λg2(u)]βe−β(t−u)du

and by Eq. (1),

E[E[g(ki)|λgi(u)]λgi(u)] = E[g(ki)λgi(u)] =
{1 + (K − 1)η}E[λgi(u)]

1 + (E[ki]− 1)η

and we write

E[λg1(t)] = µ+
αs
β

∫ t

−∞
{1 + (K − 1)η}E[λg1(u)]βe−β(t−u)du

+
αc
β

∫ t

−∞
{1 + (K − 1)η}E[λg2(u)]βe−β(t−u)du,

E[λg2(t)] = µ+
αc
β

∫ t

−∞
{1 + (K − 1)η}E[λg1(u)]βe−β(t−u)du

+
αc
β

∫ t

−∞
{1 + (K − 1)η}E[λg2(u)]βe−β(t−u)du.

By the stationarity of λgi, we have

E[λg1(t)] = µ+
αs
β
{1 + (K − 1)η}E[λg1(t)] +

αc
β
{1 + (K − 1)E[λg2(t)]η},

E[λg2(t)] = µ+
αc
β
{1 + (K − 1)η}E[λg1(t)] +

αs
β
{1 + (K − 1)E[λg2(t)]η}.

and

(I − Q̄)

[
E[λg1(t)]
E[λg2(t)]

]
=

[
µ
µ

]
where

Q̄ = {1 + (K − 1)η}

αsβ αc
β

αc
β

αs
β

 .
By the symmetry between λg1 and λg2,

E[λg1(t)] = E[λg2(t)] =
µβ

β − (αs + αc){1 + (K − 1)η}
. (5)

Thus, if condition (2) is satisfied, then the ground processes are well defined, i.e., the expectation of the
ground intensities are positive and finite.

2.3. Second moment property

In this subsection, we compute the volatility formula of the asset return generated by the marked
Hawkes processes. In the following notation, we define various Ks as similarly in Eq. (1) which simplify
the notations.
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Notation 1. For a jump process X, let

E[ki(t)X(t)] = KiXE[X(t)], E[k2i (t)X(t)] = K
(2)
iX E[X(t)]

where t is the arrival time associated with event of mark ki. If X = λgi, then we omit subscript for

simplicity as in Eq. (1), i.e., K = Kiλgi
and K(2) = K

(2)
iλgi

. Furthermore,

K̈ = 1 + 2(K − 1)η + (K(2) − 2K + 1)η2

K̇ = K + (K(2) −K)η

ᾰ = α{1 + (K1λ2
g1
− 1)η}

α̃ = α{1 + (K1λg1λg2 − 1)η}.

Theorem 1. Let (N1, N2) be a two dimensional marked self and mutually excited Hawkes process with
a linear impact function under Assumption 1 with ground intensities of Eqs. (3) and (4). If the price
process St follows

St = S0 + δ(N1(t)−N2(t))

with minimum jump size δ, then the unconditional variance of the return over [0, t] is

Var

(
St − S0

S0

)
=
δ2

S2
0

E[(N1(t)−N2(t))2]

with[
E[N2

1 (t)]
E[N1(t)N2(t)]

]
= −E[λg1(t)]

[
K1λg1N1

0
0 K1λg1N2

]
{
βµM−1

[
1
1

]
t2 +

(
2M−1

[
αsK̇

αcK̇

]
−M−2

[
K1λ2

g1
{(α2

s + α2
c)K̈ + 2βµ}

2K1λg1λg2
(αsαcK̈ + βµ)

]
−
[
K(2)/K1λg1N1

0

])
t

}
where

M =

[
ᾰs − β α̃c
ᾰc α̃s − β

]
.

Proof. See Appendix Appendix A.

Remark 2. Assuming K1λg1N1 ≈ K1λg1N2 and K1λ2
g1
≈ K1λg1λg2 , i.e., α̃ ≈ ᾰ, we have

E[(N1(t)−N2(t))2] = 2(E[N2
1 (t)]− E[N1(t)N2(t)])

≈ 2K1λg1N1E[λg1(t)]

(
K1λ2

g1
K̈(αs − αc)2

(β − ᾰs + ᾰc)2
+

2(αs − αc)K̇
β − ᾰs + ᾰc

+
K(2)

K1λg1N1

)
t. (6)

In addition, if all Ks are equal to 1, then the variance formula is reduced to

E[(N1(t)−N2(t))2] = 2E[λg1(t)]
β2

(β − αs − αc)2
t.

which is the same formula of the variance in the simple Hawkes model.

2.4. Likelihood function

To estimate the parameters in the intensity processes such as αs, αc, β and η, we need to compute
the log-likelihood. The log-likelihood of the realized jumps and their marks of (N1, N2) over the period
[0, T ] is represented by(∫

(0,T ]

log λg1(u)Ng1(du) +

∫
(0,T ]

log λg2(u)Ng2(du)−
∫ T

0

(λg1(u) + λg2(u))du

)

+

(∫
(0,T ]×Z+

log f(k1|λg1(u))N1(du× dk1) +

∫
(0,T ]×Z+

log f(k2|λg2(u))N2(du× dk2)

)
=: logLg + logLm. (7)
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The above formula implies that the log-likelihood is separated into two parts, logLg of the ground
processes and logLm of the mark distribution. Note that logLg dose not depend on the mark distribution
f . Thus, even if we do not know the exact distribution of the mark k, we are able to compute the log-
likelihood of the ground process part, logLg. In the empirical study later, we do not assume any specific
form of f and just use the empirical distribution to conduct the maximum likelihood procedure to
maximize logLg, the likelihood of the ground processes.

3. Simulation example

3.1. Symmetric model

In this paper, we generally do not assume the specific distribution of the mark. However, for the
simulation study, we need to assume a specific conditional distribution of the mark sizes to generate
paths. Suppose that the mark ki follows the conditional geometric distribution with

p(λgi(u)) =
1

min(d+ cλgi(u), U)

for some constants c, d and U , i.e.,

P(ki = n|λgi(u)) = p(λgi(u))(1− p(λgi(u)))n−1.

This implies that the conditional expectation of the mark size ki with given ground intensity λgi is

E[ki|λgi(u)] = min(d+ cλgi(u), U)

for some slope c, intercept d, and upper bound U . It is needed to set the upper bound for the conditional
mean of the mark size to prevent the blow up of the marked Hawkes process. With this setting, the
conditional expectation of the impact depends on the current intensity:

E[g(ki)|λgi(u)] =
d+ cηλgi(u)

E[d+ (ki − 1)η]
.

With each differently presumed conditional distribution and parameter setting, we generate 500
sample paths of the two dimensional marked Hawkes process and corresponding ground intensities. The
time horizon for the path is set to be 5.5 hours which equals to the time horizon used in empirical studies
later. The simulation mechanism is similar to the simple Hawkes models but additionally needed to
incorporate the mark size and its future impacts.

With the realized interarrival times of the generated path and realized mark sizes, the maximum
likelihood estimation is performed to maximized logLg in Eq. (7) and the results are presented in Table 1.
The table consists of three panels with different parameter settings which are presented in ‘True’ rows.
For the first panel, c = 0.15, d = 1.0, U = 2.0, for the second panel, c = 0.18, d = 1.0, U = 2.2, for the
third panel, c = 0.18, d = 1.0, U = 3.5 and for the fourth panel, c = 0.25, d = 1.0, U = 9.

Since we only calculate the likelihood for the ground processes, the estimates of µ, αs, αc, β and η are
computed but not for c, d and U . The sample mean of the estimates with 500 sample paths are reported
in the row ‘mean’. The row ‘std.’ presents the sample standard deviations of each estimates with 500
samples. The table shows that the estimates are consistent with the true values.

To calculate the volatility, we additionally need to compute Ks in Notation 1 which involving several
unconditional expectations with the mark size, intensities and counting processes. In the absence of
the exact formula of the expectations due to the complicated relationship between the mark and the
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Table 1: Simulation study for marked Hawkes model with 500 sample paths

µ αs αc β η TSRV H.Vol.
True 0.1000 0.9500 0.8200 2.2500 0.1900
mean 0.0999 0.9496 0.8199 2.2487 0.1882 0.2778 0.2788
std. 0.0021 0.0194 0.0190 0.0326 0.0170 0.0332 0.0171
True 0.1500 0.6200 0.5000 1.9000 0.2200
mean 0.1499 0.6193 0.5008 1.8999 0.2177 0.1316 0.1310
std. 0.0027 0.0172 0.0149 0.0419 0.0502 0.0101 0.0030
True 0.3000 1.0500 0.9200 2.3000 0.0100
mean 0.3003 1.0508 0.9206 2.3014 0.0094 0.6391 0.6291
std. 0.0051 0.0136 0.0135 0.0229 0.0051 0.0562 0.0177
True 0.2000 1.1000 1.2600 2.5700 0.0100
mean 0.2002 1.0997 1.2610 2.5702 0.0099 4.4299 4.3628
std. 0.0039 0.0154 0.0164 0.0238 0.0007 1.6973 0.6811

intensities, we use the following statistics for the expectations instead:

E[λgi(t)] ≈
1

T
Ngi(T ) (8)

E[kiλgi(t)] ≈
1

T
Ni(T ) (9)

E[k2i λgi(t)] ≈
1

T

∫
(0,T ]×Z+

k2iNgi(du× dk) (10)

E[λ2gi(t)] ≈
1

T

∫
(0,T ]×Z+

λgi(u)Ngi(du× dk) (11)

E[kiλ
2
gi(t)] ≈

1

T

∫
(0,T ]×Z+

kiλgi(u)Ngi(du× dk) (12)

1

t
E[λgi(t)Ni(t)] ≈

2

T 2

∫
(0,T ]×Z+

Ni(u−)Ngi(du× dk) (13)

1

t
E[kiλgi(t)Ni(t)] ≈

2

T 2

∫
(0,T ]×Z+

kiNi(u−)Ngi(du× dk). (14)

To compute the right hand sides, the realized ki, Ni and Ngi of generated paths and inferred λgi from
the estimates of µ, αs, αc, β and η are used. The inferred intensities λgi are computed by Eqs. (3) (4),
once µ, αs, αc, β and η are estimated.

We approximate the expectation of the ground intensity by the sample average of the total number
of corresponding up or down moves per unit time in Eq. (8). Similarly for E[kiλgi(t)] where we use the
counting process Ni instead to compute the sample average.

The right hand side of Eq. (10) is the sample average of the total number of jumps per unit time
with weight k2i for each jump and this approximates the left hand side. For Eqs. (11) and (12), consider

E

[∫
(0,T ]×Z+

λgi(u)Ngi(du× dk)

]
=

∫ T

0

E[λ2gi(t)]dt = TE[λ2gi(t)]

E

[∫
(0,T ]×Z+

kiλgi(u)Ngi(du× dk)

]
=

∫ T

0

E[kiλ
2
gi(t)]dt = TE[kiλ

2
gi(t)].

Furthermore, we can let E[λgi(t)Ni(t)] = c1t + c2 for some constants c1 and c2 according to Ap-
pendix Appendix A and E[λgi(t)Ni(t)]/t converges to c1 as t increases. Note that

2

T 2
E

[∫
(0,T ]×Z+

Ni(u−)Ngi(du× dk)

]
=

2

T 2

∫ T

0

E[λgi(t)Ni(t)]dt

= c1 +
2c2
T
≈ c1 ≈

1

2t
E[λgi(t)Ni(t)]
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Table 2: Fully characterized Hawkes model with 500 sample paths

full symmetric full symmetric
true mean std. mean std. true mean std. mean std.

µ1 0.1461 0.1467 0.0038
0.1345 0.0026

0.1130 0.1131 0.0030
0.1152 0.0024

µ2 0.1155 0.1159 0.0032 0.1149 0.1153 0.0033
α11 0.3185 0.3204 0.0150

0.4102 0.0148
0.4994 0.5031 0.0242

0.5252 0.0159
α22 0.3821 0.3865 0.0219 0.4682 0.4799 0.0210
α12 0.9812 0.9848 0.0282

1.1512 0.0223
0.5937 0.5992 0.0232

0.7012 0.0199
α21 1.4949 1.5000 0.0334 0.9754 0.9854 0.0368
β11 1.1799 1.1893 0.0567

2.0547 0.0315

1.8305 1.8512 0.0948

1.8744 0.0364
β22 1.9553 1.9840 0.1195 1.4706 1.5142 0.0666
β12 2.0952 2.1077 0.0697 1.5963 1.6110 0.0624
β21 2.5030 2.5132 0.0587 2.7850 2.8064 0.1036
η 0.1488 0.1501 0.0235 0.1424 0.0255 0.1761 0.1768 0.0216 0.1756 0.0225

c = 0.1, d = 1.0, U = 2.0 c = 0.08, d = 1.5, U = 3.0
S.Vol. TSRV std. H.Vol. std. S.Vol. TSRV std. H.Vol. std.
0.1405 0.1463 0.0146 0.1346 0.0051 0.1853 0.1897 0.0161 0.1795 0.0044

with approximations for large enough t and T . Similar argument is applied to Eq. (14).
The column ‘H. vol’ is for the mean of the volatility estimates computed by the likelihood estimates

of µ, αs, αc, β, η and Ks using Remark 2. This is compared with the two scale realized volatility (TSRV)
in the column ‘TSRV’ proposed by Zhang et al. (2005). We set the small time scale to be one second and
the large time scale to be five minutes for the TSRV computation. The results shows that the Hawkes
volatility and TSRV are very close to each other. The standard deviations of the Hawkes volatility are
smaller than the ones of the TSRV for all simulation cases.

3.2. Other examples

In this subsection, we examine the cases where there is a discrepancy between the Hawkes volatility
and realized volatility. First, we examine the fully characterized Hawkes model, i.e., the coefficients of
the branching matrix is represented by

qij =
αij
βij

E[1 + (k − 1)η]

with the linear impact function of Assumption 1 (ii). Under this setting, no symmetry is guaranteed.
Recall that in the symmetric model, αs = α11 = α22, αc = α12 = α21 and β = β11 = β12 = β21 = β22.

In Table 2, we show the estimation results of the fully characterized Hawkes model with simulated
paths with presumed parameters. The presumed parameters are presented in ‘true’ column and 500 sam-
ple paths are generated over one day time horizon, more precisely, 5.5 hours as in the previous example.
The columns ‘full’ report the means and standard deviations of estimates under the maximum likelihood
estimation with the fully characterized Hawkes model. We also perform the likelihood estimations un-
der the symmetric Hawkes model, although the paths are generated by the fully characterized Hawkes
model. The results are presented in the columns ‘symmetric’ at the centers of the rows of corresponding
parameters. For example, µ is presented at the center of two rows of µ1 and µ2, αs is presented at the
center of two rows of α11 and α22, and so on.

The ‘S.Vol.’ represents the sample volatility of the return computed by the sample standard deviation
of the closing stock prices generated by 500 sample paths. The TSRV and marked Hawkes volatility with
corresponding standard deviations are reported in column ‘TSRV’ and ‘H.Vol’, respectively. The Hawkes
volatility is computed using the estimates of the symmetric Hawkes model. Two volatilities are biased
around 4% compared with the sample volatility. The TSRV are larger than the sample volatilities and
the Hawkes volatilities are smaller in these cases.

Second, we examine the symmetric marked Hawkes models where the model parameters change during
the sample period. In Table 3, we show the estimation results with the symmetric Hawkes models of 5.5
hours time horizon but the model parameter of the first one hour of the period is according to the row of
‘True 1’ and in the rest of the period, the model follows ‘True 2’. In the first panel, the varying part is
the upper bound of the conditional mean of the mark distribution. In other words, during the first part
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Table 3: Simulation study for marked Hawkes model with 500 sample paths with time varying parameters

µ αs αc β η c d U S.Vol. TSRV H.Vol.
True 1 0.1000 1.1000 1.2600 2.5700 0.0100 0.2500 1 7
True 2 0.1000 1.1000 1.2600 2.5700 0.0100 0.2500 1 1.5
mean 0.1017 1.1017 1.2662 2.5667 0.0085 0.6431 0.5801 0.6288
std. 0.0022 0.0205 0.0265 0.0319 0.0039 0.1990 0.1381

True 1 0.1000 1.1000 1.2600 2.5700 0.1000 0.1000 1 7
True 2 0.0500 0.5000 0.5000 2.0000 0.1000 0.1000 1 1.5
mean 0.0375 1.0162 1.1190 2.3567 0.0233 0.2496 0.2204 0.2300
std. 0.0010 0.0302 0.0347 0.0438 0.0142 0.0378 0.0205

of the sample period, the price process is very volatile due to the possible large size of mark, and the rest
part is rather stable. This is mimicking the case of 2010 Flash Crash and we will examine the empirical
analysis in the later. The result shows the discrepancy between the TSRV and the Hawkes volatility
which are both less than the sample volatility and TSRV is even less than the Hawkes volatility.

4. Empirical study

4.1. Data

For empirical studies, we use ultra high-frequency tick-by-tick data of some major stock prices con-
sisting of several years with best bid and ask quotes reported in New York Stock Exchange (NYSE).
The time horizon of sample for each day is set to be from 10:00 to 15:30. We do not use the data of 30
minutes right after the opening and right before the closing time to reduce the seasonality effects. The
price movements patterns are usually different at near opening and closing from the rest of the day.

The jump sizes of the price movements of equities in the S&P 500 are not constant over time especially
when the price of the equity is high and hence the ratio between the price and the minimum tick size in
transaction on the NYSE, $0.01, is high. The tick size of NYSE was reduced from $1/8 to $1/16 in 1997
and from $1/16 to $0.01 in 2001. In this paper, the mid price movements is considered for the marked
Hawkes modeling to get rid of the bid-ask bounce and hence the minimum jump size is the half of the
tick size, $0.005.

In the original data, the time resolution of the record is one second. If more than one timestamps of
price changes are reported for one second, then we distribute the reported events over the one second
interval into equidistant finer partitions.

4.2. Unconditional distribution of mark

Table 4 compares the percentage of the mark size of IBM and GE from 2008 to 2011, i.e., the
unconditional distribution of mark sizes are reported in the table. IBM has various mark sizes over the
years but GE’s mark size distributions rather concentrate on the minimum mark size. This is because
that the price of IBM is relatively high and is around $150, meanwhile the price of GE is around $25.
The unconditional distributions of the marks have exponentially decreasing shapes which are similar to
the geometric distributions but do not seem to be identical to the distribution. We compare the empirical
distribution of the marks of IBM, 2010 and 2011 with the geometric distributions in Figure 1. The solid
lines are for the empirical distribution and the dashed lines are for the geometric distribution fitted by
matching the first moments of the empirical and geometric distributions.

4.3. Mark size and intensity

In this subsection, we examine the dependence between the mark size and the ground intensity, the
number of expected events over unit interval. Our empirical evidences show that the mark size and
the current ground intensity is significantly related to each other. First, we compute the empirical
conditional expectation of the intensities with given mark size, E[λgi(t)|ki]. Since the ground intensities
are unobservable, proxy intensities are introduced. The proxy intensities for up, down and total jumps
are defined by the numbers of up, down and total jumps, respectively, over a fixed time period, which is
ended just before the time of the jump, divided by the length of the period. The period for the proxy
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Table 4: Mark distribution (%) of IBM (left) and GE (right) from 2008 to 2011

mark size 2008 2009 2010 2011 2008 2009 2010 2011
1 51.80 59.98 80.88 57.04 89.81 98.39 99.61 99.68
2 21.53 20.57 13.96 18.41 7.61 1.51 0.34 0.30
3 11.22 10.89 3.53 9.54 1.55 0.00 0.00 0.00
4 6.36 5.50 1.01 5.80 0.52 0.00 0.00 0.00
5 3.61 1.98 0.35 3.68 0.19 0.00 0.00 0.00
6 2.04 0.66 0.10 2.22 0.00 0.00 0.00 0.00
7 1.17 0.24 0.00 1.37 0.00 0.00 0.00 0.00
8 0.71 0.01 0.00 0.81 0.00 0.00 0.00 0.00
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Figure 1: The empirical unconditional distribution of mark
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Table 5: Relation between mark size and the mean of proxy intensity (10 seconds), IBM

2011 2010
mark size up down total up down total

6 3.4784 3.6400 7.1184 6.4059 6.5618 12.9676
(0.0145) (0.0149) (0.0292) (0.2306) (0.1171) (0.1150)

5 3.1191 3.2461 6.3652 4.3289 4.5448 8.8738
(0.0105) (0.0106) (0.0209) (0.0890) (0.0449) (0.0448)

4 2.8206 2.9237 5.7443 3.4963 3.6881 7.1844
(0.0078) (0.0078) (0.0155) (0.0439) (0.0221) (0.0221)

3 2.5683 2.6551 5.2233 2.7119 2.8717 5.5836
(0.0061) (0.0060) (0.0120) (0.0182) (0.0092) (0.0092)

2 2.3051 2.3795 4.6846 2.1799 2.2892 4.4691
(0.0042) (0.0041) (0.0083) (0.0071) (0.0036) (0.0036)

1 2.3131 2.3501 4.6632 1.7682 1.8481 3.6163
(0.0028) (0.0028) (0.0056) (0.0024) (0.0012) (0.0012)

−1 2.2403 2.4140 4.6543 1.7488 1.8883 3.6371
(0.0028) (0.0028) (0.0056) (0.0024) (0.0012) (0.0012)

−2 2.3004 2.4376 4.7381 2.1655 2.3022 4.4687
(0.0042) (0.0042) (0.0084) (0.0072) (0.0036) (0.0036)

−3 2.5924 2.7167 5.3090 2.7264 2.8552 5.5816
(0.0062) (0.0062) (0.0123) (0.0185) (0.0094) (0.0093)

−4 2.8174 2.9552 5.7726 3.4806 3.6163 7.0969
(0.0078) (0.0079) (0.0156) (0.0432) (0.0218) (0.0217)

−5 3.1078 3.2399 6.3477 4.4487 4.5968 9.0454
(0.0104) (0.0106) (0.0209) (0.0902) (0.0466) (0.0469)

−6 3.4606 3.5845 7.0451 6.1019 6.2334 12.3352
(0.0145) (0.0149) (0.0292) (0.2141) (0.1083) (0.1074)

intensities is chosen as ten seconds. Mathematically, the up proxy intensity for the mark k1 which takes
place at time t is represented by

1

τ

∫
(t−τ,t]×Z+

Ng1(du× dk1)

where τ is the length of the period.
We compute the sample mean and standard error of the proxy intensities for each mark size in Table 5

for each year of 2010 and 2011, IBM. For example, for the mark size 6, there are 86,738 numbers of up
jumps are reported and the sample mean of the up proxy intensity is 3.4784 and the sample standard
error is 0.0145. The table shows that the proxy intensities increase as the given mark size increases. The
negative integers in the column of mark size represent the down jump of the price. We also compute the
proxy intensities for five seconds time horizon. The results are very similar to the previous case of 10
seconds time horizon and we do not report the result additionally.

Second, in Table 6, we present the relation between the mark sizes and the inferred ground intensities
with the linear impact function using IBM tick data. Prior to calculate the inferred ground process, we
estimates the parameters ω, αs, αc, β, η by maximizing logLg defined in Eq. (7). The estimations are
performed daily basis and the detailed estimation results are demonstrated later. After that the inferred
ground intensities are computed with the estimates of ω, αs, αc, β, η using the definition of the ground
intensities in Eqs. (3) and (4). The sample mean and sample standard errors of the inferred ground
intensities for each mark size is reported. Similarly with the case of the proxy intensities, the inferred
ground intensities increase as the given mark size increases. This implies that if a large size of mark is
observed, it is probably based on large ground intensities.

Third, we also illustrate the empirical expectations of the mark size conditionally upon given inferred
ground intensities, E[ki|λgi(t)], in Figure 2 using the tick data of IBM, 2008-2011. For each year, the
empirical conditional expectation with given λgi = n for an integer n is computed by the sample mean
of the mark sizes whose associated inferred ground process is falling into (n − 1, n]. We only plot the
conditional expectations of the marks where total observed numbers of the mark are larger than 100
for each year, i.e., the samples with small numbers of observations are dropped out. In the figure, the
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Table 6: Relation between mark size and the mean of inferred ground intensity with linear impact function, IBM

2011 2010
mark size λg1 λg2 λg λg1 λg2 λg

6 5.1666 5.1108 10.2774 8.1033 8.0330 16.1364
(0.0222) (0.0221) (0.0442) (0.1366) (0.1370) (0.2734)

5 4.7423 4.6834 9.4257 6.5586 6.4855 13.0443
(0.0165) (0.0164) (0.0328) (0.0621) (0.0620) (0.1240)

4 4.4092 4.3565 8.7656 5.4497 5.3975 10.8472
(0.0126) (0.0125) (0.0251) (0.0338) (0.0337) (0.0674)

3 4.0264 3.9842 8.0106 4.2182 4.1806 8.3988
(0.0094) (0.0094) (0.0188) (0.0145) (0.0145) (0.0290)

2 3.5870 3.5505 7.1375 3.4705 3.4476 6.9181
(0.0066) (0.0066) (0.0131) (0.0064) (0.0064) (0.0128)

1 3.5924 3.5580 7.1504 2.5428 2.5321 5.0749
(0.0057) (0.0057) (0.0114) (0.0021) (0.0021) (0.0041)

−1 3.5568 3.5942 7.1509 2.5702 2.5836 5.1538
(0.0057) (0.0057) (0.0113) (0.0021) (0.0021) (0.0041)

−2 3.5858 3.6270 7.2128 3.4730 3.4978 6.9708
(0.0066) (0.0066) (0.0132) (0.0064) (0.0064) (0.0129)

−3 4.0451 4.0927 8.1378 4.2369 4.2781 8.5150
(0.0096) (0.0096) (0.0192) (0.0148) (0.0148) (0.0296)

−4 4.3580 4.4177 8.7757 5.3775 5.4380 10.8154
(0.0126) (0.0127) (0.0253) (0.0333) (0.0334) (0.0667)

−5 4.6872 4.7587 9.4459 6.4356 6.5047 12.9402
(0.0163) (0.0164) (0.0327) (0.0624) (0.0626) (0.1250)

−6 5.0360 5.0884 10.1244 7.9426 8.0193 15.9620
(0.0216) (0.0217) (0.0433) (0.1343) (0.1344) (0.2685)

ground intensities varies more as the years pass, implying that overall numbers of activities increase. We
observe the most of intensities are less than 15 in 2008 but there is a huge spread in the inferred intensity
in 2011 as a lot of observed intensities are larger than 15.

The shape of the conditional expectation of the mark changes over time. The conditional expectation
tends to increase as the intensity increase in 2008 and 2010. In 2009 and 2011, the conditional expecta-
tions have humped shapes. The empirical conditional expectations of the mark given ground intensity
computed monthly basis from January to June, 2011, of IBM are plotted in Figure 3. In the monthly
basis empirical conditional expectation, we observe irregular patterns over time. The changing shape of
the conditional distribution of marks over time is the reason why we do not specify the mark distribution,
and perform the estimation in a non-parametric way for the part of the mark distribution.

4.4. Estimation result

Table 7 reports the likelihood estimation results of the marked Hawkes model with tick data of IBM,
January 2011, where we maximize logLg of Eq. (7). Numerically computed standard errors are reported
in the parentheses. The estimations are performed on a daily basis, i.e., the estimates are recalculated in
every business day. The behaviors of µ, αs, αc, β in Figure 4 are similar to those estimated in the simple
Hawkes model, see Lee and Seo (2014).

The dynamics of η is illustrated in Figure 6 where η is estimated around 0.2 in general from 2008
to 2011. The slope parameter for the impact function, η, is positive in general, which means that large
mark tends to have large impact for the future intensities. However, η is much less that one and this
implies that the impact of mark size 2 is generally less than the total impact of two consecutive unit
size jumps that occur over very short time interval. Note that few negative η are also observed. We also
illustrate the dynamics of η estimated from CVX in Figure 7. The overall behaviors of η of IBM and
CVX are similar but the η of CVX is more volatile.

We compare the Hawkes volatility computed by Remark 2 and TSRV of IBM, 2008-2011, in Figure 8.
The trends of the Hawkes volatility and TSRV are similar to each other but the Hawkes volatility
is generally larger than TSRV especially when the volatility is high. This tendency is also found in
the simple symmetric Hawkes model (Lee and Seo, 2014). This discrepancy might be because of the
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Figure 2: The conditional expectation of k1 on λg1, IBM, 2008-2011
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Figure 3: The conditional expectation of k1 on λg1, IBM, 2011
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Table 7: Estimates of IBM, 2011 with linear impact function

date µ αs αc β η logLg
0103 0.1080 0.6577 0.9956 2.2921 0.1241 −17185.5

(0.0021) (0.0175) (0.0218) (0.0339) (0.0187)
0104 0.1450 0.7033 1.0334 2.3527 0.2266 −17371.5

(0.0026) (0.0157) (0.0188) (0.0272) (0.0233)
0105 0.1079 0.9736 0.9414 2.550 0.1654 −13160.3

(0.0021) (0.0207) (0.0203) (0.0334) (0.0180)
0106 0.1335 0.8198 0.9475 2.3615 0.1357 −16603.4

(0.0025) (0.0173) (0.0191) (0.0296) (0.0171)
0107 0.1588 0.8574 1.0145 2.435 0.1560 −15956.4

(0.0029) (0.0164) (0.0184) (0.0284) (0.0176)
0110 0.1338 0.7423 1.0724 2.4388 0.1927 −16141.3

(0.0025) (0.0160) (0.0191) (0.0266) (0.0163)
0111 0.1271 0.5855 1.2108 2.4403 0.1570 −16923.1

(0.0024) (0.0159) (0.0223) (0.0314) (0.0155)
0112 0.1160 0.6517 0.8552 2.0639 0.3561 −19492.9

(0.0023) (0.0158) (0.0185) (0.0307) (0.0481)
0113 0.1042 0.7245 1.0502 2.5284 0.2372 −15508.4

(0.0020) (0.0192) (0.0240) (0.0369) (0.0261)
0114 0.1138 0.6702 0.8798 2.3142 0.2380 −16589.3

(0.0022) (0.0175) (0.0202) (0.0341) (0.0183)
0118 0.1330 0.5642 1.1548 2.5082 0.1651 −16374.7

(0.0024) (0.0169) (0.0239) (0.0354) (0.0147)
0119 0.2198 0.5423 1.2631 2.4964 0.1323 −11223.0

(0.0036) (0.0133) (0.0207) (0.0255) (0.0093)
0120 0.1509 0.7060 1.0017 2.3114 0.1824 −15709.4

(0.0028) (0.0158) (0.0211) (0.0332) (0.0154)
0121 0.1447 0.4901 1.3356 2.5806 0.1545 −16524.6

(0.0026) (0.0152) (0.0247) (0.0333) (0.0132)
0124 0.1771 0.6095 1.2424 2.5658 0.1649 −14711.6

(0.0030) (0.0151) (0.0205) (0.0290) (0.0132)
0125 0.1669 0.8214 0.9528 2.2982 0.1954 −13602.1

(0.0030) (0.0147) (0.0167) (0.0244) (0.0170)
0126 0.1421 0.5939 1.3809 2.6146 0.1217 −9239.8

(0.0026) (0.0154) (0.0231) (0.0295) (0.0100)
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Figure 4: Marked Hawkes estimation result, IBM, 2011

Table 8: Estimation result of fully characterized self and mutually excited Hawkes process, IBM, 2011

µ1 µ2 α11 α22 α12 α21 β11 β22 β12 β21
IBM, 2011

mean 0.1462 0.1470 0.5404 0.5621 0.6443 0.6611 1.5499 1.5793 1.7538 1.8056
std. 0.0543 0.0545 0.1962 0.2361 0.2144 0.2717 0.3845 0.4192 0.3373 0.4282

MAPE 0.1436 0.3924 0.3179 0.2881 0.2247

restriction in the parameter settings to be symmetric and Markovian. However, the exact reason is
unclear at this point. Note that in the previous simulation study, the Hawkes volatility and TSRV are
converges to each other.

Indeed, empirical studies suggest that the parameter restrictions for symmetry does not perfectly meet
with the real data. In Figure 5, we illustrate the dynamics of of all parameters of the fully characterized
Hawkes model of Subsection 3.2 for IBM, 2011. The result shows that for each parameter pair (µ1, µ2),
(α11, α22), (α12, α21), (β11, β22) and (β12, β21), we observe the similar trend over time but those are not
exactly the same to each other. The summary statistics in Table 8 shows that the parameter pair is
almost the same in the mean but the mean absolute percentage error (MAPE) also shows the difference
between the parameters. The row ‘MAPE’ presents the error between two adjacent parameters. In
addition, β11 and β12 are different even in the mean. Similar observation is found in the simple Hawkes
approach (Lee and Seo, 2014).

It is interesting to note that when the stock market is in a highly volatile state, the slope for the
impact function, η is estimated to be relatively close to zero. For example, September 29, 2008, at the
beginning of the financial crisis, the reported η of IBM is around 0.02 which is much smaller than the
annual average 0.16, when the market is very unstable with TSRV 0.8766 and the Hawkes volatility
1.4530. At the May 6, 2010 Flash Crash, the estimated η of IBM is around 0.01 (annual average of
η = 0.23) when TSRV is 0.9656 and the Hawkes volatility is 1.3264. Due to the statement of Federal
reserve, the stock market is highly volatile at August 9, 2011, and we observe η of IBM is around 0.01
which is much smaller than annual average 0.11. CVX also shows the similar pattern. The estimated η
of CVX for the above cases are around 0.04, 0.01 and 0.07, respectively, meanwhile the annual averages
in 2008, 2010 and 2011 are 0.14, 0.41 and 0.24, respectively. In a highly volatile market, much more
numbers of large size marks are observed than in a stable market, and with those large size marks, the
linear relation between the mark size and the future impact is weak.

In the estimation of the Hawkes models, we use the data of all arrival times over the sample period.
Even with ten minutes interval, usually more than a thousand data of arrival times are available, enough
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Figure 5: Estimation result with fully characterized marked Hawkes, IBM, 2011
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Figure 6: The estimation results of η, IBM, 2008-2011

3 6 9 12

0

0.2

0.4

0.6

Month

η

CVX, 2008

3 6 9 12
0

0.2

0.4

0.6

0.8

Month

η

CVX, 2009

3 6 9 12
−0.4

0

0.4

0.8

1.2

Month

η

CVX, 2010

3 6 9 12

0

0.4

0.8

1.2

Month

η

CVX, 2011

Figure 7: The estimation results of η, CVX, 2008-2011
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Figure 8: The estimation results of volatility, IBM, 2008-2011
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Figure 9: Cumulative intraday volatitliy estimated under the marked Hawkes model with every ten minutes update

to provide a reliable result for the estimation in the aspect of sample size and hence adequate intraday
analyses are possible. The left of Figure 9 presents the intraday variation of the volatility of IBM at May
6, 2010, the day of the Flash Crash. The estimation is performed in ten minute basis for 10:00 to 15:30
and the cumulative volatility is plotted in the figure. The abrupt increase of the volatility is observed
between 14:30 and 15:00 when the stock market crashed and the volatility is stabilized after 15:00. The
right of the figure plots the intraday U-shape pattern of the volatility of IBM at August 9, 2011.

5. Concluding remark

We have developed a marked Hawkes model for price tick dynamics in equity markets. A linear
impact function has been employed to describe the future effects of price jumps. We have not assumed
a specific distribution for the jump size but used empirical distribution for estimation. Our model is
not limited to the independent mark since the empirical studies showed that the jump size depends on
the ground intensities. The volatility formula was derived based on stochastic calculus and statistical
methods and the simulation studies showed that the Hawkes volatility and realize volatility are almost
the same in the symmetric cases and the Hawkes volatility has less standard error. However, there are
biases when the underlying path is not symmetric or the parameters are time varying.

We observed the significant positive linear impact, roughly around 0.2, and various type, linear or
humped shape, of conditional mean structure of mark size in the empirical studies based on the equity
prices reported in NYSE. The Hawkes model is useful to estimate the intraday volatility especially when
the volatility is time varying. We observed the U shape seasonality of the changing volatility and also
examined the interesting example of Flash Crash. As we discussed in the simulation and empirical
studies, the discrepancy between the Hawkes volatility and realized volatility and the biases from sample
volatility will be the important subject for the future study. In the presence of the asymmetry in the
price dynamics and the time varying parameters, more robust estimation method is required for more
exact volatility computation.
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Appendix A. Proof of Theorem 1

We apply the stochastic integration theory to derive the second moment property of the two dimen-
sional symmetric marked Hawkes process. The quadratic (co)variation process of semimartingales X
and Y for t ≥ 0 is defined by

[X,Y ]t = XtYt −
∫ t

0

Xu−dYu −
∫ t

0

Yu−dXu.

For quadratic pure jump processes X and Y such as λgi(t), Ngi(t) and Ni(t) in our model

[X]t := [X,X]t = X2
0 +

∑
0≤s<t

(∆Xs)
2 (A.1)

and
[X,Y ]t = X0Y0 +

∑
0≤s<t

(∆Xs∆Ys).

Appendix A.1. Step 1

In this subsection, we derive the unconditional expectations of λ2gi(t) and λgi(t)λgj(t). By the defi-
nition of the quadratic variation process, we have

E[λ2g1(t)] = E[[λg1]t] + 2E
[∫ t

0

λg1(u)dλg1(u)

]
.

When the ground intensity λgi is used as a integrator, we consider λgi as the right continuous modification.
The stochastic integration is indeed a path-by-path Lebesgue-Stieltjes integral. The integration part of
r.h.s. of the above equation is represented by∫ t

0

λg1(u)dλg1(u) =

∫ t

0

λg1(u)β(µ− λg1(u))du

+

∫
(0,t)×Z+

qsβg(k1)λg1(u)N1(du× dk1) +

∫
(0,t)×Z+

qcβg(k2)λg1(u)N2(du× dk2)

or heuristically, we can write

dλg1(u) = β(µ− λg1(u))du+

∫
(u,u+du)×Z+

qsβg(k1)N1(du× dk1) +

∫
(u,u+du)×Z+

qcβg(k2)N2(du× dk2).
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Since the jump size of λg1 is represented by α·(1 + (k1 − 1)η), using Eq. (A.1), we have

E[[λg1]t] = E[λ2g1(0)] + E

[∫
(0,t)×Z+

α2
s(1 + (k1 − 1)η)2N1(du× dk1)

]

+ E

[∫
(0,t)×Z+

α2
c(1 + (k2 − 1)η)2N2(du× dk2)

]
= E[λ2g1(t)] + (α2

s + α2
c){1 + 2(K − 1)η + (K(2) − 2K + 1)η2}E[λg1(t)]t

where we use the stationarity of λgi. In addition,

E
[∫ t

0

λg1(u)dλg1(u)

]
= E

[∫ t

0

λg1(u)β(µ− λg1(u))du

]
+ E

[∫
(0,t)×Z+

qsβg(k1)λg1(u)N1(du× dk1) +

∫
(0,t)×Z+

qcβg(k2)λg1(u)N2(du× dk2)

]
= (βµE[λg1(t)] + [αs{1 + (K1λ2

g1
− 1)η} − β]E[λ2g1(t)] + αc{1 + (K1λg1λg2

− 1)η}E[λg1(t)λg2(t)])t

=: (βµE[λg1(t)] + (ᾰs − β)E[λ2g1(t)] + α̃cE[λg1(t)λg2(t)])t.

Similarly,

E[λg1(t)λg2(t)] = E[[λg1, λg2]t] + E
[∫ t

0

λg1(u)dλg2(u)

]
+ E

[∫ t

0

λg2(u)dλg1(u)

]
,

and, for the covariation process [λg1, λg2]t, we compute

E[[λg1, λg2]t] = E[λg1(0)λg2(0)] + E

[∫
(0,t)×Z+

αsαc(1 + (k1 − 1)η)2N1(du× dk1)

]

+ E

[∫
(0,t)×Z+

αsαc(1 + (k2 − 1)η)2N2(du× dk2)

]
= E[λg1(t)λg2(t)] + 2αsαc{1 + 2(K − 1)η + (K(2) − 2K + 1)η2}E[λg1(t)]t

and

E

[∫
(0,t)×Z+

λg1(u)dλg2(u)

]
= E

[∫ t

0

λg1(u)β(µ− λg2(u))du

]

+ E

[∫
(0,t)×Z+

qcβg(k1)λg1(u)N1(du× dk1) +

∫
(0,t)×Z+

qsβg(k2)λg1(u)N2(du× dk2)

]
= (βµE[λg1(t)] + αc{1 + (K1λ2

g1
− 1)η}E[λ2g1(t)] + [αs{1 + (K1λg1λg2

− 1)η} − β]E[λg1(t)λg2(t)])t

=: (βµE[λg1(t)] + ᾰcE[λ2g1(t)] + (α̃s − β)E[λg1(t)λg2(t)])t

Thus, [
E[λ2g1(t)]

E[λg1(t)λg2(t)]

]
= −1

2
E[λg1(t)]M−1

[
(α2
s + α2

c)K̈ + 2βµ

2(αsαcK̈ + βµ)

]
where K̈ = 1 + (K − 1)η + (K(2) − 2K + 1)η2 and

M =

[
ᾰs − β α̃c
ᾰc α̃s − β

]
.

Appendix A.2. Step 2

We have

E[λg1(t)N1(t)] = E[[λg1, N1]t] + E

[∫
(0,t)×Z+

λg1(u)k1N1(du× dk1)

]
+ E

[∫ t

0

N1(u−)dλg1(u)

]
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and

E[[λg1, N1]t] = E

[∫
(0,t)×Z+

αs(1 + (k1 − 1)η)k1N1(du× dk1)

]
= αs(K + (K(2) −K)η)E[λg1(t)]t

=: αsK̇E[λg1(t)]t

and

E

[∫
(0,t)×Z+

λg1(u)k1N1(du× dk1)

]
=

∫ t

0

E[kλ2g1(u)]du = K1λ2
g1
E[λ2g1(t)]t

and

E
[∫ t

0

N1(u−)dλ1(u)

]
=

∫ t

0

{βµE[λg1(u)]u+ (ᾰs − β)E[λg1(u)N1(u)] + ᾰcE[λg2(u)N1(u)]}du.

Similarly,

E[λg1(t)N2(t)] = E[[λg1, N2]t] + E

[∫
(0,t)×Z+

λg1(u)k2N2(du× dk2)

]
+ E

[∫ t

0

N2(u−)dλ1(u)

]
and

E[[λg1, N2]t] = αc(K + (K(2) −K)η)E[λg1(t)]t

=: αcK̇E[λg1(t)]t

and

E

[∫
(0,t)×Z+

λg1(u)k2N2(du× dk)

]
=

∫ t

0

E[k2λg1(u)λg2(u)]du = K1λg1λg2E[λg1(t)λg2(t)]t

and

E
[∫ t

0

N2(u−)dλ1(u)

]
=

∫ t

0

{βµE[λg1(u)]u+ α̃cE[λg1(u)N1(u)] + (α̃s − β)E[λg1(u)N2(u)]}du

Thus,dE[λg1(t)N1(t)]

dt
dE[λg1(t)N2(t)]

dt

 = M

[
E[λg1(t)N1(t)]
E[λg1(t)N2(t)]

]
+

[
αsK̇E[λg1(t)] +K1λ2

g1
E[λ2g1(t)] + βµE[λg1(t)]t

αcK̇E[λg1(t)] +K1λg1λg2
E[λg1(t)λg2(t)] + βµE[λg1(t)]t

]

= M

[
E[λg1(t)N1(t)]
E[λg1(t)N2(t)]

]
+ E[λg1(t)]

([
βµ
βµ

]
t+

[
αsK̇

αcK̇

]
− 1

2
M−1

[
K1λ2

g1
{(α2

s + α2
c)K̈ + 2βµ}

2K1λg1λg2
(αsαcK̈ + βµ)

])
and[
E[λg1(t)N1(t)]
E[λg1(t)N2(t)]

]
= −E[λg1(t)]

(
βµM−1

[
1
1

]
t+ M−1

[
αsK̇

αcK̇

]
− 1

2
M−2

[
K1λ2

g1
{(α2

s + α2
c)K̈ + 2βµ}

2K1λg1λg2
(αsαcK̈ + βµ)

])
.

Appendix A.3. Step 3

We have

E[N2
1 (t)] = E[[N1]t] + 2E

[∫
(0,t)×Z+

k1N1(u)N1(du× dk1)

]

= E[k21λg1(t)]t+ 2

∫ t

0

E[k1λg1(u)N1(u)]du

= K(2)E[λg1(t)]t+ 2

∫ t

0

K1λg1N1E[λg1(u)N1(u)]du
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and

E[N1(t)N2(t)] = E[[N1, N2]t] + E

[∫
(0,t)×Z+

N1(u−)N2(du× dk)

]
+ E

[∫
(0,t)×Z+

N2(u−)N1(du× dk)

]

= 2

∫ t

0

K1λg1N2
E[λg1(u)N2(u)]du.

Then[
E[N2

1 (t)]
E[N1(t)N2(t)]

]
= −E[λg1(t)]

[
K1λg1N1 0

0 K1λg1N2

]
{
βµM−1

[
1
1

]
t2 +

(
2M−1

[
αsK̇

αcK̇

]
−M−2

[
K1λ2

g1
{(α2

s + α2
c)K̈ + 2βµ}

2K1λg1λg2
(αsαcK̈ + βµ)

]
−
[
K(2)/K1λg1N1

0

])
t

}
.
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