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Abstract

While “it is now widely accepted that excess returns are predictable” (Lettau and
Ludvigson, 2001, Journal of Finance), there also are authors finding otherwise, claiming
that the predictive models are unstable or even spurious. This paper proposes a model of
learning through which we can study the behavior of an investor under such ambiguous
circumstances. The proposed model describes how observations are translated into
a set of probability measures that represents the investor’s view of the immediate
future; and I explicitly characterize the set’s evolution up to a system of differential
equations that generalizes the Kalman-Bucy filter in the presence of ambiguity. The
model of learning is then applied to the portfolio choice problem of a log investor; and
learning under ambiguity is seen to have a significant effect on hedging demand: under
a reasonable calibration, the optimal demand for the risky asset at zero instantaneous
equity premium decreases, as the investor loses confidence, by half of wealth.

1 Introduction

There is a large body of empirical literature demonstrating stock return predictability. One of
the most frequently considered predictors is the dividend-price ratio (Campbell and Shiller,
1988; Fama and French, 1988a). Since the dividend-price ratio is stationary, the predictability
is related, in particular, to time-varying, mean-reverting expected returns (Fama and French,
1988b; Poterba and Summers, 1988).

Meanwhile, the form of time variation in investment opportunities is crucial to making
investment decisions. When investment opportunities are constant, the optimal portfolio,
too, is constant under standard utility functions (Merton, 1969; Samuelson, 1969). When
investment opportunities are stochastic, on the other hand, the optimal portfolio has an
additional component that reflects the investor’s desire to hedge against adverse changes in
the investment opportunities (Merton, 1973).

The facts outlined in the preceding paragraphs have led numerous authors to investigate
portfolio choice under mean-reverting expected returns. To focus on continuous-time models,
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Kim and Omberg (1996) and Wachter (2002) characterized the optimal portfolio in closed
form and showed, for example, that when relative risk aversion is greater than one and the
equity premium is positive, the hedging demand is positive. Zohar (2001) and Brendle (2006)
provided explicit solutions in the case of partial observation, in which the expected return,
or the drift of the return process, is unobservable.1

However, claims of time variation in expected returns, or fundamentally of return pre-
dictability, also met with doubts. For example, Goetzmann and Jorion (1993) and Nelson
and Kim (1993) found that small sample biases are significant, and once they are accounted
for, there is much less evidence that the dividend-price ratio predicts stock returns. More re-
cently, Welch and Goyal (2008) pointed out that standard predictors had performed poorly
not only in-sample but especially out-of-sample. See, then, the apologetics in defense of
predictability by Campbell and Thompson (2008) and Cochrane (2008)—the debate, after
almost three decades, is yet to be resolved.

This paper proposes a framework through which we can study (among others) the be-
havior of an investor under such ambiguous circumstances. More specifically, the investor
believes, as is the prevailing view of the financial economics profession, that mean-reverting
expected returns is a plausible assumption. For concreteness, suppose that the only source
of uncertainty in the market is the performance of a risky asset, and denote by R its cumu-
lative return process. Under mean reversion, R satisfies the following system of stochastic
differential equations (SDEs):

dR(t) = x(t) dt+ σR dw(t), (1)

dx(t) = κ(x̄− x(t)) dt+ ρw dw(t) + ρv dv(t), (2)

where 0 ≤ t ≤ T <∞, w and v are independent Wiener processes, and the expected return
process x is unobservable. The drift of x, κ(x̄ − x(t)) dt, drives mean reversion, a constant
gravitation toward some fixed value x̄. Now, facing at the same time nonnegligible evidence
that questions its validity, the investor fails to have full confidence in mean reversion.

How, then, are we to represent a lack of confidence in mean reversion? In this paper,
I ascribe it to model instability. Indeed, several authors have ascribed the failure to reject
the null of random walk to the time-dependent nature of mean reversion, rather than in-
terpreting it as a reason to embrace the random walk hypothesis. For example, Kim et al.
(1991) and McQueen (1992) found that mean reversion is rather restricted to the Great
Depression-World War II period; Welch and Goyal (2008) found that for many predictive
models, statistical significance is based exclusively on the years of the Oil Shock of 1973-1975;
and Lettau and Nieuwerburgh (2008) found that the steady-state value of the dividend-price
ratio, or, precisely speaking, the value to which the dividend-price ratio is instantaneously
tending, had shifted either once in the early 1990s or twice around 1954 and 1994, and showed
that taking the structural breaks into account strengthens the evidence for predictability.
These findings show not only that there is instability in the dynamics of expected returns,
but also—notice the divergence in the timing of breaks—how difficult it is to infer the time

1These four papers assume that the expected return or the price of risk follows an Ornstein-Uhlenbeck
process. This specification dates back to Merton (1971). Schroder and Skiadas (1999) and Liu (2007) explicitly
characterize the optimal portfolio under more general return dynamics, up to a system of ordinary differential
equations. See also Lakner (1998) and Xia (2001).
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variation in the dynamics.2

Thus, I assume that the investor uses, in place of (2), the following SDE in making
inferences:

dx(t) = κ(x̄+ κ−1ρvη(t)− x(t)) dt+ ρw dw(t) + ρv dv(t) (3)

where η is a function of time. Importantly, no assumption is made about η (besides the min-
imal technical one of square integrability). The presence of η clearly allows for the structural
breaks suspected in the literature; meanwhile, the lack of assumptions on η reflects the fact
that evidence is too inconclusive for the investor to confidently make one.

Here, it might seem that I have actually made an assumption about η, namely, it being
a deterministic function of time; but I have not. When referring to η as a function of time, I
am not highlighting η’s time dependence but simply adopting the familiar parlance. η may
very well vary over time, but the point is that we do not know if it does, and if it does, how.
Thus, the more appropriate way to think of η is as a collection of parameters: η = {η(t) : t}.
Viewed thus, η(t) represents the perturbation that the investor suspects might have occurred
at time t to the “steady state” x̄ of the market; possibility of perturbations, however, is all
he can be certain of, and he cannot form, a priori or a posteriori, a probability distribution
over R 3 η(t), much less conceive a connection between η(t) and η(s), t 6= s.3

Thus, the investor in question is facing a kind of model uncertainty, or ambiguity; and
the main contribution of this paper is to provide a model of learning under the ambiguity
that conforms to the axiomatically founded recursive multiple-priors utility, thereby, most
importantly, endogenizing the time variation in ambiguity.

Ambiguity, to be more specific, refers to the nonexistence of a probability measure that
can rationalize given preferences. Standard models in economics, on the other hand, adopt
Bayesianism, which presumes the existence of one. However, as exemplified by the divided
views even among experts on the predictability of returns, there do exist situations where, due
to limited knowledge and/or the complexity of the environment, agents are unable to settle
on a single probabilistic model and tell the probabilities of all uncertain events precisely;
see Ellsberg (1961) for more intuitive examples. In fact, one may go as far as to say that
“it is sometimes more rational to admit that one does not have sufficient information for
probabilistic beliefs than to pretend that one does” (Gilboa et al., 2012, emphasis in the
original).

One way to model decision makers under ambiguity is Gilboa and Schmeidler’s (1989)
multiple-priors utility:

U(c) = min
P∈P

EP u(c) (4)

where P is called the set of priors. A straightforward interpretation is that the decision
maker behaves as if he had multiple priors in mind and assessed each act under the respec-
tive worst-case scenario. Multiple-priors utility is thus sometimes criticized for its apparent
extreme pessimism. Any critique of a behavioral model, however, should be directed at its
axioms, and those of Gilboa and Schmeidler are standard (Anscombe and Aumann, 1963),

2 To quote Merton (1980), “Estimating expected returns from time series of realized stock return data
is very difficult. · · · Unless a significant portion of the variance of the market returns is caused by changes
in the expected return on the market, it will be difficult to use the time series of realized market returns to
distinguish among different models for expected return.”

3In this respect, η(t)s are closely related to what Neyman and Scott (1948) called incidental parameters.
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except for a weakening of the classical Independence axiom and the introduction of Uncer-
tainty Aversion, which innocuously captures hedging behavior. Equally importantly, over the
recent decades, multiple-priors models (static or dynamic) have been successful in explaining
puzzling phenomena in financial markets: stock market nonparticipation (Dow and Werlang,
1992), excess volatility (Epstein and Wang, 1994; Illeditsch, 2011), excess equity premium
(Chen and Epstein, 2002), and equity home bias (Epstein and Miao, 2003), to name a few.

The model of learning of this paper is then formulated in conformity with the dynamic
version of multiple-priors utility known as recursive multiple-priors utility; it was axioma-
tized in discrete time by Epstein and Schneider (2003) and (nonaxiomatically) formulated
in continuous time by Chen and Epstein (2002) in such a way that, most characteristically,
the preferences are dynamically consistent:45

U(t, c) = u(c(t)) + β min
P+1
t ∈P

+1
t

EP+1
t U(t+ 1, c) (5)

where P+1
t is a set of probability measures on the period-(t + 1) information. (The present

paper assumes continuous time, but in overviewing ideas, discrete-time representations are
more convenient.) The natural interpretation of P+1

t is that it models the agent’s conditional
beliefs about one-step-ahead uncertainties, larger sets signifying larger ambiguity; further-
more, as Epstein and Schneider emphasize, the axioms of recursive multiple-priors utility
impose no restrictions on how observations are mapped to one-step-ahead beliefs, or the
one-step-ahead beliefs correspondence. Therefore, modeling learning in the context of recur-
sive multiple-priors utility comes down to defining the correspondence, especially the way
the size of the set of one-step-ahead beliefs responds to observations.

Most applications of recursive multiple-priors utility, however, disregard learning and
specify the time variation, or a lack thereof, in ambiguity exogenously. Most notably, Chen
and Epstein (2002) proposed a time-invariant form of ambiguity called independently and
indistinguishably distributed (IID) ambiguity,6 which is to model “the agent after he has
learned all that he can”; and ever since, it has been the dominant specification of ambiguity
in the literature. See Hernández-Hernández and Schied (2006, 2007a,b), Schied (2008), Miao
(2009), Routledge and Zin (2009), and Liu (2011, 2013) for applications of IID ambiguity to
portfolio choice, and Epstein and Miao (2003), Trojani and Vanini (2004), and Gagliardini
et al. (2009) for those to asset pricing. Time-varying ambiguity without a learning mechanism
has been considered by Porchia (2005), Sbuelz and Trojani (2008), and Drechsler (2013).

Naturally, however, such lack of a learning mechanism is unsatisfactory: when does ambi-
guity resolve and when does it not? when it persists, what determines its long-run level and
variations thereabout? and is the agent really going to face an IID ambiguity when he has
learned all that he can? These questions do concern financial economics. For example, time
variation in ambiguity can affect the optimal portfolio through hedging demand (Epstein and
Schneider, 2007; Hernández-Hernández and Schied, 2007a); and in an economy populated

4See also Wang (2003), who provides related representation results in discrete time; and Epstein and Ji
(2014), who extend Chen and Epstein (2002) to cases of nonequivalent priors.

5Since ambiguity aversion is a departure from Bayesianism, we are bound to lose along the way one or
another of the desirable properties associated with the latter; and the loss may well be dynamic consistency.
See Epstein and Schneider (2003, Section 4.1) and Siniscalchi (2011).

6The uppercase initialism IID is to be distinguished from i.i.d., independent and identically distributed.
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by multiple-priors agents, the equilibrium equity premium includes a premium for bearing
ambiguity as well as the risk premium (Chen and Epstein, 2002), and the specification of
ambiguity thus has a direct effect on the level of and variations in the equity premium. In
this paper, I provide answers to the above questions by deriving an endogenous dynamics of
ambiguity and investigate its implications for portfolio choice.7

The endogenous dynamics of ambiguity is then derived by explicitly modeling the cogni-
tive process of the agent, picturing him as a statistician. The theory of recursive multiple-
priors utility is silent as to where the one-step-ahead beliefs come from in much the same
way as Savage’s is regarding the unique “a priori” measure; or, for that matter, as any other
approaches that take preferences as the primitive. If we were to follow such positivist ap-
proaches, however, the most we can do with the weights appearing in the representations is
to interpret them as subjective probabilities (or, perhaps preferably, none at all), whereas
economic theories in fact typically proceed the other way around, deriving optimal choices
from some sophisticated statistical model of the environment that the agent was declared at
the outset to believe in. Of course, the logic is probably that if the agent somehow managed
to cognitively construct such a statistical model, then it is reasonable to expect the formal
model reconstructed from the resulting preferences to coincide with it. And in this paper, I
make explicit the cognitive origin of the imprecise elicited probabilities.

Specifically, if each probability law induced by the SDEs (1) and (3) is viewed as a sta-
tistical model, or a theory, of the stock market, the investor is entertaining multiple theories
(indexed by η) as in classical statistics. Having conceived these theories a priori,8 the investor
then computes the conditional one-step-ahead probability measures from a confidence set of
theories: at each point in time, he (i) ranks the theories in order of plausibility based on
the observations he has made; (ii) rules out the ones that are too implausible compared to
the most plausible one; (iii) conditions the surviving ones individually on the observations;
and, finally, (iv) restricts the conditioned measures to the one-step-ahead uncertainties. The
exclusion, in particular, is only temporary; theories that are at one point disregarded for
being too implausible can later turn out to be acceptably plausible.9 Also, note that when
the investor has full confidence in a single theory, the proposed learning mechanism reduces
to the Bayesian one.

In defense of this nonaxiomatic incorporation of a non-Bayesian updating scheme, I em-
phasize that (i) in making decisions, the investor will still be conforming to all the axioms of
recursive multiple-priors utility and (ii) what is described above is a standard procedure in
(classical) statistics, that is, one that is actually being carried out everyday by many, if not
the majority. With respect to the second point the present model may appear demanding

7Asset pricing implications are investigated in the third chapter of Choi (2012). There, considering an
economy populated by a representative agent facing ambiguity in the dynamics of dividends, I show that
(i) learning under ambiguity generates a declining trend in the equity premium, (ii) an improvement in the
quality of a signal can increase the equity premium, and (iii) the relationship between the equity premium
and the conditional variance of returns is unclear.

8 This a priori is of course an a posteriori relative to a suppressed past. The investor has somehow arrived
at the set of theories described above and stays with it for the time being; and the present paper describes
his behavior during this period. It may be that the investor stays with the particular set of theories for the
rest of his life; but it may as well be that at some point, he moves on to another set of theories or even to
an entirely different mode of learning. The latter case is beyond the scope of this paper.

9See Footnote 8.
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too much from “representative” investors. But, on the contrary, it is the “Bayesian dogma
of precision” (Walley, 1991) that is unrealistically demanding, and it seems more reasonable
to put the agents in economic models on a comparable footing with statisticians (Hansen
and Sargent, 2001, 2008), who, after all, routinely consider multiple theories and report
confidence sets.

A subtler point is that there are in fact two distinct types of probabilities involved here.
To see this, note that recursive multiple-priors utility is embodying the generalized Bayesian
updating rule, according to which the whole set of priors is Bayes-updated prior by prior. To
elaborate, the recursive representation (5) can naturally be written in the static form (4) as
well (with a suitable reinterpretation of u in (4)). In particular, at time t we have

U(t, c) = min
Pt∈Pt

EPt
∑
s≥t

βs−tu(c(s))

where Pt is the generalized Bayesian update of P . Thus, the measures associated with the
agent’s a priori theories are apparently not the measures P appearing in the representation
of his preferences. To quote Gilboa and Marinacci (2013), “[The] set of priors need not
necessarily reflect the individual’s knowledge. Rather, information and personal taste jointly
determine [the set of priors].” In this paper, I give the two types of a priori measures bland
yet unmistakable names, the theoretical and the preferential priors, respectively.10

Thus, one way to summarize the description so far is that this paper portrays an in-
vestor/statistician presented with conflicting evidence regarding mean reversion, who, as a
decision maker, behaves consistently; and the paper’s focus is how his theoretical priors are
translated into preferential priors.

The rest of the paper is organized as follows. Section 2 overviews the model of learning
and its implications for portfolio choice. Section 3 defines and solves the model of learning.
Section 4 applies it to portfolio choice. All proofs are collected in the appendix.

2 Overview

2.1 The Model of Learning

The full-fledged model that will actually be taken up in Section 3 considers the following
partially observable system

dy(t) = (a(t, y) + b(t, y)x(t)) dt+ σ(t, y) dw(t), (6)

dx(t) = κ(x̄+ κ−1ρvη(t)− x(t)) dt+ ρw dw(t) + ρv dv(t),

where y is the observable process and x the unobservable process; all variables are allowed
to be multidimensional; and a, b, and σ are nonanticipating path functionals. This is the

10The distinction is by no means novel; it is only that in Bayesian models, either the two notions of
probability are mixed or the distinction is vacuous. According to Smets and Kennes (1994), for example,
“There is a credal level where beliefs are entertained and a pignistic level [from pignus, a bet in Latin] where
beliefs are used to make decisions[.] · · · The credal level precedes the pignistic level in that, at any time,
beliefs are entertained (and updated) at the credal level; the pignistic level appears only when a decision
needs to be made.” (Italics in the original.)
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general conditionally Gaussian process considered by Liptser and Shiryaev (1977, Chapter
12) with only the dynamics of the unobservable component x slightly restricted to fit the
economic motivation of ambiguous reversion. In this overview, however, let us continue to
work with the simplest special case where the observable process is the cumulative return
process R of a risky asset; that is, (6) is replaced by

dR(t) = x(t) dt+ σR dw(t), (7)

and all variables are scalar.
In the full-fledged model, not only η but x̄, too, is assumed unknown. Then, were it not

for η, a Bayesian agent would form a unique parameter prior11 for x̄, and his (unique) theory
would be given by the parameter prior together with the (unique) log-likelihood function,
`t(x̄). Following Epstein and Schneider (2007),12 the present paper generalizes this Bayesian
model of data generation by multiplying both the parameter prior and the likelihood; that is,
due to ambiguity, the agent of this paper entertains multiple parameter priors and multiple
likelihoods. Note that η is precisely what indexes the multiple likelihoods: `t(x̄, η). Also,
I assume that the parameter priors are all Dirac measures.13 Then, each theory can be
identified with (x̄, η), and the set of theories itself can be viewed as a semi-parametric model.

If we further assume that, for all theories, the initial distribution of x is Gaussian (with
common mean and variance), then the conditional distribution of x(t), conditional on the
agent’s observation of R up to time t, too, is Gaussian, and the conditional mean, mx̄,η(t),
and the conditional variance, γ(t), of x(t) evolve according to the Kalman-Bucy filter (Liptser
and Shiryaev, 1977, Chapter 10):

dmx̄,η(t) = κ(x̄+ κ−1ρvη(t)−mx̄,η(t)) dt+ (ρw + γ(t)/σR) dw̄x̄,η(t), (8)

γ̇(t) = ρ2
w + ρ2

v − 2κγ(t)− (ρw + γ(t)/σR)2,

where the innovation process w̄x̄,η is defined by

dR(t) = mx̄,η(t) dt+ σR dw̄x̄,η(t).

Thus, in particular, the one-step-ahead conditionals14 are given by

dR(t)|Gt ∼ N(mx̄,η(t) dt, σ2
R dt)

where Gt denotes the agent’s information at time t.
In other words, the ambiguity in question boils down to that in the conditional expecta-

tion of x(t). Bayesian agents with unique theory (x̄, 0) would behave as if they were confident
with the point estimate mx̄,0(t) of x(t); the a posteriori dispersion of x(t) is “second-order”

11To distinguish this a priori measure from the others, namely, the theoretical and the preferential priors,
I call it the parameter prior. These three kinds of priors are all defined on different algebras.

12See also Epstein and Seo (2010).
13To quote Epstein and Schneider (2007), “Indeed, one may wonder whether there is a need for non-Dirac

[parameter] priors at all.”
14Since I work with continuous time, one-step-ahead is an abuse of language, which can be remedied, if

need be, by introducing infinitesimal generators. See, for example, Anderson et al. (2003).
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and is practically suppressed. Our agent, on the other hand, constructs a confidence set and
behaves as if he responded to the uncertainty in estimation most cautiously.15

It remains to explain how the agent measures the plausibility of a theory. The natural
criterion is the likelihood, but then, not surprisingly, the induced likelihood function for
mx̄,η(t) is flat; each value of mx̄,η(t) can be supported equally well by some theory with a
large η. In other words, the ambiguity is too large for there to be learning, if the agent
assesses plausibility based on the likelihood alone.16

Indeed, “inductive inference based on objective criteria alone is bound to fail, while
incorporating subjective criteria alongside objective ones can lead to successful learning,”
to quote Gilboa and Samuelson (2012). That is, “effective learning requires a willingness to
sacrifice goodness-of-fit in return for enhanced subjective appeal” (ibid.).

Thus, I assume that the plausibility ranking, a binary relation “at least as plausible
as,” over the theories is represented by a penalized log-likelihood function. Specifically, the
agent finds more appealing the “reference” or “simple” theories free of the poorly under-
stood factors, and that subjective criterion is translated into a penalty on the log-likelihood
proportional to the magnitude of η measured by the L2-norm:

`λt (x̄, η) , `t(x̄, η)− λ

2

∫ t

0

|η(s)|2 ds

where λ ∈ (0,∞] measures the agent’s a priori confidence about the reference theories. When
λ =∞, the set of theories reduces to {(x̄, 0) : x̄} and the agent perceives no persistent source
of ambiguity; when λ is small, the agent fits data with large ηs with little restraint. It is
also worth noting that the L2-norm of η is equal to the deviation of a theory (x̄, η) from its
simple counterpart (x̄, 0) measured by the Kullback-Leibler divergence.

Since the works of Good and Gaskins (1971) and Akaike (1973), penalizing the likelihood
has been a standard method in statistics and information theory to strike a balance between
the goodness of fit and the simplicity of the model; and the penalized log-likelihood repre-
sentation of a plausibility ranking has recently been axiomatized by Gilboa and Schmeidler
(2010). (See Remark 3.2 for a discussion on alternatives to the L2-penalty.)

Finally, a theory (x̄, η) is not ruled out if and only if

`λt (x̄, η) ≥ max
x̄′,η′

`λt (x̄
′, η′)− α

where α ∈ [0,∞) measures how conservative the agent is in model selection. When α = 0,
in particular, the agent keeps nothing but the most plausible theories.

To characterize the set of preferential priors, define first a process ε by

dR(t) = mx̄∗t ,η
∗
t (t) dt+ σR dε(t)

15 Given that our agent is uncertain about the parameter x̄, a fair comparison would require that the
Bayesian agents be given a diffuse parameter prior. But the form of the parameter prior is irrelevant to the
point I am trying to make here, namely, unique versus nonunique one-step-ahead conditionals.

16What is happening here is over-fitting. A related, more intuitive example is the tossing of an ambiguous
coin (see Walley’s (1991) discussion of vacuous previsions). If all we assume about the probability p+ qi of
the ith toss coming up heads is that p + qi ∈ [0, 1], then after seeing, for example, HTTHT, the maximum
likelihood estimate of {p+ qi} is 10010; and in this case, past observations are of no help in guessing p. See
also Epstein and Schneider’s (2007) portfolio choice example, especially the proof of Proposition S1 in their
supplementary appendix.
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where (x̄∗t , η
∗
t ) denotes the most plausible theory at time t. Then, there exists a unique

probability measure P 0 on GT such that ε is a Wiener process under P 0 (Proposition 3.8).
This P 0 serves as the “center” of the set of preferential priors.

Two fundamental observations are as follows. First, the one-step-ahead conditionals are
given by

dR(t)|Gt ∼ N(m dt, σ2
R dt),

1

2
δ(t)−1(m−mx̄∗t ,η

∗
t (t))2 ≤ α

(Lemma 3.6), where δ is an (absolutely continuous) process to be specified shortly. The
second observation is the much advertised filtering equations (Propositions 3.6 and 3.7):
mx̄∗t ,η

∗
t (t), δ(t), and x̄∗t evolve according to

dmx̄∗t ,η
∗
t (t) = κ(x̄∗t −mx̄∗t ,η

∗
t (t)) dt+ [ρw + (γ(t) + δ(t))/σR] dε(t),

δ̇(t) = (ρw + γ(t)/σR)2 − 2κδ(t)− [ρw + (γ(t) + δ(t))/σR]2 + 2σx̄∗(t) + λ−1ρ2
v,

and
κ dx̄∗t = (σx̄∗(t)/σR) dε(t), (9)

where for the details regarding σx̄∗ the reader is referred to Section 3.
Without ambiguity (refer to (8) with η ≡ 0), the weight on the innovation is increasing

in the a posteriori Bayesian uncertainty γ in the state known as the estimation risk; the less
trustworthy the current estimate, the more weight given to the new evidence. With ambiguity,
the weight on the innovation is augmented by the a posteriori Knightian uncertainty δ in the
data-generating mechanism, or estimation ambiguity. That is, in revising his estimates, the
agent takes into account not only the uncertainty within each theory but also the uncertainty
over the theories.

Section 3.4 further discusses the filtering equations.
Section 3.4.1 shows that the ambiguity associated with x̄ eventually resolves in the sense

that the confidence set shrinks to a singleton as time goes to infinity, at any significance level.
Interestingly, Lettau and Nieuwerburgh (2008) assumed the steady state, or, to be precise,
the value to which the dividend-price ratio is instantaneously tending, to be a martingale;
and here, the estimate x̄∗ of the constant x̄ turns out to be one under the agent’s reference
(preferential) prior P 0 (see (9)). x̄∗ is furthermore L2-bounded, and therefore, under P 0, it
converges by Doob’s martingale convergence theorem.17

Section 3.4.2 compares the filter with the classical conditionally Gaussian filter, a special
case of which is the celebrated Kalman-Bucy filter. Along the way I answer the questions
asked in the introduction. First of all, ambiguity persists if and only if the agent lacks
confidence in mean reversion, that is, λ < ∞. And when it persists, I identify in Section
3.4.3 a necessary and sufficient condition for convergence to an IID ambiguity: σ−1b converge
to a constant vector, which is trivially satisfied in the single-asset case considered above. Since
in this case, γ as well as δ converges to a constant, if we further assume that x̄∗, too, converges
(or is known), then, the agent at t ≥ ∞ is observationally equivalent to someone in a fully
observable market

dR(t) = m(t) dt+ σR dε(t), (10)

dm(t) = κ(m̄−m(t)) dt+ σm dε(t), (11)

17Convergence under P 0 is not exactly what we are after, however. See Section 3.4.1.
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with an IID ambiguity; that is, the present paper justifies the IID assumption on ambiguity
made in the context of standard dynamics like (10)-(11) (see, for example, Trojani and
Vanini (2004) and Liu (2013)) indeed as the limit of a learning process. The size of the
asymptotic ambiguity, too, depends intuitively on model primitives: it is increasing in the
agent’s lack of confidence and decreasing in the variability of the unobservable process relative
to the observable process.18 In general, the level of ambiguity varies over time in response
to variations in the volatility of the observable process (viz. signal precision) and other
quantities.

Next I look into the observational equivalence of agents with α = 0, or maximum plau-
sibility agents, to Bayesians. Clearly, the former are observationally equivalent to the latter
with unique preferential prior P 0. In Section 3.4.4, I find a theory that is consistent with P 0,
thereby rendering the maximum plausibility agents Bayesians under partial observation. For
them, specifically, the effect of learning under ambiguous reversion is the same as an increase
in the volatility of the unobservable process.

As mentioned in the introduction, Epstein and Miao (2003) have used a recursive multiple-
priors model to explain the equity home-bias puzzle: agents invest less in foreign assets be-
cause they find foreign economies more ambiguous. Epstein and Miao, however, took as given
the differing degrees of ambiguity. In Section 3.4.5, finally, I show that the present model on
the other hand can deliver heterogeneous ambiguity endogenously as an outcome of learning
under asymmetric information.

2.2 Portfolio Choice

In Section 4, I apply the model of learning under ambiguous reversion to the consump-
tion/portfolio choice problem of a log investor and contrast the optimal portfolio with that
of Epstein and Schneider’s (2007) investor.

Log investors are well-known to be myopic under risk. Introducing ambiguity to stock
returns, Epstein and Schneider have shown that log investors hedge against low continuation
utility when they learn under ambiguity. Nevertheless, the hedging occurs only when the
estimated equity premium is not unambiguously different from zero, and when it is close to
zero, hedging demand is not significant. When the estimated equity premium is exactly zero,
in particular, hedging demand is zero and so is the total demand (see their Figure 3). This
turns out to be because of Epstein and Schneider’s constant investment opportunities (IID
returns) assumption and the consequent symmetry of the model.

The present paper assumes, on the other hand, stochastic investment opportunities (re-
turns are, albeit ambiguously, predictable), and it then turns out that the investor is non-
myopic for a wide range of estimated equity premia and the hedging demand is significant,
even for a small ambiguity in the equity premium. When the model is calibrated so that
the implied ambiguity in the instantaneous equity premium equals 0.01 (annual, decimal),19

the optimal portfolio is such that the investor is nonmyopic when the estimate of the in-

18The last observation, in particular, is in line with the remark by Merton quoted in Footnote 2.
19The financial market is calibrated based on Barberis (2000), the investor’s discount factor is set at 0.03,

and the investor is assume to be facing a 10-year investment horizon after having observed the market for
20 years. The values of λ and α are then chosen so that the implied ambiguity in the instantaneous equity
premium equals 0.01.
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stantaneous equity premium falls between −0.03 and 0.01; and when the estimate is zero,
in particular, he sells short an amount of the risky asset worth about half of his wealth.
With mean reversion in expected returns, the temporary estimate of zero is more likely to
rise than fall, and this asymmetry in the market dynamics renders small negative estimates
worse (in the sense of low continuation utility) than zero.

So one interpretation of the hedging demand is that it reflects the Mertonian (1973) desire
to hedge against adverse changes in the state variables. But why do Bayesian log investors
not act on the same adverse possibilities, and why does the introduction of ambiguity make
them do so all of a sudden? Whereas the optimal portfolio is only numerically characterized
in Epstein and Schneider (2007), the continuous-time framework of this paper affords us
a degree of analytical tractability,20 and this facilitates an alternative interpretation of the
optimal portfolio.

Suppose there are one risk-free asset (bond) and one risky asset (stock) with return
dynamics (7). Then, the optimal demand for the stock has the form of a “shadow”—
for it does not always fully realize—hedging demand bounded by the optimistic and pes-
simistic Bayesian demands, where the optimistic (pessimistic) Bayesian demand refers to
the Bayesian demand when the estimated instantaneous premium equals the highest (lowest)
in the confidence set. Regarding the shadow hedging demand, while the said interpretation
still stands—it is proportional to the derivative of the value function and the negative of
the covariation between return and state—I show that it is at the same time the position
in the stock that eliminates the effect of misspecification on continuation utility. That is,
the investor wishes to make the backward induction immune to misspecification by taking
a particular position in the stock, but it may be disproportionate to the ambiguity actually
present and cannot exceed the position dictated by the most optimistic or most pessimistic
estimate. Note that this is in fact reminiscent of the other interpretation by Merton (1973)
of his hedging demand that it minimizes the volatility of consumption.

Epstein and Schneider also note that when the estimated premium is not unambiguously
different from zero, ambiguity-averse log investors exhibit contrarian behavior in the sense
that they go long for negative premia and short for positive premia. Mean reversion affects
this behavior in two ways. First, contrarian behavior has to be redefined more generally as
decreasing one’s stock holdings as the estimated premium increases. The shadow hedging
demand is contrarian in this sense because the Gilboa-Schmeidler ambiguity aversion, with
its “bounded reservations,” does not fundamentally alter the quadratic (that is, faster than
linear) structure of the Bayesian value function. And while we recover the symmetric con-
trarian policy (as a function of the instantaneous premium) of Epstein and Schneider when
the long-run premium is zero, the interval of contrarian behavior is skewed toward negative
instantaneous premia when the long-run premium is positive. Second, contrarian behavior
is not robust. When returns and expected returns are negative correlated (as is the case in
reality; see, for example, Barberis (2000)), it occurs only when ambiguity is sufficiently high.

Another important observation is that, for investors with low confidence, the less confident
an investor is, the larger his hedging demand is (in absolute value). Intuitively, the estimation
of the true equity premium is more difficult and unreliable for those investors who are less
confident about their grasp of the environment; the consequent lack of confidence in the

20Closed-form solutions are still not available.
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estimate combined with the (apparent) pessimism leads those investors, then, to try to
transfer wealth even more to unfavorable states.

Lack of confidence can have significant effects on portfolio choice. When the estimated
instantaneous premium is zero, for example, the difference between the demand that takes
lack of confidence into account and the demand that does not can be as large as half of
wealth. And the hedging of ambiguity persists in the present model,21 because neither the
current value of the hidden state nor the perturbations to the steady state can be learned.

2.3 Related Papers

As should be clear by now, the present paper is closely related to Epstein and Schnei-
der (2007), in which the set of predictive measures is also constructed by a statistical test
over multiple theories. The main differences are twofold. First, whereas Epstein and Schnei-
der consider (non-Bayesian) exchangeable data-generating mechanisms, I consider data-
generating mechanisms with serial dependence and possibly even with path dependence.
Second, whereas Epstein and Schneider’s model is set in discrete time, mine is set in con-
tinuous time. Thus, we can relate the present model to the abundance of continuous-time
models with mean reversion; and exploit the analytical advantages continuous-time mod-
eling affords. I also note that the continuous-time counterpart of Epstein and Schneider’s
portfolio choice example results in no learning because the likelihood function degenerates to
infinity everywhere (see the supplementary appendix), and consequently, their discrete-time
finding that learning resolves ambiguity does not immediately carry over to continuous time:
learning under ambiguity in continuous time needs separate treatment.22

Another paper that considers the learning of a multiple-priors agent is Miao (2009).
Specifically, he considers the consumption/portfolio choice problem of a multiple-priors in-
vestor in continuous time who partially observes stochastic investment opportunities. How-
ever, his notion of learning is fundamentally different from mine. Miao’s investor obtains
a benchmark predictive measure by updating a reference theory, and the set of predictive
measures is given by a neighborhood of the benchmark with a fixed radius. Thus, learning
and ambiguity do not interact. In fact, Miao’s model is the limit of the present model as the
investor gains confidence (Section 4.4.3).2324

21Epstein and Schneider do not discuss whether it persists or not in their model.
22Campanale (2011) applies Epstein and Schneider’s (2007) model in the context of life-cycle portfolio

choice and Miao and Wang (2011) in the context of job matching. Epstein and Schneider’s (2008) asset
pricing model conforms to the formalism of Epstein and Schneider (2007) but their agents do not discard
any of the models they a priori entertain.

23Liu (2011) considers the consumption/portfolio choice problem of a Miao investor when expected returns
follow a Markov chain.

24See also Hansen and Sargent (2011) and Chen et al. (2014). The former paper considers learning in the
context of robust control, and the latter, in the context of smooth ambiguity. In both papers, agents learn by
updating a Bayesian model. Chen et al.’s agent, in particular, has a standard hierarchical Bayesian model; in
a smooth ambiguity model, aversion to ambiguity is captured not by imprecise probabilities but by failures
to reduce compound lotteries. Incidentally, Chen et al. (2014) is also motivated by ambiguous predictability.
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3 The Model of Learning under Ambiguity

3.1 Preferences: Recursive Multiple-Priors

I assume that the agent has Chen and Epstein’s (2002) recursive multiple-priors utility.
Specifically, time is continuous and varies over [0, T ], T ∈ (0,∞).
Let Ω denote the set of states of Nature and let a filtration G = {Gt} on Ω represent the

accrual of the agent’s information. G is right-continuous.
There is a set P of equivalent probability measures on (Ω,GT ), the set of priors, with the

following properties. Let P 0 ∈ P . There is an ny-dimensional Wiener process ε = {ε(t),Gt}
under P 0 that generates G. (The notation ε = {ε(t),Gt} signifies that the process ε is adapted
to the filtration G. All vectors, including the gradient ∂f of a scalar function f , are column
vectors. Hence, ε(t) = (ε1(t), · · · , εny(t))>.) G0 contains all the P 0-null events in GT . Thus, in
particular, G satisfies the usual conditions. Each prior is identified with the corresponding
density generator ξ = {ξ(t),Gt} and is thus written P ξ ∈ P , where

dP ξ

dP 0
= Eξ(T ) (12)

and Eξ denotes the Doléans-Dade exponential

Eξ(t) , exp

(∫ t

0

ξ(s) dε(s)− 1

2

∫ t

0

|ξ(s)|2 ds

)
, 0 ≤ t ≤ T.

P is required to be rectangular, which means that there is a set-valued process Ξ : [0, T ] ×
Ω → 2Rny such that the probability measure P ξ defined by (12) is a prior if and only
if ξ is a G-progressive process and ξ(t, ω) ∈ Ξ(t, ω) for Lebesgue×P 0 almost every (t, ω).
Since P consists of equivalent measures, “for Lebesgue×P 0 almost every (t, ω)” is henceforth
abbreviated without ambiguity to “a.e.” Ξ is called the one-step-ahead beliefs process and
is further required to be (i) uniformly bounded, (ii) compact-convex-valued, and (iii) “G-
progressive”: (i) Ξ(t, ω) ⊂ K a.e. for some bounded K ⊂ Rny , (ii) Ξ(t, ω) is compact-convex
a.e., and (iii) the restriction of Ξ to [0, t] × Ω is B[0, t] ⊗ Gt-measurable25 for all t ∈ [0, T ]
where BX denotes the Borel σ-algebra of a topological space X. Incidentally, IID ambiguity
refers to the situation where Ξ is constant, that is, Ξ(t, ω) = K a.e. for some compact-convex
K ⊂ Rny .

A scalar process c = {c(t),Gt} is a consumption process if it is progressive, positive, and
integrable. Denote the set of consumption processes by C. The agent’s conditional preferences
at time t, t ∈ [0, T ], are represented by

U c(t, ω) = min
P∈P

U c,P (t, ω), c ∈ C (13)

where U c,P = {U c,P (s),Gs}, the utility process under P ∈ P , uniquely solves the backward
stochastic differential equation (BSDE)

U c,P (s) = EP

(∫ T

s

F (c(τ), U c,P (τ)) dτ

∣∣∣∣Gs) , t ≤ s ≤ T.

25{(s, ω) ∈ [0, t] × Ω : Ξ(s, ω) ∩K ′ 6= ∅} ∈ B[0, t] ⊗ Gt for all closed K ′ ⊂ K. See Aliprantis and Border
(1999), Sections 16.1, 16.2, and 17.1.
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Here, F is the aggregator. See Chen and Epstein (2002), Section 2.5 for the conditions that
the aggregator has to satisfy.

Rectangularity is an essential requirement for the Epstein-Schneider recursive represen-
tation and hence for their notion of dynamic consistency.26 The utility process U c defined
by (13) satisfies

dU c(t) =

(
−F (c(t), U c(t)) + max

ξ(t)∈Ξ(t)
σcU(t)ξ(t)

)
dt+ σcU(t) dε(t), 0 ≤ t ≤ T (14)

with terminal condition U(T ) = 0, for some process σcU = {σcU(t),Gt}. When (14) is viewed
as a BSDE, the pair (U c, σcU) constitutes a solution.

To interpret (14), rewrite it, with a slight abuse of notation, as

dU c(t) = −F (c(t), U c(t)) dt+ max
ξ(t)∈Ξ(t)

σcU(t)( dε(t) + ξ(t) dt)

and compare it with Duffie and Epstein’s (1992) single-prior representation

dU c(t) = −F (c(t), U c(t)) dt+ σcU(t) dε(t).

Consider first the single-prior case. By the assumption that ε generates G, all changes in
the fundamentals to take place over the infinitesimal future are a function of dε(t); that is,
the agent’s conditional beliefs about the uncertainties to be resolved over the next instant
are summarized by the unique distribution N(0, dt) for the one-step-ahead noise27 dε(t).
Now, the multiple-priors representation suggests the interpretation that the agent entertains
a set of distributions N(ξ(t), dt), ξ(t) ∈ Ξ(t); and a pessimist, he assesses each consumption
process under the belief that the distribution that is the worst for the process is the case.

3.2 The Theories

Denote the observable process that generates the agent’s information by y = {y(t),Gt}. That
is, G is the P 0-augmentation of the filtration generated by y. ny denotes the dimension of
y. Examples of y will be given shortly.

In this section, I define the theories that the agent entertains about how y is generated.
They are given by a set of probability measures Q ∈ Q on a common measurable space.

3.2.1 The Reference Likelihood

Let there be a filtration F = {Ft} on Ω and a probability measure Qx̄,0 on (Ω,FT ) where
x̄ ∈ Rnx , nx ≥ 1. F satisfies the usual conditions with respect to Qx̄,0. Let there also be two
independent Qx̄,0-Wiener processes w = {w(t),Ft} and vx̄,0 = {vx̄,0(t),Ft}, ny-dimensional
and nx-dimensional, respectively. Under Qx̄,0, y satisfies the following system of SDEs:

dy(t) = (a(t, y) + b(t, y)x(t)) dt+ σ(t, y) dw(t),

dx(t) = κ(x̄− x(t)) dt+ ρw dw(t) + ρv dvx̄,0(t).

26For a detailed discussion on rectangularity and its connection to dynamic consistency, see Epstein and
Schneider (2003), Sections 3.1 and 5.2.

27See Footnote 14.
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Here, x = {x(t),Ft} is an nx-dimensional process that is unobservable to the agent; a :
[0, T ]×C([0, T ],Rny)→ Rny , b : [0, T ]×C([0, T ],Rny)→ Rny×nx , and σ : [0, T ]×C([0, T ],Rny)
→ Rny×ny are nonanticipating path functionals where C([0, T ],Rny) denotes the set of con-
tinuous functions from [0, T ] into Rny ;28 κ is an nx×nx diagonal matrix with positive entries,
ρw is an nx × ny matrix, and ρv is an nx × nx invertible matrix. Given that y is observed,
the diffusion matrix process σσ>, too, is observed via quadratic variation-covariation. The
assumption that σ as a nonanticipating path functional depends only on y, or equivalently,
σ as a process is adapted to G, embodies the restriction that observing the diffusion matrix
does not expand the agent’s information. x(0) is an F0-measurable random variable. The
distribution of x(0) conditional on G0 is normal with mean m0 ∈ Rnx and variance-covariance
matrix γ0 ∈ Rnx×nx . For simplicity, I assume y(0) is nonrandom.

All the parameters and functionals are known but x̄. While this assumption may seem
unrealistic—if he knows so much, why not x̄? or vice versa—I point out that (i) in many
special cases considered in the literature (see the examples below), the functionals are simple,
being constant or linear, and (ii) the restrictive form of ignorance is only a first step: the
agent may well find κ ambiguous as well, for example.

Example 3.1 (Stock Returns with Constant Volatility). Suppose that the cumulative return
process R of a stock satisfies

dR(t) = x(t) dt+ σR dw(t)

and R is the only observable process. Then, y = R with a ≡ 0, b ≡ 1, and σ ≡ σR > 0.

Example 3.2 (Stock Returns with Stochastic Volatility). Suppose that the conditional re-
turn variance follows a Cox-Ingersoll-Ross process (Heston, 1993), that is,

dR(t) = x(t) dt+
√
A(t)(

√
1− r2

RA, rRA) dw(t),

dA(t) = ν(Ā− A(t)) dt+ ςA
√
A(t)(0, 1) dw(t),

where rRA ∈ (−1, 1), ν > 0, Ā ∈ R, and ςA > 0. Suppose also that R and A are the only
observable processes. Then, y = (R,A)> with

a(t, y) =

(
0

ν(Ā− A(t))

)
, b ≡

(
1
0

)
, and σ(t, y) =

√
A(t)

( √
1− r2

RA rRA
0 ςA

)
.

Example 3.3 (Extra Signal). Suppose that the return volatility is constant as in Example
3.1, but now there is an extra signal about the hidden state x in addition to R (Detemple,
1986; Veronesi, 2000):

dR(t) = x(t) dt+ σR(
√

1− r2
RA, rRA) dw(t),

dA(t) = x(t) dt+ σA(0, 1) dw(t),

28Let ι be the canonical process on C([0, T ],Rny ); that is, ι(t, f) = f(t), 0 ≤ t ≤ T , f ∈ C([0, T ],Rny ).
Let Bt , σ(ι(s) : 0 ≤ s ≤ t) and Bt+ , ∩s>tBs with BT+ , BT . a, b, and σ are measurable and adapted to
{Bt+}.
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where rRA ∈ (−1, 1) and σR, σA > 0. Then, y = (R,A)> with

a ≡
(

0
0

)
, b ≡

(
1
1

)
, and σ ≡

(
σR
√

1− r2
RA σRrRA

0 σA

)
.

Similar examples can be constructed in a general equilibrium setting in which, for example,
the aggregate consumption growth replaces the stock returns.

Now, the reference likelihood function of the unknown parameter x̄ under full observation,
or simply the reference likelihood, is defined by

LFO,T (x̄) ,
dQx̄,0

dQ0,0
.

3.2.2 Bayesian Benchmark

Let M be a probability measure on (Rnx ,BRnx). Then, (M,LFO,T ) defines a Bayesian model
of data generation, according to which x̄ is drawn from M and conditional on x̄ the law of
(y, x) is given by LFO,T (x̄).

3.2.3 The Theories

Bayesian agents behave as if they knew the probabilities of all relevant events precisely. Con-
sider in contrast an agent who lacks confidence in his understanding of the data-generating
mechanism and finds both the parameter x̄ and the reference likelihood LFO,T ambiguous.

Specifically, the agent’s perception of ambiguity regarding x̄ is expressed by multiplicity of
parameter priors. For simplicity, I assume that the parameter priors are all Dirac measures:29

M = {Diracx̄
′
: x̄′ ∈ Rnx}

where Diracx̄
′

denotes the Dirac measure concentrated at x̄′ ∈ Rnx .
Similarly, the agent also entertains multiple likelihoods. Fix x̄. Let there be a probability

measure Qx̄,η, η ∈ L2([0, T ],Rnx), on (Ω,FT ) where L2([0, T ],Rnx) denotes the set of square-
integrable, Rnx-valued functions. Let there also be an nx-dimensional Wiener process vx̄,η =
{vx̄,η(t),Ft} independent of w. Under Qx̄,η, (y, x) satisfies the following system of SDEs:

dy(t) = (a(t, y) + b(t, y)x(t)) dt+ σ(t, y) dw(t), (15)

dx(t) = κ(x̄+ κ−1ρvη(t)− x(t)) dt+ ρw dw(t) + ρv dvx̄,η(t), (16)

where, as before, y(0) ∈ Rny is nonrandom and the F0-measurable random variable x(0) has
the conditional distribution x(0)|G0 ∼ N(m0, γ0). The set of full-observation likelihoods is
given by

LFO,T =
{
x̄ 7→ LFO,T (x̄, η) : η ∈ L2([0, T ],Rnx)

}
,

LFO,T (x̄, η) ,
dQx̄,η

dQ0,0
.

29See Footnote 13.
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(16) can alternatively be written as

dx(t) = κ(x̄− x(t)) dt+ ρw dw(t) + ρv( dvx̄,η(t) + η(t) dt)

which shows that the ambiguity in question is equivalent to that in the noise vx̄,η specific
to the state dynamics and not the other one w. Indeed, the agent of this paper is not
mechanically taking into consideration all the theories that are close to a reference, in which
case w, too, would be perturbed, but is rather questioning a particular aspect of market
dynamics, namely, mean reversion.

Now I turn to the issue of the existence and uniqueness of a solution to the system of
SDEs (15) and (16). | · | denotes the Euclidean norm for vectors and the Frobenius norm for
matrices; that is, for a vector or matrix z, |z| ,

√
tr(zz>). All numbered assumptions stand

throughout the paper from their statement on, unless otherwise noted.

Assumption 3.1 (Sufficient Conditions for Unique Strong Existence). (i) b is uniformly
bounded.

(ii) For all f ∈ C([0, T ],Rny),∫ T

0

(|a(t, f)|+ |σ(t, f)|2) dt <∞.

(iii) a, b, and σ are locally Lipschitz. That is, for each N there is a KN such that(
sup
s≤t
|f(s)|

)
∨
(

sup
s≤t
|g(s)|

)
≤ N ⇒ |σ(t, f)− σ(t, g)| ≤ KN sup

s≤t
|f(s)− g(s)|

for all t ∈ [0, T ]; and the same for a and b mutatis mutandis.
(iv) a and σ are linearly growing. That is, there is a K such that

|a(t, f)|+ |σ(t, f)| ≤ K

(
1 + sup

s≤t
|f(s)|

)
for all (t, f) ∈ [0, T ]× C([0, T ],Rny).

Proposition 3.1. Strong existence and pathwise uniqueness hold for the system of SDEs
(15)-(16).

Suppose (w, vx̄,η) and (y, x) are defined on some filtered complete probability space. With
a slight abuse of notation, σ(t) ≡ σ(t, ω) ≡ σ(t, y(ω)). With the notation σ(t, ω), σ can be
considered a process (adapted to G). Similar remarks apply to the other functionals. As is
the custom, the qualification almost surely is suppressed unless necessary.

Assumption 3.2. There is an ε > 0 such that

z>σ(t)σ(t)>z ≥ ε|z|2 for all z ∈ Rny and all t ∈ [0, T ].
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Remark 3.1. The stochastic volatility model (Example 3.2) violates Assumption 3.2:

σ(t)σ(t)> = A(t)

(
1 rRAςA

ςArRA ς2
A

)
and the last matrix that post-multiplies A(t) satisfies Assumption 3.2,30 but A(t) may get
arbitrarily close to 0. In general, if Assumption 3.2 fails, then the subsequent findings based
on the assumption hold up to the random time

T ∧ inf
{
t > 0 : z>σ(s)σ(s)>z ≥ N−1|z|2 for all z ∈ Rny and all s ≤ t

}
.

Assumption 3.2 implies that σ(t) has an inverse and |σ(t)−1z| ≤ K−1/2|z| for all z ∈ Rny and
all t ∈ [0, T ]; likewise, σ(t)>, too, has an inverse and |(σ(t)>)−1z| ≤ K−1/2|z| for all z ∈ Rny

and all t ∈ [0, T ] (Karatzas and Shreve (1988), Problem 5.8.1). With the last observation,
we can rewrite (15) and (16) as

dw(t) = σ(t)−1[ dy(t)− (a(t) + b(t)x(t)) dt], (17)

dvx̄,η(t) = ρ−1
v

{
dx(t)− κ(x̄− x(t)) dt− ρwσ(t)−1[ dy(t)− (a(t) + b(t)x(t)) dt]

}
− η(t) dt,(18)

and use these SDEs to define w and vx̄,η.
Let

Ω , C([0, T ],Rny)× C([0, T ],Rnx),

F◦ , BC([0, T ],Rny)⊗ BC([0, T ],Rnx),

let (y, x) be the identity map on Ω, and let

Qx̄,η , law(y, x)

be defined on (Ω,F◦). Let F = {Ft} be the augmented filtration generated by (y, x). Since
Qx̄,η, (x̄, η) ∈ Rnx × L2([0, T ],Rnx), are equivalent, they all lead to the same augmentation.
Finally, define σ by σ(t, ω) = σ(t, y(ω)); a and b similarly; and w and vx̄,η by (17) and (18).
In particular, this construction (of weak solutions) explains why vx̄,η is superscripted.

In sum, the agent’s theories of how the data y is generated can be identified with the
probability measures

Q ,
{
Qx̄,η : (x̄, η) ∈ Rnx × L2([0, T ],Rnx)

}
30The question is if there is a (small) ε > 0 such that for all z = (z1, z2),

0 ≤ z2
1 + 2z1z2ςArRA + z2

2ς
2
A − ε(z2

1 + z2
2)

= (1− ε)

((
z1 +

z2ςArRA
1− ε

)2

−
(
z2ςArRA

1− ε

)2

+ z2
2

ς2A − ςA
1− ε

)
.

The last inequality holds for all z if and only if

ς2A(1− ε− r2
RA) ≥ ε(1− ε).

Hence, the desired ε exists if and only if r2
RA < 1, which is assumed.
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on the common measurable space (Ω,FT ), all defined above. I call these probability measures
theoretical priors to distinguish them from the probability measures P ∈ P that are part of
the representation of the agent’s preferences, or the preferential priors. Not only are these
two types of priors conceptually distinct, but they are different; we will see (in Section 3.4.4)
that P * {Q|GT : Q ∈ Q} where Q|GT denotes the restriction of Q to GT .

3.3 The Preferential Priors

3.3.1 Filtering

Recall the partially observable system

dy(t) = (a(t) + b(t)x(t)) dt+ σ(t) dw(t),

dx(t) = κ(x̄− x(t)) dt+ ρw dw(t) + ρv( dvx̄,η(t) + η(t) dt).

I use the dot notation for the time derivatives: ḟ(t) ≡ df(t)/ dt.

Proposition 3.2. The following standard results in Gaussian filtering hold:
(i) (y, x) is conditionally Gaussian.
(ii) The conditional mean vector and variance-covariance matrix

mx̄,η(t) , EQx̄,η(x(t)|Gt),
γ(t) , EQx̄,η [(x(t)−mx̄,η(t))(x(t)−mx̄,η(t))>|Gt],

satisfy the system of differential equations

dmx̄,η(t) = [κ(x̄−mx̄,η(t)) + ρvη(t)] dt

+ (ρwσ(t)> + γ(t)b(t)>)(σ(t)σ(t)>)−1[ dy(t)− (a(t) + b(t)mx̄,η(t)) dt]

= (κx̄+ ρvη(t)− κ̄(t)mx̄,η(t)) dt

+ (ρwσ(t)> + γ(t)b(t)>)(σ(t)σ(t)>)−1( dy(t)− a(t) dt),

(19)

γ̇(t) = ρwρ
>
w + ρvρ

>
v − κγ(t)− γ(t)κ

− (ρwσ(t)> + γ(t)b(t)>(σ(t)σ(t)>)−1(ρwσ(t)> + γ(t)b(t)>)>,
(20)

with initial conditions mx̄,η(0) = m0 and γ(0) = γ0, where

κ̄(t) , κ+ (ρwσ(t)> + γ(t)b(t)>)(σ(t)σ(t)>)−1b(t).

(iii) the process w̄x̄,η = {w̄x̄,η(t),Gt} defined by

w̄x̄,η(t) ,
∫ t

0

σ(s)−1[ dy(s)− (a(s) + b(s)mx̄,η(s)) ds], 0 ≤ t ≤ T

is a Wiener process under Qx̄,η and generates G.

Lemma 3.1. γ is uniformly bounded.
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Let ϕ : [0, T ]× Ω→ Rnx×nx be the solution of

ϕ̇(t) = −κ̄(t)ϕ(t), ϕ(0) = Inx

where Inx denotes the nx-dimensional identity matrix. ϕ(t) is invertible for all t ≥ 0. Intro-
duce the following notation: for functions f from [0, T ] into Rnx or into Rnx×nx , Φf denotes
the process defined by

Φf (t) , ϕ(t)

∫ t

0

ϕ(s)−1f(s) ds, 0 ≤ t ≤ T.

Now

mx̄,η(t) = ϕ(t)

{
m0 +

∫ t

0

ϕ(s)−1[(κx̄+ ρvη(s)) ds

+ (ρwσ(s)> + γ(s)b(s)>)(σ(s)σ(s)>)−1( dy(s)− a(t) dt)]

}
= ϕ(t)m0 + Φκx̄+ρvη(t)

+ ϕ(t)

∫ t

0

ϕ(s)−1(ρwσ(s)> + γ(s)b(s)>)(σ(s)σ(s)>)−1( dy(s)− a(t) dt). (21)

3.3.2 Likelihood of Theories

The log-likelihood of theories under partial observation, that is, given GT , is

`T (x̄, η) , log
d(Qx̄,η|GT )

d(Q0,0|GT )

= log EQ0,0

(
dQx̄,η

dQ0,0

∣∣∣∣GT) (22)

where Qx̄,η|GT denotes the restriction of Qx̄,η to GT . The choice of the reference, here (x̄, η) =
(0, 0), is irrelevant to likelihood ratios.

Proposition 3.3.

`T (x̄, η) =

∫ T

0

(a(t) + b(t)mx̄,η(t))>(σ(t)σ(t)>)−1 dy(t)

− 1

2

∫ T

0

(a(t) + b(t)mx̄,η(t))>(σ(t)σ(t)>)−1(a(t) + b(t)mx̄,η(t)) dt

−
(∫ T

0

(a(t) + b(t)m0,0(t))>(σ(t)σ(t)>)−1 dy(t)

− 1

2

∫ T

0

(a(t) + b(t)m0,0(t))>(σ(t)σ(t)>)−1(a(t) + b(t)m0,0(t)) dt

)
.
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The log-likelihood given Gt, t < T , is obtained by replacing the arbitrary time horizon T
with t:

`t(x̄, η) =

∫ t

0

(a(s) + b(s)mx̄,η(s))>(σ(s)σ(s)>)−1 dy(s)

− 1

2

∫ t

0

(a(s) + b(s)mx̄,η(s))>(σ(s)σ(s)>)−1(a(s) + b(s)mx̄,η(s)) ds+ ft

where ft is independent of (x̄, η).
Since mx̄,η(t) is linear in x̄, `t(x̄, η) is quadratic in x̄. `t(x̄, η) is also Gâteaux differentiable

with respect to η and the derivative is linear in η:

Lemma 3.2. The Gâteaux differential of `t(x̄, ·) at η ∈ L2([0, T ],Rnx) in the direction
h ∈ L2([0, T ],Rnx) is∫ t

0

(
(ϕ(s)−1ρv)

>
∫ t

s

ϕ(τ)>b(τ)>(σ(τ)σ(τ)>)−1

× [ dy(τ)− (a(τ) + b(τ)mx̄,η(τ)) dτ ]

)>
h(s) ds.

3.3.3 Learning

Recall the dynamics of the observable process

dy(t) = (a(t) + b(t)x(t)) dt+ σ(t) dw(t).

If the agent were a Bayesian with unique theoretical prior Qx̄,0 ∈ Q,31 then Bayesian
updating would result in the filtered dynamics

dy(t) = (a(t) + b(t)mx̄,0(t)) dt+ σ(t) dw̄(t), (23)

where w̄, defined by (23), is a (Qx̄,0,G)-Wiener process, and his time-t decisions would
accordingly be based on the unique one-step-ahead conditional

dy(t)|Gt ∼ N
[
(a(t) + b(t)mx̄,0(t)) dt, σ(t)σ(t)> dt

]
.

On the other hand, our agent entertains a set of theories, {Qx̄,η : (x̄, η) ∈ Rnx×L2([0, T ],Rnx)},
and rules out some of them in light of evidence. Hence, unless he rules out all but one theory,
the agent will have multiple one-step-ahead conditionals of the form

dy(t)|Gt ∼ N
[
(a(t) + b(t)mx̄,η(t)) dt, σ(t)σ(t)> dt

]
where (x̄, η) runs over a set. Note that the ambiguity in the data-generating mechanism boils
down to that in the conditional expectation of x(t).

31See Footnote 15.
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Plausibility: Penalized Likelihood The ambiguity, however, is too large for there to be
learning, if the agent assesses the plausibility of a theory based on the likelihood alone. To
elaborate, define the log-likelihood induced by the transformation (x̄, η) 7→ mx̄,η(t) by

`t,m(t)(m) , sup
(x̄,η)∈Rnx×L2([0,T ],Rnx )

{`t(x̄, η) : mx̄,η(t) = m} , m ∈ Rnx .

Then, `t,m(t) is constant, the constant value lying in R∪{∞}; see the supplementary appendix
for a proof. In other words, the conditional expectation of x(t) is not identified. The reason
is that each value of mx̄,η(t) can be supported equally well by some theory with a large η.32

Indeed, “inductive inference based on objective criteria alone is bound to fail, while
incorporating subjective criteria alongside objective ones can lead to successful learning,” to
quote Gilboa and Samuelson (2012). In other words, “effective learning requires a willingness
to sacrifice goodness-of-fit in return for enhanced subjective appeal” (ibid.).

Thus, I assume that the plausibility ranking, a binary relation “at least as plausible
as,” over the theories is represented by a penalized log-likelihood function. Specifically, the
agent finds more appealing the “reference” or “simple” theories free of the poorly under-
stood factors, and that subjective criterion is translated into a penalty on the log-likelihood
proportional to the magnitude of η measured by the L2-norm:

`λt (x̄, η) , `t(x̄, η)− λ

2

∫ t

0

|η(s)|2 ds

where λ ∈ (0,∞] measures the agent’s a priori confidence about the reference likelihood.
When λ = ∞, the set of theories reduces to {Qx̄,0 : x̄ ∈ Rnx} and the agent perceives no
persistent source of ambiguity; when λ is small, the agent fits data with large ηs with little
restraint. It is also worth noting that the L2-norm of η is equal to the deviation of a theory
Qx̄,η from its simple counterpart Qx̄,0 measured by the Kullback-Leibler divergence:

DKL(Qx̄,0‖Qx̄,η) , EQx̄,0 log
dQx̄,0

dQx̄,η

=
1

2

∫ T

0

|η(t)|2 dt.

The idea of penalizing the likelihood was first discussed by Good and Gaskins (1971) in
the context of nonparametric density estimation. Green (1987) extended it to semiparamet-
ric settings. In these non- or semi-parametric estimation problems, Sobolev norms of higher
orders, as well as the L2-norm, are favored; but for us, imposing smoothness on η would vio-
late the assumption of symmetry. In the context of model selection, Akaike (1973) extended

32Precisely speaking, the supremum is not attained, that is, there does not exist a maximum likelihood esti-
mate. Fix x̄ and suppose there is a partial maximizer η of the likelihood `t(x̄, η), 0 < t ≤ T , in L2([0, T ],Rnx).
Then it must satisfy, from Lemma 3.2,

0 = (ϕ(s)−1ρv)
>
∫ t

s

ϕ(τ)>b(τ)>(σ(τ)σ(τ)>)−1[ dy(τ)− (a(τ) + b(τ)mx̄,η(τ)) dτ ], 0 ≤ s ≤ t

but the constancy of the left-hand side and the unbounded variation of the right-hand side are incompatible.
It follows that for any given η, there is another η′ with higher likelihood.
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the maximum likelihood principle by proposing his celebrated criterion in the form of a pe-
nalized log-likelihood; and ever since, penalizing the likelihood has been a standard method
in information theory to strike a balance between the goodness of fit and the simplicity of
the model; see Konishi and Kitagawa (2008). The penalized log-likelihood representation of
a plausibility ranking has recently been axiomatized by Gilboa and Schmeidler (2010).

In conclusion, a theory Qx̄,η is not ruled out if and only if

`λt (x̄, η) ≥ max
(x̄′,η′)∈Rnx×L2([0,T ],Rnx )

`λt (x̄
′, η′)− α (24)

where 0 ≤ α <∞. α measures how conservative the agent is in model selection; when α = 0,
in particular, the agent keeps nothing but the most plausible theories. And as shall be seen,
the corresponding induced log-likelihood of the conditional expectation of x(t)

`λt,m(t)(m) , max
(x̄,η)∈Rnx×L2([0,T ],Rnx )

{
`λt (x̄, η) : mx̄,η(t) = m

}
, m ∈ Rnx

has a nonzero curvature (Lemma 3.6).

Remark 3.2. There are two prominent alternatives to the L2-penalty.
The first is Epstein and Schneider’s (2007) L∞-constraint: ess supt≤T |η(t)| ≤ η̄. This

amounts to constraining instantaneous entropy rates point by point in time. While this is
sensible when the agent is looking forward and fears misspecification of the infinitesimal
future, in looking backward, it is not. What the agent tries to pin down here is the value of
mx̄,η(t), and with this regard, η(s), s ≤ t, having large values for a short period of time has
little significance.

The other is an L2-constraint:
∫ T

0
|η(t)|2 dt ≤ η̄T . Naturally, this is closely related to the

L2-penalty: First, the constraint is a penalty that is discontinuous. Second, the constraint
is the dual of the penalty in Lagrange’s theorem. The constant λ defines a shadow process
η̄λ = {η̄λt } that implies the same most plausible theories. And I note that the penalized
likelihood ratio test with λ is more conservative than the constrained likelihood ratio test
with η̄λ; that is,

`t(x̄, η) ≥ max
(x̄′,η′)∈Rnx×L2([0,T ],Rnx )

`t(x̄
′, η′)− α and

1

2

∫ t

0

|η(s)|2 ds ≤ η̄λt

implies (24).
Compared to its penalty counterpart, however, the L2-constraint has the following draw-

backs. First, the sharp bounds seem to be at odds with the assumed a priori ignorance. Sec-
ond, if, as is natural, the time-t bound η̄t is lower than η̄T , t < T , then it implies that the agent
has a time-varying parameter set; for example, he would deem η(s) =

√
2η̄T/t(1, 0, · · · , 0)>,

s ≤ t, implausible at time t but plausible at time T .

Maximum Plausibility Estimation I will need the following facts to characterize the
natural “center” of the set of preferential priors.

The maximum plausibility estimate (MPE) of (x̄, η) at time t is defined as

(x̄∗t , η
∗
t ) , arg max

(x̄,η)∈Rnx×L2([0,T ],Rnx )

`λt (x̄, η).
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The notion of the partial MPE of η given x̄ will prove helpful:

η∗x̄,t , arg max
η∈L2([0,T ],Rnx )

`λt (x̄, η).

Clearly, η∗t = η∗x̄∗t ,t.
The first-order condition with respect to η (FOC(η)) is

λη(s) = (ϕ(s)−1ρv)
>
∫ t

s

ϕ(τ)>b(τ)>(σ(τ)σ(τ)>)−1

× [ dy(τ)− (a(τ) + b(τ)mx̄,η(τ)) dτ ], 0 ≤ s ≤ t.

To write the solution of this integral equation, introduce the following notation. Let

χ(s) ,

(
ρvρ

>
v κ̄(s)>(ρvρ

>
v )−1 ρvρ

>
v b(s)

>(σ(s)σ(s)>)−1b(s)
λ−1Inx −κ̄(s)

)
and let ψ be the matrix-valued process such that ψ(0) = I2nx and

ψ̇(s) = χ(s)ψ(s), 0 ≤ s ≤ T.

ψ(s) is invertible for all s ≥ 0. Let ι1 , (Inx , 0)>, ι2 , (0, Inx)
>, and Aij , ι>i Aιj for a

2nx × 2nx matrix A.

Lemma 3.3. For all t > 0, (i) ψ11(t) is invertible and (ii) ψ21(t)ψ11(t)−1ρvρ
>
v is symmetric

and positive definite.

Let also

Ψ(s) , ψ(s)

∫ s

0

ψ(τ)−1 dτ, 0 ≤ s ≤ T.

Proposition 3.4 (Partial MPE of η).(
λρvη

∗
x̄,t(s)

Φκx̄+ρvη∗x̄,t(s)

)
= ψ(s)ι1ψ11(t)−1

×
(
ι>1 ψ(t)

∫ t

0

ψ(τ)−1ι1ρvρ
>
v b(τ)>(σ(τ)>)−1 dw̄0,0(τ)−Ψ12(t)κx̄

)
− ψ(s)

∫ s

0

ψ(τ)−1ι1ρvρ
>
v b(τ)>(σ(τ)>)−1 dw̄0,0(τ) + Ψ(s)ι2κx̄.

(25)

Hence, mx̄,η∗x̄,t(s) is linear in x̄ (recall (21)). Define θ(t) by

θ(t) , Ψ22(t)− ψ21(t)ψ11(t)−1Ψ12(t)

or
mx̄,η∗x̄,t(t) = m0,η∗0,t(t) + θ(t)κx̄.

That is, θ(t) measures the sensitivity to κx̄ of mx̄,η(t) with η “profiled out.” Let Ix̄(t) denote
the observed Fisher information about x̄:

Ix̄(t) , −
∂2

∂(κx̄)2
`λt (x̄, η

∗
x̄,t)

∣∣∣∣
x̄=x̄∗t

.

Precisely speaking, Ix̄(t) is the information about κx̄, but I adopt this slight abuse of termi-
nology because κ is known and the parameter of interest is clearly x̄.
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Assumption 3.3. (i) nx ≤ ny.
(ii) b(t) is of full column rank (that is, nx) for all t ∈ [0, T ].

Lemma 3.4.

Ix̄(t) =

∫ t

0

θ(s)>b(s)>(σ(s)σ(s)>)−1b(s)θ(s) ds

and is invertible for all t > 0.

FOC(x̄) is

0 =

∫ t

0

(b(s)ΦInx (s)κ)>(σ(s)σ(s)>)−1[ dy(s)− (a(s) + b(s)mx̄,η(s)) ds].

Proposition 3.5 (MPE of x̄). For t > 0,

κx̄∗t = Ix̄(t)−1

∫ t

0

ΦInx (s)>b(s)>(σ(s)>)−1 dw̄0,η∗0,t(s).

Remark 3.3. Estimation is not defined at time 0, and consequently, neither is the time-0
decision making. This is natural. At time 0, the agent is in the state of sheer ignorance while
once the observable process y starts to wiggle, information thereafter accrues continuously.
The singularity at time 0 is not a problem because, as we will see, decision making is well-
defined for all t > 0. Nevertheless, I assume purely for the brevity of exposition that the
agent’s learning started prior to time 0 and all the statistics, including Ix̄(0) and x̄∗0, have a
definite, finite value at time 0. The differential dynamics I am about to characterize determine
their evolution from thenceforth. To maintain the convention that G0 is trivial, I assume that
all the G0-measurable variables are nonrandom constants.

The natural center of the time-t set of one-step-ahead conditionals is

dy(t)|Gt ∼ N
[
(a(t) + b(t)mx̄∗t ,η

∗
t (t)) dt, σ(t)σ(t)> dt

]
.

This observation motivates us to define a process ε = {ε(t),Gt} by

dε(t) = σ(t)−1[ dy(t)− (a(t) + b(t)mx̄∗t ,η
∗
t (t)) dt], ε(0) = 0. (26)

To prove that there is a probability measure on (Ω,GT ) under which ε is a Wiener process,
I first observe the dynamics of the statistics.

Proposition 3.6 (Dynamics of the MPEs).

κ dx̄∗t = σx̄∗(t)
>b(t)>(σ(t)>)−1 dε(t),

dmx̄∗t ,η
∗
t (t) = κ(x̄∗t −mx̄∗t ,η

∗
t (t)) dt+ [ρwσ(t)> + (γ(t) + δ(t))b(t)>](σ(t)>)−1 dε(t), (27)

where

σx̄∗(t) , θ(t)Ix̄(t)−1,

δ(t) , ψ21(t)ψ11(t)−1ρvρ
>
v + θ(t)σx̄∗(t)

>

= ψ21(t)ψ11(t)−1ρvρ
>
v + σx̄∗(t)Ix̄(t)σx̄∗(t)>.
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Note that δ is symmetric and positive definite. The following proposition closes the dynamics:

Proposition 3.7.

θ̇(t) = Inx − {κ+ [ρwσ(t)> + (γ(t) + δ(t)− θ(t)σx̄∗(t)>)b(t)>](σ(t)σ(t)>)−1b(t)}θ(t),(28)

σ̇x̄∗(t) = Ix̄(t)−1 − {κ+ [ρwσ(t)> + (γ(t) + δ(t))b(t)>](σ(t)σ(t)>)−1b(t)}σx̄∗(t),
d

dt
(Ix̄(t)−1) = −σx̄∗(t)>b(t)>(σ(t)σ(t)>)−1b(t)σx̄∗(t),

δ̇(t) = σx̄∗(t) + σx̄∗(t)
> + λ−1ρvρ

>
v

+ (ρwσ(t)> + γ(t)b(t)>)(σ(t)σ(t)>)−1(ρwσ(t)> + γ(t)b(t)>)>

− κδ(t)− δ(t)κ
− [ρwσ(t)> + (γ(t) + δ(t))b(t)>](σ(t)σ(t)>)−1[ρwσ(t)> + (γ(t) + δ(t))b(t)>]>.

(29)

The Preferential Priors Make the following additional assumption:

Assumption 3.4. θ, σx̄∗ and δ are uniformly bounded.

Here are simple example cases in which Assumption 3.4 holds:

Lemma 3.5. Suppose either: (i) σ and b are deterministic or (ii) σ, ρw, ρv, and b are
diagonal33 and there is an ε > 0 such that κ̄ = κ+ (ρwσ

> + γb>)(σσ>)−1b ≥ εInx a.e. Then
Assumption 3.4 holds.

Remark 3.4. Given that σ, ρw, ρv, and b are diagonal, there trivially is an ε > 0 such that
κ̄ > εInx a.e. if ρw = 0.

Proposition 3.8. There is a unique probability measure on (Ω,GT ), denoted by P 0, such
that P 0 ∼ (Q0,0|GT ) and ε is a Wiener process under P 0. Also, ε generates G.

Observe that under P ξ,

dy(t)|Gt ∼ N
[
(a(t) + b(t)mx̄∗t ,η

∗
t (t) + σ(t)ξ(t)) dt, σ(t)σ(t)> dt

]
.

Hence, the time-t set of one-step-ahead conditionals Ξ(t) is defined by

a(t) + b(t)mx̄∗t ,η
∗
t (t) + σ(t)Ξ(t)

=

{
µ ∈ Rnx : `λt (x̄

∗
t , η
∗
t )− max

(x̄,η)∈Rnx×L2([0,T ],Rnx )
{`λt (x̄, η) : a(t) + b(t)mx̄,η(t) = µ} ≤ α

}
where the maximum is defined to be −∞ when there does not exist (x̄, η) satisfying the
constraint. It turns out that δ(t) is the inverse of the observed Fisher information about
mx̄,η(t):

33In case nx 6= ny, the nx × ny matrix ρw, for example, is diagonal if ρijw = 0 for all i 6= j.
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Lemma 3.6.

`λt (x̄
∗
t , η
∗
t )− max

(x̄,η)∈Rnx×L2([0,T ],Rnx )
{`λt (x̄, η) : mx̄,η(t) = m}

= `λt,m(t)(m
x̄∗t ,η

∗
t (t))− `λt,m(t)(m)

=
1

2
(m−mx̄∗t ,η

∗
t (t))>δ(t)−1(m−mx̄t,η∗t (t)), m ∈ Rnx .

Proposition 3.9.

σ(t)Ξ(t) = b(t)

{
∆m ∈ Rnx :

1

2
(∆m)>δ(t)−1∆m ≤ α

}
, 0 ≤ t ≤ T. (30)

The process Ξ = {Ξ(t),Gt} is uniformly bounded and compact-convex. If furthermore each
of the processes b and σ−1 is left- or right-continuous, then Ξ is progressive.

Remark 3.5. For ξ(t) ∈ Ξ(t),

1

2
(σ(t)ξ(t))>(b(t)δ(t)b(t)>)+σ(t)ξ(t) ≤ α (31)

where (b(t)δ(t)b(t)>)+ denotes the Moore-Penrose pseudoinverse:

(b(t)δ(t)b(t)>)+ = b(t)(b(t)>b(t))−1δ(t)−1(b(t)>b(t))−1b(t)>.

But the converse is not true, that is, (31) does not imply ξ(t) ∈ Ξ(t).

With a slight abuse of notation, let ξ ∈ Ξ mean that ξ = {ξ(t),Gt} is progressive and
ξ(t, ω) ∈ Ξ(t, ω) a.e. The set of preferential priors is given by

P =

{
P ξ : P ξ is a probability measure on (Ω,GT ),

dP ξ

dP 0
= Eξ(T ), ξ ∈ Ξ

}
.

3.4 Discussion

Assume throughout this section, with the exception of the last discussion (Section 3.4.5),
nx = 1. Still the setup is general enough to encompass all the examples given in Section
3.2.1.

3.4.1 Learning about x̄

Proposition 3.10. Suppose b>(σσ>)−1b is uniformly bounded below. Then, the confidence
interval for x̄ shrinks to a point as time goes to infinity, for all critical values α.

In other words, the ambiguity associated with x̄ eventually resolves.
The question that naturally arises next is if x̄∗ converges. But, since convergence under a

probability measure does not imply convergence under another probability measure obtained
by a Girsanov change of measure (see Karatzas and Shreve (1988), p. 193), to answer this
question we need to take a stance on the true probability measure. Although my stance is
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that not only does the agent not know the true probability measure but he does not purport,
either, to have identified a set of probability measures (theoretical priors) that includes it, if
need be the natural candidate for the true probability measure is a theoretical prior Qx̄,0 ∈ Q
of the agent (correct specification). It remains to be seen if x̄∗ converges under Qx̄,0.34

3.4.2 Comparison with the Classical Filter

The agent’s learning process is summarized by a finite-dimensional filter (Propositions 3.6
and 3.7). The key components of the filter are {mx̄∗t ,η

∗
t (t)} and δ. mx̄∗t ,η

∗
t (t), in particular,

is the agent’s benchmark estimate of the conditional expectation of x(t), and I accordingly
defined the reference preferential prior P 0 to be the “concatenation” of the one-step-ahead
conditionals computed using the benchmark estimates ((26) and Proposition 3.8). The set P
of preferential priors is then given by a neighborhood of P 0, reflecting the a posteriori ambi-
guity in the conditional expectation of x(t), or more fundamentally, in the data-generating
mechanism. The set of the values of the conditional expectation of x(t) that are sufficiently
plausible is given by an interval centered at the benchmark estimate mx̄∗t ,η

∗
t (t) (Lemma 3.6

and Proposition 3.9). The length of the interval is proportional to the square root of δ(t).
Hence, the latter, or δ(t) itself, is a measure of a posteriori ambiguity.

Remark 3.6. In general, that is, when nx ∈ N, the set of alternative values of the conditional
expectation of x(t) is given by an nx-dimensional hyper-ellipsoid centered at mx̄∗t ,η

∗
t (t). The

lengths of the principal axes of the hyper-ellipsoid are proportional to the square-roots of
the eigenvalues of δ(t).

Therefore, of prime interest is how mx̄∗t ,η
∗
t (t) and δ(t) evolve. In what follows, I compare

the filtering equations (27) and (29) with the classical conditionally Gaussian filter (Liptser
and Shiryaev (1977), Chapter 12).

Let us begin with the unobservable process x:

dx(t) = κ(x̄− x(t)) dt+ ρw dw(t) + ρv( dvx̄,η(t) + η(t) dt),

d

dt
Var(x(t)) = |ρw|2 + ρ2

v︸ ︷︷ ︸
Var( dx(t)|Ft)/ dt

−2κVar(x(t)).

The time-derivative of the unconditional variance of x(t) is the conditional variance of dx(t)
given Ft per unit time less the unconditional variance times the rate of reversion (times

34 ∆x̄∗(t) , x̄∗t − x̄ and ∆m∗(t) , mx̄∗
t ,η

∗
t (t)−mx̄,0(t) satisfy

κd∆x̄∗ = σ>x̄∗b>(σ>)−1( dw̄x̄,0 − σ−1b∆m∗ dt)

d∆m∗ = κ(∆x̄∗ −∆m∗) dt+ δb>(σ>)−1 dw̄x̄,0 − (ρwσ
> + (γ + δ)b>)(σσ>)−1b∆m∗ dt

and (∆x̄∗,∆m∗) converges in L2. But the difficulty is that σx̄∗ is square-integrable but not integrable. It is
not clear whether ∫ ∞

0

σ>x̄∗b>(σσ>)−1b∆m∗ dt

is convergent or not. On the other hand, it is easy to see that x̄∗ is an L2-bounded continuous martingale
under P 0, and therefore, under P 0, limt→∞ x̄∗t exists by Doob’s martingale convergence theorem (Rogers
and Williams (1994), Theorem II.69.1).
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two). This is intuitive. In particular, the unconditional variance is decreasing in the rate of
reversion because as the reversion term becomes dominant, x stays closer to x̄.

Recall next the classical conditionally Gaussian filter (19) and (20), slightly rephrased to
facilitate the discussion:

dmx̄,η(t) = [κ(x̄−mx̄,η(t)) + ρvη(t)] dt+ [ρw + (σ(t)−1b(t)γ(t))>︸ ︷︷ ︸
Kalman gain

]

︸ ︷︷ ︸
weight on the innovation

dw̄x̄,η(t),

γ̇(t) = |ρw|2 + ρ2
v − 2κγ(t)−

∣∣ρw + (σ(t)−1b(t)γ(t))>
∣∣2︸ ︷︷ ︸

weight on the innovation squared

. (32)

We revise mx̄,η(t) in consideration of two factors: (i) the estimation error and (ii) the
variation in x(t). First, the correction of the estimation error, +(σ(t)−1b(t)γ(t))> dw̄x̄,η(t), is
proportional to the innovation dw̄x̄,η(t). To understand, suppose ny = 1 and σ, b > 0. Then,
when, for example, the change in the observable variable exceeds what was expected, it is
likely that the old estimate of the growth rate is an underestimation and it thus needs to
be revised up. The multiplicative factor, or the Kalman gain, is increasing in the current
uncertainty γ(t) of x(t) (the less trustworthy the current estimate, the more weight given to
the new evidence) and is decreasing in the imprecision σ(t) of the signal (the less informative
the signal, the less weight given to the new evidence). Second, mx̄,η(t) as an estimate of x(t)
is also to be revised by +κ(x̄ −mx̄,η(t)) dt + ρw dw̄x̄,η(t), to account for the corresponding
(unobservable) changes +κ(x̄− x(t)) dt+ ρw dw(t) in x(t).

γ̇(t) is given by the analogue of ( d/ dt) Var(x(t)) less the weight on the innovation
squared. The last term means that uncertainty resolves more quickly when the new evi-
dence is taken more seriously. This is intuitive because if we consider the extreme case in
which the weight is exactly zero, then it is equivalent to the case in which there temporarily
is no signal ( dw̄x̄,η(t) = 0), in which case it is natural for the uncertainty to rise.

To be noted further is that while the motivation for the revision +ρw dw̄x̄,η(t) is to
account for the state dynamics, in effect it acts as if it were a weight on the new evidence.
And when the signs of ρw and b differ (assume ny = 1), it can counteract the correction
of the estimation error, and consequently, the uncertainty γ may depend nonmonotonically
on the signal imprecision σ. To elaborate, suppose that the signs of ρw and b differ and
that σ is time-varying and is currently sufficiently large that the signal is noninformative
about vx̄,η but informative about w (limt→∞ γ(t) = ρ2

v/(2κ)). If σ drops and the weight on
the innovation becomes exactly zero, then by way of the earlier reasoning, uncertainty rises
(limt→∞ γ(t) = (ρ2

w+ρ2
v)/(2κ)). When ρw and b have the same sign, the filter always corrects

the estimation error and uncertainty resolves.
Recall finally the dynamics (27) and (29) of mx̄∗t ,η

∗
t (t) and δ(t) under the reference pref-
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erential prior P 0, again slightly rephrased:

dmx̄∗t ,η
∗
t (t) = κ(x̄∗t −mx̄∗t ,η

∗
t (t)) dt+ {ρw + [σ(t)−1b(t)( γ(t) + δ(t)︸ ︷︷ ︸

estimation uncertainty

)]>} dε(t),

δ̇(t) =
∣∣ρw + (σ(t)−1b(t)γ(t))>

∣∣2︸ ︷︷ ︸
Var( dmx̄,η(t)|Gt)/ dt

−2κδ(t)−
∣∣∣ρw +

[
σ(t)−1b(t)(γ(t) + δ(t))

]>∣∣∣2︸ ︷︷ ︸
weight on the innovation squared

+ 2θ(t)Ix̄(t)−1︸ ︷︷ ︸
ambiguity associated with x̄

+ λ−1ρ2
v︸ ︷︷ ︸

ambiguity associated with η

.

As with the Bayesian estimate mx̄,η(t), the ambiguity-averse agent’s estimate mx̄∗t ,η
∗
t (t),

too, is revised in consideration of the estimation error and the variation in x(t). But the
difference is that now γ(t) is replaced by the sum of γ(t) and δ(t). γ(t) is also known as
the estimation risk in the literature (Kalymon, 1971; Barry, 1974; Klein and Bawa, 1976,
1977) and represents the Bayesian uncertainty under each theory that results because the
agent cannot observe x(t) and consequently has to estimate it. On the other hand, δ(t)
represents the Knightian uncertainty that results because the agent does not know which
theory (data-generating mechanism) is correct and consequently has to estimate it. Based on
this parallelism, I call δ(t) the estimation ambiguity and the sum γ(t) + δ(t) the estimation
uncertainty. When the estimated theory is imprecise (large δ(t)), or the posterior distribution
of x(t) is diffuse under the theory (large γ(t)), or both, new evidence receives more weight.
Note that this simple characterization of estimation uncertainty relies on the assumption
that the prior variance of x(0) is common to all theories; otherwise, different theories would
result in different levels of estimation risk.

δ̇(t) is given by an analogue of γ̇(t) plus terms accounting for the ambiguity in the data-
generating mechanism. The first three terms reflect the fact that δ measures the imprecision
in the estimation of mx̄,η, as opposed to that in the estimation of x as does γ. To elaborate,
the first term is the conditional variance of dmx̄,η(t) (given Gt) per unit time as opposed to
that of dx(t) (given Ft) per unit time; the parallelism between the second terms is obvious;
and the third term is the weight on the innovation squared, exactly as in γ̇(t). Next, the
fourth term captures the ambiguity in the estimate mx̄∗t ,η

∗
t (t) of mx̄,η(t) due to that in x̄;

recall that θ(t) measures the sensitivity to x̄ of mx̄,η∗x̄,t(t) and Ix̄(t)−1 the imprecision of x̄∗t .
The fifth and last term captures the ambiguity associated with η and sets the long-run level
of δ as the fourth term vanishes as was observed in Section 3.4.1. As the ambiguity regarding
x̄ gets resolved, the agent’s lack of confidence in mean reversion is what keeps the a posteriori
ambiguity δ above zero: limt→∞ δ(t) = 0 if and only if λ =∞.

Similar remarks apply to the dual role of the revision +ρw dε(t). In particular, δ may
depend nonmonotonically on the signal imprecision σ. But this time the dependence is subtler
because the first term of δ̇(t) also involves ρw.

3.4.3 Convergence to an IID Ambiguity

We have the following necessary and sufficient condition for convergence to an IID ambiguity:

Proposition 3.11. Assume finite confidence λ < ∞ for nondegeneracy. Ξ converges to a
constant subset of Rny if and only if σ−1b converges to a constant vector in Rny .
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Suppose σ−1b converges to a constant vector and denote the latter again by σ−1b. Suppose
further ny = 1 for simplicity. Then,

lim
t→∞

ξ̄(t)2 = 2α
(√

(κ+ σ−1bρw)2 + (1 + λ−1)(σ−1bρv)2 −
√

(κ+ σ−1bρw)2 + (σ−1bρv)2
)

where Ξ(t) = [−ξ̄(t), ξ̄(t)]. Note that ξ̄(∞) ≡ limt→∞ ξ̄(t) is nonzero if and only if λ is finite.
Also, not surprisingly, it is increasing in α and decreasing in λ.

To see the dependence of ξ̄(∞) on other parameters, let

Y (t) ,
∫ t

0

σ(s)−1 dy(s)

and assume σ−1a is deterministic. Then,

dY (t) = σ(t)−1(a(t) + b(t)x(t)) dt+ dw(t)

and, denoting the asymptotic variability of Y by

VY , lim
t→∞

d

dt
Var(Y (t)),

we can rewrite ξ̄(∞)2 as

ξ̄(∞)2 = 2α
(√

κ2VY + λ−1(σ−1bρv)2 −
√
κ2VY

)
.

Thus, ξ̄(∞) is decreasing in κ and VY . This is intuitive. First, when κ is large, the un-
observable process stays close to the attractor. Second, VY measures the variability of the
unobservable process x relative to the measurement error w.35

Remark 3.7. When σ−1b converges to a constant vector, γ as well as δ converges to a
constant (see (32)). Thus, if we further assume that x̄∗, too, converges (or is known), then
the agent at t ≥ ∞ is observationally equivalent to someone in a fully observable environment

dy(t) = (a(t) + b(t)m(t)) dt+ σ(t) dε(t), (33)

dm(t) = κ(m̄−m(t)) dt+ σm dε(t), (34)

with an IID ambiguity. That is, the present paper justifies the IID assumption on ambiguity
made in the context of standard dynamics like (33)-(34) (see, for example, Trojani and Vanini
(2004) and Liu (2013)) indeed as the limit of a learning process.

3.4.4 The Maximum Plausibility Agents

Agents with α = 0 deserve a separate discussion; while a priori they lack confidence, a pos-
teriori these agents manage to have full confidence in a single one-step-ahead conditional,
the one that is implied by the most plausible theory of the moment; that is, they are ob-
servationally equivalent to Bayesians with unique preferential prior P0. Refer to the agents
with α = 0 as the maximum plausibility (MP) agents.

In what follows, I find a theory that is consistent with P0, thereby rendering the MP agents
Bayesians under partial observation; and a byproduct of the discussion is an alternative
interpretation of δ. Suppose for this discussion x̄ is known (or has converged).

35See Footnote 2.
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Observational Equivalence With x̄ known, the observable process y satisfies (in reading
what follows, recall the filtering equations in Section 3.4.2)

dy(t) = (a(t) + b(t)mx̄,η∗t (t)) dt+ σ(t) dε(t), (35)

dmx̄,η∗t (t) = κ(x̄−mx̄,η∗t (t)) dt+ {ρw + [σ(t)−1b(t)(γ(t) + δ(t))]>} dε(t). (36)

If we define γλ by γλ(t) , γ(t) + δ(t), t ≥ 0, then it satisfies36

γ̇λ(t) = |ρw|2 + (1 + λ−1)ρ2
v − 2κγλ(t)−

∣∣ρw + (σ(t)−1b(t)γλ(t))
>∣∣2 .

This is the differential equation that γ satisfies, with ρ2
v replaced by (1+λ−1)ρ2

v. That is, γλ(t)
is the posterior variance of x(t) under Qx̄,0

λ , where Qx̄,0
λ , a probability measure on (Ω,F◦),

equals the law of (y, x) implied by the SDEs

dy(t) = (a(t) + b(t)x(t)) dt+ σ(t) dw(t), (37)

dx(t) = κ(x̄− x(t)) dt+ ρw dw(t) +
√

1 + λ−1ρv dvx̄,0λ (t). (38)

Here, w and vx̄,0λ are independent Wiener processes under Qx̄,0
λ , and vx̄,0λ in particular is

defined by (38) as was vx̄,η. (Recall the construction of weak solutions in Section 3.2.3.) Now
note that for a Bayesian agent with theory (37)-(38), filtering yields

dy(t) = (a(t) + b(t)mx̄,0
λ (t)) dt+ σ(t) dw̄x̄,0λ (t),

dmx̄,0
λ (t) = κ(x̄−mx̄,0

λ (t)) dt+ [ρw + (σ(t)−1b(t)γλ(t))
>] dw̄x̄,0λ (t).

And compare, finally, the last pair of SDEs with (35)-(36) to see that an MP agent is
observationally equivalent to a Bayesian agent with theory (37)-(38). In other words, the
effect of learning under ambiguous reversion, when α = 0, is observationally equivalent to
an increase in the volatility of the unobservable process.

Interpretation of δ A simple rewriting of the definition of γλ(t) reveals that

δ(t) = γλ(t)− γ(t). (39)

Thus, for an MP agent, the Knightian uncertainty is equal to the discrepancy between the
Bayesian uncertainty implied by his behavior and that implied by his beliefs. When an MP
agent is confident about mean reversion, that is, when λ = ∞, in particular, there will be
no Knightian uncertainty as there will be no discrepancy, either, between his elicited and
actual beliefs (note that γ ≡ γ∞).

3.4.5 Application: Assets with Differing Degrees of Ambiguity

As mentioned in the introduction, Epstein and Miao (2003) have used a recursive multiple-
priors model to explain the equity home-bias puzzle: agents invest less in foreign assets
because they find the dynamics of foreign economies more ambiguous.37 Epstein and Miao,

36In recalling δ̇(t), note that I−1
x̄ ≡ 0 since x̄ is known.

37See also Uppal and Wang (2003), who address similar issues using a robust-control model.
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however, take as given the differing degrees of ambiguity: specifically, there are two countries;
fundamentals are driven by a two-dimensional Wiener process ε = (ε1, ε2); the investors of
the countries (or simply the countries) have the common information structure generated by
ε; but Country i, it is assumed, finds the drift of εj ambiguous, lying at all times between
±ξ̄i, ξ̄i > 0, i 6= j.

The present model, on the other hand, can deliver heterogeneous ambiguity endogenously
as an outcome of learning under asymmetric information.38

Suppose there are two countries and two assets (one in each country). The two countries
are identical in the following aspects: (i) they both see the returns of both assets; (ii) they
theorize about the returns in the same way: with Ri denoting the cumulative return process
of the asset traded in Country i, or Asset i,

dRi(t) = xi(t) dt+ σRi dwi(t),

dxi(t) = κi(x̄i − xi(t)) dt+ ρv,i( dvx̄,ηi (t) + ηi(t) dt),

where i ∈ {1, 2} labels the countries (whether x̄is are known or not is irrelevant because we
will focus on what happens to ambiguity in the limit);39 and (iii) they have the same level
λ of confidence in mean reversion and the same level α of conservatism in model selection.
But the two countries differ in that each has exclusive access to a country-specific signal:
Country 1 sees A1 but not A2, and vice versa, where

dAi(t) = xi(t) dt+ σAi dwi+2(t), i = 1, 2.

Regarding the assumption of exclusive signals, Country i (Italy) may well, technically
speaking, have access to all news circulating in Country j (Korea). But think of the signals
as flows of noneconomic information concerning each market that is difficult to appreciate
unless well-versed in the country’s culture, history, and so on. Then, accessible as it may
technically be, such information floating around Korea is likely to be absent in the minds of
(representative) Italian investors at the time of their decision making.

Now, consider Country i, for which y = (Ri, Rj, Ai) and x = (xi, xj). Under a generic
preferential prior P ξ,

dRk(t) = (m
x̄∗t ,η

∗
t

k (t) + ∆mk(t)) dt+ σRk dεξk(t)

where εξk is a P ξ-Wiener process and ∆mk(t) = σRkξk(t), k = i, j. ∆m(t) = (∆mi(t),∆mj(t))
is constrained by 1

2
(∆m(t))>δ(t)−1∆m(t) ≤ α, and so it only remains to compute δ(t).

(Incidentally, note that the constraint is elliptic rather than rectangular as Epstein and
Miao assume.)

Since σ−1b is constant and the coefficients of γ̇ are all diagonal under the present assump-
tions, γ converges to a diagonal matrix; and so does δ (recall (39)). Write

lim
t→∞

δ(t) =

(
δd,i 0
0 δf,i

)
.

38I mention, however, that Epstein and Miao state, “The differing beliefs of the two individuals described
below are not due to asymmetric information; they reflect differing prior views about the environment”
(emphasis in the original). I am here providing a scenario, in contrast, where asymmetric information results
in asymmetric priors, which are always posteriors relative to a suppressed past.

39In fact, Epstein and Miao consider a general-equilibrium model, in which context agents are to learn
from observing the endowment process; but in this paper I try to stick to the partial-equilibrium perspective.
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Thus, after enough time has passed the constraint becomes

1

2
[δ−1

d,i (∆mi(t))
2 + δ−1

f,i (∆mj(t))
2] ≤ α;

and we can roughly interpret
√

2αδd,i as the remaining ambiguity in the instantaneous

expected return of the domestic asset and
√

2αδf,i as that in the instantaneous expected
return of the foreign asset. It is not difficult to compute40

δd,i = (σ−2
Ri

+ σ−2
Ai

)−1

(√
κ2
i + (1 + λ−1)ρ2

v,i(σ
−2
Ri

+ σ−2
Ai

)−
√
κ2
i + ρ2

v,i(σ
−2
Ri

+ σ−2
Ai

)

)
,

δf,i = σ2
Rj

(√
κ2
j + (1 + λ−1)ρ2

v,j/σ
2
Rj
−
√
κ2
j + ρ2

v,j/σ
2
Rj

)
.

In particular, since Asset j is to Country i as Asset j is to Country j without the signal Aj,
δf,i = limσ2

Aj
→∞ δd,j.

It is straightforward to check that δd,i is strictly increasing in σ2
Ai

with limσ2
Ai
→0 δd,i = 0.41

Therefore, finally, (i) δd,i < δf,j = limσ2
Ai
→∞ δd,i; that is, each asset appears more ambiguous

to foreign investors than to domestic investors; and (ii) δd,i < δf,i for sufficiently small σ2
Ai

;
that is, to investors in either country, the foreign asset appears more ambiguous than the
domestic one if only the domestic news is sufficiently informative. The second observation
in particular means that even when an asset is riskier than another in the sense that it
unambiguously has the higher volatility, it can nevertheless be less ambiguous to informed
investors if the ambiguity in question is about expected returns.

4 Portfolio Choice

In Section 4, I apply the model of learning to the consumption/portfolio choice problem of
a log investor. The investor finances his intertemporal consumption by trading one risk-free
asset (bond) and a number of risky assets (stocks). He believes, as is the prevailing view of
the financial economics profession, that mean reversion in stock returns, or more generally
a form of predictability in them, is a plausible assumption; but facing at the same time
nonnegligible evidence that questions its validity, he fails to have full confidence in it.

In Section 4.1, I explain the setup. Sections 4.2 and 4.3 characterize the optimal demand
for stocks. In Section 4.4, I consider the special case in which there is a single stock and the
stock return volatility is constant. This simplification allows us to establish certain analytical
properties of the optimal policy. In Section 4.4.3, I numerically compute the optimal policy
and discuss its behavior in comparison with the related models by Epstein and Schneider
(2007) and Miao (2009).

40Since we are interested in the limit of δ, which is diagonal, we may assume that the initial values of γ
and δ are diagonal to begin with. Then the systems (Ri, Ai, xi) and (Rj , xj) can be looked at separately.

41Denote by σeff,i , (σ−2
Ri

+ σ−2
Ai

)−1/2 < σRi
the effective imprecision of Ri and Ai en masse as signals to

the hidden state xi. δd,i becomes

δd,i = σ2
eff,i

(√
κ2
i + (1 + λ−1)ρ2

v,i/σ
2
eff,i −

√
κ2
i + ρ2

v,i/σ
2
eff,i

)
.

δd,i is strictly increasing in σ2
eff,i; and σ2

eff,i in σ2
Ai

.
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4.1 The Setup

As with the previous section, time is continuous and varies over [0, T ], T ∈ (0,∞).

4.1.1 Securities Market Dynamics

There is a single consumption good in the economy, which is continuously consumed and
serves as the numeraire. The investor finances his consumption by trading one risk-free asset
(bond) and nR ≥ 1 risky assets (stocks).

The interest rate on the bond is constant at r ∈ R.
Regarding how the stock returns are generated, on the other hand, the investor enter-

tains multiple theories. Specifically, the theories take the form of probability measures on a
common measurable space: Let there be a measurable space (Ω,F), a set Q of probability
measures (theoretical priors) on (Ω,F), and a filtration F = {Ft} of F . The theoretical pri-
ors are equivalent and F satisfies the usual conditions with respect to the theoretical priors.
Under the theoretical prior Qx̄,η ∈ Q, where (x̄, η) ∈ Rnx × L2([0, T ],Rnx) and nx ≥ 1, the
cumulative return process R = {R(t),Ft} of the stocks is given by part of the solution to
the system of SDEs

dR(t) = (aR(t, R,A) + bR(t, R,A)x(t)) dt+ σR(t, R,A) dw(t), (40)

dA(t) = (aA(t, R,A) + bA(t, R,A)x(t)) dt+ σA(t, R,A) dw(t), (41)

dx(t) = κ(x̄− x(t)) dt+ ρw dw(t) + ρv( dvx̄,η(t) + η(t) dt).

Here, A = {A(t),Ft} is an nA-dimensional process, nA ≥ 0; x = {x(t),Ft} is an nx-
dimensional process; nx ≤ nR + nA; w = {w(t),Ft} and vx̄,η = {vx̄,η(t),Ft} are indepen-
dent Wiener processes of dimension nR + nA and nx, respectively; aR, bR, σR, aA, bA, and
σA are nonanticipating path functionals from [0, T ] × C([0, T ],RnR+nA) into RnR , RnR×nx ,
RnR×(nR+nA), RnA , RnA×nx , and RnA×(nR+nA), respectively; κ is an nx × nx diagonal matrix
with positive entries, ρw is an nx× (nR +nA) matrix, and ρv is an nx×nx invertible matrix.

The investor observes R and A but not x. A in this context represents the observable
macroeconomic variables in addition to the stock returns themselves that affect the stock
returns; and x the latent state of the economy. Note that the characterization here of expected
returns is more general than was considered in the introduction; they are “linear” in mean-
reverting factors, rather than being mean-reverting factors themselves.

To conform to the notation of Section 3, let y , (R>, A>)> and ny , nR + nA. Then the
dynamics (40)-(41) of the observable processes can be rewritten compactly as

dy(t) = (a(t, y) + b(t, y)x(t)) dt+ σ(t, y) dw(t)

where the definitions of a, b, and σ are obvious. I continue to adopt the slightly abusive
notation f(t) ≡ f(t, ω) ≡ f(t, y(ω)) for the path functionals f .

4.1.2 The Investor’s Preferences

The investor has the Chen-Epstein recursive multiple-priors utility with log felicity. His
conditional preferences at time t ∈ [0, T ] are represented by

min
ξ∈Ξ

EP ξ
∫ T

t

e−βs log(c(s)) ds, c ∈ C.
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Under a generic preferential prior P ξ,

dR(t) = (aR(t) + bR(t)m∗t ) dt+ σR(t)( dεξ(t) + ξ(t) dt)

where m∗t ≡ mx̄∗t ,η
∗
t (t) is the maximum plausibility estimate of the conditional expectation of

x(t) given Gt and εξ = {εξ(t),Gt} is a P ξ-Wiener process of dimension ny. Ξ(t) thus acquires
a more specific interpretation as the ambiguity in the contemporaneous price of risk.

4.1.3 Trading Strategies and the Budget Constraint

A (1 + nR)-dimensional process (Π◦,Π), Π(t) = (Π1(t), . . . ,ΠnR(t))>, is a trading strategy if
G-progressive and ∫ T

0

(|Π◦(t)|+ |Π(t)|2) dt <∞.

Π◦ represents the amount of money invested in the bond and Π those invested in the stocks.
A trading strategy (Π◦,Π) finances a consumption plan c ∈ C if Π◦(T ) + Π(T )>1nR ≥ 0 and

d(Π◦(t) + Π(t)>1nR) = Π◦(t)r dt+ Π(t)> dR(t)− c(t) dt

where 1nR denotes the nR-dimensional vector of ones. Denote the wealth process Π◦+Π>1nR
by W . W satisfies

dW (t) = (W (t)− Π(t)>1nR)r dt+ Π(t)> dR(t)− c(t) dt (42)

with initial condition W (0) = Π◦(0) + Π(0)>1nR . In fact, W is the unique strong solution
to the last equation, and therefore, we can suppress Π◦ and identify a trading strategy with
Π. A pair (Π, c) is admissible for initial wealth W (0) if the corresponding wealth process
WΠ,c,W (0) is uniformly bounded below.

The market is dynamically incomplete if nA > 0. Let

ζ(t) , σR(t)>(σR(t)σR(t)>)−1(aR(t) + bR(t)m∗t − r1nR).

A consumption process c ∈ C can be financed by some trading strategy if and only if it
satisfies the following static budget constraint:

sup
ν∈Ker(σR)

EP 0

∫ T

0

E−(ζ+ν)(t)e−rtc(t) dt ≤ W (0) (43)

where Ker(σR) denotes the set of processes ν such that σR(t, ω)ν(t, ω) = 0 a.e. (He and
Pearson, 1991; Karatzas et al., 1991; Cuoco, 1997).

Remark 4.1. If the investor had full confidence in a simple theory Qx̄,0 ∈ Q, then the
present model would have as special cases the Bayesian learning models of Lakner (1998),
Xia (2001), Zohar (2001), and Brendle (2006), in which the unobservable instantaneous
expected return process follows an Ornstein-Uhlenbeck process. In other words, this section
extends the latter models to a case of ambiguity.
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4.2 Optimal Consumption and Portfolio

Let C2(u) ⊂ C denote the set of consumption processes such that

EP 0

∫ T

0

[log(c(t))]2 dt <∞.

I define the investor’s problem to be

sup
c∈C2(u)

min
ξ∈Ξ

EP ξ
∫ T

0

e−βt log(c(t)) dt (44)

subject to the budget constraint (43). The objective function in (44) is finite for all (c, ξ) ∈
C2(u)× Ξ due to the definition of C2(u) and the uniform boundedness of Ξ. Let Cbudget ⊂ C
denote the set of consumption processes that satisfy the budget constraint.

Lemma 4.1. The minimax theorem holds, that is,

sup
c∈C2(u)∩Cbudget

min
ξ∈Ξ

EP ξ
∫ T

0

e−βt log(c(t)) dt = min
ξ∈Ξ

sup
c∈C2(u)∩Cbudget

EP ξ
∫ T

0

e−βt log(c(t)) dt.

Remark 4.2. It is clear from the proof that the claim is true for any concave felicity, with
the corresponding change to the definition of C2(u).

Proposition 4.1. For a given ξ ∈ Ξ, the inner supremum

sup
c∈C2(u)∩Cbudget

EP ξ
∫ T

0

e−βt log(c(t)) dt (45)

equals

− 1− e−βT

β
log

(
1− e−βT

β

)
+
β − r
β

(
Te−βT − 1− e−βT

β

)
+

1− e−βT

β
logW (0)

+ EP ξ
∫ T

0

e−βt − e−βT

β

1

2
|ζ(t) + σR(t)>(σR(t)σR(t)>)−1σR(t)ξ(t)|2 dt. (46)

Let ξ∗ denote the minimizer of the last expression:

ξ∗ , arg min
ξ∈Ξ

EP ξ
∫ T

0

e−βt − e−βT

β

1

2
|ζ(t) + σR(t)>(σR(t)σR(t)>)−1σR(t)ξ(t)|2 dt. (47)

The optimal consumption process is given by

c∗(t) = βW (0)ert
e−βt

1− e−βT
Eξ∗(t)

E−(ζ+ν∗)(t)
, (48)

ν∗(t) = [σR(t)>(σR(t)σR(t)>)−1σR(t)− Iny ]ξ∗(t). (49)
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Hence the key is to solve (47). Note for later reference that

ζ(t) + σR(t)>(σR(t)σR(t)>)−1σR(t)ξ(t)

= σR(t)>(σR(t)σR(t)>)−1(aR(t) + bR(t)m∗t − r1nR + σR(t)ξ(t)).

To find the trading strategy that finances c∗, observe first that the wealth process corre-
sponding to c∗ is

W ∗(t) =
1

B(t)−1E−(ζ+ν∗)(t)
EP 0

(∫ T

t

B(s)−1E−(ζ+ν∗)(s)c∗(s) ds

∣∣∣∣Gt)
= W (0)ert

e−βt − e−βT

1− e−βT
Eξ∗(t)

E−(ζ+ν∗)(t)
.

(50)

Thus its differential is

dW ∗(t) = W ∗(t)(ζ(t) + ν∗(t) + ξ∗(t))> dε+ · dt.

Comparing the last expression with (42) and recalling (49), we see that

π∗(t) , Π∗(t)/W ∗(t)

= (σR(t)σR(t)>)−1 (aR(t) + bR(t)m∗t − r1nR + σR(t)ξ∗(t)) (51)

where π∗ denotes the optimal fraction of wealth invested in the stock.
The optimal consumption plan c∗ found above equals that of the Bayesian investor with

unique prior P ξ∗ . Accordingly, π∗ equals the stock demand of the same Bayesian investor,
the term involving ξ∗ accounting for the discrepancy between P ξ∗ and P 0. This observation
also suggests that as is characteristic of Bayesian log investors, the optimal consumption is
given by a fraction of wealth independent of other state variables, or precisely,

c∗(t) =
β

1− e−β(T−t)W
∗(t),

as can be verified from (48) and (50).

4.3 Markovian Characterization

Suppose the economy is Markovian, that is,

f(t, R,A) = f(t, R(t), A(t))

where f = a, b, or σ. Then the investor’s information can be summarized by a finite number
of Markovian variables.

Observe first that the Bayesian investor who has full confidence in a simple theory Qx̄,0 ∈
Q has the following as the state variables (see Proposition 3.2):

R(t), A(t), mx̄,0(t), and γ(t).
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Our investor also has these as state variables, with the obvious replacement of mx̄,0(t) by
m∗t , that is,

R(t), A(t), m∗t , and γ(t), (52)

and the following in addition:

x̄∗t , σx̄∗(t), Ix̄(t)−1, and δ(t). (53)

See Propositions 3.6, 3.7, and 3.9. The first three of (53) originates from the estimation of
x̄; the last is needed to describe the set of one-step-ahead conditionals Ξ(t). The standard
control approach to the minimization (47) requires that Ξ(t), ζ(t), and σR(t) be functions
of some (multidimensional) Markov process, and Propositions 3.6 and 3.7 confirm that the
variables identified in (52) and (53) form a closed system of Markovian variables. Collect
them in Z,

Z , (R,A,m∗, γ, x̄∗, σx̄∗ , I−1
x̄ , δ)>,

and write
dZ(t) = µZ(t, Z(t)) dt+ σZ(t, Z(t)) dε(t). (54)

Remark 4.3. Some of the state variables identified above may be redundant. For example,
if a, b, and σ are deterministic functions of time independent of R and A, then it suffices to
take as state variables m∗ and x̄∗. See Section 4.4 below.

Define the value function as

J(t, Z) , min
ξ∈Ξ

EP ξ
(∫ T

t

e−βs − e−βT

β

× 1

2
|ζ(s) + σR(s)>(σR(s)σR(s)>)−1σR(s)ξ(s)|2 ds

∣∣∣∣Z(t) = Z

)
subject to the state dynamics (54). Picking a particular ξ ∈ Ξ is to say that εξ = {ε(t),Gt}
defined by dεξ(t) = dε(t)− ξ(t) dt is a Wiener process. Hence

J(t, Z) = min
ξ∈Ξ

EP 0

(∫ T

t

e−βs − e−βT

β

×1

2
|ζξ(s) + σξR(s)>(σξR(s)σξR(s)>)−1σξR(s)ξ(s)|2 ds

∣∣∣∣Zξ(t) = Z

)
(55)

subject to
dZξ(t) = µZ(t, Zξ(t)) dt+ σZ(t, Zξ(t))( dε(t) + ξ(t) dt)

where σξR(s) ≡ σR(s, Rξ(s), Aξ(s)). (55) is linear-quadratic in the control, although not in
the state and hence not linear-quadratic in the classical sense. The corresponding Hamilton-
Jacobi-Bellman (HJB) equation is

0 = min
ξ(t)∈Ξ(t,Z)

(
∂tJ(t, Z) + (∂ZJ(t, Z))>(µZ(t, Z) + σZ(t, Z)ξ(t))

+
1

2
tr[(∂2

ZJ(t, Z))σZ(t, Z)σZ(t, Z)>]

+
e−βt − e−βT

β

1

2
|ζ(t, Z) + σR(t, Z)>(σR(t, Z)σR(t, Z)>)−1σR(t, Z)ξ(t)|2

) (56)
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with boundary condition J(T, Z) = 0 for all Z. In general, (56) is of degenerate parabolic
type and we can only say that the value function is a viscosity solution of (56). But see
Section 4.4.1, where I consider a special case in which the value function is a unique classical
solution to the HJB equation.

4.4 Examples

To gain intuitions, I consider in this section the special case in which there is a single stock,
the stock return volatility is constant, and there are no other observable macroeconomic
indicators that affect stock returns. That is, nR = 1 and nA = 0 so that ny = nx = 1 and
σ(t, y) = σR(t, y) = σR ∈ (0,∞) for all (t, y). Assume furthermore aR ≡ 0 and bR ≡ 1. This
setup is simple but rich enough to let us discuss key aspects of the optimal policy.

4.4.1 x̄ Known

Suppose first that x̄ is known.

Optimal Policy Revisited Under the aforementioned assumptions, the investor’s prob-
lem is Markovian and his optimal stock demand can be written in a simple feedback form.

Recall Section 4.3 and note that (i) R and A are redundant as state variables because
σ is constant, (ii) γ and δ are redundant because they are deterministic, and (iii) x̄∗ ≡ x̄,
σx̄∗ , and I−1

x̄ are redundant because x̄ is known. It thus suffices to take m∗ as the sole state
variable (Z = m∗). The controlled state dynamics is (see (27))

dm∗,ξt = κ(x̄−m∗,ξt ) dt+ (ρwσR + γ(t) + δ(t))σ−1
R ( dε(t) + ξ(t) dt)

=: µm∗(m
∗,ξ
t ) dt+ σm∗(t)( dε(t) + ξ(t) dt).

The price of risk under P 0 is simplified to

ζ(m∗) =
m∗ − r
σR

.

Ξ(t) is given by an interval [−ξ̄(t), ξ̄(t)] where

ξ̄(t) ,

√
2αδ(t)

σR
;

ξ̄(t) measures the magnitude of the ambiguity in the price of risk and is increasing in the
investor’s conservatism in model selection α and the estimation ambiguity δ(t). Also, it
decreases monotonically and deterministically over time, converging to a constant, as is a
property of δ. The estimated equity premium is m∗ − r and the ambiguity in the equity
premium is σRξ̄(t) =

√
2αδ(t). (Unless necessary, the [true or estimated] instantaneous

equity premium will be referred to simply as the [true or estimated] equity premium.)
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Next, the HJB equation (56) is simplified to

0 = min
ξ(t)∈Ξ(t)

(
∂tJ(t,m∗) + (∂m∗J(t,m∗))(µm∗(m

∗) + σm∗(t)ξ(t))

+
1

2
(∂2
m∗J(t,m∗))σm∗(t)

2 +
e−βt − e−βT

β

1

2
(ζ(m∗) + ξ(t))2

)
(57)

with boundary condition J(T,m∗) = 0 for all m∗. It is still not clear if (57) allows for
an analytical solution, but we can now check some basic properties of the value function.42

C1,2([0, T ]×R) denotes the set of real-valued functions f from [0, T ]×R such that f(t,m∗) is
continuously differentiable in t and twice continuously differentiable inm∗; and Cp([0, T ]× R)
the set of real-valued functions f from [0, T ] × R that are continuous and satisfy the poly-
nomial growth condition:

|f(t,m∗)| ≤ K(1 + |m∗|n) for all m∗ ∈ R

for some nonnegative constants K and n. Assume for the rest of Section 4.4.1,

Assumption 4.1. σ2
m∗ : [0, T ]→ R is bounded below away from zero.

The assumption trivially holds if ρw ≥ 0.

Proposition 4.2. (i) The partial differential equation (57) with its boundary condition has
a unique solution K ∈ C1,2([0, T ]× R) ∩ Cp([0, T ]× R).

(ii) K is the value function, that is, K = J .
(iii)

ξ∗(t,m∗) = max
{
−ξ̄(t),min

{
ξ̄(t), ξU(t,m∗)

}}
,

ξU(t,m∗) , −ζ(m∗)− βeβt

1− e−β(T−t)σm∗(t)∂m∗J(t,m∗).

Thus, in particular, the optimal control ξ∗ : [0, T ]× R→ R is continuous.
The expression for the optimal stock demand (51) becomes

π∗(t,m∗) =
m∗ − r + σRξ

∗(t,m∗)

σ2
R

= max

{
m∗ − r − σRξ̄(t)

σ2
R

,min

{
m∗ − r + σRξ̄(t)

σ2
R

, (58)

− 1

σ2
R

βeβt

1− e−β(T−t)σRσm∗(t)∂m∗J(t,m∗)

}}
.

Lemma 4.2. (i) J(t,m∗) is convex in m∗.
(ii)

∂m∗J(t,m∗) = EP 0

(∫ T

t

e−βs − e−βT

β

e−κ(s−t)

σR

m∗,ξ
∗

s − r + σRξ
∗(s)

σR
ds

∣∣∣∣m∗,ξ∗t = m∗
)
.

42It is possible to formulate (57) as a free boundary problem and characterize the solution to a certain
degree (cf. Davis and Norman (1990)), but there is little practical benefit and I do not pursue this direction.
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From the convexity, that is, from the fact that ∂m∗J(t,m∗) is nondecreasing in m∗, it
follows that

m∗ − r − σRξ̄(t)
σ2
R

= − 1

σ2
R

βeβt

1− e−β(T−t)σRσm∗(t)∂m∗J(t,m∗)

and
m∗ − r + σRξ̄(t)

σ2
R

= − 1

σ2
R

βeβt

1− e−β(T−t)σRσm∗(t)∂m∗J(t,m∗)

as equations in m∗ each have a unique solution, m∗(t) and m∗(t) < m∗(t), respectively. π∗

can be rewritten as

π∗(t,m∗) =



m∗ − r + σRξ̄(t)

σ2
R

if m∗ < m∗(t)

m∗ − r − σRξ̄(t)
σ2
R

if m∗ > m∗(t)

− 1

σ2
R

βeβt

1− e−β(T−t)σRσm∗(t)∂m∗J(t,m∗) if m∗ ∈ [m∗(t),m∗(t)].

Since ξ∗ is bounded, the effect of ambiguity on ∂m∗J(t,m∗) is negligible for m∗s with
a large absolute value. Combined with convexity, this implies that m∗ 7→ J(t,m∗) is U-
shaped. (Epstein and Schneider (2007) in p. 1296 make a similar observation from a numerical
exercise.) As with his Bayesian counterpart with unique theoretical prior Qx̄,0, our multiple-
priors investor, too, is better off when the estimated equity premium is further away from
zero, that is, when the stocks are (locally, in expected terms) more distinct from the bond.
The U-shape implies that the optimal policy may have curvature in the central region m∗ ∈
[m∗(t),m∗(t)].

Compared to the Bayesian policy, our investor’s stock demand is (i) shifted up by the
ambiguity in the equity premium (divided by the return variance) when the estimated equity
premium m∗− r is sufficiently small (in the sense of < on the real line), (ii) shifted down by
the same amount when m∗ − r is sufficiently large, and (iii) proportional to the negative of
the instantaneous covariation between the stock return and the state (−σRσm∗(t)) and the
first derivative of the value function (∂m∗J(t,m∗)), when m∗− r is intermediate. Clearly, the
last case is reminiscent of Merton’s (1973) hedging demand; it tells the investor to hold more
of the stock if it pays in cases of low continuation utility. (But it is not exactly the same as
Merton’s hedging demand. His is such that the investor holds more of the assets that pay in
cases of low consumption, or equivalently, high marginal utility.) I will have a deeper look at
the quantity −σRσm∗(t)∂m∗J(t,m∗) later, but to talk about hedging, first we have to clarify
the myopic demand.

Myopic Demand The myopic demand is defined to be

π∗myopic(t,m
∗) ,

[
lim
t→T

π∗(t,m∗)
]
T=t

.
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Proposition 4.3.

π∗myopic(t,m
∗) =


m∗ − r + σRξ̄(t)

σ2
R

if m∗ − r < −σRξ̄(t)

m∗ − r − σRξ̄(t)
σ2
R

if m∗ − r > +σRξ̄(t)

0 if − σRξ̄(t) ≤ m∗ − r ≤ σRξ̄(t).

The myopic demand is more conservative than that of the Bayesian investor with unique
theoretical prior Qx̄,0 in that in absolute values, the former is dominated by the latter:

|π∗myopic(t,m
∗)| ≤

∣∣∣∣m∗ − rσ2
R

∣∣∣∣ for all m∗ and <

∣∣∣∣m∗ − rσ2
R

∣∣∣∣ for all m∗ 6= r.

(I am comparing the feedback policies, considering m∗ to be signifying the estimate of each
investor. The actual values of m∗ will differ between the two investors.) Furthermore, there
is a range of estimated equity premia for which our investor neither buys nor sells short
the stock. Say that the estimated equity premium is unambiguously positive if it is greater
than the ambiguity in the equity premium, that is, if m∗ − r > σRξ̄(t); unambiguously
negative if m∗−r < −σRξ̄(t); and not unambiguously distinct from zero, otherwise. Then, the
observation, rephrased, is that the multiple-priors investor, if myopic, does not participate in
the stock market when his estimate of the equity premium is not unambiguously distinct from
zero; and participates when it is unambiguously positive or negative but invests a smaller
fraction of his wealth than the Bayesian counterpart with the same estimate would. See Dow
and Werlang (1992), who first presented a nonparticipation result for ambiguity-averse (in
the sense of Schmeidler (1989)) investors.

Hedging Demand Under risk, log investors do not hedge; under ambiguity, they do.
Recall the total demand (58) and let

π∗∗hedging(t,m∗) , − 1

σ2
R

βeβt

1− e−β(T−t)σRσm∗(t)∂m∗J(t,m∗).

As noted earlier, π∗∗hedging reflects the investor’s desire to hedge against adverse changes in
the investment opportunities. Under ambiguity, an adverse change in the investment oppor-
tunities is a change in the state variables that is associated with a decrease in continua-
tion utility. In the present case, if the (estimated) equity premium is sufficiently large that
∂m∗J(t,m∗) > 0, then the investor would fear a decrease in the equity premium, that is, its
becoming ambiguous, and want to transfer wealth to states with lower equity premia. And
he could do this by holding more of the stock if it pays at times of lower equity premia and
less of it if it does not.

However, the desire to hedge does not fully realize, and how much of it realizes depends on
the magnitude of the ambiguity present. The total demand π∗(t,m∗) is given by π∗∗hedging(t,m∗)

confined between (m∗− r±σRξ̄(t))/σ2
R, which collapse to the Bayesian demand (m∗− r)/σ2

R

when no ambiguity is present. Hence I call π∗∗hedging the shadow hedging demand. Finally, based
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on the interpretation of π∗∗hedging, the difference π∗ − π∗myopic between the total demand and
the myopic demand is called the hedging demand, although the intent is not fully realized:

π∗hedging(t,m∗) , π∗(t,m∗)− π∗myopic(t,m
∗)

= max

{
m∗ − r − σRξ̄(t)

σ2
R

,min

{
m∗ − r + σRξ̄(t)

σ2
R

, π∗∗hedging(t,m∗)

}}
−max

{
m∗ − r − σRξ̄(t)

σ2
R

,min

{
m∗ − r + σRξ̄(t)

σ2
R

, 0

}}
.

Long-horizon, multiple-priors log investors’ nonmyopic behavior was first observed in dis-
crete time by Epstein and Schneider (2007) and in continuous time by Hernández-Hernández
and Schied (2007a).

In Comparison with Merton (1973) The shadow hedging demand π∗∗hedging is reminis-
cent of Merton’s (1973), but not the same. The difference lies in what are adverse changes in
the investment opportunities. Under risk, they are associated with low consumption; under
ambiguity, with low continuation utility.

To draw further comparison between π∗∗hedging and Merton’s hedging demand, recall that
the latter is the position in the stock that minimizes the volatility of consumption. On
the other hand, π∗∗hedging is the position in the stock that minimizes (to zero) the effect of
misspecification on continuation utility. To elaborate, let

V (t,m∗,W ) , EP ξ
∗
(∫ T

t

e−βs log(c∗(s)) ds

∣∣∣∣m∗t = m∗,W π∗,c∗(t) = W

)
.

As is characteristic of log investors, V additively separates to a part depending only on (t,W ∗)
and another depending only on (t,m∗), and I have been focusing on the latter denoted by
J . Let further

f ξ(t) ,
EP ξ [ dV (t,m∗t ,W

π,c(t))|m∗t = m∗,W π,c(t) = W ]

dt

and observe that

∂ξ(t)(f
ξ(t)− f 0(t)) = Wπ(t)σR∂WV (t,m∗,W ) + σm∗(t)∂m∗V (t,m∗,W ).

From (46),

∂WV (t,m∗,W ) =
e−βt − e−βT

β

1

W
and ∂m∗V (t,m∗,W ) = ∂m∗J(t,m∗).

It follows that |∂ξ(t)(f ξ(t)− f 0(t))| attains its minimum (zero) at π(t) = π∗∗hedging(t,m∗).

4.4.2 x̄ Unknown and Ambiguous

Suppose now that the investor does not know the value of x̄ and entertains all the theoretical
priors Q = {Qx̄,η : (x̄, η) ∈ R× L2([0, T ],R)}.
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As before, R and A are redundant as state variables because σ is constant, and γ, δ, σx̄∗ ,
and I−1

x̄ are redundant because they are deterministic. But now x̄∗ needs to be taken as a
state variable as well as m∗:

Z = (m∗, x̄∗)

with dynamics (see Proposition 3.6)

dZξ(t) =

(
κ(x̄∗,ξt −m

∗,ξ
t )

0

)
dt+

(
ρwσR + γ(t) + δ(t)

κ−1σx̄∗(t)

)
σ−1
R ( dε(t) + ξ(t) dt)

= µZ(Zξ(t)) dt+ σZ(t)( dε(t) + ξ(t) dt).

Since the diffusion matrix σZσ
>
Z is degenerate, the value function J may not be differentiable.

I assume nevertheless that ∂ZJ(t, Z) exists everywhere and write

π∗(t,m∗, x̄∗) = max

{
m∗ − r − σRξ̄(t)

σ2
R

,min

{
m∗ − r + σRξ̄(t)

σ2
R

, π∗∗hedging(t,m∗, x̄∗)

}}
,

π∗∗hedging(t,m∗, x̄∗) , − 1

σ2
R

βeβt

1− e−β(T−t) (ρwσR + γ(t) + δ(t))∂m∗J(t,m∗, x̄∗)

− 1

σ2
R

βeβt

1− e−β(T−t)κ
−1σx̄∗(t)∂x̄∗J(t,m∗, x̄∗).

I call the first term of π∗∗hedging the m∗-shadow hedging demand and the second the x̄∗-shadow
hedging demand.

4.4.3 Numerical Analysis

Continue to assume that the investor entertains all the theoretical priors Q = {Qx̄,η :
(x̄, η) ∈ R × L2([0, T ],R)}. In this section, I numerically compute the optimal stock de-
mand π∗(t,m∗, x̄∗) and discuss its behavior.

The securities market model is calibrated based on Barberis (2000):43

dR(t) = x(t) dt+ 0.1428 dw(t),

dx(t) = 0.2743(x̄− x(t)) dt− 0.0392 dw(t) + 0.0361 dvx̄,0(t),

and r = 0.0432 (all numbers are annual). The investor has observed 20 years of data and
now faces a 10-year investment horizon. β = 0.03, λ =∞, and α = 0.38. These parameters
translate into an ambiguity in the equity premium of 0.01. Also, σZ(20) = (0.007, 0.009)>.

43I annualized his monthly estimates (left panel of his Table II). His estimation is based on the monthly
NYSE value-weighted returns as calculated by the CRSP, from June 1952 to December 1995.

Barberis assumes that excess stock returns are predicted by the dividend-price ratio, whereas the predictive
variables of the present model, x, are unobservable. Hence, I calibrated the SDE for x so that the SDE for
mx̄,0 matches Barberis’s estimation:

dmx̄,0(t) = 0.2743(x̄−mx̄,0(t)) dt− 0.0031 dw̄x̄,0(t)

where −0.0031 = limt→∞(ρw + γ(t)/σR). To be precise, Barberis finds, in accordance with other empirical
works, excess stock returns and the dividend-price ratio to be highly negatively correlated (−0.9351), and I
set R and mx̄,0 to be perfectly negatively correlated.
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Figure 1: Optimal stock demand (fraction of wealth) as a function of the estimated instantaneous equity
premium (annual, decimal). The investor has observed 20 years of data and now faces a 10-year investment
horizon. β = 0.03, λ = ∞, α = 0.38, and the estimated long-run equity premium x̄∗t − r is fixed at 0.0458.
Left plot: The solid line passing through the origin shows the Bayesian demand; the dashed line, the myopic
demand; the dotted lines, the shadow hedging demands; finally, the thick solid line shows the total demand.
Right plot: An analysis of the optimal stock demand.

Figure 1 shows the corresponding optimal stock demand as a function of the estimated
instantaneous equity premium, with the estimated long-run equity premium fixed at 0.0458
(Barberis’s estimate). In the left plot, the solid line passing through the origin shows the
Bayesian demand; the kinked dashed line, the myopic demand; the dotted lines, the m∗-,
x̄∗-, and total shadow hedging demands; and finally, the thick solid line shows the total
demand. As observed analytically, the total demand is given by the shadow hedging demand
if the latter is moderate compared to the magnitude of the ambiguity present; otherwise, the
investor behaves as if he were a Bayesian investor whose estimate of the equity premium is
m∗−r−σRξ̄(t) or m∗−r+σRξ̄(t). The hedging demands are represented by a shaded region
in the right plot. Note that the investor hedges for a range of estimated equity premia wider
than dictated by the ambiguity in his estimate and the hedging demands are significant. For
example, when the estimated equity premium is −0.01, the long-horizon investor facing a
10-year horizon sells short an amount of the stock worth about 100% of his wealth, whereas
a myopic investor would take no position in the stock.

In Comparison with Epstein and Schneider (2007) To further analyze the optimal
policy, it helps to contrast it with that of related models, and first I consider Epstein and
Schneider (2007).

First, in Epstein and Schneider’s model, a long-horizon multiple-priors investor still holds
no stock when the estimated equity premium is zero. In Figure 1, on the other hand, π∗ is
negative around zero estimated premium. This is due to the asymmetry in the dynamics
of the estimated premium m∗ − r. When the true premium is constant and known, a log
investor’s value function is quadratic in it. Hence, in particular, it is symmetric at zero
premium and is strictly increasing in the absolute value of the premium; that is, the investor
is better off when the stock is (locally, in expected terms) more distinct from the bond.
However, since in the present model m∗− r is attracted to x̄∗− r, the current value of which
is positive, the value function rises in the right vicinity of zero estimated premium and rises
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Figure 2: Optimal stock demand (fraction of wealth) as a function of the estimated instantaneous equity
premium (annual, decimal). The parametrization is the same as Figure 1 except that the estimated long-run
equity premium x̄∗t − r is 0 for the left plot and −0.0458 for the right plot, as opposed to 0.0458.

more in the right than in the left because a negative m∗−r will have to pass the minimum of
the value function before reaching x̄∗− r. Consequently, ∂m∗J(t, r, x̄∗) > 0. ∂x̄∗J(t, r, x̄∗) > 0
for the obvious reason, and the negative demands around zero estimated premium follow.

When the desire to hedge fully realizes, it may give rise to contrarian behavior. Note from
Figure 1 that when the estimated premium falls around −0.02, the investor exhibits con-
trarian behavior in the sense that he decreases his stock holdings as the estimated premium
increases. In the absence of ambiguity (see, for example, Brendle (2006)), as the estimated
premium improves, that is, as it moves toward the direction of increasing the continuation
utility, the marginal indirect utility of such an improvement strictly increases and so does the
desire to hedge. The introduction of ambiguity does not fundamentally alter this structure
because the density generators are bounded by ξ̄ and ξ̄ is independent of the estimated pre-
mium. Epstein and Schneider make a similar observation that their investor is contrarian in
the sense that when the estimated premium is not unambiguously distinct from zero, he goes
long for negative premia and short for positive premia. This restricted form of contrarian
behavior results from the symmetric structure of their model.

What, then, exactly is the dependence of the stock demand on the estimated long-run
equity premium? The argument leading to ∂m∗J(t, r, x̄∗) > 0 suggests that if the current
value of x̄∗−r is negative, ∂m∗J(t, r, x̄∗) < 0. This is indeed the case. See Figure 2; I changed
the value of x̄∗t − r from 0.0458 to 0 (left plot) and −0.0458 (right plot). When x̄∗t − r =
−0.0458, both derivatives at zero instantaneous premium are negative and the corresponding
hedging demand is positive. It is possible to show, following the proof of Lemma 4.2(i), that
J(t,m∗, x̄∗) is convex in (m∗, x̄∗) and hence in particular in x̄∗. Accordingly, the desire to
hedge against low continuation utility results in contrarian behavior with respect to the long-
run premium. Compare the monotonic dependence of the demand on the long-run premium
with its nonmonotonic dependence on the instantaneous premium. Such a distinction is
absent in Epstein and Schneider’s model because they consider constant (in the sense of
indistinguishability) investment opportunities.

The assumption of constant investment opportunities also implies that in Epstein and
Schneider’s model, hedging demands disappear as time goes to infinity. In contrast, in the
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Figure 3: Confidence and optimal stock demand. The investor has learned all that he can (t→∞) and now
faces a 10-year investment horizon. β = 0.03 and x̄∗∞ − r = 0.0458. α varies as λ does in such a way that
the ambiguity in the instantaneous equity premium

√
2αδ(t =∞;λ) stays at 0.01. Left plot: Optimal stock

demand (fraction of wealth) as a function of the estimated instantaneous equity premium (annual, decimal),
for different levels of the investor’s confidence λ in the reference likelihood. Right plot: The same demand at
m∗ − r = 0 as a function of λ.

present model, the desire to hedge against adverse changes in the estimate of the instanta-
neous premium, that is, the m∗-shadow hedging demand, persists.

In Comparison with Miao (2009) Miao (2009) also considers the consumption/portfolio
choice problem of a multiple-priors investor in continuous time who partially observes stochas-
tic investment opportunities. But his notion of learning is fundamentally different from mine.

To review Miao’s model in the context of the present model, pick a theoretical prior Qx̄,0,
x̄ ∈ R. A preferential prior P ξ is characterized by the filtered stock return dynamics

dR(t) = mx̄,0(t) dt+ σR( dw̄x̄,0,ξ(t) + ξ(t) dt), |ξ(t)| ≤ ξ̄

where w̄x̄,0,ξ = {w̄x̄,0,ξ(t),Gt} is a P ξ-Wiener process. That is, (i) the “center” of the set of
one-step-ahead conditionals is obtained by the standard Bayesian learning under Qx̄,0 and
(ii) after the Bayesian learning, there remains an exogenous and time-invariant ambiguity.
Thus, in particular, learning and ambiguity do not interact. In contrast, in the present model,
the innovation receives a larger weight when the current estimate m∗t is ambiguous, that is,
when δ(t) is large.

In fact, Miao’s model is the limit of the present model as t, λ, α→∞ with the restriction√
2αδ(t;λ)/σR = ξ̄. Note that t→∞ is consistent with the IID ambiguity; λ→∞, that is,

full confidence in the reference likelihood, with the Bayesian learning; and α→∞ with the
multiple one-step-ahead conditionals despite the full confidence.

In Figure 3, I plot the optimal stock demand corresponding to different levels of confidence
λ. The investor has learned all that he can, meaning in particular that γ and δ have converged
(assume that x̄∗, too, has converged), and now faces a 10-year investment horizon. β = 0.03
as before and x̄∗∞ − r = 0.0458. α varies as λ does in such a way that the ambiguity in
the instantaneous premium

√
2αδ(t =∞;λ) stays at 0.01. The left plot shows the Markov
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policies. The solid black line (top) in particular corresponds to full confidence and hence
to the Miao demand. Note that it is increasing everywhere, that is, there is no region of
contrarian behavior. This is because stock returns are negatively correlated with the state
variable m∗: σm∗(∞) = ρw + γ(∞)/σR = −0.003.

More importantly, the stock demand monotonically decreases as the investor loses confi-
dence. See the right plot, which shows the stock demand at m∗−r = 0 as λ varies. Intuitively,
the estimation of the true premium is more difficult and unreliable for those investors who
are less confident about their grasp of the environment; the consequent lack of confidence in
the estimate combined with the (apparent) pessimism leads those investors, then, to try to
transfer wealth even more to adverse states.

The effect of learning under ambiguity can be significant: the difference between Miao’s
prediction and mine can be as large as half of wealth, depending on the investor’s confidence.

A Proofs

Proof of Proposition 3.1. The local version of the Itô existence-uniqueness result. See Rogers
and Williams (1994), Theorem V.12.1.

Proof of Proposition 3.2. Under Assumptions 3.1 and 3.2, the following theorems in Liptser
and Shiryaev (1977) hold: (i) follows from Theorem 12.6; (ii), from Theorem 12.7; and (iii) from a
multidimensional adaptation of Theorems 7.17 and 12.5.

Proof of Lemma 3.1. Let f(t) = eκtγ(t)eκt. Then

ḟ(t) = eκt[ρwρ
>
w + ρvρ

>
v − (ρwσ(t)> + γ(t)b(t)>)(σ(t)σ(t)>)−1(ρwσ(t)> + γ(t)b(t)>)>]eκt.

Since (ρwσ
> + γb>)(σσ>)−1(ρwσ

> + γb>)> is symmetric and positive semidefinite,

tr f(t) ≤ tr f(0) +

∫ t

0
tr(eκt(ρwρ

>
w + ρvρ

>
v )eκt) dt.

It follows that the sum of the variances is bounded: supt≤T
∑

i γii(t) < ∞. Since covariances are
bounded by variances, the claim follows.

Proof of Proposition 3.3.44 Fix (x̄, η) ∈ Rnx × L2([0, T ],Rny). Let Q̄x̄,η be the measure under
which j and vx̄,η are independent Wiener processes where j is defined by dj(t) = σ(t)−1 dy(t),
j(0) = 0. Then

dQx̄,η

dQ̄x̄,η
= Λ(T ),

Λ(t) , exp

(∫ t

0
[σ(s)−1(a(s) + b(s)x(s))]> dj(s)− 1

2

∫ t

0
|σ(s)−1(a(s) + b(s)x(s))|2 ds

)
.

Let ψx̄,η(t, ·) denote the unnormalized density of x(t) given Gt under Qx̄,η, defined by

EQ̄
x̄,η

[Λ(t)f(x(t))|Gt] =

∫
X
f(x)ψx̄,η(t, x) dx

44I thank Domenico Cuoco for this direct proof. Alternatively, we can differentiate (22) under the integral
sign and re-construct the log-likelihood function back.
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where X , Rnx , f denotes an arbitrary test function, and∫
X

dx ≡
∫
R
· · ·
∫
R

dx1 · · · dxnx .

Since (y, x) is conditionally Gaussian,

ψx̄,η(t, x) = exp

(
ux̄,η(t)− 1

2
(x−mx̄,η(t))>γ(t)−1(x−mx̄,η(t))

)
(59)

where ux̄,η(t) is independent of x. Now use Bayes’ rule to see

`T (x̄, η) = log EQ̄
x̄,η

(
dQx̄,η

dQ̄x̄,η

∣∣∣∣GT)− log EQ̄
0,0

(
dQ0,0

dQ̄0,0

∣∣∣∣GT)+ log EQ̄
0,0

(
dQ̄x̄,η

dQ̄0,0

∣∣∣∣GT)
but the last term is 0 because under Q̄0,0, v0,0 and j are independent. Thus

`T (x̄, η) = log

∫
X
ψx̄,η(T, x) dx− log

∫
X
ψ0,0(T, x) dx

= ux̄,η(T )− u0,0(T )

and all boils down to computing ux̄,η(T ).
To compute it, I compare the ψx̄,η given in (59) with that as the solution to the Zakai equation:

Lemma A.1. ψx̄,η satisfies

dψx̄,η(t, x) = ψx̄,η(t, x)[σ(t)−1(a(t) + b(t)x)]> dj(t)− div[(κ(x̄− x) + ρvη(t))ψx̄,η(t, x)] dt

− ∂xψx̄,η(t, x)>ρw dj(t) +
1

2
tr[∂2

xψ
x̄,η(t, x)(ρwρ

>
w + ρvρ

>
v )] dt (60)

with initial condition ψx̄,η(0, ·) ∼ N(m0, γ0).

Proof. The derivation is standard; see, for example, Elliott and Krishnamurthy (1997). First,
differentiating Λ(t)f(x(t)) and then re-integrating the resulting expression,

Λ(t)f(x(t)) = Λ(0)f(x(0)) +

∫ t

0
Λ(s)f(x(s))[σ(s)−1(a(s) + b(s)x(s))]> dj(s)

+

∫ t

0
Λ(s)∂f(x(s))>{[κ(x̄− x(s)) + ρvη(s)] ds+ ρw dj(s) + ρv dvx̄,η(s)}

+
1

2

∫ t

0
Λ(s) tr[∂2f(x(s))(ρwρ

>
w + ρvρ

>
v )] ds.

Take the conditional expectation under Q̄x̄,η given Gt:∫
X
f(x)ψx̄,η(t, x) dx =

∫
X
f(x)ψx̄,η(0, x) dx

+

∫ t

0

∫
X
f(x)[σ(s)−1(a(s) + b(s)x)]>ψx̄,η(s, x) dx dj(s)

+

∫ t

0

∫
X
∂f(x)>[κ(x̄− x) + ρvη(s)]ψx̄,η(s, x) dx ds

+

∫ t

0

∫
X
∂f(x)>ρwψ

x̄,η(s, x) dx dj(s)

+
1

2

∫ t

0

∫
X

tr[∂2f(x)(ρwρ
>
w + ρvρ

>
v )]ψx̄,η(s, x) dx ds.
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For the change in the order of the conditional expectation and the stochastic integral with respect
to j, see Liptser and Shiryaev (1977), Theorem 5.14. Now, integration by parts with respect to x
completes the derivation.

(Proof of the proposition continued.) From (59),

d logψx̄,η(t, x) = dux̄,η(t) + (x−mx̄,η(t))>γ(t)−1 dmx̄,η(t)

+
1

2
(x−mx̄,η(t))>γ(t)−1γ̇(t)γ(t)−1(x−mx̄,η(t)) dt

− 1

2
tr[γ(t)−1(ρwσ(t)> + γ(t)b(t)>)(σ(t)σ(t)>)−1(ρwσ(t)> + γ(t)b(t)>)>] dt

On the other hand, computing the spatial derivatives of ψx̄,η using (59) and plugging them to (60),
we obtain another expression for dψx̄,η(t, x):

dψx̄,η(t, x)/ψx̄,η(t, x) = [σ(t)−1(a(t) + b(t)x) + ρ>wγ(t)−1(x−mx̄,η(t))]> dj(t)

+ [(x−mx̄,η(t))>γ(t)−1(κ(x̄− x) + ρvη(t)) + trκ] dt

+
1

2
(x−mx̄,η(t))>γ(t)−1(ρwρ

>
w + ρvρ

>
v )γ(t)−1(x−mx̄,η(t)) dt

− 1

2
tr(γ(t)−1(ρwρ

>
w + ρvρ

>
v )) dt.

Then

d logψx̄,η(t, x) =
1

ψ
dψ +

1

2

(
− 1

ψ2

)
( dψ)2

= [σ(t)−1(a(t) + b(t)x) + ρ>wγ(t)−1(x−mx̄,η(t))]> dj(t)

+ [(x−mx̄,η(t))>γ(t)−1(κ(x̄− x) + ρvη(t)) + trκ] dt

+
1

2
(x−mx̄,η(t))>γ(t)−1(ρwρ

>
w + ρvρ

>
v )γ(t)−1(x−mx̄,η(t)) dt

− 1

2
tr(γ(t)−1(ρwρ

>
w + ρvρ

>
v )) dt

− 1

2
|σ(t)−1(a(t) + b(t)x) + ρ>wγ(t)−1(x−mx̄,η(t))|2 dt.

Equate the two expressions of d logψx̄,η(t, x) to see

dux̄,η(t) = −1

2
tr(γ(t)−1γ̇(t)) dt+ (a(t) + b(t)mx̄,η(t))>(σ(t)σ(t)>)−1 dy(t)

− 1

2
(a(t) + b(t)mx̄,η(t))>(σ(t)σ(t)>)−1(a(t) + b(t)mx̄,η(t)) dt.

Finally, note that ux̄,η(0) = u0,0(0).

Proof of Lemma 3.2. Let ε > 0 and observe

`t(x̄, η + εh)− `t(x̄, η) = ε

∫ t

0

(∫ s

0
ϕ(τ)−1ρvh(τ) dτ

)>
ϕ(s)>b(s)>(σ(s)σ(s)>)−1 dy(s)

− ε
∫ t

0
(a(s) + b(s)mx̄,η(s))>(σ(s)σ(s)>)−1b(s)ϕ(s)

∫ s

0
ϕ(τ)−1ρvh(τ) dτ ds+O(ε2). (61)
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The first term can be rewritten, by integration by parts, as

ε

(∫ t

0
ϕ(τ)−1ρvh(τ) dτ

)> ∫ t

0
ϕ(s)>b(s)>(σ(s)σ(s)>)−1 dy(s)

− ε
∫ t

0
(ϕ(s)−1ρvh(s))>

∫ s

0
ϕ(τ)>b(τ)>(σ(τ)σ(τ)>)−1 dy(τ) ds

= ε

∫ t

0

(∫ t

s
ϕ(τ)>b(τ)>(σ(τ)σ(τ)>)−1 dy(τ)

)>
ϕ(s)−1ρvh(s) ds

(62)

and the second term, by changing the order of integration, as

ε

∫ t

0

(∫ t

s
ϕ(τ)>b(τ)>(σ(τ)σ(τ)>)−1(a(τ) + b(τ)mx̄,η(τ)) dτ

)>
ϕ(s)−1ρvh(s) ds. (63)

Now, plug (62) and (63) into (61), differentiate it with respect to ε, and set ε = 0.

Proof of Lemma 3.3. Since ψ11(0) = Inx , ψ11(t) is by continuity invertible up to a random time
τ11 ∈ (0, T ]. Up to τ11, ψ21(t)ψ11(t)−1ρvρ

>
v satisfies

ḟ(t) = λ−1ρvρ
>
v − κ̄(t)f(t)− f(t)κ̄(t)> − f(t)b(t)>(σ(t)σ(t)>)−1b(t)f(t), f(0) = 0. (64)

(64) has a unique solution: suppose p and q solve (64), let ∆(t) = p(t)− q(t), and observe ∆(0) =
∆̇(0) = 0. Thus, ψ21(t)ψ11(t)−1ρvρ

>
v is symmetric up to τ11.

Consider the following hypothetical partially observable system

dy(t) = b(t)x(t) dt+ σ(t) dw(t),

dx(t) = −κ̄(t)x(t) dt+ λ−1/2ρv dv(t), x(0) ∼ N(m0, 0),

with the understanding κ̄(t) = κ̄(t, y). By Liptser and Shiryaev (1977), Theorem 12.7, the condi-
tional variance of x(t) satisfies (64) and stays positive definite for t > 0. (The assumptions of the the-
orem are satisfied; in particular, κ̄ is uniformly bounded by Lemma 3.1.) Hence, ψ21(t)ψ11(t)−1ρvρ

>
v

is positive definite and consequently invertible up to τ11.
Since ψ21(0) = 0 and ψ̇21(0) = λ−1In, ψ21(t), t > 0, too, is invertible up to a random time

τ21 ∈ (0, T ]. By the last paragraph, τ21 ≥ τ11.
Suppose τ11 < T . There are two cases to consider. First, τ11 = τ21. This contradicts the

invertibility of ψ. Second, τ11 < τ21. Then ψ11(t)−1 will explode as t ↑ τ11, which is impossible
because ψ21(t) is invertible. To be concrete, let g be the solution of ġ(t) = g(t)κ̄(t), g(0) = In, and
let h(t) , g(t)ψ21(t)ψ11(t)−1ρvρ

>
v g(t)>. Observe

trh(t) ≤
∫ T

0
tr(g(s)λ−1ρvρ

>
v g(s)>) ds, t ≤ τ11,

Given that g and ψ21 are invertible, the left-hand side should explode as t ↑ τ11 but the right-hand
side is finite. Hence, τ11 = τ21 = T . (Note. T is arbitrary.)

Proof of Proposition 3.4. Multiply ρv to FOC(η) to have

λρvη(s) = ρvρ
>
v (ϕ(s)−1)>

∫ t

s
ϕ(τ)>b(τ)>(σ(τ)σ(τ)>)−1[ dy(τ)− (a(τ) + b(τ)mx̄,η(τ)) dτ ].
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Differentiate this with respect to s to see

d(λρvη(s)) = ρvρ
>
v κ̄(s)>(ρvρ

>
v )−1λρvη(s) ds

− ρvρ>v b(s)>(σ(s)>)−1 dw̄0,0(s) + ρvρ
>
v b(s)

>(σ(s)σ(s)>)−1b(s)Φκx̄+η(s) ds.

Observe in turn that

dΦκx̄+ρvη(s) = −κ̄(s)Φκx̄+ρvη(s) ds+ (κx̄+ ρvη(s)) ds

and that consequently we have a linear system of differential equations in λρvη and Φκx̄+ρvη. Written
in the matrix form, the system is

d

(
λρvη(s)

Φκx̄+ρvη(s)

)
= χ(s)

(
λρvη(s)

Φκx̄+ρvη(s)

)
ds+

(
−ρvρ>v b(s)>(σ(s)>)−1 dw̄0,0(s)

κx̄ ds

)
It follows(

λρvη(s)
Φκx̄+ρvη(s)

)
= ψ(s)

(
ι1λρvη(0) +

∫ s

0
ψ(τ)−1

(
−ρvρ>v b(τ)>(σ(τ)>)−1 dw̄0,0(τ)

κx̄ dτ

))
= ψ(s)ι1λρvη(0)

− ψ(s)

∫ s

0
ψ(τ)−1ι1ρvρ

>
v b(τ)>(σ(τ)>)−1 dw̄0,0(τ) + Ψ(s)ι2κx̄.

Finally, observe

λρvη(t) = 0

= ψ11(t)λρvη(0)− ι>1 ψ(t)

∫ t

0
ψ(τ)−1ι1ρvρ

>
v b(τ)>(σ(τ)>)−1 dw̄0,0(τ) + Ψ12(t)κx̄.

Lemma A.2. θ is the unique solution of

ḟ(t) = Inx − κ̄λ(t)f(t), f(0) = 0 (65)

where

κ̄λ(t) , κ̄(t) + ψ21(t)ψ11(t)−1ρvρ
>
v b(t)

>(σ(t)σ(t)>)−1b(t)

= κ+ [ρwσ(t)> + (γ(t) + ψ21(t)ψ11(t)−1ρvρ
>
v )b(t)>](σ(t)σ(t)>)−1b(t).

Proof. (65) follows from the direct differentiation of the definition. Uniqueness is standard.

Define
p(s, t) , Ψ(s)ι2 − ψ(s)ι1ψ11(t)−1Ψ12(t), s ≤ t ≤ T.

Then (
λρvη

∗
x̄,t(s)

Φκx̄+ρvη∗x̄,t(s)

)
=

(
λρvη

∗
0,t(s)

Φ0+ρvη∗0,t(s)

)
+ p(s, t)κx̄, s ≤ t ≤ T

and ι>2 p(t, t) = θ(t). Also,

∂

∂t
p(s, t) = −ψ(s)ι1ψ11(t)−1ρvρ

>
v b(t)

>(σ(t)σ(t)>)−1b(t)θ(t).
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Proof of Lemma 3.4. Let

M(s) ,

(
λ−1(ρvρ

>
v )−1 0

0 b(s)>(σ(s)σ(s)>)−1b(s)

)
and observe

Ix̄(t) =

∫ t

0
p(s, t)>M(s)p(s, t) ds.

Thus

d

dt
Ix̄(t) = θ(t)>b(t)>(σ(t)σ(t)>)−1b(t)θ(t)

− 2

∫ t

0
p(s, t)>M(s)ψ(s)ι1 dsψ11(t)−1ρvρ

>
v︸ ︷︷ ︸

=:f(t)

b(t)>(σ(t)σ(t)>)−1b(t)θ(t),

ḟ = −f(κ̄+ ψ21ψ
−1
11 ρvρ

>
v b
>(σσ>)−1b)> + θ>b>(σσ>)−1b

ψ21ψ
−1
11 ρvρ

>
v

−
∫ t

0
(ψ(s)ι1ψ11(t)−1ρvρ

>
v )>M(s)ψ(s)ι1ψ11(t)−1ρvρ

>
v ds︸ ︷︷ ︸

=:g(t)

 ,

(66)

ġ = λ−1ρvρ
>
v − κ̄g − gκ̄> − ψ21ψ

−1
11 ρvρ

>
v b
>(σσ>)−1bg

+ (ψ21ψ
−1
11 ρvρ

>
v − g)b>(σσ>)−1bψ21ψ

−1
11 ρvρ

>
v ,

with f(0) = g(0) = 0, where I have suppressed t unless needed. g = ψ21ψ
−1
11 ρvρ

>
v is the unique

solution to the last equation. In turn, f = 0 is the unique solution to (66).
Suppose Ix̄(t) is singular for some t > 0. Since it is symmetric and positive semidefinite, there

must be a nonzero z ∈ Rnx such that∫ t

0
z>θ(s)>b(s)>(σ(s)σ(s)>)−1b(s)θ(s)z ds = 0

or σ(s)−1b(s)θ(s)z = 0 for Lebesgue almost every s ≤ t or θ(s)z = 0 for all s ≤ t. Multiply z to
(65) to see

d

ds
(θ(s)z) = 0 = z, s ≤ t

which is absurd.

Lemma A.3.

ΦInx (t)> −
∫ t

0
ΦInx (s)>b(s)>(σ(s)σ(s)>)−1b(s)ψ21(s) dsψ11(t)−1ρvρ

>
v = θ(t)> (67)

and ∫ t

0
ΦInx (s)>b(s)>(σ(s)σ(s)>)−1b(s)ι>2 p(s, t) ds = Ix̄(t). (68)
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Proof. (67): Denote the left-hand side by f(t). Then

ḟ = −(ΦInx )>κ̄> + Inx − (ΦInx )>b>(σσ>)−1bψ21ψ
−1
11 ρvρ

>
v

+

∫ t

0
ΦInx (s)>b(s)>(σ(s)σ(s)>)−1b(s)ψ21(s) dsψ−1

11 ρvρ
>
v (κ̄> + b>(σσ>)−1bψ21ψ

−1
11 ρvρ

>
v ). (69)

But by Lemma 3.3(ii),

κ̄> + b>(σσ>)−1bψ21ψ
−1
11 ρvρ

>
v = (κ̄+ ψ21ψ

−1
11 ρvρ

>
v b
>(σσ>)−1b)>

= (κ̄λ)>

and with this, (69) can be rewritten as ḟ = Inx − f(κ̄λ)>, which is also satisfied by θ>. Since
f(0) = θ(0)> = 0, it follows that f(t) = θ(t)>.

(68): Denote the left-hand side by g(t). Then

ġ(t) = ΦInx (t)>b(t)>(σ(t)σ(t)>)−1b(t)θ(t) +

∫ t

0
ΦInx (s)>b(s)>(σ(s)σ(s)>)−1b(s)

∂

∂t
ι>2 p(s, t) ds

and that
∂

∂t
ι>2 p(s, t) = −ψ21(s)ψ11(t)−1ρvρ

>
v b(t)

>(σ(t)σ(t)>)−1b(t)θ(t).

By (67),
ġ(t) = θ(t)>b(t)>(σ(t)σ(t)>)−1b(t)θ(t).

Note finally that g(0) = 0.

Proof of Proposition 3.5. From FOC(x̄),∫ t

0
ΦInx (s)>b(s)>(σ(s)σ(s)>)−1b(s)ι>2 p(s, t) ds κx̄ =

∫ t

0
ΦInx (s)>b(s)>(σ(s)>)−1 dw̄0,η∗0,t(s).

Recall (68).

Proof of Proposition 3.6. (i) Differentiating FOC(x̄) with respect to t, we see

0 = ΦInx (t)>b(t)>(σ(t)>)−1 dε(t)−
∫ t

0
ΦInx (s)>b(s)>(σ(s)σ(s)>)−1b(s) dtΦ

κx̄∗t+ρvη∗t (s) ds.

Direct computation shows

dtΦ
κx̄∗t+ρvη∗t (s) = ι>2 p(s, t)κdx̄∗t + ψ21(s)ψ11(t)−1ρvρ

>
v b(t)

>(σ(t)>)−1 dε(t). (70)

Hence,∫ t

0
ΦInx (s)>b(s)>(σ(s)σ(s)>)−1b(s)ι>2 p(s, t) ds κdx̄∗t

=

(
ΦInx (t)> −

∫ t

0
ΦInx (s)>b(s)>(σ(s)σ(s)>)−1b(s)ψ21(s) dsψ11(t)−1ρvρ

>
v

)
× b(t)>(σ(t)>)−1 dε(t).

Use Lemma A.3.
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(ii) Observe

dmx̄∗t ,η
∗
t (t) = dmx̄,η(t)|x̄=x̄∗t ,η=η∗t

+ Φκdx̄∗t+ρv dη∗t (t)

= κ(x̄∗t −mx̄∗t ,η
∗
t (t)) dt+ (ρwσ(t)> + γ(t)b(t)>)(σ(t)>)−1 dε(t) + Φκdx̄∗t+ρv dη∗t (t).

dΦκx̄∗t+ρvη∗t (t) is, if computed from the definition,

dΦκx̄∗t+ρvη∗t (t) = −κ̄(t)Φκx̄∗t+ρvη∗t (t) dt+ κx̄∗t dt+ Φκ dx̄∗t+ρv dη∗t (t)

and is, if computed from the solution (25) (recall (70)),

dΦκx̄∗t+ρvη∗t (t) = −κ̄(t)Φκx̄∗t+ρvη∗t (t) dt+ κx̄∗t dt

+ ψ21(t)ψ11(t)−1ρvρ
>
v b(t)

>(σ(t)>)−1 dε(t) + θ(t)κdx̄∗t .

Comparing the last two equations, we see

Φκdx̄∗t+ρv dη∗t (t) = (ψ21(t)ψ11(t)−1ρvρ
>
v + θ(t)σx̄∗(t)

>)b(t)>(σ(t)>)−1 dε(t).

Proof of Proposition 3.7. All follow from direct differentiation.

Proof of Lemma 3.5. (i) If σ and b are deterministic, then θ, σx̄∗ , and δ, too, are deterministic.
Since the latter are continuous, boundedness follows.

(ii) Suppose σ, ρw, ρv, and b are diagonal; it then suffices to consider the scalar case. Suppose
also κ̄ ≥ ε a.e. for some ε > 0.

Since δ − θσx̄∗ = ψ21ψ
−1
11 ρ

2
v > 0,

θ̇(t) < 1− εθ(t) for all t ≥ 0.

Consider θ† defined by θ̇†(t) = 1 − εθ†(t) and θ†(0) = θ(0). θ(t) ≤ θ†(t) for all t ≥ 0 because
θ(t) = θ†(t) implies θ̇(t) < θ̇†(t). Now, θ† monotonically converges to ε−1, and thus, θ is uniformly
bounded by ε−1 ∨ θ(0). Next, since I−1

x̄ is decreasing,

σ̇x̄∗(t) < Ix̄(0)−1 − εσx̄∗(t)

and σx̄∗ is uniformly bounded by (εIx̄(0))−1 ∨ σx̄∗(0). Note, finally, that

δ̇(t) < 2[(εIx̄(0))−1 ∨ σx̄∗(0)] + λ−1ρ2
v − 2εδ(t).

Remark A.1 (Sharpening of the Bound θ ≤ ε−1 ∨ θ(0)). First, θ ≤ ε−1 because θ starts from 0
(at some suppressed time prior to time 0). Second,

θ ≤ inf{ε−1 : κ̄ ≥ ε a.e.}

=
1

ess inf κ̄
.

Proof of Proposition 3.8. Since

dε(t) = dw̄0,0(t)− σ(t)−1b(t)(mx̄∗t ,η
∗
t (t)−m0,0(t)) dt,

the question is whether

Eσ−1b∆(t) = exp

(∫ t

0
σ(s)−1b(s)∆(s) dw̄0,0(t)− 1

2

∫ t

0
|σ(s)−1b(s)∆(s)|2 ds

)
, 0 ≤ t ≤ T
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is a martingale under Q0,0|GT , where

∆(t) , mx̄∗t ,η
∗
t (t)−m0,0(t), 0 ≤ t ≤ T.

Observe

d∆(t) = κ(x̄∗t −∆(t)) dt+ δ(t)b(t)>(σ(t)>)−1 dw̄0,0(t)

− [ρwσ(t)> + (γ(t) + δ(t))b(t)>](σ(t)σ(t)>)−1b(t)∆(t) dt.

Hence, (∆, x̄∗) satisfies a linear SDE with uniformly bounded volatility. Thus, by a multidimen-
sional adaptation of Liptser and Shiryaev (1977), Theorem 4.7, there is an h > 0 such that

supt≤T EQ
0,0

exp(h|∆(t)|2) < ∞; in turn, by the uniform boundedness of σ−1b, there is an h′ >

0 such that supt≤T EQ
0,0

exp(h′|σ(t)−1b(t)∆(t)|2) < ∞. Now, by Liptser and Shiryaev (1977),

Section 6.2.3, Example 3, Novikov’s condition holds and Eσ−1b∆ is a martingale. Define P 0 by
dP 0/d(Q0,0|GT ) = Eσ−1b∆(T ).

Denote by F̄ε the augmented filtration generated by ε. From the definition of ε, we have F̄ εt ⊆ Gt,
0 ≤ t ≤ T . For the other direction, observe the SDE that (y,mx̄∗· ,η

∗
· (·), x̄∗) satisfies with a, b, σ, γ,

δ, and σx̄∗ replaced by their respective nonanticipating path functionals in y. The drift is locally
Lipschitz and linearly growing, and the volatility is linearly growing (Assumptions 3.1, 3.2, and 3.4).
Hence, if in addition (γ+ δ)b>(σ>)−1 and σ>x̄∗b

>(σ>)−1 are locally Lipschitz, then (y,mx̄∗· ,η
∗
· (·), x̄∗)

is the unique strong solution to the SDE by Itô’s existence and uniqueness theorem (Rogers and
Williams (1994), Theorem V.12.1), and it would follow that F̄ εt ⊇ Gt, 0 ≤ t ≤ T , or F̄ε = G. (Recall
that I assume all G0-measurable variables to be nonrandom constants.)

Since γ, δ, b>, (σ>)−1, and σ>x̄∗ are uniformly bounded, it suffices to show that each of them
is locally Lipschitz: suppose p and q are matrix-valued path functionals on [0, T ] × C([0, T ],Rny).
Then

|p(t, f)q(t, f)− p(t, g)q(t, g)| = |pq − pq′ + pq′ − p′q′|, p ≡ p(t, f) and p′ ≡ p(t, g)

≤ |p||q − q′|+ |q′||p− p′|

by the triangle and Cauchy-Schwarz inequalities.
γ is locally Lipschitz by the proof of Liptser and Shiryaev (1977), Theorem 12.5. b is so by

assumption (Assumption 3.1). To see σ−1 is locally Lipschitz, observe that

|σ(t, f)−1 − σ(t, g)−1| = |σ(t, f)−1(σ(t, g)− σ(t, f))σ(t, g)−1|
≤ |σ(t, f)−1||σ(t, g)−1||σ(t, g)− σ(t, f)|.

It remains to show that δ and σx̄∗ are locally Lipschitz. Let N > 0, t ∈ [0, T ], and let f, g ∈
C([0, T ],Rny) be such that (

sup
s≤t
|f(s)|

)
∨
(

sup
s≤t
|g(s)|

)
≤ N.

Consider I−1
x̄ . Since

d

dt
(Ix̄(t)−1) = −σx̄∗(t)>b(t)>(σ(t)σ(t)>)−1b(t)σx̄∗(t),

for s ≤ t,

|Ix̄(s, f)−1 − Ix̄(s, g)−1| ≤ K1

∫ s

0
|σx̄∗(τ, f)− σx̄∗(τ, g)|dτ +K2 sup

s≤t
|f(s)− g(s)|
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where I use the same symbols for the path functionals and Ki are positive constants that do not
depend on s or t. Proceeding similarly for σx̄∗ , and using the last inequality,

|σx̄∗(s, f)− σx̄∗(s, g)| ≤ K3

∫ s

0
|σx̄∗(τ, f)− σx̄∗(τ, g)| dτ

+K4

∫ s

0
|δ(τ, f)− δ(τ, g)|dτ +K5 sup

s≤t
|f(s)− g(s)|.

In turn,

|δ(s, f)− δ(s, g)| ≤ K6

∫ s

0
|δ(τ, f)− δ(τ, g)|dτ +K7 sup

s≤t
|f(s)− g(s)|.

By Gronwall’s lemma,

|δ(s, f)− δ(s, g)| ≤ eK6sK7 sup
s≤t
|f(s)− g(s)|, s ≤ t

or
|δ(t, f)− δ(t, g)| ≤ eK6TK7 sup

s≤t
|f(s)− g(s)| =: K8 sup

s≤t
|f(s)− g(s)|

where K8 does not depend on t. Hence δ is locally Lipschitz. In turn, so is σx̄∗ .

Proof of Lemma 3.6. Let

ft(∆x̄,∆η) , `λt (x̄∗t , η
∗
t )− `λt (x̄∗t + ∆x̄, η∗t + ∆η) ≥ 0

=
1

2

∫ t

0
Φκ∆x̄+ρv∆η(s)>b(s)>(σ(s)σ(s)>)−1b(s)Φκ∆x̄+ρv∆η(s) dt+

λ

2

∫ t

0
|∆η(s)|2 ds

where I have recalled the FOCs. We are to find

min
∆x̄,∆η

{
ft(∆x̄,∆η) : Φκ∆x̄+ρv∆η(t) = ∆m

}
where ∆m ≡ m −mx̄∗t ,η

∗
t (t). Note that there always is a ∆x such that (∆x,∆η = 0) satisfies the

constraint; Φκ(t) is invertible. Write the Lagrangian as

ft(∆x̄,∆η)− Λ>(Φκ∆x̄+ρv∆η(t)−∆m);

the dependence of Λ on t is suppressed. FOC(∆η) is

0 = (ϕ(s)−1ρv)
>
∫ t

s
ϕ(τ)>b(τ)>(σ(τ)σ(τ)>)−1b(τ)Φκ∆x̄+ρv∆η(τ) dτ

+ λ∆η(s)− (Λ>ϕ(t)ϕ(s)−1ρv)
>

or, multiplied by ρv and differentiated with respect to s,

d

ds
(λρv∆η(s)) = ρvρ

>
v κ̄(s)>(ρvρ

>
v )−1λρv∆η(s) + ρvρ

>
v b(s)

>(σ(s)σ(s)>)−1b(s)Φκ∆x̄+ρv∆η(s).

Proceeding similarly to the proof of Proposition 3.4,(
λρv∆η(s)

Φκ∆x̄+ρv∆η(s)

)
= ψ(s)ι1λρv∆η(0) + Ψ(s)ι2κ∆x̄.
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Let s = t to obtain λρv∆η(t) = ψ11(t)λρv∆η(0) + Ψ12(t)κ∆x̄. From FOC(η),

0 = λ∆η(t)− (Λ>ρv)
>.

Thus (
λρv∆η(s)

Φκ∆x̄+ρv∆η(s)

)
= p(s, t)κ∆x̄+ ψ(s)ι1ψ11(t)−1ρvρ

>
v Λ. (71)

Now, FOC(∆x̄) is

0 =

(∫ t

0
Φκ∆x̄+ρv∆η(s)>b(s)>(σ(s)σ(s)>)−1b(s)ΦInx (s)κds

)>
− (Λ>ΦInx (t)κ)>.

Substitute Φκ∆x̄+ρv∆η(s) with that in (71) and use Lemma A.3 to see κ∆x̄ = σx̄∗(t)
>Λ. Plug this

back to (71) and set s = t; the constraint is Φκ∆x̄+ρv∆η(t) = δ(t)Λ = ∆m or

Λ = δ(t)−1∆m.

Thus (
λρv∆η(s)

Φκ∆x̄+ρv∆η(s)

)
= (p(s, t)σx̄∗(t)

> + ψ(s)ι1ψ11(t)−1ρvρ
>
v )δ(t)−1∆m.

Observe

ft(∆x̄,∆η) =
1

2

∫ t

0

(
λρv∆η(s)

Φκ∆x̄+ρv∆η(s)

)>
M(s)

(
λρv∆η(s)

Φκ∆x̄+ρv∆η(s)

)
ds

where

M(s) =

(
λ−1(ρvρ

>
v )−1 0

0 b(s)>(σ(s)σ(s)>)−1b(s)

)
as defined in the proof of Lemma 3.4. Proceeding similarly to that proof, we prove

ft(∆x̄,∆η) =
1

2
(∆m)>δ(t)−1∆m.

Proof of Proposition 3.9. Suppose first ξ(t) ∈ Ξ(t). Then b(t)mx̄∗t ,η
∗
t (t) + σ(t)ξ(t) = b(t)mx̄,η(t)

for some theory (x̄, η) and the theory passes the penalized likelihood ratio test. By Lemma 3.6,

1

2
(mx̄,η(t)−mx̄∗t ,η

∗
t (t))>δ(t)−1(mx̄,η(t)−mx̄∗t ,η

∗
t (t)) ≤ `λt (x̄∗t , η

∗
t )− `λt (x̄, η) ≤ α.

Suppose next σ(t)ξ(t) = b(t)∆m, ∆m ∈ Rnx , and 2−1(∆m)>δ(t)−1∆m ≤ α. Let ∆x̄ ,
Φκ(t)−1∆m. Then

b(t)mx̄∗t ,η
∗
t (t) + σ(t)ξ(t) = b(t)mx̄∗t+∆x̄,η∗t (t).

There is a theory (x̄, η) such that it passes the penalized likelihood ratio test and

b(t)mx̄,η(t) = b(t)mx̄∗t+∆x̄,η∗t (t),

because

`λt (x̄∗t , η
∗
t )−max

x̄,η
{`λt (x̄, η) : b(t)mx̄,η(t) = b(t)mx̄∗t+∆x̄,η∗t (t)}

= `λt (x̄∗t , η
∗
t )−max

x̄,η
{`λt (x̄, η) : mx̄,η(t) = mx̄∗t+∆x̄,η∗t (t)}

=
1

2
(∆m)>δ(t)−1∆m ≤ α
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where the second equality follows from Lemma 3.6.
Hence (30).
Since δ is uniformly bounded, so are its eigenvalues; hence, the eigenvalues of δ−1 are uniformly

bounded below away from 0. It follows that the right-hand side of (30) is uniformly bounded; so is
Ξ by Assumption 3.2. Compact-convexity is clear. Finally, progressive measurability is proved as
that of a single-valued, left- or right-continuous adapted process is proved: Suppose b and σ−1 are
both right-continuous. Let {sνi : i} denote the νth dyadic partition of [0, t], t ≤ T , and define δ−1

ν

by δ−1
ν (s) , δ(sνi+1)−1 for sνi < s ≤ sνi+1 and δ−1

ν (0) , δ(0)−1; define bν and σ−1
ν in the same way.

Let F be a closed subset of Rny and observe that the weak inverse (Aliprantis and Border (1999),
Section 16.1) is{

(s, ω) ∈ [0, t]× Ω : σ−1
ν (s, ω)b(s, ω)

{
∆m ∈ Rnx :

1

2
(∆m)>δ−1

ν (s, ω)∆m ≤ α
}
∩ F 6= ∅

}
which is trivially B[0, t] ⊗ Gt-measurable. Now, note that δ−1 is differentiable and hence a fortiori
continuous. We have δ−1

∞ = δ−1 as well as b∞ = b and σ−1
∞ = σ−1. Finally,{

(s, ω) : σ(s, ω)−1b(s, ω)

{
∆m :

1

2
(∆m)>δ(s, ω)−1∆m ≤ α

}
∩ F 6= ∅

}
=

{
(s, ω) : ∩∞µ=1 ∪∞ν=µ σ

−1
ν (s, ω)bν(s, ω)

{
∆m :

1

2
(∆m)>δ−1

ν (s, ω)∆m ≤ α
}
∩ F 6= ∅

}
= ∩∞µ=1 ∪∞ν=µ

{
(s, ω) : σ−1

ν (s, ω)bν(s, ω)

{
∆m :

1

2
(∆m)>δ−1

ν (s, ω)∆m ≤ α
}
∩ F 6= ∅

}
∈ B[0, t]⊗ Gt.

Proof of Proposition 3.10. The implied confidence set for x̄ is the projection onto R 3 x̄ of the
set of theories that pass the penalized likelihood ratio test. It equals the likelihood ratio set based
on the profile penalized likelihood, which is{

x̄ ∈ R : `λt (x̄∗t , η
∗
x̄∗t ,t

)− `λt (x̄, η∗x̄,t) ≤ α
}

= x̄∗t +

{
∆x̄ ∈ R :

1

2
Ix̄(t)(κ∆x̄)2 ≤ α

}
.

Now, let ε > 0 be a lower bound of b>(σσ>)−1b. Observe from the dynamics of θ (28) and the
boundedness of the statistics γ, θ, σx̄∗ , and δ (Lemma 3.1 and Assumption 3.4) that θ is bounded
below as well: θ(t) ≥ θ, t ≥ 0. (Keep in mind the convention that learning began prior to the
decision making at time 0.) It follows

Ix̄(t) = Ix̄(0) +

∫ t

0
b(s)>(σ(s)σ(s)>)−1b(s)θ(s)2 ds

≥ Ix̄(0) + εθ2t→∞ as t→∞.

Proof of Proposition 3.11. The claim follows from Propositions 3.7 and 3.9.

Proof of Lemma 4.1. Let M , {Eξ : ξ ∈ Ξ}. Define f :M× (C2(u) ∩ Cbudget) by

f(M, c) , EP
0

∫ T

0
e−βtM(t) log(c(t)) dt.

The claim is
sup

c∈C2(u)∩Cbudget

min
M∈M

f(M, c) = min
M∈M

sup
c∈C2(u)∩Cbudget

f(M, c).
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I apply the Kneser-Fan minimax theorem (Fan (1953), Theorem 2). The conclusion follows once
the following three assumptions are checked.

(i)M is a compact Hausdorff space. Let L2([0, T ]×Ω) ≡ L2([0, T ]×Ω,B[0, T ]⊗GT ,Lebesgue×
P 0) be the set of processes h such that

‖h‖ ,
(

EP
0

∫ T

0
h(t)2 dt

)1/2

<∞.

L2([0, T ] × Ω) is a reflexive Banach space with the norm ‖ · ‖ defined above. By design, M ⊂
L2([0, T ] × Ω). Let K ≥ 0 be such that Ξ(t) ∈ [−K,K]ny , t ≥ 0. (K may be state-dependent. See
Section 4.3 and Remark 3.3.) For all M ∈M,

‖M‖2 ≤ EP
0

∫ T

0
E(2ξ)(t)enyK

2T dt = TenyK
2T

and M is norm-bounded. M is norm-closed by Lemma B.1 of Cuoco and Cvitanić (1998) and is
convex by (the proof of) Theorem 2.1(c) of Chen and Epstein (2002); thus, it is weakly closed. By
Alaoglu’s theorem, then,M is weakly compact. The weak topology of a normed space is Hausdorff
and so is a subspace.

(ii) For every c ∈ C2(u) ∩ Cbudget, f(M, c) is lower semicontinuous on M. Let span(M) be the
linear span ofM over R; span(M) ⊂ L2([0, T ]×Ω) is a normed space. For each c ∈ C2(u)∩Cbudget,

the map f̃ c : span(M)→ R,

M 7→ EP
0

∫ T

0
e−βtM(t) log(c(t)) dt

is linear; by Hölder’s inequality, the norm of f̃ c is bounded by ‖ log c‖ < ∞. Then there exists
an extension f c of f̃ c such that the linear functional f c defined on L2([0, T ] × Ω) is continuous in
the norm topology, and consequently, in the weak topology (Aliprantis and Border (1999), Lemma
6.13). Being a restriction of f c to M⊂ span(M), f(·, c) is continuous as well.

(iii) f is convexlike on M and concavelike on C2(u) ∩ Cbudget. M and C2(u) ∩ Cbudget are both
convex. It then suffices to note that (M, c) 7→M log c is convex-concave on (0,∞)2.

Proof of Proposition 4.1. Apply the minimax theorem and write the dual of the inner suprem-
ization as

inf
ν

EP
0

∫ T

0
max
c(t)

[
Eξ(t)e−βt log(c(t))− ΛE−(ζ+ν)(t)e−rtc(t)

]
dt (72)

where Λ > 0. The solution to the dual problem solves the primal problem as well (He and Pearson,
1991; Karatzas et al., 1991). c∗(t) and Λ∗ are standard.

Plugging c∗ to (72), ignoring irrelevant terms, and exchanging the order of integration, we reach

EP
ξ

∫ T

0

e−βt − e−βT

β

1

2
inf
ν(t)
|ζ(t) + ν(t) + ξ(t)|2 dt.

Without ξ, the minimizing ν(t) is 0 because ν(t) ∈ Ker(σR(t)). With ξ, on the other hand,

|ζ(t) + ν(t) + ξ(t)|2 = |ζ(t) + ξ(t)|2 + |ν(t)|2 + 2ξ(t)>ν(t)

and under the constraint σR(t)ν(t) = 0, the unique minimizer is given by ν∗(t) = f(t)ξ(t) where

f(t) , σR(t)>(σR(t)σR(t)>)−1σR(t)− Iny .
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Observe that f = f> and f2 = −f , and plug c∗, ν∗, and Λ∗ to (45).

Proof of Proposition 4.2. (i) follows from Theorem IV.4.3 of Fleming and Soner (1993). The
assumptions of the theorem are (IV.3.5) and (IV.4.6) in their book. (IV.3.5) is the uniform parabol-
icity assumption, which is equivalent in the present case to Assumption 4.1. (IV.4.6) is a collection
of regularity conditions that can be checked straightforwardly. (ii) and (iii) follow from Theorem
IV.3.1 of the same book.

Proof of Lemma 4.2. (i) Let

F (t,m∗, ξ) , EP
0

∫ T

t

e−βs − e−βT

β

1

2

(
m∗,ξs − r + σRξ(s)

σR

)2

ds

∣∣∣∣∣∣m∗,ξt = m∗


so that J(t,m∗) = minξ F (t,m∗, ξ). The convexity of m∗ 7→ J(t,m∗) follows from that of (m∗, ξ) 7→
F (t,m∗, ξ) and of Ξ: Suppose m∗ = hm∗1 + (1−h)m∗2, h ∈ [0, 1], and let ξ∗1 and ξ∗2 be the respective
minimizers. Then

J(t,m∗) ≤ F (t, hm∗1 + (1− h)m∗2, hξ
∗
1 + (1− h)ξ∗2)

≤ hJ(t,m∗1) + (1− h)J(t,m∗2).

(ii) ∂m∗J(t,m∗) is obtained via the envelope theorem: If ∂m∗J(t,m∗) and ∂m∗F (t,m∗, ξ∗) exist,
then ∂m∗J(t,m∗) = ∂m∗F (t,m∗, ξ∗). (See Milgrom and Segal (2002), Theorem 1.) Observe

m∗,ξs = e−κ(s−t)
(
m∗,ξt +

∫ s

t
eκ(τ−t)[κx̄ dτ + σm∗(τ)( dε(τ) + ξ(τ) dτ)]

)
and let

f(s, t,m∗, ξ) ,
e−βs − e−βT

β

1

2

(
m∗,ξs − r + σRξ(s)

σR

)2

, m∗,ξt = m∗

so that

F (t,m∗, ξ) = EP
0

∫ T

t
f(s, t,m∗, ξ) ds.

Now, it is straightforward to check the conditions for differentiating under the integral (Durrett

(2005), Theorem A.9.1) and we have ∂m∗F (t,m∗, ξ) = EP
0 ∫ T

t ∂m∗f(s, t,m∗, ξ) ds.

Proof of Proposition 4.3. It suffices to show

lim
t→T

βeβt

1− e−β(T−t)σRσm∗(t)∂m∗J(t,m∗) = 0.

Recall Lemma 4.2(ii) and let

K(t,m∗) , sup
s∈[t,T ]

EP
0

∣∣∣∣∣e−κ(s−t)

σR

m∗,ξ
∗

s − r + σRξ
∗(s)

σR

∣∣∣∣∣ , m∗,ξ∗t = m∗.

Then ∣∣∣∣ βeβt

1− e−β(T−t)∂m∗J(t,m∗)

∣∣∣∣ ≤ βeβt

1− e−β(T−t)

∫ T

t

e−βs − e−βT

β
dsK(t,m∗)

=

(
1

β
− T − t
eβ(T−t) − 1

)
K(t,m∗).
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limt→T K(t,m∗) <∞ because (i)

m∗,ξ
∗

s = m∗,0s + e−κ(s−t)
∫ s

t
eκ(τ−t)σm∗(τ)ξ∗(τ) dτ where m∗,0t = m∗t ,

(ii)

K(t,m∗) ≤ 1

σ2
R

(
sup
s∈[t,T ]

EP
0 |m∗,0s |+

∫ T

t
eκ(τ−t)|σm∗(τ)|ξ̄(τ) dτ + r + σRξ̄(t)

)
,

and (iii) EP
0 |m∗,0s | = g(s− t,m∗) for some function g continuous in s− t. Thus,

lim
t→T

∣∣∣∣ βeβt

1− e−β(T−t)∂m∗J(t,m∗)

∣∣∣∣ ≤ 0 · lim
t→T

K(t,m∗) = 0.
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Detemple, Jérôme B. (1986), “Asset pricing in a production economy with incomplete information.”
Journal of Finance, 61, 383–392.

Dow, James and Sergio Ribeiro da Costa Werlang (1992), “Uncertainty aversion, risk aversion, and
the optimal choice of portfolio.” Econometrica, 60, 197–204.

Drechsler, Itamar (2013), “Uncertainty, time-varying fear, and asset prices.” Journal of Finance,
68, 1843–1889.

Duffie, Darrell and Larry G. Epstein (1992), “Stochastic differential utility.” Econometrica, 60,
353–394.

Durrett, Richard (2005), Probability: Theory and Examples. Thomson.

Elliott, Robert J. and Vikram Krishnamurthy (1997), “Exact finite-dimensional filters for maximum
likelihood parameter estimation of continuous-time linear Gaussian systems.” SIAM Journal on
Control and Optimization, 35, 1908–1923.

Ellsberg, Daniel (1961), “Risk, ambiguity, and the Savage axioms.” Quarterly Journal of Economics,
75, 643–669.

Epstein, Larry G. and Shaolin Ji (2014), “Ambiguous volatility, possibility and utility in continuous
time.” Journal of Mathematical Economics, 50, 269–282.

Epstein, Larry G. and Jianjun Miao (2003), “A two-person dynamic equilibrium under ambiguity.”
Journal of Economic Dynamics & Control, 27, 1253–1288.

Epstein, Larry G. and Martin Schneider (2003), “Recursive multiple-priors.” Journal of Economic
Theory, 113, 1–31.

Epstein, Larry G. and Martin Schneider (2007), “Learning under ambiguity.” Review of Economic
Studies, 74, 1275–1303.

Epstein, Larry G. and Martin Schneider (2008), “Ambiguity, information quality, and asset pricing.”
Journal of Finance, 63, 197–228.

Epstein, Larry G. and Kyoungwon Seo (2010), “Symmetry of evidence without evidence of sym-
metry.” Theoretical Economics, 5, 313–368.

64



Epstein, Larry G. and Tan Wang (1994), “Intertemporal asset pricing under Knightian uncertainty.”
Econometrica, 62, 283–322.

Fama, Eugene F. and Kenneth R. French (1988a), “Dividend yields and expected stock returns.”
Journal of Financial Economics, 22, 3–25.

Fama, Eugene F. and Kenneth R. French (1988b), “Permanent and temporary components of stock
prices.” Journal of Political Economy, 96, 246–273.

Fan, Ky (1953), “Minimax theorems.” Proceedings of the National Academyof Sciences, 39, 42–47.

Fleming, Wendell H. and H. Mete Soner (1993), Controlled Markov Processes and Viscosity Solu-
tions. Springer-Verlag.

Gagliardini, Patrick, Paolo Porchia, and Fabio Trojani (2009), “Ambiguity aversion and the term
structure of interest rates.” Review of Financial Studies, 22, 4157–4188.

Gilboa, Itzhak and Massimo Marinacci (2013), “Ambiguity and the Bayesian paradigm.” In Ad-
vances in Economics and Econometrics (Daron Acemoglu, Manuel Arellano, and Eddie Dekel,
eds.), volume I, 179–242, Cambridge University Press.

Gilboa, Itzhak, Andrew Postlewaite, and David Schmeidler (2012), “Rationality of belief or: Why
Savage’s axioms are neither necessary nor sufficient for rationality.” Synthese, 187, 11–31.

Gilboa, Itzhak and Larry Samuelson (2012), “Subjectivity in inductive inference.” Theoretical Eco-
nomics, 7, 183–215.

Gilboa, Itzhak and David Schmeidler (1989), “Maxmin expected utility with non-unique prior.”
Journal of Mathematical Economics, 18, 141–153.

Gilboa, Itzhak and David Schmeidler (2010), “Simplicity and likelihood: An axiomatic approach.”
Journal of Economic Theory, 145, 1757–1775.

Goetzmann, William N. and Philippe Jorion (1993), “Testing the predictive power of dividend
yields.” Journal of Finance, 48, 663–679.

Good, Irving J. and Ray A. Gaskins (1971), “Nonparametric roughness penalties for probability
densities.” Biometrika, 58, 255–277.

Green, Peter J. (1987), “Penalized likelihood for general semi-parametric regression models.” In-
ternational Statistical Review, 55, 245–259.

Hansen, Lars Peter and Thomas J. Sargent (2001), “Acknowledging misspecification in macroeco-
nomic theory.” Review of Economic Dynamics, 4, 519–535.

Hansen, Lars Peter and Thomas J. Sargent (2008), Robustness. Princeton University Press.

Hansen, Lars Peter and Thomas J. Sargent (2011), “Robustness and ambiguity in continuous time.”
Journal of Economic Theory, 146, 1195–1223.

He, Hua and Neil D. Pearson (1991), “Consumption and portfolio policies with incomplete markets
and short-sale constraints: The infinite dimensional case.” Journal of Economic Theory, 54, 259–
304.

65



Hernández-Hernández, Daniel and Alexander Schied (2006), “Robust utility maximization in a
stochastic factor model.” Statistics & Decisions, 24, 109–125.

Hernández-Hernández, Daniel and Alexander Schied (2007a), “A control approach to robust utility
maximization with logarithmic utility and time-consistent penalties.” Stochastic Processes and
their Applications, 117, 980–1000.

Hernández-Hernández, Daniel and Alexander Schied (2007b), “Robust maximization of consump-
tion with logarithmic utility.” Proceedings of the 2007 American Control Conference, 1120–1123.

Heston, Steven L. (1993), “A closed-form solution for options with stochastic volatility with appli-
cations to bond and currency options.” Review of Financial Studies, 6, 327–343.

Illeditsch, Philipp K. (2011), “Ambiguous information, portfolio inertia, and excess volatility.”
Journal of Finance, 66, 2213–2247.

Kalymon, Basil A. (1971), “Estimation risk and the portfolio selection model.” Journal of Financial
and Quantitative Analysis, 6, 559–582.

Karatzas, Ioannis, John P. Lehoczky, Steven E. Shreve, and Gan-Lin Xu (1991), “Martingale and
duality methods for utility maximization in an incomplete market.” SIAM Journal on Control
and Optimization, 29, 702–730.

Karatzas, Ioannis and Steven E. Shreve (1988), Brownian Motion and Stochastic Calculus. Springer-
Verlag.

Kim, Myung J., Charles R. Nelson, and Richard Startz (1991), “Mean reversion in stock prices? a
reappraisal of the empirical evidence.” Review of Economic Studies, 58, 515–528.

Kim, Tong Suk and Edward Omberg (1996), “Dynamic nonmyopic portfolio behavior.” Review of
Financial Studies, 9, 141–161.

Klein, Roger W. and Vijay S. Bawa (1976), “The effect of estimation risk on optimal portfolio
choice.” Journal of Financial Economics, 3, 215–231.

Klein, Roger W. and Vijay S. Bawa (1977), “The effect of limited information and estimation risk
on optimal portfolio diversification.” Journal of Financial Economics, 5, 89–111.

Konishi, Sadanori and Genshiro Kitagawa (2008), Information Criteria and Statistical Modeling.
Springer.

Lakner, Peter (1998), “Optimal trading strategy for an investor: The case of partial information.”
Stochastic Processes and their Applications, 76, 77–97.

Lettau, Martin and Sydney Ludvigson (2001), “Consumption, aggregate wealth, and expected stock
returns.” Journal of Finance, 56, 815–849.

Lettau, Martin and Stijn Van Nieuwerburgh (2008), “Reconciling the return predictability evi-
dence.” Review of Financial Studies, 21, 1607–1652.

Liptser, Robert S. and Albert N. Shiryaev (1977), Statistics of Random Processes (Volumes I and
II). Springer-Verlag.

66



Liu, Hening (2011), “Dynamic portfolio choice under ambiguity and regime switching mean re-
turns.” Journal of Economic Dynamics & Control, 35, 623–640.

Liu, Hening (2013), “Optimal consumption and portfolio choice under ambiguity for a mean-
reverting risk premium in complete markets.” Annals of Economics and Finance, 14, 21–52.

Liu, Jun (2007), “Portfolio selection in stochastic environments.” Review of Financial Studies, 20,
1–39.

McQueen, Grant (1992), “Long-horizon mean-reverting stock prices revisited.” Journal of Financial
and Quantitative Analysis, 27, 1–18.

Merton, Robert C. (1969), “Lifetime portfolio selection under uncertainty: The continuous-time
case.” Review of Economics and Statistics, 51, 247–257.

Merton, Robert C. (1971), “Optimum consumption and portfolio rules in a continuous time model.”
Journal of Economic Theory, 3, 373–413.

Merton, Robert C. (1973), “An intertemporal capital asset pricing model.” Econometrica, 41, 867–
887.

Merton, Robert C. (1980), “On estimating the expected return on the market: An exploratory
investigation.” Journal of Financial Economics, 8, 323–361.

Miao, Jianjun (2009), “Ambiguity, risk and portfolio choice under incomplete information.” Annals
of Economics and Finance, 10, 257–279.

Miao, Jianjun and Neng Wang (2011), “Risk, uncertainty, and option exercise.” Journal of Eco-
nomic Dynamics & Control, 35, 442–461.

Milgrom, Paul and Ilya Segal (2002), “Envelope theorems for arbitrary choice sets.” Econometrica,
70, 583–601.

Nelson, Charles R. and Myung J. Kim (1993), “Predictable stock returns: The role of small sample
bias.” Journal of Finance, 48, 641–661.

Neyman, Jerzy and Elizabeth L. Scott (1948), “Consistent estimates based on partially consistent
observations.” Econometrica, 16, 1–32.

Porchia, Paolo (2005), Continuous-Time Asset Pricing with Ambiguity Aversion. Ph.D. disserta-
tion, University of Lugano.

Poterba, James M. and Lawrence H. Summers (1988), “Mean reversion in stock prices: Evidence
and implications.” Journal of Financial Economics, 22, 27–59.

Rogers, L. C. G. and David Williams (1994), Diffusions, Markov Processes, and Martingales, Vol-
umes 1 and 2. Cambridge University Press.

Routledge, Bryan R. and Stanley E. Zin (2009), “Model uncertainty and liquidity.” Review of
Economic Dynamics, 12, 543–566.

Samuelson, Paul A. (1969), “Lifetime portfolio selection by dynamic stochastic programming.”
Review of Economics and Statistics, 51, 239–246.

67



Sbuelz, Alessandro and Fabio Trojani (2008), “Asset prices with locally constrained-entropy recur-
sive multiple-priors utility.” Journal of Economic Dynamics & Control, 32, 3695–3717.

Schied, Alexander (2008), “Robust optimal control for a consumption-investment problem.” Math-
ematical Methods of Operations Research, 67, 1–20.

Schmeidler, David (1989), “Subjective probability and expected utility without additivity.” Econo-
metrica, 57, 571–587.

Schroder, Mark and Costis Skiadas (1999), “Optimal consumption and portfolio selection with
stochastic differential utility.” Journal of Economic Theory, 89, 68–126.

Siniscalchi, Marciano (2011), “Dynamic choice under ambiguity.” Theoretical Economics, 6, 379–
421.

Smets, Philippe and Robert Kennes (1994), “The transferable belief model.” Artificial Intelligence,
66, 191–234.

Trojani, Fabio and Paolo Vanini (2004), “Robustness and ambiguity aversion in general equilib-
rium.” Review of Finance, 8, 279–324.

Uppal, Raman and Tan Wang (2003), “Model misspecification and underdiversification.” Journal
of Finance, 58, 2465–2486.

Veronesi, Pietro (2000), “How does information quality affect stock returns?” Journal of Finance,
55, 807–837.

Wachter, Jessica A. (2002), “Portfolio and consumption decisions under mean-reverting returns:
An exact solution for complete markets.” Journal of Financial and Quantitative Analysis, 37,
63–91.

Walley, Peter (1991), Statistical Reasoning with Imprecise Probabilities. Chapman and Hall.

Wang, Tan (2003), “Conditional preferences and updating.” Journal of Economic Theory, 108,
286–321.

Welch, Ivo and Amit Goyal (2008), “A comprehensive look at the empirical performance of equity
premium prediction.” Review of Financial Studies, 21, 1455–1508.

Xia, Yihong (2001), “Learning about predictability: The effects of parameter uncertainty on dy-
namic asset allocation.” Journal of Finance, 56, 205–246.

Zohar, Gady (2001), “A generalized Cameron-Martin formula with applications to partially ob-
served dynamic portfolio optimization.” Mathematical Finance, 11, 475–494.

68


