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Effectiveness of linear extrapolation in

model-free implied moment estimation

Abstract

This study shows that the sensitivity of the implied moment estimators of Bakshi et al.

(2003) to a marginal change in option price availability can be formulated, regardless of

whether the linear extrapolation (LE) method of Jiang and Tian (2005) is applied. Using

S&P 500 index options data and sensitivity functions for the cases with and without LE ap-

plied, this study then investigates how effectively LE makes the implied moment estimators

less sensitive to option price unavailability. The empirical results suggest that LE is effec-

tive for all three estimators, although the implied skewness and kurtosis estimators remain

sensitive even with LE applied.

1. Introduction

The question of how unobservable deep-out-of-the-money (DOTM) option prices can be inferred

has been raised and answered in several studies. Addressing this question is critical for the

nonparametric estimation of implied risk-neutral density, because these option prices contain

crucial information on tail density. Although various option pricing models and sophisticated

Black-Scholes implied volatility curve fitting schemes can answer this question, using one of these

will cost the estimation procedure its model-freeness. With this limitation, linear extrapolation

(LE) has become one of the most popular DOTM option price approximation procedures for

model-free implied moment estimation, because LE has little effect on model-freeness as a result

of its approximation-based simple approach. Recently, with the increased popularity of the

implied moment estimators of Bakshi et al. (2003), the use of LE has been extended and is mostly

in conjunction with the implied skewness end kurtosis estimators of Bakshi et al. (2003) (e.g.,

Buss and Vilkov, 2012; Chang et al., 2012; Chang et al., 2013; DeMiguel et al., 2013; Neumann
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and Skiadopoulos, 2013).

LE is first introduced by Jiang and Tian (2005) to reduce the estimation error of model-free

implied volatility estimator of Britten-Jones and Neuberger (2000). This method is conducted

initially through the assumption that the Black-Scholes implied volatility curve is flat beyond

the minimum and maximum strike prices of the orignial curve, followed by the extension of the

curve on the basis of such an assumption. The missing DOTM option prices can then be inferred

from this extended curve. In other words, LE can be regarded as a zeroth-order approximation

of Black-Scholes implied volatility. As the order suggests, LE is a rough way of approximation.

However, Jiang and Tian (2005) show that LE makes the estimation error smaller than that in

the case in which no treatment is applied. From this case, LE can be conjectured to have at

least a positive effect on reducing the estimation error of implied volatility estimator that is due

to the unavailability of DOTM option prices. Jiang and Tian (2005) call this type of estimation

error as a “truncation error” because such an error is caused by DOTM option prices that look

as if they are “truncated.”

However, two questions should be answered before applying LE, especially for implied skew-

ness or kurtosis estimation. Firstly, how effective is LE? In other words, is it adequately effective

to make the truncation error negligible? The severity of DOTM option price unavailability is

different across markets and over time, so the truncation error can generate noise in the estimate

if it is incompletely reduced. Hence, although determining whether LE can alleviate truncation

error is by itself valuable, checking if LE can alleviate the truncation error up to the level in

which the error becomes insignificant is also needed. Secondly, can LE be applied to higher

moment estimators, i.e., the implied skewness and kurtosis estimators of Bakshi et al. (2003)?

Although Jiang and Tian (2005) show the effectiveness of LE and derives the upper bound of

truncation error for the implied volatility estimator of Britten-Jones and Neuberger (2000), nei-

ther the effectiveness nor the upper bound can be accepted as it is when LE is employed for

another estimator. Furthermore, given that skewness and kurtosis are more closely related to

the shape of the tail density than volatility is, the truncation error is likely larger for these higher

moment estimators. Therefore, the effectiveness of LE should be assessed separately when it is

used for the higher moment estimators of Bakshi et al. (2003).
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This study proposes a measure with which the effectiveness of LE can be assessed for any

set of out-of-the-money (OTM) European option prices. A significant advantage of this measure

is that it can be applied to option prices that are observed from markets. In most related

studies, model option prices are generated to demonstrate the truncation error (e.g., Dennis and

Mayhew, 2002; Jiang and Tian, 2005; Dennis and Mayhew, 2009), given that the true level of the

implied moment is required to calculate truncation error. With the limited availability of market

option prices, obtaining the true level of implied moment from market option prices is impossible,

and, thus, measuring the truncation error from them is also impossible. Hence, model option

prices have been used as an alternative. On the other hand, the problem is circumvented in this

study through the use of a different approach to measure the effectiveness of LE.

If the truncation error is reduced effectively so that the effect of truncation on the implied

moment estimate is negligible, the estimate should not change significantly after a marginal

change in option price availability. In other words, if the implied moment estimate varies signifi-

cantly when the moment is reestimated after an inclusion or exclusion of a few option prices while

a truncation treatment method is consistently applied, the truncation error has not been fully

reduced by the method. Hence, the sensitivity of the implied moment estimate to a marginal

change in option availability can be used to assess the effectiveness of the truncation treatment

method. This study shows that this sensitivity can be formulated for the estimators of Bakshi

et al. (2003), regardless of whether LE is applied or not. Measuring the effectiveness of LE is

therefore possible through a comparison of the sensitivity of implied moment estimates with and

without the application of LE.

The following results are obtained through an empirical analysis of S&P 500 index options

data. Firstly, all three implied moment estimators of Bakshi et al. (2003) tend to become

less sensitive to truncation after LE. With this result, LE can be conjectured to also reduce

the truncation error of model-free implied moment estimators other than the implied volatility

estimator of Britten-Jones and Neuberger (2000). Secondly, the implied volatility estimator

of Bakshi et al. (2003) is found to be considerably robust to truncation when applied to S&P

500 index options data, regardless of whether LE is applied or not. Finally, implied skewness

and kurtosis estimators are found to be relatively sensitive to truncation, especially when the
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influence of LE on implied moment estimate is too strong.

Although the overall result suggests that LE is effective for all implied moment estimators

of Bakshi et al. (2003), truncation error can also be conjectured to be too large to be regarded

as negligible even after LE when implied skewness or kurtosis is estimated. This result implies

that a supplementary truncation treatment may need to be used along with LE when a higher

implied moment is estimated. A possible supplementary method that is easy to employ is an

additional data filtration, which removes observations with too high truncation sensitivity with

LE. With this, the truncation sensitivity function is by itself found to be an instrument for

truncation treatment.

The rest of this paper is organized as follows. Section 2 explains how truncation sensitivity of

implied moment estimators can be defined in a functional form, for both cases with and without

LE applied. Section 3 describes the data used in this study. Section 4 demonstrates how the

sensitivity function defined in Section 2 can be applied to option prices. Section 5 reports the

results of empirical analysis on S&P 500 index options data. Section 6 concludes this study.

2. Truncation Sensitivity Function

This section first revisits the basic definitions of implied moment estimators in Bakshi et al.

(2003) and then demonstrates how the sensitivity of estimators to a marginal change in option

price availiability can be defined in a functional form. Section 2.1 briefly describes the implied

moment estimators and explains how they can be rearranged in terms of log-moneyness. Sec-

tion 2.2 shows how sensitivity can be defined. Section 2.3 explains how truncation sensitivity

should be measured when LE is applied.

2.1 Implied moment estimators

2.1.1 Definition

To estimate the skewness and kurtosis of implied risk-neutral log-return density, Bakshi et al.

(2003) first introduce volatility contract V , cubic contract W , and quartic contract X whose

payoffs at maturity are the second, third, and fourth power of the holding period log-return,
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respectively.1 Using OTM option prices, Bakshi et al. (2003) construct the fair value of these

contracts under the risk-neutral measure as

V (t, τ) =

∫ ∞
S(t)

2
(

1− ln
[
K
S(t)

])
K2

C(t, τ ;K)dK

+

∫ S(t)

0

2
(

1 + ln
[
S(t)
K

])
K2

P (t, τ ;K)dK, (1)

W (t, τ) =

∫ ∞
S(t)

6 ln
[
K
S(t)

]
− 3

(
ln
[
K
S(t)

])2

K2
C(t, τ ;K)dK

−
∫ S(t)

0

6 ln
[
S(t)
K

]
+ 3

(
ln
[
S(t)
K

])2

K2
P (t, τ ;K)dK, (2)

X(t, τ) =

∫ ∞
S(t)

12
(

ln
[
K
S(t)

])2
− 4

(
ln
[
K
S(t)

])3

K2
C(t, τ ;K)dK

+

∫ S(t)

0

12
(

ln
[
S(t)
K

])2
+ 4

(
ln
[
S(t)
K

])3

K2
P (t, τ ;K)dK, (3)

where C(t, τ ;K) and P (t, τ ;K) denote the price of call and put options with strike price K

and time to maturity τ at day t, respectively. Then, the τ -period implied risk-neutral volatility,

skewness, and kurtosis can be derived as

VOL(t, τ) =
[
erτV (t, τ)− µ(t, τ)2

]1/2
, (4)

SKEW(t, τ) =
erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2µ(t, τ)3

[erτV (t, τ)− µ(t, τ)2]3/2
, (5)

KURT(t, τ) =
erτX(t, τ)− 4µ(t, τ)erτW (t, τ) + 6erτµ(t, τ)2V (t, τ)− 3µ(t, τ)4

[erτV (t, τ)− µ(t, τ)2]2
, (6)

where

µ(t, τ) =erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ). (7)

1Because skewness and kurtosis are defined as standardized skewness and kurtosis, volatility can also be

estimated from the denominator of either the skewness or kurtosis estimator.
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2.1.2 Rearrangement

If the parameters t and τ are removed for brevity, and λ denotes the log-moneyness ln(K/S),

Equations (1)–(3) can be rearranged as

V =

∫ ∞
0

2 (1− λ)

Seλ
C(λ)dλ+

∫ 0

−∞

2 (1− λ)

Seλ
P (λ)dλ, (8)

W =

∫ ∞
0

6λ− 3λ2

Seλ
C(λ)dλ+

∫ 0

−∞

6λ− 3λ2

Seλ
P (λ)dλ, (9)

X =

∫ ∞
0

12λ2 − 4λ3

Seλ
C(λ)dλ+

∫ 0

−∞

12λ2 − 4λ3

Seλ
P (λ)dλ. (10)

With Equations (8)–(10), option prices are considered in a log-moneyness domain of integration,

not a strike price one. Not only does this rearrangement simplify the definitions and allow the

domain of integration to be more closely related to the domain of risk-neutral density function,

but this also enables the easy definition of the minimum and maximum values of the integration

domain as simple univariate functions, as will be shown below.

2.2 Definition of sensitivity

Now, suppose that the minimum and maximum values of the log-moneyness domain are finite,

i.e., a truncation does exist, and the endpoint values are derived from differentiable univariate

functions f(α) and g(α), which satisfy the conditions f(α) ≤ 0 and g(α) ≥ 0 for all α, re-

spectively. If this is the case, the fair value estimates can be defined as univariate functions

V̂ (α), Ŵ (α), and X̂(α) as follows:

V̂ (α) =

∫ g(α)

0

2(1− λ)

Seλ
C(λ)dλ+

∫ 0

f(α)

2(1− λ)

Seλ
P (λ)dλ, (11)

Ŵ (α) =

∫ g(α)

0

6λ− 3λ2

Seλ
C(λ)dλ+

∫ 0

f(α)

6λ− 3λ2

Seλ
P (λ)dλ, (12)

X̂(α) =

∫ g(α)

0

12λ2 − 4λ3

Seλ
C(λ)dλ+

∫ 0

f(α)

12λ2 − 4λ3

Seλ
P (λ)dλ. (13)
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Then, the implied volatility, skewness, and kurtosis estimates can also be obtained as univariate

functions:

V̂OL(α) = [erτ V̂ (α)− µ̂2(α)]1/2, (14)

ŜKEW(α) =
erτŴ (α)− 3µ̂(α)erτ V̂ (α) + 2µ̂(α)3

[erτ V̂ (α)− µ̂2(α)]3/2
, (15)

K̂URT(α) =
erτ X̂(α)− 4µ̂(α)erτŴ (α) + 6erτ µ̂(α)2V̂ (α)− 3µ̂(α)4

[erτ V̂ (α)− µ̂(α)2]2
, (16)

where

µ̂(α) = erτ − 1− erτ

2
V̂ (α)− erτ

6
Ŵ (α)− erτ

24
X̂(α). (17)

Given Equations (11)–(16), the derivative of V̂OL(α), ŜKEW(α), and K̂URT(α) with respect

to α can be formulated as

V̂OL
′
(α) =

1

2
[erτ V̂ (α)− µ̂2(α)]−1/2

(
erτ V̂ ′(α)− 2µ̂(α)µ̂′(α)

)
, (18)

ŜKEW
′
(α) =

Θ̂S(α)Γ̂′S(α)− Γ̂S(α)Θ̂′S(α)

Θ̂2
S(α)

, (19)

K̂URT
′
(α) =

Θ̂K(α)Γ̂′K(α)− Γ̂K(α)Θ̂′K(α)

Θ̂2
K(α)

, (20)

where Γ̂S and Γ̂K denote the numerator of ŜKEW(α) and K̂URT(α), respectively, and Θ̂S and

Θ̂K denote the denominator of ŜKEW(α) and K̂URT(α), respectively. Given Equations (11)–

(16), the derivatives in Equations (18)–(20) can be obtained as

Γ̂′S(α) = erτŴ ′(α)− 3erτ
(
V̂ (α)µ̂′(α) + µ̂(α)V̂ ′(α)

)
+ 6µ̂2(α)µ̂′(α), (21)

Θ̂′S(α) =
3

2
[erτ V̂ (α)− µ̂2(α)]1/2

(
erτ V̂ ′(α)− 2µ̂(α)µ̂′(α)

)
, (22)

Γ̂′K(α) = erτ X̂ ′(α)− 4erτ
(
Ŵ (α)µ̂′(α) + µ̂(α)Ŵ ′(α)

)
+ 6erτ

(
2µ̂(α)V̂ (α)µ̂′(α) + µ̂2(α)V̂ ′(α)

)
− 12µ̂3(α)µ̂′(α), (23)

Θ̂′K(α) = 2[erτ V̂ (α)− µ̂2(α)]
(
erτ V̂ ′(α)− 2µ̂(α)µ̂′(α)

)
, (24)
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V̂ ′(α) = g′(α)
2(1− g(α))

Seg(α)
C(g(α))− f ′(α)

2(1− f(α))

Sef(α)
P (f(α)), (25)

Ŵ ′(α) = g′(α)
6g(α)− 3g2(α)

Seg(α)
C(g(α))− f ′(α)

6f(α)− 3f2(α)

Sef(α)
P (f(α)), (26)

X̂ ′(α) = g′(α)
12g2(α)− 4g3(α)

Seg(α)
C(g(α))− f ′(α)

12f2(α)− 4f3(α)

Sef(α)
P (f(α)), (27)

µ̂′(α) = − erτ
(

1

2
· V̂ ′(α) +

1

6
· Ŵ ′(α) +

1

24
· X̂ ′(α)

)
. (28)

2.3 Truncation sensitivity with LE

This subsection derives the sensitivity of the implied moment estimate to a change in option

price availability when LE is applied. Because extremely DOTM options have an infinitesimal

value and, therefore, excluding them have little effect on moment estimates, extrapolation is

generally done only up to fixed limit points that are far enough from the at-the-money point.2

This approach is also used in this study, and extrapolation is assumed to be done up to the points

in which log-moneyness is equal to finite and fixed limit values λmin and λmax, respectively. Both

λmin and λmax are presumed to be significantly different from zero so that both f(α) and g(α) do

not exceed the corresponding limit values. Now, suppose that the fair value of moment-related

contracts V , W , and X is estimated with the use of a set of option prices that cover the log-

moneyness domain [f(α), g(α)], as in Equations (11)–(13), and the level of Black-Scholes implied

volatility in this domain is defined by a function σBS(λ) which is differentiable with respect to

log-moneyness λ. If the two endpoint Black-Scholes implied volatilities σBS(f(α)) and σBS(g(α))

are extrapolated up to the points in which log-moneyness is equal to λmin and λmax, respectively,

the fair value estimates for the volatility, cubic, and quartic contracts in Equations (11)–(13)

are replaced with the new estimates Ṽ (α), W̃ (α), and X̃(α), which can be obtained as follows:

Ṽ (α) = V̂ (α) +

∫ λmax

g(α)

2(1− λ)

Seλ
C̃(σBS(g(α)), λ)dλ

+

∫ f(α)

λmin

2(1− λ)

Seλ
P̃ (σBS(f(α)), λ)dλ, (29)

2Buss and Vilkov (2012) generate option prices up to the points in which the moneyness is 1/3 and 3, respec-

tively. On the other hand, Neumann and Skiadopoulos (2013) choose the points where the option delta is 0.01

and 0.99, respectively.
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W̃ (α) = Ŵ (α) +

∫ λmax

g(α)

6λ− 3λ2

Seλ
C̃(σBS(g(α)), λ)dλ

+

∫ f(α)

λmin

6λ− 3λ2

Seλ
P̃ (σBS(f(α)), λ)dλ, (30)

X̃(α) = X̂(α) +

∫ λmax

g(α)

12λ2 − 4λ3

Seλ
C̃(σBS(g(α)), λ)dλ

+

∫ f(α)

λmin

12λ2 − 4λ3

Seλ
P̃ (σBS(f(α)), λ)dλ, (31)

where

C̃(σ, λ) = S(N(d1(σ, λ))− e−λrτN(d2(σ, λ))), (32)

P̃ (σ, λ) = S(e−λrτN(−d2(σ, λ))−N(−d1(σ, λ))), (33)

d1(σ, λ) =
−λ+ (r + 0.5σ2)τ

σ
√
τ

, (34)

d2(σ, λ) = d1(σ, λ)− σ
√
τ , (35)

and N(·) denotes the standard normal cumulative distribution function. With this, the following

proposition shows how the derivatives Ṽ ′(α), W̃ ′(α), and X̃ ′(α) can be formulated:

Proposition 1. If (1) the level of Black-Scholes implied volatility in log-moneyness domain

[f(α), g(α)] is defined by a function σBS(λ) which is differentiable with respect to log-moneyness

λ, (2) the two Black-Scholes implied volatilities σBS(f(α)) and σBS(g(α)) are linearly extrap-

olated up to the point in which log-moneyness is equal to fixed limit values λmin and λmax,

respectively, and (3) the value of λmin and λmax is significantly different from zero so that both

f(α) and g(α) are not supposed to exceed those limit values, then the derivatives Ṽ ′(α), W̃ ′(α),

and X̃ ′(α) can be formulated as

Ṽ ′(α) = γ0

∫ λmax

g(α)

(
2(1− λ) exp

[
γ1λ

2 + γ2λ+ γ3

])
dλ

+ δ0

∫ f(α)

λmin

(
2(1− λ) exp

[
δ1λ

2 + δ2λ+ δ3

])
dλ, (36)
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W̃ ′(α) = γ0

∫ λmax

g(α)

(
(6λ− 3λ2) exp

[
γ1λ

2 + γ2λ+ γ3

])
dλ

+ δ0

∫ f(α)

λmin

(
(6λ− 3λ2) exp

[
δ1λ

2 + δ2λ+ δ3

])
dλ, (37)

X̃ ′(α) = γ0

∫ λmax

g(α)

(
(12λ2 − 4λ3) exp

[
γ1λ

2 + γ2λ+ γ3

])
dλ

+ δ0

∫ f(α)

λmin

(
(12λ2 − 4λ3) exp

[
δ1λ

2 + δ2λ+ δ3

])
dλ, (38)

where

γ0 =

√
τ√

2π
· σ′BS(g(α)) · g′(α), (39)

γ1 = − 1

2σBS(g(α))2τ
, (40)

γ2 =
r

σBS(g(α))2
− 1

2
, (41)

γ3 = − (r + 0.5σBS(g(α))2)2τ

2σBS(g(α))2
, (42)

δ0 =

√
τ√

2π
· σ′BS(f(α)) · f ′(α), (43)

δ1 = − 1

2σBS(f(α))2τ
, (44)

δ2 =
r

σBS(f(α))2
− 1

2
, (45)

δ3 = − (r + 0.5σBS(f(α))2)2τ

2σBS(f(α))2
, (46)

σ′BS(λ) is the derivative of Black-Scholes implied volatility function σBS(λ) with respect to log-

moneyness λ, r is the risk-free rate, and τ is the time to maturity.

Proof. See Appendix A.

3. Data

The daily data on S&P 500 index options used in this paper span the 11-year time period from

January 2000 to December 2010. Closing OTM option quotes, the index level, risk-free rate

yield curve, and the implied dividend rate data are collected from OptionMetrics via Wharton
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Research Data Services. The closing option price is approximated as the midpoint between the

closing bid and the ask quotes. The risk-free rate for a specific time to maturity is approximated

by linear interpolation of the two closest maturities on the yield curve. The implied dividend

rate is employed to estimate the dividend rate q(t0, T ) for day t0 and maturity date T as

q(t0, T ) =

[
n∏
i=1

(1 + q∗(ti))

]1/n

− 1, (47)

where n is the number of implied dividend rate observations available for the days between t0 and

T , and q∗(ti) is the implied dividend rate on day ti, which is between t0 and T . This dividend

rate is then used to derive the dividend-free index level. After data collection, inadequate

observations are removed with a set of data filters, which are briefly described in Appendix B.

Table 1 reports some summary statistics of the option price sample used in this study.

4. Methodology

This section demonstrates how the truncation sensitivity functions introduced in Section 2 can

be employed on option prices data. Section 4.1 explains how the Black-Scholes implied volatility

curve is constructed in this study to obtain a dense set of option prices, as well as a differentiable

Black-Scholes implied volatility function with respect to log-moneyness. In Section 4.2, the

empirical procedure of truncation sensitivity estimation is described. Section 4.3 shows how the

value of truncation sensitivity can be interpreted and used to assess the effectiveness of LE.

4.1 Construction of Black-Scholes implied volatility curve

An implied volatility curve is required for each maturity for which truncation sensitivity is

measured, in order to obtain an adequate number of option prices from which a continuum

of option prices can be approximated, as well as to estimate a differentiable implied volatility

function. As done in Jiang and Tian (2005), maturity is first fixed to avoid the telescoping

problem, which is pointed out by Christensen et al. (2002).3 Black-Scholes implied volatilities

3Christensen et al. (2002) point out that the time period between the present and maturity dates is overlapping

for option samples in different days if they expire on the same day.
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are first collected from all available OTM option prices to fix the maturity. Next, a bicubic

spline function is estimated with the use of the implied volatility observations. For the regions

where some of the observations required for estimation are not available because of a difference in

minimum or maximum strike price between different maturities, LE is applied to approximate the

missing observation. With the estimated bicubic spline function, the implied volatility levels are

then approximated at some fixed maturities for the strike prices for which at least one observation

exists on that day. When only the exactly monthly maturities are considered, consecutive daily

observations can be obtained only for the maturities of two, three, and four months during the

sample period, due to data filtration and liquidity issues. Given this limitation, implied volatility

curves only for the maturities of two and four months are examined.

After the maturity is fixed, the implied volatility curves are constructed for each maturity.

First, the implied volatility levels are additionally approximated for the minimum and maximum

values of the strike price domain with the use of the bicubic spline function. If the minimum

and maximum strike prices are not observable for a maturity, they are linearly approximated

with the use of the corresponding endpoint strike prices for the two closest maturities for which

the endpoints are observable. After this additional approximation, all implied volatility values

that are located beyond the minimum or maximum strike price are discarded. Not only does

this reflect the level of truncation observed in the market, but this also removes the effect of LE

that is conducted while fixing the maturity.

Next, piecewise quadratic function is used to estimate the shape of the implied volatility

curve, in accordance with the approach of Broadie et al. (2007). Similar to the approach of

Broadie et al. (2007), the following function is fitted:

σBS(λ) = 1λ≤0[a2λ
2 + a1λ+ a0] + 1λ>0[b2λ

2 + a1λ+ a0] + ε, (48)

where σBS(λ) is the level of Black-Scholes volatility at log-moneyness λ, and 1C is an indicator

function whose value is one when condition C holds and zero otherwise. The piecewise function is

defined as a function of log-moneyness λ to obtain the derivative σ′BS(λ). Although the implied

volatility curve can also be estimated with the use of the cubic spline function, which provides a
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perfect fit as in Jiang and Tian (2005), a curve estimated with the use of the cubic spline function

can be winding severely, so that the derivative of the implied volatility function may not be

approximated stably. Comparatively, the derivative of the piecewise qudratic function is more

stable, although the function itself does not ensure a perfect fit. Because the derivative of the

implied volatility function at endpoints is significantly important in measuring sensitivity when

LE is applied, the piecewise quadratic function is chosen to estimate implied volatility curve.

After the implied volatility curve is estimated, the curve is translated into OTM option prices

for the strike prices between the minimum and maximum values of the strike price domain, with

a strike price interval of 0.1. When LE is employed for implied moment or truncation sensitivity

estimation, it is applied to this curve up to the points in which the strike prices are equal to

S(t)/3 and 3S(t), respectively, where S(t) is the dividend-free index level on day t. This setting

means that λmin and λmax in Equations (29)–(38) are set as − ln 3 and ln 3, respectively. The

strike price interval is again set as 0.1 for LE.

4.2 Measuring truncation sensitivity

Regardless of whether LE is applied or not, the basic procedure of truncation sensitivity mea-

surement is identical. Specifically, one first sets the endpoint functions f(α) and g(α), and

calculates the contract fair value estimates and their derivatives with respect to α. Then, all

the other required derivatives can be calculated correspondingly on the basis of the procedure

shown in Section 2.2. The only difference between the truncation sensitivity estimation with and

without LE is the method of obtaining the contract fair value estimates and their derivatives.

This subsection therefore describes the procedure of truncation sensivity measurement that can

be applied to both cases with and without LE, with some additional comments for the case with

LE which is slightly more complicated.

Endpoint functions f(α) and g(α) need to be defined first to measure sensitivity. Given

Equations (11)–(13), f(α) and g(α) must be defined in a way that a real number ᾱ exists, for

which f(ᾱ) = ln(Kmin/S) and g(ᾱ) = ln(Kmax/S), where Kmin and Kmax are the minimum and

maximum strike prices of the integration domain, respectively, and S is the underlying price. A

14



simple definition that is applicable to any observed data is f(α) = cα and g(α) = α, where

c =
ln(Kmin/S)

ln(Kmax/S)
. (49)

With this definition, two implicit assumptions are made. Firstly, α is nonnegative, no option

prices are available when α = 0, and the option price availability increases as α becomes larger.

Secondly, the log-moneyness ratio c is not changed by an increase or decrease in option price

availability. The first assumption is acceptable because it makes the relationship between α and

option price availability clearly defined. The second assumption is also reasonable because it

ensures that option price availability increases at each side (call side or put side) as α becomes

larger, while also satisfying the condition that the real number ᾱ mentioned above exists. Given

such assumptions, this simple definition is used in this study and is employed for empirical

analysis.

After f(α) and g(α) are set, the contract fair value estimates and their derivatives at α = ᾱ

need to be calculated. With the definition of f(α) and g(α) above, ᾱ = ln(Kmax/S). V̂ (ᾱ),

Ŵ (ᾱ), X̂(ᾱ), V̂ ′(ᾱ), Ŵ ′(ᾱ), and X̂ ′(ᾱ) need to be estimated as in Section 2.2 when LE is

not employed, whereas Ṽ (ᾱ), W̃ (ᾱ), X̃(ᾱ), Ṽ ′(ᾱ), W̃ ′(ᾱ), and X̃ ′(ᾱ) are required when LE

is considered. The fair value estimates and derivatives without LE are relatively easier to

obtain because they can be collected via the model-free implied moment estimation procedure

of Bakshi et al. (2003). On the other hand, two extra subtleties exist when derivatives with LE

are calculated. Firstly, the derivative σ′BS(λ) of the Black-Scholes implied volatility function

needs to be evaluated at λ = f(ᾱ) and λ = g(ᾱ). This evaluation can be done with the implied

volatility curve that is approximated using a differentiable function, i.e., piecewise quadratic

function, which is demonstrated in Section 4.1. Secondly, because Equations (36)–(38) are in

the form of transcendental function, no analytic solution exists for them. Fortunately, they can

still be evaluated numerically with the use of a computational software. Wolfram Mathematica

is used in this study to evaluate Ṽ ′(ᾱ), W̃ ′(ᾱ), and X̃ ′(ᾱ). With all the fair value estimates and

their derivatives with respect to α, now, the derivatives of the implied moment estimates with

respect to α, i.e., the truncation sensitivity of the implied moment estimators, can be obtained.
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When LE is not considered, plugging in the value of the required variables into Equations (18)–

(20) enables one to calculate the derivatives. It is also the case when LE is considered, but after

replacing V̂ (ᾱ), Ŵ (ᾱ), X̂(ᾱ), V̂ ′(ᾱ), Ŵ ′(ᾱ), and X̂ ′(ᾱ) with Ṽ (ᾱ), W̃ (ᾱ), X̃(ᾱ), Ṽ ′(ᾱ), W̃ ′(ᾱ),

and X̃ ′(ᾱ), respectively.

4.3 Interpretation of truncation sensitivity

Although truncation sensitivity provides information on how sensitive to truncation an implied

moment estimator is, refining the information is still needed to assess the effectiveness of LE

for two reasons. Firstly, unless no evidence exists that sensitivity is constant or at least stable

over the α-axis, the measured sensitivity should be regarded as local and therefore be used to

approximate a change in estimate caused by a small change in option price availability. Secondly,

because option prices are assigned for discrete strike prices, defining the change in option price

availability in terms of strike price rather than log-moneyness may be more practical. Hence,

the change in implied moment estimate caused by an increase in strike price domain length by

five, which is equal to the size of a single strike price interval in the S&P 500 index options

market for short maturities, is linearly approximated to assess the effectiveness of LE.

To approximate this change, one first needs to determine the size of increase in ᾱ that is

required to increase the strike price domain length by five. In other words, one needs to obtain

the value of increment i, which satisfies

h(i) ≡ (Seg(ᾱ+i) − Sef(ᾱ+i))− (Seg(ᾱ) − Sef(ᾱ))− 5 = 0. (50)

Given the definition of f(α) and g(α) in Section 4.2, the function h(i) is monotonically increasing

in the domain {i : −ᾱ ≤ i ≤ ∞} for any nonnegative constant ᾱ and S. Hence, a unique value

of i satisfies the condition above, and this value can be approximated numerically by minimizing

the absolute value of h(i). Figure 1 illustrates the approximated value of i for the S&P 500

index options data. It is shown in Figure 1 that the value of i is considerably small for the entire

sample period, and therefore it is reasonable to use linear approximation.
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5. Empirical analysis

This section reports the results of the empirical analysis on the effectiveness of LE. The sensitivity

function defined in Section 2 and the empirical methodology described in Section 4 are applied

to estimate the truncation sensitivity of the implied volatility, skewness, and kurtosis estimators

of Bakshi et al. (2003), when they are used with and without LE on S&P 500 index options

data. Section 5.1 compares the implied moment estimation results with and without LE to

demonstrate the effect of LE in outline. Section 5.2 compares the truncation sensitivity of the

implied moment estimators with and without LE to investigate the effectiveness of LE.

5.1 Implied moment estimate with and without LE

Figure 2 illustrates the level of implied moment estimates during the sample period with and

without the application of LE. A number of interesting points can be made from the figure.

Firstly, LE is shown to have a large influence on implied moment estimate when it is used with

a high moment estimator. Determining the difference between Figures 2a and 2b visually is

difficult, whereas the shape of the lines in Figure 2d is evidently different from that in Figure 2c,

and the difference is even larger in scale between Figures 2e and 2f. Secondly, LE is shown to

affect the implied skewness and kurtosis estimates significantly for a part of the sample period,

whereas the effect is less significant for the other parts. Figures 2c–2f show that the implied

skewness and kurtosis estimates are changed significantly after LE during the period from 2004

to 2007, whereas the change is less outstanding for the other periods. Finally, although a

notable change in the average level and short-term dynamics of the implied moment estimates

after LE can be observed, no significant change occurs in terms of the mid- and long-term trend

of moment estimate fluctuation. If the noisy estimates are ignored in Figures 2c–2f, the lines in

the corresponding pair of subfigures show a considerable similarity in shape.

5.2 Truncation sensitivity of implied moment estimate with and without LE

Table 2 reports the truncation sensitivity comparison result for the implied moment estimates

with and without LE. The comparison is conducted by approximation of the nominal and per-
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centage change in the estimates after an increase in strike price domain length by five, as

explained in Section 4.3, followed by an investigation into whether a significant difference exists

in the mean of the absolute nominal and percentage changes before and after LE. Panel A of

Table 2 shows the comparison result for the absolute nominal change in estimate. Panel A

depicts that the decrease in truncation sensitivity is statistically significant for all cases, except

the implied kurtosis estimate for the maturity of two months. Furthermore, Panel B of Table 2,

which reports the comparison result for the absolute percentage change in estimate, indicates

that the moment estimate becomes less sensitive to a small change in option price availability

for all moments and maturities. With these results, LE can be conjectured to be effective and

makes the estimates less sensitive to a change in option price availability for all three implied

moment estimators of Bakshi et al. (2003). Another notable finding is that the truncation sen-

sitivity of the implied volatility estimator is extremely low regardless of the application of LE.

This finding suggests that the implied volatility estimator of Bakshi et al. (2003) is considerably

robust to truncation when applied to S&P 500 index options data.

However, when we focus on the estimates on which LE has a relatively strong influence, a

contradictory finding can be obtained. Figure 3 illustrates the approximated time-series dynam-

ics of the nominal change in estimate after a change in strike price domain length by five. In

Figures 3c–3f, most of the estimates that are highly sensitive to truncation without LE become

even more sensitive with LE. Furthermore, the result is again similar in Figure 4, in which the

size of the absolute percentage change is employed, so that the effect of the implied moment level

is controlled. Given that the highly truncation-sensitive estimates are mostly located in the time

period from 2004 to 2007, for which LE is shown to have the largest influence in Section 5.1, LE

can be conjectured to have a reverse effect when its influence is too strong. This case is possible

because if the effect of LE is too strong, a change in endpoint implied volatility, which is due

to a change in strike price domain length, may also have a strong effect on the implied moment

estimate.

Overall, the empirical results suggest that LE is effective and makes the implied moment

estimate less sensitive to truncation for all three estimators of Bakshi et al. (2003). However, LE

might also have an adverse effect and make the estimate even more sensitive to truncation when
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the estimation relies on LE too heavily. Hence, a supplementary truncation treatment may be

required when LE is used in conjunction with estimators that are more closely related to the

DOTM option prices and thus might rely heavily on LE. A simple supplementary treatment is

to remove observations with extremely high truncation sensitivity, so that the estimation is less

affected by abnormal changes in the truncation error.

6. Conclusion

The nonparametric estimation of implied risk-neutral density has been a topic of recent interest,

especially when the target of estimation is a moment of the density. DOTM option prices have

vital information on the tail distribution but are only partially available in most options markets,

so the missing DOTM option prices are required to be inferred from the option prices available

when the implied moments are estimated nonparametrically. Model-based DOTM option price

estimation may impair the model-freeness of the nonparametric estimation method; therefore,

LE has been a popular choice as a truncation treatment method owing to its simplicity and

approximation-based approach. As the implied moment estimators of Bakshi et al. (2003) have

become popular, LE has also drawn increased academic interest and has been frequently used

in combination with higher moment estimators. Nevertheless, less attention has been devoted

to the issues of how effectively LE can reduce truncation error and whether LE can alleviate the

truncation error of higher moment estimators.

This study addresses both of these issues and introduces an empirical methodology, i.e.,

measurement of truncation sensitivity, with which the effectiveness of LE can be assessed. If

the truncation error becomes negligible when LE is applied, an estimate should not change

significantly after a marginal change in option price availability. In other words, if an estimate

changes significantly after including or excluding few options even when LE is applied, the

truncation error can be conjectured to be not fully reduced by LE. Hence, the sensitivity of the

implied moment estimate to a marginal change in option availability can be used to assess how

effectively LE reduces the truncation error. Basing on this idea, this study defines the truncation

sensitivity functions for the implied volatility, skewness, and kurtosis estimators of Bakshi et al.

19



(2003) with and without LE applied, and then employs these functions to approximate how the

estimates will change after a small increase in the number of option prices available for S&P 500

index options market.

This study makes three contributions to the literature on model-free implied moment estima-

tion. Firstly, the methodology used in this study shows how a truncation treatment method for

implied moment estimation can be assessed when the true value of implied moment is unknown,

so that the truncation error cannot be calculated. Because truncation sensitivity estimation

does not require the true value of implied moments, the methodology in this paper can be ap-

plied to any set of OTM European option prices and is therefore practical. By contrast, the

same assessment was done in previous studies through the measurement of truncation error for

the generated model option prices. Secondly, the present study shows how the efficiency of LE

varies according to the type of implied moment estimator in which LE is employed. Although

LE is frequently used in conjunction with implied moment estimators other than the implied

volatility estimator of Britten-Jones and Neuberger (2000), for which LE is first introduced, no

studies validating this extended use of LE for different implied moment estimators have been

conducted. The current study fills this gap and empirically shows that LE is considerably ef-

fective when used in combination with the implied volatility estimator of Bakshi et al. (2003).

However, the results suggest that the remaining truncation error is not small enough to be re-

garded as negligible when LE is used with implied skewness or kurtosis estimator of Bakshi et al.

(2003). Finally, the truncation sensitivity function, which is introduced in the present study to

measure the effectiveness of LE, can also be used as an instrument for supplementary truncation

treatment along with LE. Observations with a large truncation error can be detected by mea-

surement of truncation sensitivity, so an additional data filter based on truncation sensitivity

can be employed to reduce the effect of truncation on implied moment estimates.

Although this study points out an issue on the use of LE in combination with the implied

skewness or kurtosis estimator of Bakshi et al. (2003), it does not invalidate LE or any argument

in the work of Jiang and Tian (2005). On the contrary, the argument of Jiang and Tian (2005)

that LE reduces the truncation error of implied volatility estimator is supported by the current

study because the study shows that such is also the case for the implied volatility estimator of
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Bakshi et al. (2003). In addition, LE also makes implied skewness and kurtosis estimators less

sensitive to truncation in most cases. Hence, this study still suggests the use of LE in conjunction

with model-free implied moment estimators, including those for higher moments, but only on the

condition that the size of the remaining truncation error be properly controlled by supplementary

methods when LE is employed for higher moment estimation. As suggested previously, a simple

but effective supplementary method is to discard observations whose truncation sensitivity is

abnormally high, so that estimation results are not distorted by abrupt changes in the truncation

error.
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Appendix A. Proof of Proposition 1

Proposition 1 is proved only for the volatility contract V . The same proof can be applied to the

other contracts W and X as well. It is assumed that day t, time to maturity τ , and risk-free

rate r are known and fixed, and the underlying asset pays no dividends.

Proof.

Ṽ ′(α) = g′(α)
2(1− g(α))

Seg(α)
C(g(α)) + f ′(α)

2(1− f(α))

Sef(α)
P (f(α))

− g′(α)
2(1− g(α))

Seg(α)
C̃(σBS(g(α)), g(α))− f ′(α)

2(1− f(α))

Sef(α)
P̃ (σBS(f(α)), f(α))

+

∫ λmax

g(α)

(
2(1− λ)

Seλ
· ∂C̃(σBS(g(α)), λ)

∂α

)
dλ+

∫ f(α)

λmin

(
2(1− λ)

Seλ
· ∂C̃(σBS(f(α)), λ)

∂α

)
dλ

=

∫ λmax

g(α)

(
2(1− λ)

Seλ
· ∂C̃(σBS(g(α)), λ)

∂α

)
dλ+

∫ f(α)

λmin

(
2(1− λ)

Seλ
· ∂C̃(σBS(f(α)), λ)

∂α

)
dλ

=

∫ λmax

g(α)

(
2(1− λ)

Seλ
· ∂C̃(σBS(g(α)), λ)

∂σBS(g(α))
· dσBS(g(α))

dg(α)
· dg(α)

dα

)
dλ

+

∫ f(α)

λmin

(
2(1− λ)

Seλ
· ∂C̃(σBS(f(α)), λ)

∂σBS(f(α))
· dσBS(f(α))

df(α)
· df(α)

dα

)
dλ

=

∫ λmax

g(α)

(
2(1− λ)

Seλ
· ν(σBS(g(α)), λ) · σ′BS(g(α)) · g′(α)

)
dλ

+

∫ f(α)

λmin

(
2(1− λ)

Seλ
· ν(σBS(f(α)), λ) · σ′BS(f(α)) · f ′(α)

)
dλ, (51)

where

C̃(σ, λ) = S(N(d1(σ, λ))− e−λrτN(d2(σ, λ))), (52)

P̃ (σ, λ) = S(e−λrτN(−d2(σ, λ))−N(−d1(σ, λ))), (53)

d1(σ, λ) =
−λ+ (r + 0.5σ2)τ

σ
√
τ

, (54)

d2(σ, λ) = d1(σ, λ)− σ
√
τ , (55)
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N(·) denotes the standard normal cumulative distribution function, and ν(σ, λ) is the option

vega for Black-Scholes implied volatility σ and log-moneyness λ. Given that

ν(σ, λ) = Sn(d1)
√
τ , (56)

where

n(x) =
1√
2π

exp

(
−x

2

2

)
, (57)

d1 =
−λ+ (r + 0.5σ2)τ

σ
√
τ

, (58)

it can be obtained that

ν(σ, λ) =
S
√
τ√

2π
exp

[
−1

2

(
λ2 − 2λ(r + 0.5σ2)τ + (r + 0.5σ2)2τ2

σ2τ

)]
, (59)

and therefore the first integration term in Equation (51) can be rearranged as

∫ λmax

g(α)

(
2(1− λ)

Seλ
· ν(σBS(g(α)), λ) · σ′BS(g(α)) · g′(α)

)
dλ

=
1

S
· σ′BS(g(α)) · g′(α) ·

∫ λmax

g(α)

(
2(1− λ)e−λ · ν(σBS(g(α)), λ)

)
dλ

=

√
τ√
2π
· σ′BS(g(α)) · g′(α)

·
∫ λmax

g(α)

(
2(1− λ) exp

[
−λ− 1

2

(
λ2 − 2λ(r + 0.5σBS(g(α))2)τ + (r + 0.5σBS(g(α))2)2τ2

σBS(g(α))2τ

)])
dλ

= γ0

∫ λmax

g(α)

(
2(1− λ) exp

[
γ1λ

2 + γ2λ+ γ3

])
dλ, (60)
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where

γ0 =

√
τ√
2π
· σ′BS(g(α)) · g′(α), (61)

γ1 = − 1

2σBS(g(α))2τ
, (62)

γ2 =
r

σBS(g(α))2
− 1

2
, (63)

γ3 = − (r + 0.5σBS(g(α))2)2τ

2σBS(g(α))2
. (64)

Similarly, the second integration term in Equation (51) can be rearranged as

∫ f(α)

λmin

(
2(1− λ)

Seλ
· ν(σBS(f(α)), λ) · σ′BS(f(α)) · f ′(α)

)
dλ

= δ0

∫ f(α)

λmin

(
2(1− λ) exp

[
δ1λ

2 + δ2λ+ δ3

])
dλ, (65)

where

δ0 =

√
τ√
2π
· σ′BS(f(α)) · f ′(α), (66)

δ1 = − 1

2σBS(f(α))2τ
, (67)

δ2 =
r

σBS(f(α))2
− 1

2
, (68)

δ3 = − (r + 0.5σBS(f(α))2)2τ

2σBS(f(α))2
. (69)

By combining Equations (51), (60), and (65), it can be found that

Ṽ ′(α) = γ0

∫ λmax

g(α)

(
2(1− λ) exp

[
γ1λ

2 + γ2λ+ γ3

])
dλ

+ δ0

∫ f(α)

λmin

(
2(1− λ) exp

[
δ1λ

2 + δ2λ+ δ3

])
dλ, (70)

which is identical to Equation (36).
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Appendix B. Options data filtration procedure

After collecting option quotes data, the following data filters are applied to construct the final

sample:

• Observations with midpoints of bid and ask quotes less than 0.375 are removed, since these

observations may not reflect the true option value given a relatively larger tick size.

• Observations are excluded if time to maturity is shorter than one week or longer than one

year, since these observations may induce liquidity-related biases.

• Observations with bid-ask spread larger than mid-point price are discarded for two reasons.

Firstly, since bid quotes are already very low for DOTM options, a too large bid-ask spread

may result in having an abnormally high ask quote. Secondly, since options vega is lower

for DOTM observations, Black-Scholes implied volatility gap between bid and ask quotes

can be extreme for those observations when bid-ask spread is large, thereby making the

implied volatility of mid-point price less reliable.

• Observations are included only if the sum of daily trading volume for the corresponding

maturity date is nonzero, in order to prevent liquidity-related biases. In other words, the

entire daily observations for a maturity date are excluded if none of them are traded in

that day.

• Observations are removed if there is any missing data entry, if the bid quote is zero or

higher than the ask quote, or if the mid-point price is beyond the no-arbitrage bound.
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Table 1: Option price sample properties

This table presents summary statistics of filtered S&P 500 index options dataset used in this study. The dataset

contains 676,574 observations and spans an eleven year time period from January 2000 to December 2010. Effective

spread is defined as the spread between ask quote and mid-point price. The following data filters are applied: (1)

Observations with midpoints of bid and ask quotes less than 0.375 are excluded; (2) Observations are discarded

if time to maturity is shorter than one week or longer than one year; (3) Observations with bid-ask spread larger

than mid-point price are removed; (4) Observations are included only if the sum of daily trading volume is nonzero

for the corresponding maturity date; and (5) Observations are excluded if there is any missing data entry, if the

bid quote is zero or higher than the ask quote, or if the mid-point price is beyond the no-arbitrage bound.

Option Moneyness # of trading days to expiration (t) Total

type (m = K/S) 5 ≤ t < 42 42 ≤ t < 126 126 ≤ t ≤ 252 # of obs.

OTM puts

m < 0.70

Mean price 1.29 2.14 5.17

Mean effective spread 0.42 0.42 0.57

Mean BS implied vol. 0.6358 0.4644 0.3847

# of obs. 7,592 24,873 27,541 60,006

0.70 ≤ m < 0.85

Mean price 2.42 6.58 17.70

Mean effective spread 0.40 0.57 0.92

Mean BS implied vol. 0.4097 0.3247 0.2707

# of obs. 35,449 47,189 31,580 114,218

0.85 ≤ m < 1.00

Mean price 9.78 25.63 47.75

Mean effective spread 0.58 0.98 1.23

Mean BS implied vol. 0.2465 0.2390 0.2266

# of obs. 108,908 75,536 44,691 229,135

OTM calls

1.00 ≤ m < 1.15

Mean price 9.77 21.95 49.28

Mean effective spread 0.59 0.90 1.21

Mean BS implied vol. 0.1875 0.1861 0.1866

# of obs. 80,673 73,663 42,739 197,075

1.15 ≤ m < 1.30

Mean price 2.49 3.98 12.69

Mean effective spread 0.57 0.55 0.82

Mean BS implied vol. 0.3303 0.2074 0.1800

# of obs. 6,791 21,343 25,948 54,082

m ≥ 1.30

Mean price 1.21 1.87 3.59

Mean effective spread 0.59 0.55 0.57

Mean BS implied vol. 0.4665 0.2843 0.2187

# of obs. 892 5,182 15,984 22,058
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Table 2: Comparison of truncation sensitivity with and without LE

This table reports the truncation sensitivity comparison result for the implied volatility, skewness, and kurtosis

estimators of Bakshi et al. (2003) with and without linear extrapolation (LE). The comparison is conducted by

applying the estimators on S&P 500 index options dataset, and then approximating the nominal and percentage

change in the estimates after an increase in strike price domain length by five. The dataset spans an eleven year

time period from January 2000 to December 2010. Option prices are estimated based on the implied volatility

curve for the maturities of two and four months, which are extracted from daily implied volatility surfaces. When

LE is applied, implied volatility at minimum and maximum strike prices are extrapolated up to the points in

which strike prices are 3/S(t) and 3S(t), respectively, where S(t) is the dividend-free index level at day t. The

nominal change in estimate is approximated by first finding the value of increment i which minimizes the absolute

value of function h(t, τ, i), which is defined as

h(t, τ, i) = (S(t)eg(ᾱ(t,τ)+i) − Sef(ᾱ(t,τ)+i)) − (S(t)eg(ᾱ(t,τ)) − Sef(ᾱ(t,τ))) − 5,

where f(α, t, τ) = c(t, τ)α, g(α) = α, c(t, τ) = ln[Kmin(t, τ)/S(t)]/ ln[Kmax(t, τ)/S(t)], Kmin(t, τ) and Kmax(t, τ)

are the observed minimum and maximum strike prices for day t and maturity τ , respectively, and ᾱ(t, τ) =

ln[Kmax(t, τ)/S(t)]. Then, the nominal change for each (t, τ) is approximated as the truncation sensivity multiplied

by i. Finally, the percentage change is calculated by dividing the nominal change by the corresponding implied

moment estimate. The truncation sensitivity of implied volatility estimate is multiplied by 10,000 for better

visibility, because the implied volatility estimate is found to be significantly insensitive to a change in option price

availability when the estimator is applied to the dataset used in this study. ∗∗ and ∗ denote statistical significance

at the 1% and 5% levels, respectively.

Panel A. Absolute nominal change

Estimate Maturity
Application

Mean
Standard Difference

of LE deviation in mean

Implied volatility estimate
(Sensitivity×10, 000)

2 months
Without LE 0.0016 0.0051 0.0006∗∗

With LE 0.0010 0.0034 (5.57)

4 months
Without LE 0.0062 0.0253 0.0015∗

With LE 0.0047 0.0292 (2.01)

Implied skewness estimate

2 months
Without LE 0.0093 0.0061 0.0005∗

With LE 0.0088 0.0089 (2.31)

4 months
Without LE 0.0065 0.0048 0.0009∗∗

With LE 0.0056 0.0067 (5.60)

Implied kurtosis estimate

2 months
Without LE 0.0851 0.0594 −0.0016

With LE 0.0867 0.0939 (−0.75)

4 months
Without LE 0.0525 0.0400 0.0042∗∗

With LE 0.0483 0.0621 (2.95)

Panel B. Absolute percentage change

Implied volatility estimate
(Sensitivity×10, 000)

2 months
Without LE 0.0043 0.0086 0.0016∗∗

With LE 0.0026 0.0065 (7.98)

4 months
Without LE 0.0165 0.0464 0.0047∗∗

With LE 0.0118 0.0548 (3.41)

Implied skewness estimate

2 months
Without LE 0.0058 0.0034 0.0012∗∗

With LE 0.0046 0.0036 (12.19)

4 months
Without LE 0.0043 0.0043 0.0013∗∗

With LE 0.0030 0.0030 (13.08)

Implied kurtosis estimate

2 months
Without LE 0.0112 0.0048 0.0028∗∗

With LE 0.0084 0.0059 (19.29)

4 months
Without LE 0.0073 0.0033 0.0025∗∗

With LE 0.0048 0.0039 (25.47)
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Figure 1: Increment in ᾱ required to increase the strike domain length by five

This figure illustrates the level of increment in ᾱ, i.e., the value of α with which f(α) and g(α) coincide with the

observed minimum and maximum strike prices, respectively, that is required to increase the strike domain length

by five for the S&P 500 index options dataset used in this study. The dataset spans a time period from January

2000 to December 2010. Option prices are estimated based on the implied volatility curve for maturities of two

and four months, which are extracted from daily implied volatility surfaces. The value of required increment i is

approximated by minimizing the absolute value of function h(t, τ, i), which is defined as

h(t, τ, i) = (S(t)eg(ᾱ(t,τ)+i) − Sef(ᾱ(t,τ)+i)) − (S(t)eg(ᾱ(t,τ)) − Sef(ᾱ(t,τ))) − 5,

where S(t) is the underlying index level at day t, and ᾱ(t, τ) is the value of α with which f(α) and g(α) coincide

with the observed minimum and maximum strike prices, respectively, for day t and maturity τ .
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Figure 2: Implied moment estimate

This figure illustrates the level of implied volatility, skewness, and kurtosis estimates with and without the

application of linear extrapolation (LE). The S&P 500 index options dataset used spans a time period from

January 2000 to December 2010. Option prices are estimated based on the implied volatility curve for the

maturities of two and four months, which are extracted from daily implied volatility surfaces. When LE is

applied, implied volatility at minimum and maximum strike prices are extrapolated up to the points in which

strike prices are 3/S(t) and 3S(t), respectively, where S(t) is the dividend-free index level at day t.

(a) Implied volatility estimate (without LE) (b) Implied volatility estimate (with LE)

(c) Implied skewness estimate (without LE) (d) Implied skewness estimate (with LE)

(e) Implied kurtosis estimate (without LE) (f) Implied kurtosis estimate (with LE)
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Figure 3: Change in estimate after a change in strike price domain length by five

This figure reports the size of change in the implied volatility, skewness, and kurtosis estimates with and without

linear extrapolation (LE), after an increase in strike price domain length by five. The S&P 500 index options

dataset used here spans an eleven year time period from January 2000 to December 2010. Option prices are

estimated based on the implied volatility curve for the maturities of two and four months, which are extracted

from daily implied volatility surfaces. When LE is applied, implied volatility at minimum and maximum strike

prices are extrapolated up to the points in which strike prices are 3/S(t) and 3S(t), respectively, where S(t) is

the dividend-free index level at day t. Approximation of size of change in estimate is done by first finding the

value of increment i which minimizes the absolute value of function h(t, τ, i), which is defined as

h(t, τ, i) = (S(t)eg(ᾱ(t,τ)+i) − Sef(ᾱ(t,τ)+i)) − (S(t)eg(ᾱ(t,τ)) − Sef(ᾱ(t,τ))) − 5,

where f(α, t, τ) = c(t, τ)α, g(α) = α, c(t, τ) = ln[Kmin(t, τ)/S(t)]/ ln[Kmax(t, τ)/S(t)], Kmin(t, τ) and Kmax(t, τ)

are the observed minimum and maximum strike prices for time t and maturity τ , respectively, and ᾱ(t, τ) =

ln[Kmax(t, τ)/S(t)]. Then, the size of change is approximated as the truncation sensivity multiplied by i.

(a) Implied volatility estimate (without LE) (b) Implied volatility estimate (with LE)

(c) Implied skewness estimate (without LE) (d) Implied skewness estimate (with LE)

(e) Implied kurtosis estimate (without LE) (f) Implied kurtosis estimate (with LE)
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Figure 4: Percentage change in estimate after a change in strike price domain length by five

This figure reports the percentage change in the implied volatility, skewness, and kurtosis estimates with and

without linear extrapolation (LE), after an increase in strike price domain length by five. The S&P 500 index

options dataset used here spans an eleven year time period from January 2000 to December 2010. Option prices

are estimated based on the implied volatility curve for the maturities of two and four months, which are extracted

from daily implied volatility surfaces. When LE is applied, implied volatility at minimum and maximum strike

prices are extrapolated up to the points in which strike prices are 3/S(t) and 3S(t), respectively, where S(t) is

the dividend-free index level at day t. Rate of change in estimate is approximated by first finding the value of

increment i which minimizes the absolute value of function h(t, τ, i), which is defined as

h(t, τ, i) = (S(t)eg(ᾱ(t,τ)+i) − Sef(ᾱ(t,τ)+i)) − (S(t)eg(ᾱ(t,τ)) − Sef(ᾱ(t,τ))) − 5,

where f(α, t, τ) = c(t, τ)α, g(α) = α, c(t, τ) = ln[Kmin(t, τ)/S(t)]/ ln[Kmax(t, τ)/S(t)], Kmin(t, τ) and Kmax(t, τ)

are the observed minimum and maximum strike prices for time t and maturity τ , respectively, and ᾱ(t, τ) =

ln[Kmax(t, τ)/S(t)]. Next, the size of change is approximated as the truncation sensivity multiplied by i. Then,

finally, the percentage change is calculated by dividing the size of change by the corresponding implied moment

estimate.

(a) Implied volatility estimate (without LE) (b) Implied volatility estimate (with LE)

(c) Implied skewness estimate (without LE) (d) Implied skewness estimate (with LE)

(e) Implied kurtosis estimate (without LE) (f) Implied kurtosis estimate (with LE)
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