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Abstract

This paper presents an entrepreneurial optimal business plan in which optimal con-

sumption and portfolio rules, and optimal exit strategy for an entrepreneur are jointly

determined in the presence of undiversifiable idiosyncratic risk. We find that the en-

trepreneur is more likely to exit from her risky business as investment opportunity worsens

or as her risk aversion coefficient increases or as the idiosyncratic risk increases. When

the entrepreneur decumulates wealth, she can achieve a partial hedging effect of a risky

portfolio against the business risk by optimally increasing her risky portfolio as the id-

iosyncratic risk increases. Accordingly, stock market participation is of importance to the

entrepreneur for the purpose of risk diversification and a smooth continuation of her risky

business.
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1 Introduction

Modern economics and finance have greatly improved the understanding of household portfolio

choice. Among important determinants are undiversifiable risks stemming from labor income

and personal risky business. Portfolio theory contends that diversification and risk sharing

are fundamental principles. Empirical evidence indicates that households typically invest in

a single stock, and this strategy does not conform to the theoretical prediciton. Furthermore,

entrepreneurs typically hold large equity shares in their risky business and hence bear sub-

stantial undiversifiable idiosyncratic risk. However, this behavior is counterintuitive because

portfolio theory (Merton, 1969) implies that the underdiversification in entrepreneurs’ port-

folio is risky. Importantly, notwithstanding unattractive returns to entrepreneurial business,1

households actively engage in entrepreneurship.

Entrepreneurs should be well compensated by the risk-return trade-off against their com-

mitment in their own business to mitigate moral hazard and adverse selection. However, they

are likely to be poorly compensated relative to investment in a public equity that guarantees

a positive risk premium (Moskowitz and Vissing-Jørgensen, 2002; Hall and Woodward, 2007).

The gap between (1) the theoretical prediction that entrepreneurs enhance the demand for

risky portfolio to diversify away their business risk, and (2) empirical observations for un-

derdiversification in entrepreneurial portfolio choice is the so-called private equity premium

puzzle.

Numerous authors have attempted to solve the private equity premium puzzle. To diversify

the business risk entrepreneurs willingly choose a conservative portfolio composition (Heaton

and Lucas, 2000). Entrepreneurs would have a significant safe portfolio of financial assets

1Following Cochrane (2005), the volatility of log returns to venture capital investments is up to 89%,

whereas one of the log S&P return is only 14.9%. Although venture capital puts entrepreneurs at a large risk

captured by the high volatility, the annual expected return of venture capital is only about 15% (Cochrane,

2005). The expected returns to private equity are lower than the returns to public equity (Moskowitz and

Vissing-Jørgensen, 2002). Moreover, entrepreneurs’ median life-time profits are lower than those of siimilarly

skilled wage-earners (Hamilton, 2000).
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because of their liquidity constraints to finance their own business in its final steps (Faig

and Shum, 2002). Puri and Robinson (2006) have concluded that entrepreneurs behave in a

more optimistic and risk-loving manner than do wage earners. To hedge the business risk,

entrepreneurs do appear to decrease their investment in other risky assets (Fang and Nofsinger,

2009). Social status concerns significantly affect entrepreneurial business plans in the sense

that entrepreneurs have concentrated risky asset composition in equilibrium; these concerns

provide a rational reason for the private equity premium puzzle (Roussanov, 2010). Credit

constraints, heterogeneous risk attitudes, and nonpecuniary benefits from self-employment

could also contribute to give a partial explanation for the private equity premium puzzle

(Fossen, 2012).

Our paper generates important implications for an entrepreneurial business plan such as

optimal consumption and portfolio selection, and optimal exit strategy from a risky business.

We focus on how entrepreneurial undiversifiable idiosyncratic risk influences entrepreneurial

investment behavior in their own business and their asset composition. For our model design,

we follow Miao and Wang (2007b) who have studied the effects of uninsurable idiosyncratic

risk on an entrepreneurial learning about the quality of risky business and the optimal exit

strategy. However, they did not consider the role of a market portfolio in entrepreneurial

business. Importantly, financial assets including a market portfolio can be used to hedge

against bad outcomes of entrepreneurial business (Faig and Shum, 2002). Many researchers

have tried to investigate the relationship between entrepreneurship and household portfolio

composition (Heaton and Lucas, 2000, 2009; Faig and Shum, 2002; Miao and Wang 2007a;

Chen et al., 2010; Wang et al., 2012; Leippold and Stromberg, 2014), by considering all

realistic ramifications of an entrepreneurial business.2

In this paper, we present an entrepreneur’s optimal business plan that jointly determined

(1) optimal consumption and portfolio rules, and (2) optimal exit strategy, for an entrepreneur

2Portfolio allocations of entrepreneurs in aggregate account for about 30% of the stock market (Heaton and

Lucas, 2000). Further, the entrepreneur’s investment in the stock market can be used as a measure of her risk

tolerance (Fang and Nofsinger, 2009).
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in the presence of undiversifiable idiosyncratic risk. As far as we know, this is the first study

that clarifies the relationship between the idiosyncratic risk and optimal exit strategy from

a risky business as well as the role of a market portfolio on a business plan under a con-

stant relative risk aversion (CRRA) utility. Miao and Wang (2007a), and Chen have et al.

(2010) successfully solved the problem of nondiversifiable investment risk in incomplete finan-

cial markets for a risk-averse entrepreneur. However, for tractability these authors adopted

a constant absolute risk aversion (CARA) utility to solve the incomplete market problem,

despite CARA’s shortcoming that it does not capture wealth effects.

The objective of this paper is to study an entrepreneur’s business plan to maximize her

CRRA lifetime utility by controlling per-period consumption, risky portfolio, and the time to

quit a business and accept a safe job in the presence of undiversifiable idiosyncratic risk. The

entrepreneur faces undiversifiable idiosyncratic risk from her risky business and thus, receives

future income at random rates.3 The entrepreneur is currently in the business and obtains

low-quality income. Due to the undiversifiable idiosyncratic risk, she has a small probability

of succeeding in the business (Miao and Wang, 2007b). If she succeeds in the business, then

she obtains high-quality income afterward. We assume that the entrepreneur has an option

to quit the business and accept a safe job, and that after she exercises the option, she obtains

constant income infinitely.

Our paper is distinct from the existing optimal stopping problems in complete financial

markets in that a market incompleteness is caused by undiversifiable idiosyncratic risk. In

the presence of undiversifiable idiosyncratic risk, an entrepreneur should consider not only

her consumption but also her wealth at the time of success in a business. Specifically, the

entrepreneur is willing to maximize her utility value after the business success as well as her

intermediate consumption before this success. The entrepreneurial business plan is charac-

terized by two regions: a continuation region in which the entrepreneur’s optimal choice is

to retain an option liquidates her risky business; and a stopping region in which she should

3Heaton and Lucas (2000) find that the uncertainty of business income is a large source of undiversifiable

idiosyncratic risk.
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exercise this option, exit from the risky business, and accept a safe job. The continuation

and stopping regions are determined by the so-called critical wealth level under which it is

optimal for an entrepreneur to exit from her risky business and accept a safe job.

The main contribution of this paper is to show that undiversifiable idiosyncratic risk

significantly influences an entrepreneur’s optimal strategies which depend crucially on the

level of idiosyncratic risk, risk aversion, wealth, and investment opportunity. We establish

two main results by numerical analysis:

• The entrepreneur is more likely to exit from her risky business as (1) investment oppor-

tunity worsens, or (2) as her risk aversion coefficient increases or (3) as the idiosyncratic

risk increases.

• When the entrepreneur has significant wealth, the amount that she willingly invests

in the stock market decreases as the idiosyncratic risk increases. However, when the

entrepreneur decumulates wealth, she can achieve a partial hedging effect of the risky

portfolio against the business risk by optimally increasing her risky portfolio as the

idiosyncratic risk increases.

We measure the entrepreneurial value of running a risky business and the hedging effect of

risky portfolio against undiversifiable idiosyncratic risk by using a concept of certainty equiv-

alent wealth (CEW). The CEW induced by running a risky business is an increasing function

of the entrepreneur’s initial wealth. Further, the relationship between the CEW and wealth is

highly nonlinear; this is consistent with the result of Hurst and Lusardi (2004). Importantly,

we find that the CEW shows different patterns according to different degrees of idiosyncratic

risk. The value of running the risky business significantly increases as idiosyncratic risk de-

creases, but the undiversifiable idiosyncratic risk might lead to non-trivial entrepreneurship;

the probability that this happens depends crucially on the entrepreneur’s wealth.

The hedging effect of risky portfolio also increases as the idiosyncratic risk increases. This

result is consistent with results of Miao and Wang (2007a), Leippold and Stromberg (2014);

a private equity premium can be generated by an increase of idiosyncratic volatility. In this
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paper, the positive and sizable hedging effect measured by the CEW can represent a large

source of the private equity premium. Accordingly, stock market participation is of impor-

tance to the entrepreneur for the purpose of risk diversification and a smooth continuation of

her risky business.

The rest of this paper is organized as follows. In Section 2 we describe a financial market in

the presence of undiversifiable idiosyncratic risk and provide an entrepreneurial business plan.

In Section 3 we show the implications of our model through numerical results. Specifically, we

analyze the effects of idiosyncratic risk on the entrepreneurial optimal strategies, the value of

running a risky business, and the hedging effect of a risky portfolio. In Section 4 we conclude

the paper.

2 The Model

2.1 The Financial Market

An entrepreneur has the following CRRA lifetime utility:

E
[ ∫ τ∧τδ

0
e−βt c

1−γ
t

1− γ
dt+ e−β(τ∧τδ)

∫ ∞

τ∧τδ
e−β(t−τ∧τδ) c

1−γ
t

1− γ
dt
]
,

where E is the expectation taken at time 0, β > 0 is the entrepreneur’s subjective discount

rate, γ > 0 is her coefficient of relative risk aversion, ct is per-period consumption, τ is the

first time (to be determined endogenously) when the entrepreneur goes into liquidation, τδ

is the first time (occurs exogenously) when the quality of the business is determined to be

sufficiently high.

The entrepreneur can trade securities in a financial market. Following the conventional

model, the financial market consists of two assets: a bond (or a risk-free asset) and a stock

(or a risky asset). The bond price Bt follows

dBt = rBtdt,

where r > 0 is the risk-free interest rate, and the stock price St is given by the following
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geometric Brownian motion:

dSt = µStdt+ σStdWt,

where µ (µ > r) is the expected rate of the stock return, σ > 0 is the volatility of the return on

the stock, and Wt is a standard one-dimensional Brownian motion defined on an appropriate

probability space. The expected stock return µ and the stock volatility σ summarize the

investment opportunity provided by the stock. We assume that the investment opportunity

is constant, i.e., r, µ, and σ are constants.4

2.2 Undiversifiable Idiosyncratic Risk

We consider an entrepreneur who runs a risky business and is exposed to undiversifiable

idiosyncratic risk from the business. The wealth process Xt of the entrepreneur with initial

wealth X0 = x follows

dXt = (rXt − ct + ϵt)dt+ πtσ(dWt + θdt), t ≥ 0, (1)

where π is the dollar amount invested in the stock, θ is the Sharpe ratio, (µ− r)/σ, and ϵt is

the rate of future income obtained from her business. The entrepreneur accumulates wealth

at the rates equal to (rXt − ct + ϵt). She consumes at the rate of ct and receives interests at

the proportional rate r to her current wealth by investing in the risk-free bond. Note that the

entrepreneur faces undiversifiable idiosyncratic risk from her risky business and thus receives

future income ϵt at random rates. The entrepreneur is currently in the business and obtains

low-quality income at the rate equal to ϵL > 0. Due to the undiversifiable idiosyncratic

risk, she has a small probability of succeeding in the business (Miao and Wang, 2007b). If

she succeeds in the business, then she obtains high-quality income at the rate equal to ϵH

(ϵH > ϵL) afterward. We assume that the entrepreneur has an option to quit the business

and accept a safe job, and that after she exercises the option, she obtains constant income at

4The investigation of effects of stochastic investment opportunity on an entrepreneur’s business plan would

be an interesting extension. In this paper, we try to focus on how undiversifiable idiosyncratic risk optimally

affects the entrepreneur’s optimal strategies.
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the rate of y > 0 (ϵL < y < ϵH) infinitely. Then the entrepreneur’s income streams, ϵt, follow

ϵt =


ϵL, if 0 ≤ t < τ ∧ τδ,

y, if t ≥ τ,

ϵH , if τδ ≤ t < τ.

We also assume that the first time τδ when the quality of the business is determined to be

high is distributed according to an exponential distribution with a positive intensity δ, i.e.,

probability of {t ≤ τδ} = 1− e−δt.5

The reciprocal of the intensity is the expected time that the business succeeds.

The entrepreneur is allowed to participate in the stock market. She is exposed to the

market risk from her stock holdings, as a result, bears random fluctuations of her wealth.

The market risk is captured by the term involving the Brownian motion W in the wealth

process (1). More specifically, the wealth process randomly changes at the rate equal to πσ,

the product of the dollar amount π invested in the stock market and the stock volatility

σ representing the standard deviation of the return on the stock. In this sense, the stock

volatility represents the risk in the stock market. The entrepreneur is compensated by a risk

premium from the stock investment and hence her wealth accumulation is increased by the

rate equal to π(µ − r), the product of the stock investment π and the risk premium µ − r,

relative to the investment only in the risk-free bond.

We have two risk sources: the market risk (or the Brownian motion) and the failure in

the business (or the Poisson arrival of high-quality income stream). The market risk can

be diversified away by investing in the stock. We assume that there is no financial vehicle

(securities, financial contracts, or insurance contracts) to hedge against the business fail.

In this sense, the failure in the business is unhedgeable and subsequently, considered to be

undiversifiable idiosyncratic risk. 6 Hence, the financial market consisting of securities market

and insurance market is essentially incomplete.

5In later numerical analysis, we set the value of the intensity δ to the annual probability that the business

succeeds. This parameter set-up is due to the approximate relationship that 1− e−δt ≈ δt.
6For the technical simplicity, the Brownian motion and Poisson arrival event are assumed to be independent.
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2.3 A Business Plan

We consider a business plan for an entrepreneur who is exposed to undiversifiable idiosyncratic

risk and participates in the stock market. We assume that the entrepreneur can borrow money

with her future income obtained from her business.7 The present value of future income

discounted at the risk-free interest rate r follows

E
[ ∫ τδ

0
e−rtϵtdt

]
= − 1

r + δ

(
ϵL + ϵH

δ

r

)
.

For the limiting case of δ = 0, the entrepreneur cannot succeed in the business, so that

she continuously receives the low-quality income ϵL. In this case, she can borrow money up

to the present value ϵL/r of the low-quality income discounted at the risk-free interest rate.

The entrepreneur has a small probability of succeeding in the business, i.e., δ > 0. In this

case, the amount of income increases from the low-quality income ϵL to the sum of ϵL and the

idiosyncratic risk-adjusted high-quality income ϵH × δ/r. Then the entrepreneur can borrow

money up to the level (ϵL + ϵH
δ
r )/(r + δ), which is the present value of the business income

(ϵL + ϵH
δ
r ) discounted at the sum of the risk-free interest rate r and the intensity δ of the

timing for undiversifiable idiosyncratic risk.

For the other extreme case where δ = +∞, the entrepreneur always succeeds in the

business, as a result, receives the high-quality income ϵH infinitely. Therefore, in that case

the entrepreneur can borrow money up to the present value ϵH/r of the high-quality income ϵH

discounted at the risk-free interest rate. To sum up, the wealth constraint of the entrepreneur

The independent assumption can be extended by imposing a correlation between the Brownian motion and

Poisson arrival event. Specifically, we can introduce a time-varying probability of success in the business and

allow an additional Brownian motion to have the correlation with the Brownian motion of the stock price.

However, the correlation adds a technical difficulty such as solving a problem in multi-dimensions. We leave

this as an extension for future research.
7Various wealth constraints such as a non-negative wealth constraint can be imposed (Farhi and Panageas,

2007; Dybvig and Liu, 2010). We abstract away the role of wealth constraints to focus on the effects of

undiversifiable idiosyncratic risk on an entrepreneur’s business plan.
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while running the business is given by

Xt ≥ − 1

r + δ

(
ϵL + ϵH

δ

r

)
, 0 ≤ t ≤ τ. (2)

After exiting the business and entering a safe job, the entrepreneur borrows money with

insurable income y obtained from the safe job, i.e.,

Xt ≥ −y
r
, t ≥ τ. (3)

The entrepreneurial business plan is to maximize her CRRA lifetime utility by controlling

per-period consumption c, risky portfolio π, and the time τ to quit the business and accept

the safe job in the presence of undiversifiable idiosyncratic risk, or equivalently, to find the

following value function:

Φ(x) ≡ max
(c,π,τ)

E
[ ∫ τ∧τδ

0
e−βt c

1−γ
t

1− γ
dt+ e−β(τ∧τδ)

∫ ∞

τ∧τδ
e−β(t−τ∧τδ) c

1−γ
t

1− γ
dt
]
. (4)

We reformulate the value function (4) by the following lemma.

Lemma 2.1 The value function (4) can be rewritten by

Φ(x) = max
(c,π,τ)

E
[ ∫ τ

0
e−(β+δ)t

{ c1−γ
t

1− γ
+ δŨ(Xt; ϵH)

}
dt+ e−(β+δ)τ Ũ(Xτ ; y)

]
, (5)

where

Ũ(x; a) = K
(x+ a/r)1−γ

1− γ
,

and

K =
( 1

A

)γ
, A =

{γ − 1

γ

(
r +

θ2

2γ

)
+
β

γ

}
.

Proof. See Appendix. Q.E.D.

The term Ũ(x; a) in Lemma 2.1 denotes the value function of an entrepreneur who has

initial wealth x and receives income at the rate of a infinitely. Equation (5) shows that in the

presence of undiversifiable idiosyncratic risk, an entrepreneur should consider not only her

consumption but also wealth at the time of success in a business. Specifically, the second term

δŨ(Xt; ϵH) captures the utility value of an entrepreneur after the business success. The term
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is the product of the intensity δ of the timing for the idiosyncratic risk and the maximized

value of the entrepreneur’s utility after the business succeeds i.e., the income rate obtained

from the business is increased by ϵH . For the limiting case where δ = 0, the entrepreneur

cannot succeed in the business, so that she maximizes an objective function which is a function

of only intermediate consumption (Merton, 1969). For the other extreme case of δ = +∞,

the entrepreneurial business plan is trivial because the business success is immediate and the

income is provided by the rate equal to ϵH infinitely. In this case, the business plan reduces

to the Merton’s optimal consumption and portfolio selection problem.

2.4 Optimal Exit Time from Risky Business

In the previous subsection, we have formulated a problem for a business plan in which an

entrepreneurial optimal consumption, optimal stock investment, and optimal exit time from

the business are jointly determined. In fact, the problem is closely associated with an optimal

stopping problem.8 Specifically, we provide a lemma clarifying the relationship between the

entrepreneurial business plan and the optimal stopping problem.

Lemma 2.2 The value function formulated by (5) satisfies the following optimal stopping

problem given by the variational inequality:

(β + δ)ϕ(x)− (rx+ ϵL)ϕ
′(x) +

1

2
θ2
ϕ′(x)2

ϕ′′(x)
− γ

1− γ
{ϕ′(x)}1−1/γ ≥ δŨ(x; ϵH),

ϕ(x) ≥ Ũ(x; y),[
(β + δ)ϕ(x)− (rx+ ϵL)ϕ

′(x) +
1

2
θ2
ϕ′(x)2

ϕ′′(x)

− γ

1− γ
{ϕ′(x)}1−1/γ − δŨ(x; ϵH)

](
ϕ(x)− Ũ(x; y)

)
= 0.

(6)

8When we deal with the standard optimal stopping problems (Farhi and Panageas, 2007; Dybvig and Liu,

2010), we can solve the differential equation derived by the conventional dual approach (Karatzas and Wang,

2000) up to explicit solutions. However, we cannot apply the dual approach to our problem because a state

price density (or a stochastic discount factor) is not uniquely determined because of the market incompleteness

induced by undiversifiable idiosyncratic risk. To address this issue, we can apply a modified convex-duality

approach (Bensoussan et al., 2013).
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Proof. See Appendix. Q.E.D.

The entrepreneurial business plan is characterized by two regions: a continuation region

in which the entrepreneur’s optimal choice is to retain an option liquidates her risky business;

and a stopping region in which she should exercise this option, exit from the risky business,

and accept a safe job. The first inequality in the variational inequality (6) shows that the

strict inequality holds in the stopping region and the equality holds in the continuation region.

In particular, the equality is the Hamilton-Jacobi-Bellman equation obtained when we solve

an optimal consumption and portfolio selection problem (Merton, 1969). Importantly, the

strict inequality in the second inequality is the case where the entrepreneurial value function

with the liquidation option is strictly larger than the value function after exiting from the

risky business and jumping into the safe job. Therefore, in that case the entrepreneur is in the

continuation region and should hold the liquidation option. When the entrepreneur’s value

function is exactly same with the value function after exercising the option (the equality in

the second inequality), the entrepreneur is in the stopping region and thus, optimally exits

the business and accepts the safe job. The third equality in (6) is necessary because the strict

inequalities (the first inequality represents the stopping region and the second one denotes

the continuation region) cannot hold simultaneously.

The continuation and stopping regions are determined by the so-called critical wealth level

under which it is optimal for an entrepreneur to exit from her risky business and accept a safe

job.9 We can construct a problem with an optimal stopping boundary (or a free boundary)

to solve the optimal stopping problem formulated by the variational inequality (6). That is,

we would like to find a function ϕ(x) such that it is C1 and piecewise C2 and determine the

9Actually, this type business plan resembles the optimal strategy for an investor with an American put

option in which the investor optimally exercises the put option whenever the underlying asset price approaches

the optimal exercise boundary from above. The difference between the entrepreneur’s liquidation option and

the investor’s American put option is attributable to the underlying asset on the option. Specifically, the

underlying asset on the liquidation option is the entrepreneurial wealth controlled by her optimal consumption

and risky portfolio policies, and optimal exit strategy, whereas the underlying asset on the put option is

typically the stock price.
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free boundary x. Specifically, the function ϕ(x) satisfies the following relationships:

(β + δ)ϕ(x)− (rx+ ϵL)ϕ
′(x) +

1

2
θ2
ϕ′(x)2

ϕ′′(x)
− γ

1− γ
{ϕ′(x)}1−1/γ = δŨ(x; ϵH), x < x,

ϕ(x) = Ũ(x; y), − 1

r + δ

(
ϵL + ϵH

δ

r

)
< x ≤ x,

ϕ(x) = Ũ(x; y),

ϕ′(x) = Ũ ′(x; y),

(7)

where x is the critical wealth level.10 In the free boundary problem (7), the continuation and

stopping regions are explicitly characterized by {x < x} and {− 1
r+δ

(
ϵL + ϵH

δ
r

)
< x ≤ x},

respectively.

3 Numerical Implications

Parameter Values

We investigate various properties of optimal strategies for an entrepreneur in the presence

of undiversifiable idiosyncratic risk by using numerical solutions. Default parameters are set

as follows: r = 3.71%, the annual rate of return from rolling-over of 1-month T-bills during the

time period of 1926-2009,11 µ = 11.23% and σ = 19.54%, the return and standard deviation

of a portfolio consisting of the world’s large stocks during the same time period.12 We assume

that β = r and set γ = 2.

To set the parameter values for income streams, we follow Miao and Wang (2007b).

More specifically, the income rate y from the safe job dominates the low-quality income rate

ϵL. Moreover, the entrepreneur receives the higher income rate ϵH than y if she succeeds

in a business. Due to the presence of undiversifiable idiosyncratic risk, she can fail in the

10The solution to the variational inequality (6) clearly satisfies the free boundary problem (7). The converse

statement that whether or not the solution to the free boundary problem (7) is the solution to the variational

inequality (6) should be verified. The verification can be done by modifying the idea of Bensoussan et al.

(2013) and is provided in Appendix. In Appendix, we provide the details of solving the free boundary problem

(7).
11Source: Bureau of Labor Statistics
12Source: pp.170 of Bodie et al. (2011)

13



business. However, a small possibility of succeeding in the business will be an incentive for

the entrepreneur to stay in the business. To reflect this set-up, we set the income rates as

follows: ϵL = 0.25, y = 1.5, and ϵH = 2.5. We also set δ = 0.10, which means that the annual

probability that the business succeeds is 10%.

Optimal Exit Strategy

In the previous subsection, we have shown that it is optimal for an entrepreneur to exit

from her risky business and accept a safe job as soon as her initial wealth approaches the

critical wealth level x from above. The entrepreneur’s borrowing limits (see the wealth con-

straint (2)) for three values of δ ∈ {0.20, 0.15, 0.10} are computed as −57.8958, −55.3598,

−50.9741, respectively. The results of sensitivity analysis of the critical wealth level x with

respect to changes in µ, σ, and γ (Table 1) demonstrate that the values of x are negative

and exceed the borrowing limits. The entrepreneur is more likely to exit from the business as

investment opportunity worsens; i.e., as the expected rate of stock return µ decreases or the

stock volatility σ increases, or as the risk aversion coefficient γ increases, or as undiversifiable

idiosyncratic risk increases, or equivalently, as the intensity δ decreases. The value of the

option to quit the business and accept a safe job is larger in a financial market with a bad

investment opportunity than in one with a good investment opportunity. Moreover, a highly

risk-averse entrepreneur is reluctant to take idiosyncratic risk from risky investment, and

hence willingly exits from the business earlier than does an entrepreneur with low risk aver-

sion. As the idiosyncratic risk to which an entrepreneur is exposed increases, the advantage

of abandoning the business and accepting a safe job increases.

[Insert Table 1 here.]

Optimal Consumption and Risky Portfolio Strategies

Undiversifiable idiosyncratic risk has a wealth-dependent effect on optimal strategies. The

entrepreneur tends to formulate aggressive consumption and risky portfolio strategies when

she has small idiosyncratic risk (or a high δ) and has wealth that exceeds the critical wealth
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level (Figure 1).

[Insert Figure 1 here.]

When she has significantly larger amount of wealth than the critical wealth level, she

willingly invests more in the stock as idiosyncratic risk decreases, i.e., as the intensity δ

increases (Figure 1). However, this might not be a reasonable strategy while the entrepreneur

decumulates wealth. The entrepreneur optimally increases risky portfolio as idiosyncratic risk

increases (as the intensity δ decreases). Because a risky portfolio could be a good substitute

for the risky business, the entrepreneur willingly increases her risky portfolio to absorb the

idiosyncratic risk.

[Insert Figure 2 here.]

Given the undiversifiable idiosyncratic risk, δ = 0.10, the effects of changes in the coeffi-

cient of relative risk aversion on optimal consumption are trivial if an entrepreneur has sig-

nificantly large wealth, which is near the zero wealth level in Figure 2; consumption decreases

as risk aversion increases. However, as the entrepreneur decumulates wealth, she willingly

takes more aggressive consumption strategy with respect to an increase of risk aversion. A

constant income stream obtained from quitting a risky business and jumping into a safe job

would induce the aggressive consumption behavior of the highly risk-averse entrepreneur as

her wealth approaches the critical wealth level x. Relative to an optimal risky portfolio, a

more risk-averse entrepreneur invests less in the stock than does a less risk-averse one. This

response follows the traditional investment rule that an investor decreases her stockholdings

as her risk aversion increases.

[Insert Table 2 here.]

The entrepreneurial optimal strategies are affected by changes in investment opportunity

(Table 2). Given the undiversifiable idiosyncratic risk, δ = 0.10, the entrepreneur optimally
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reduces her consumption and risky portfolio as the expected rate of stock return µ decreases

or as the stock volatility σ increases.

Value of Running Risky Business

Until now, we have investigated how undiversifiable idiosyncratic risk optimally influences

components of an entrepreneurial business plan such as optimal exit strategy, optimal con-

sumption and risky portfolio policies. In this section, we try to determine how much benefit

an entrepreneur obtains from her own risky business by bearing the undiversifiable idiosyn-

cratic risk. To address this question, we will compute the value of running the risky business

by introducing a concept of certainty equivalent wealth (CEW). We define the CEW induced

by running a risky business as follows.

Definition 3.1 The certainty equivalent wealth ∆(x) induced by running a risky business is

defined as

U(x+∆(x); y) = Φ(x),

where U(·; y) is the value function after exiting business and accepting a safe job in which an

entrepreneur receives income y infinitely, and Φ(x) is the value function given by (5) while

staying in risky business.

[Insert Figure 3 here.]

[Insert Figure 4 here.]

The CEW induced by running a risky business is an increasing function of an entrepreneurial

initial wealth x (Figure 3). Further, the relationship between the CEW and wealth is highly

nonlinear; this observation is consistent with the result of Hurst and Lusardi (2004) The value

of running a risky business (or the CEW) sharply decreases as the entrepreneurial wealth de-

cumulates from above zero, the value also steadily decreases as the wealth approaches the

critical wealth level (Figure 3). When the value becomes zero, the entrepreneur has no incen-

tive to run the risky business, so she decides to exit from it and accept a safe job. We also find
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that a highly risk-averse entrepreneur values a risky business less than does the entrepreneur

with low risk aversion; therefore the former would exit the business sooner than would the

latter (Figure 4).

Importantly, we find that the CEW patterns differ according to values of the intensity δ

(i.e., the annual probability that the business succeeds). Specifically, when the entrepreneur

is exposed to high idiosyncratic risk or has a low value of δ (δ = 0.10), the CEW and wealth

have a convex relation, which means that entrepreneurs appear to have more benefits from

their business as their wealth increases. The rationale behind this trend is that the effects

of idiosyncratic risk decrease as an entrepreneur’s wealth increases, so that her willingness to

stay in the risky business also increases. This result is compatible that of Puri and Robinson

(2006): that entrepreneurs are more optimistic and risk tolerant than normal wage earners,

especially in the upper percentile of the wealth distribution.

In contrast, when the entrepreneur is exposed to low idiosyncratic risk or has a high

value of δ (δ = 0.20), the value of running the risky business significantly increases as id-

iosyncratic risk decreases, but the undiversifiable idiosyncratic risk might lead to non-trivial

entrepreneurship depending crucially on the entrepreneurial wealth. More specifically, the re-

lation between the CEW and wealth shows both convex and concave patterns. Entrepreneurs

with low wealth show the convex trend, whereas those with large wealth follow the concave

one. The former trend implies that entrepreneurs with relatively little wealth seem to have

more incentive to run their own business with respect to an increase of wealth; the latter trend

shows that wealthy entrepreneurs are not necessarily more beneficial as wealth increases up

to a point.

The results of the analysis of the effects of CEW can offer an intuition to resolve the

private equity premium puzzle. In the standard option pricing theory proposed by Black-

Scholes-Merton shows the positive convexity effect that the option value increases as market

volatility increases. According to the standard real options theory (Dixit and Pindyck, 1994),

entrepreneurial option value for investment also increases as project volatility increases. Con-

trary to these predictions under complete financial markets, we confirm that the value for an

17



option to quit a risky business and accept a safe job decreases when idiosyncratic risk is un-

diversifiable: this fact induces a negative relationship between option value and idiosyncratic

volatility and is consistent with the result of Chen et al. (2010). Whereas Moskowitz and

Vissing-Jørgensen (2002) have found that private equity premium against idiosyncratic risk

is low in the U.S., Mueller (2011) have showed the opposite. In support of Mueller (2011), we

predict that if entrepreneurs demand a substantial idiosyncratic risk premium that mitigates

the effect of a significant decrease in CEW (or the value for running risky business) due to

idiosyncratic risk, then they might obtain a high private equity premium by committing in

their own risky business.13

Hedging Effect of Risky Portfolio against Undiversifiable Idiosyncratic Risk

An entrepreneur cannot fully eliminate idiosyncratic risk by diversifying her portfolio,

but she can achieve a partial hedging effect from her stock holdings against the riskiness of

a business. To quantify the hedging effect, we compute the certainty equivalent wealth by

comparing two value functions: one that is allowed to participate in the stock market and

one that is not.14

Definition 3.2 The hedging effect HE(x) of risky portfolio against undiversifiable idiosyn-

cratic risk is quantified as the following:

Ψ(x; δ) = Φ(x−HE(x); δ),

where Φ(x; δ) and Ψ(x; δ) are the value functions with and without the access to the stock

market, respectively. The average time to succeed in a risky business is given by 1/δ.

[Insert Figure 5 here.]

13Wang et al. (2012) obtain a quantitative result for a significant idiosyncratic risk premium, especially for

entrepreneurs with small wealth.
14The value function of an entrepreneur who has limited access to the stock market is derived by considering

a consumption-saving model for the entrepreneur. For the details, see Appendix.
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The hedging effect HE(x) of risky portfolio against undiversifiable idiosyncratic risk that

arises from running a risky business increases increases as the initial wealth of an entrepreneur

increases (Figure 5). An entrepreneur with large initial wealth may be more willing to absorb

idiosyncratic risk than does an entrepreneur with small wealth. Simultaneously, as wealth

increases, the stock investment becomes increasingly attractive to the wealthy entrepreneur

due to the positive risk premium from the investment. Then the wealthy entrepreneur can

increase her hedging effect by trading the market portfolio.

The hedging effect also increases as the idiosyncratic risk increases, i.e., as δ decreases

(Figure 5). This result is consistent with results of Miao and Wang (2007a) and Leippold and

Stromberg (2014); a private equity premium can be generated by an increase of idiosyncratic

volatility. In this paper, the positive and sizable hedging effect measured by the CEW can

represent a large source of the private equity premium. Accordingly, stock market participa-

tion is of importance to the entrepreneur for the purpose of risk diversification and a smooth

continuation of her risky business.

Our results for the hedging effect complement the existing literature regarding portfolio

allocations of entrepreneurs. Heaton and Lucas (2009) have investigated the relation between

capital structure and portfolio selection in financial markets that consist of a stock market

and a bond market, and show that entrepreneurs optimally hold a sizable stock investment

relative to the investment in a risk-free bond. Although entrepreneurs willingly hold a safe

asset composition to diversify away their own business risk, they in aggregate account for

about 30% of the stock market (Heaton and Lucas, 2000). Faig and Shum (2002) also stress

that entrepreneurs’ portfolios of financial assets can be used as a hedging tool against bad

outcomes of their business.

[Insert Figure 6 here.]

[Insert Table 3 here.]

A more risk-averse entrepreneur is likely to obtain a larger hedging effect from her stock

investment against the idiosyncratic risk than is a risk-tolerant entrepreneur (Figure 6). Ac-
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cording to the results of the sensitivity analysis of the hedging effect HE(x) to the changes

in investment opportunity, an entrepreneur’s hedging effect increases as investment opportu-

nities increase in the market in which she participates (Table 3).

4 Conclusion

We have provided an entrepreneur’s optimal business plan in the presence of undiversifiable

idiosyncratic risk, and have investigated the relationship between the idiosyncratic risk and

optimal exit strategy for an entrepreneur as well as the role of a market portfolio on a

business plan under a CRRA utility. The entrepreneurial business plan is characterized by

two regions: a continuation region in which the entrepreneur’s optimal choice is to retain

an option liquidates her risky business; and a stopping region in which she should exercise

this option, exit from the business, and accept a safe job. The continuation and stopping

regions are determined by the so-called critical wealth level under which it is optimal for an

entrepreneur to exit from her risky business and accept a safe job.

By numerical analysis, we find that the entrepreneur is more likely to exit from her risky

business as (1) investment opportunity worsens, or (2) as her risk aversion coefficient increases,

or (3) as the idiosyncratic risk increases. When the entrepreneur has significant wealth, the

amount that she willingly invests in the stock market decreases as the idiosyncratic risk

increases. However, when the entrepreneur decumulates wealth, she can achieve a partial

hedging effect of the risky portfolio against the business risk by optimally increasing her risky

portfolio as the idiosyncratic risk increases. We measure an entrepreneurial value of running

a risky business and hedging effect of risky portfolio against undiversifiable idiosyncratic risk

by using a concept of certainty equivalent wealth (CEW). The CEW induced by running a

risky business is an increasing function of an entrepreneurial initial wealth. The hedging effect

of risky portfolio also increases as the idiosyncratic risk increases.
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5 Appendix

5.1 Details of Deriving Optimal Strategies

Critical Wealth Level

We have shown that an entrepreneurial optimal business plan is characterized by her

critical wealth level. Specifically, the entrepreneur should hold a liquidation option to exit

from her risky business and accept a safe job as far as initial wealth of the entrepreneur

is larger than the critical wealth level. Such optimal policy is in a continuation region. If

the entrepreneurial initial wealth approaches the critical wealth level from above, then it is

optimal for the entrepreneur to exercise the liquidation option. In this case, the optimal

strategy is in a stopping region.

To determine the critical wealth level which takes a key role in an entrepreneurial optimal

business plan, we have to solve the highly non-linear differential equation described as in (7).

It seems to be hardly possible to obtain analytical results for the solution to the problem (7).

Indeed, we cannot derive a closed form solution for the critical wealth level. Instead, we can

obtain lower and upper bounds for the critical wealth level.

We suggest a modified convex-duality approach to solve our problem. Actually, the ap-

proach is developed by Bensoussan et al. (2013) for solving the retirement problem with

unemployment risks. We modify the idea of Bensoussan et al. (2013) and apply it to our

problem. We provide the following lemma reformulating the free boundary problem (7) by

using the convex-duality approach.

Lemma 5.1 The first relationship of the free boundary problem (7) is reformulated by

−1

2
θ2λ2G′′(λ)−λG′(λ)(θ2+β+δ−r)+rG(λ)+δK

(
G(λ)− ϵL

r
+
ϵH
r

)−γ

G′(λ) = λ−1/γ , 0 < λ < λ, (8)

where G is a convex-dual function of the value function ϕ,15 λ is the marginal value of the

value function ϕ, and λ is a free boundary to be determined according to the value-matching

and smooth-pasting conditions.

15The existence of such convex-dual function G satisfying the differential equation (8) is verified in Appendix.
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Proof. See Appendix. Q.E.D.

We call the function G the convex-dual function. In the later section, we will verify that

the function G is monotonically-decreasing with respect to an increase in initial wealth x.

Furthermore, the function G has the implicit relationship with the marginal value of the

value function ϕ as follows: G(ϕ′(x)) = x+ ϵL/r. In this sense, G is the dual function of the

value function ϕ satisfying increasing and concave properties. Note that the convexity of the

dual function G can be verified numerically under the reasonable parameter values.

In Lemma 5.1, the free boundary λ takes an important role in determining the critical

wealth level x under which it is optimal for an entrepreneur to exit from her risky business

and accept a safe job. In fact, the free boundary λ has an inverse relationship with the critical

wealth level x as follows: λ = K(x + y/r)−γ . To determine the free boundary λ we use the

value-matching and smooth-pasting conditions. Specifically, we use the boundary conditions

of ϕ and ϕ′ at x: ϕ(x) = Ũ(x; y) and ϕ′(x) = Ũ ′(x; y).

For the next, we present an important lemma that gives an analytic solution to the non-

linear differential equation (8).

Theorem 5.1 An analytic solution to the non-linear differential equation (8) follows

G(λ) =
γλ−1/γ

γA+ δ
+B∗(λ)λ−α∗

δ

+
2δK

θ2(αδ − α∗
δ)(1− γ)

[
(αδ − 1)λ−αδ

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

+ (α∗
δ − 1)λ−α∗

δ

∫ λ

λ
µα

∗
δ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

]
,

(9)

where αδ > 0 and α∗
δ < 0 are the two roots of the following characteristic equation:

I(α; δ) ≡ −1

2
θ2α(α− 1) + α(β + δ − r) + r = 0 (10)

and B∗(λ) is a constant to be determined according to the smooth-pasting conditions.

Proof. See Appendix. Q.E.D.

For the next, we determine the free boundary λ and the constant B∗(λ). We use the

value-matching and smooth-pasting conditions (or equivalently, the boundary conditions) of
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the value function ϕ at the free boundary λ. Note that when we reformulated the first

relationship of the free boundary problem (7) as the non-linear differential equation (8), we

defined λ as the marginal value of the value function ϕ, introduced a dual variable λ of the

free boundary x, and employed a function G that is the so-called convex-dual function (see

Proof of Lemma 5.1). Recall such variables

λ(x) = ϕ′(x), λ = K(x+ y/r)−γ , and G(λ(x)) = x+
ϵL
r
.

Then the boundary condition ϕ′(x) = Ũ ′(x; y) in (8) is easily rewritten by the convex-dual

function G through its definition. More specifically,

G(λ) = K1/γλ
−1/γ − y

r
+
ϵL
r

(11)

and subsequently,

K1/γλ
−1/γ − y

r
+
ϵL
r

=
γλ

−1/γ

γA+ δ
+B∗(λ)λ

−α∗
δ

+
2δK(αδ − 1)λ

−αδ

θ2(αδ − α∗
δ)(1− γ)

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ.

(12)

We give a lemma to rewrite the boundary condition ϕ(x) = Ũ(x; y) in (7) in terms of the

convex-dual function G.

Lemma 5.2 The boundary condition ϕ(x) = Ũ(x; y) given in (7) is rewritten by the convex-

dual function G as the following:

(β + δ)
K1/γλ

1−1/γ

1− γ
= rλ

(
K1/γλ

−1/γ − y

r
+
ϵL
r

)
− 1

2
θ2λ

2
G′(λ)

+
γ

1− γ
λ
1−1/γ

+
δK

1− γ

(
K1/γλ

−1/γ − y

r
+
ϵH
r

)1−γ
.

(13)

Proof. See Appendix. Q.E.D.

We rearrange the relationship (12) as the following:

B∗(λ) =
[
K1/γλ

−1/γ − y

r
+
ϵL
r

− γλ
−1/γ

γA+ δ

− 2δK(αδ − 1)λ
−αδ

θ2(αδ − α∗
δ)(1− γ)

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

]
λ
α∗
δ .

(14)

If we determine the free boundary λ, then the constant B∗(λ) is also determined by the

relationship (14). We suggest a lemma in which λ can be determined numerically.
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Lemma 5.3 The free boundary λ can be determined numerically by solving the following

equation:[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
λ
−1/γ

=
(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL) +

δK(αδ − 1)λ
−αδ

1− γ

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ.

(15)

Proof. See Appendix. Q.E.D.

A little rearrangement of (15) shows that(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL) =

[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
λ
−1/γ

+
δK(αδ − 1)λ

−αδ

γ − 1

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ.

(16)

Let Mδ(λ) and Nδ be the right-hand and left-hand side of (16), respectively. We also set

M δ(λ) ≡
[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
λ
−1/γ

,

and

M δ(λ) ≡M δ(λ) +
δK

(γ − 1)λ

(
K1/γλ

−1/γ − y

r
+
ϵH
r

)1−γ
,

which are lower and upper bounds of Mδ(λ) respectively. Then we can obtain lower and

upper bounds for the free boundary λ.

Lemma 5.4 Assume that

{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ
> 0.

The free boundary λ to be determined in (16) satisfies

λlδ ≤ λ ≤ λuδ ,

where λlδ and λuδ are obtained from

M δ(λ
l
δ) = Nδ, and M δ(λ

u
δ ) = Nδ.
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Proof. See Appendix. Q.E.D.

Now it remains to get lower and upper bounds for the critical wealth level x. Due to the

definition of the convex-dual function G given by G(λ(x)) = x + ϵL/r, the lower bound λl

and the upper bound λu given in Lemma 5.4, the following theorem is easily followed.

Theorem 5.2 The lower and upper bounds for the critical wealth level x are given as the

following:

G(λuδ )−
ϵL
r

≤ x ≤ G(λlδ)−
ϵL
r
. (17)

An entrepreneur is exposed to undiversifiable idiosyncratic risk and hence, she should

manage the idiosyncratic risk by controlling optimal exit time from her risky business. It

is optimal for the entrepreneur to liquidate the risky business as soon as her initial wealth

approaches the critical wealth level from above. Moreover, Theorem 5.2 suggests that the

lower and upper bounds given by (17) for the critical wealth level might give a hint for

another business planning. Even though utilizing the exit strategy at wealth levels between

the lower and upper bounds is a suboptimal policy for the business plan, the entrepreneur

could run her risky business a little bit longer or shorter than the optimal exit time, in

exchange for giving up the optimality.

Optimal Consumption and Risky Portfolio Strategies.

We state a theorem concerning the optimal consumption and risky portfolio strategies in

the presence of undiversifiable idiosyncratic risk.

Theorem 5.3 The entrepreneur’s optimal consumption c∗ and optimal portfolio π∗ prior to

exit from risky business follow

c∗t =
(
A+

δ

γ

)(
x+

ϵL
r

)
−

(
A+

δ

γ

)
B∗(λ)λ∗(x)−α∗

δ

− 2δK(A+ δ/γ)

θ2(αδ − α∗
δ)(1− γ)

[
(αδ − 1)λ∗(x)−αδ

∫ λ∗(x)

0

µαδ−2
(
G(µ)− ϵL

r
+
ϵH
r

)−γ+1

dµ

+ (α∗
δ − 1)λ∗(x)−α∗

δ

∫ λ

λ∗(x)

µα∗
δ−2

(
G(µ)− ϵL

r
+
ϵH
r

)−γ+1

dµ
]
,

(18)
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π∗
t =

θ

γσ

(
x+

ϵL
r

)
+
(
α∗
δ −

1

γ

) θ
σ
B∗(λ)λ∗(x)−α∗

δ − 2δK

σθ(1− γ)

1

λ∗(x)

(
x+

ϵH
r

)−γ+1

+
2δK

σθ(αδ − α∗
δ)(1− γ)

[(
αδ −

1

γ

)
(αδ − 1)λ∗(x)−αδ

∫ λ∗(x)

0

µαδ−2
(
G(µ)− ϵL

r
+
ϵH
r

)−γ+1

dµ

+
(
α∗
δ −

1

γ

)
(α∗

δ − 1)λ∗(x)−α∗
δ

∫ λ

λ∗(x)

µα∗
δ−2

(
G(µ)− ϵL

r
+
ϵH
r

)−γ+1

dµ
]
,

(19)

where λ∗(x) is a decreasing function of initial wealth x, satisfying

x+
ϵL
r

=
γλ∗(x)−1/γ

γA+ δ
+B∗(λ)λ∗(x)−α∗

δ

+
2δK

θ2(αδ − α∗
δ)(1− γ)

[
(αδ − 1)λ∗(x)−αδ

∫ λ∗(x)

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)−γ+1
dµ

+ (α∗
δ − 1)λ∗(x)−α∗

δ

∫ λ

λ∗(x)
µα

∗
δ−2

(
G(µ)− ϵL

r
+
ϵH
r

)−γ+1
dµ

]
,

and

B∗(λ) =
[
K1/γλ

−1/γ − y

r
+
ϵL
r

− γλ
−1/γ

γA+ δ
− 2δK(αδ − 1)λ

−αδ

θ2(αδ − α∗
δ)(1− γ)

∫ λ

0

µαδ−2
(
G(µ)− ϵL

r
+
ϵH
r

)1−γ

dµ
]
λ
α∗

δ .

Proof. See Appendix. Q.E.D.

An entrepreneurial optimal consumption and risky portfolio strategies are largely affected

by the option to quit the business and accept the safe job to avoid undiversifiable idiosyncratic

risk. The effects of the idiosyncratic risk are reflected in the last terms consisting of two

integral parts in (18) and (19).

5.2 Iterative Algorithm and Convergence

In this section, we propose a simple iterative algorithm to solve the implicit equation suggested

by (9) and determine the free boundary λ.

A Simple Iterative Algorithm

Step 0. Set δ = 0 in (9). Then we obtain G(λ) =
1

A
λ−1/γ . We use it as the initial guess for

G(λ) satisfying (9).

Step 1. Given the initial G(λ), we determine B∗(λ) and λ by (12) and (15), respectively.

Step 2. Use the relationship (9) to update G(λ). Then we set the updated G(λ) as the new
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initial value.

Step 3. Repeat steps 1-2 until λ converges.

We successfully solve the equation (9) and determine λ by using the above iterative pro-

cedure. Now we show that the function G(λ) obtained from the iterative procedure converges

by using the Banach fixed-point theorem.

Consider the domain of λ(·) as

X = [λ0, λ],

where λ0 is a value corresponding to a sufficiently large wealth x̂ by the relationship of

λ0 ≡ λ(x̂) = ϕ′(x̂). Denote R by the set of real numbers. We also consider the set of all

bounded functions y : X → R as

B(X,R).

Then B(X,R) is a complete metric space with the supremum norm

d(y, z) ≡ sup{|y(x)− z(x)| : x ∈ X},

due to the fact that R is complete. We let C(X,R) be the set of all continuous bounded

functions y : X → R. Then C(X,R) is a closed subspace of B(X,R). Therefore, C(X,R) is

also a complete metric space. Because we have shown that G(λ) has a monotonic decreasing

property, we obtain

G(λ) ≤ G(λ) ≤ G(λ0),

accordingly G(λ) is in C(X,R).

Define

Y (G(λ)) ≡ γλ−1/γ

γA+ δ
+B∗(λ)λ−α∗

δ

+
2δK

θ2(αδ − α∗
δ)(1− γ)

[
(αδ − 1)λ−αδ

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

+ (α∗
δ − 1)λ−α∗

δ

∫ λ

λ
µα

∗
δ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

]
,
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for any G(λ) ∈ C(X,R). Then Y (·) is continuous and is in C(X,R). This is because

|Y (G(λ))| ≤ 2δK

θ2(αδ − α∗
δ)(γ − 1)λ

sup
µ

|G(µ)|.

Assume that

2δK

θ2(αδ − α∗
δ)(γ − 1)λ

< 1.

Then the map Y : C(X,R) → C(X,R) is a contraction mapping. Certainly, for any G1(λ),

G2(λ) ∈ C(X,R), Y satisfies

sup
λ

|Y (G1(λ))− Y (G2(λ))| =
2δK

θ2(αδ − α∗
δ)(γ − 1)λ

sup
λ

|G1(λ)−G2(λ)|.

Let Gi(λ), B∗(λ)i, λ
i
be the values from the i-th iteration. If we apply the Banach fixed-point

theorem, then Gi(λ) converges uniformly to G(λ) on [λ0, λ]. Moreover, B∗(λ)i → B∗(λ) and

λ
i → λ as i→ ∞.

5.3 Various Properties of Convex-Dual Function G

5.3.1 Uniqueness of G

We show the uniqueness of G(λ) proposed by the implicit equation (9) under suitable param-

eter conditions.

Theorem 5.4 Suppose γ > 1. If we assume that

2δK

θ2(αδ − α∗
δ)(γ − 1)λ

< 1,

then G(λ) given by (9) is unique.

Proof. See Appendix. Q.E.D.

5.3.2 Monotonic decreasing property of G

The function G(·) satisfying the implicit equation (9) is monotonically decreasing.
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Theorem 5.5 Suppose γ > 1. If we assume that

λ
−1/γ δ

A

{ 1

γA+ δ
− 2

θ2(αδ − α∗
δ)(1− γ)

}
− y

r
+
ϵL
r
< 0,

then any solution to (8) satisfies G′(λ) < 0.

Proof. See Appendix. Q.E.D.

5.3.3 Uniqueness of free boundary λ

Theorem 5.4 states that there exists a unique solution G(λ) to the implicit equation (9) under

appropriate parameter conditions. However, the conditions contain a free boundary λ to be

determined with G(λ) by two conditions (12), (15). Because it is of importance to check

whether or not the conditions hold, we provide more detail parameter conditions in which

not a free boundary λ is uniquely determined, just but corresponding G(λ) is unique.

Theorem 5.6 Suppose γ > 1. Assume that[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
×

( 2δK

θ2(αδ − α∗
δ)(γ − 1)

)−1/γ
>

(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL),

[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
× A

δ

(y − ϵL
r

)/{ 1

rA+ δ
− 2

θ2(αδ − α∗
δ)(1− γ)

}
>

(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL).

Then there exists a unique free boundary λ and a unique G(λ) satisfying (12), (15).

Proof. See Appendix. Q.E.D.

5.3.4 The equivalence between optimal stopping problem (5) and free boundary

problem (7)

We verify that the solution to the free boundary problem (7) is a solution to the variational

inequality (6).
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Theorem 5.7 Suppose γ > 1. If we assume that[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
× A

δ

(y − ϵL
r

)/{ 1

rA+ δ
− 2

θ2(αδ − α∗
δ)(1− γ)

}
>

(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL),

and[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
K−1/γ(y − ϵL)

/(
− β + δ

1− γ
+
θ2

2γ
+

γ

1− γ
K−1/γ + r

)
≥

(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL),

then the solution to the free boundary problem (7) is a solution to the variational inequality

(6).

Proof. See Appendix. Q.E.D.

5.4 Proofs of Lemmas and Theorems

5.4.1 Proof of Lemma 2.1

We consider the following wealth process Xt with initial wealth X0 = x:

dXt = (rXt − ct + a) + πtσ(dWt + θdt), t ≥ 0, (20)

a > 0 is a constant. If we define the value function Ũ(x; a) as

Ũ(x; a) ≡ max
(c,π)

E
[ ∫ ∞

0
e−βt c

1−γ
t

1− γ

]
,

which is subject to the wealth process (20), then the value function Ũ(x; a) follows

Ũ(x; a) = K
(x+ a/r)1−γ

1− γ
,

where

K =
( 1

A

)γ
, A =

{γ − 1

γ

(
r +

θ2

2γ

)
+
β

γ

}
.

By the principle of dynamic programming, the value function Φ(x) formulated by (4) becomes

Φ(x) = max
(c,π,τ)

E
[ ∫ τ∧τδ

0
e−βt c

1−γ
t

1− γ
dt+ e−β(τ∧τδ)Ũ(Xτ∧τδ ; a)

]
,
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where a ∈ {y, ϵH}. A straightforward calculation by using the conditional expectation of τδ

yields that

E
[ ∫ τ∧τδ

0
e−βt c

1−γ
t

1− γ
dt+ e−β(τ∧τδ)Ũ(Xτ∧τδ ; a)

]
= E

[
E
[ ∫ τ∧τδ

0
e−βt c

1−γ
t

1− γ
dt+ e−β(τ∧τδ)Ũ(Xτ∧τδ ; a)

]∣∣∣τδ]
= E

[ ∫ ∞

0
δe−δs

∫ τ∧s

0
e−βt c

1−γ
t

1− γ
dtds+

∫ ∞

0
δe−δse−β(τ∧s)Ũ(Xτ∧s; a)ds

]
= E

[ ∫ τ

0
δe−δs

∫ s

0
e−βt c

1−γ
t

1− γ
dtds+

∫ ∞

τ
δe−δs

∫ τ

0
e−βt c

1−γ
t

1− γ
dtds

+

∫ τ

0
δe−δse−βsŨ(Xs; ϵH)ds+

∫ ∞

τ
δe−δse−βτ Ũ(Xτ ; y)ds

]
= E

[ ∫ τ

0
e−βt c

1−γ
t

1− γ

∫ τ

t
δe−δsdsdt+

∫ τ

0
e−βt c

1−γ
t

1− γ

∫ ∞

τ
δe−δsdsdt

+

∫ τ

0
e−(β+δ)sδŨ(Xs; ϵH)ds+ e−(β+δ)τ Ũ(Xτ ; y)

]
= E

[ ∫ τ

0
e−βt c

1−γ
t

1− γ

∫ ∞

t
δe−δsdsdt+

∫ τ

0
e−(β+δ)sδŨ(Xs; ϵH)ds+ e−(β+δ)τ Ũ(Xτ ; y)

]
= E

[ ∫ τ

0
e−(β+δ)t

{ c1−γ
t

1− γ
+ δŨ(Xt; ϵH)

}
dt+ e−(β+δ)τ Ũ(Xτ ; y)

]
.

Therefore, we complete the proof of the Lemma 2.1.

5.4.2 Proof of Lemma 2.2

For a fixed stopping time τ , we define

Jτ (x) ≡ max
(c,π)

E
[ ∫ τ

0
e−(β+δ)t

{ c1−γ
t

1− γ
+ δŨ(Xt; ϵH)

}
dt+ e−(β+δ)τ Ũ(Xτ ; y)

]
.

Then an entrepreneur’s decision problem (5) is to solve the following optimal stopping prob-

lem:

Φ(x) = max
τ

Jτ (x).

We denote c∗t and π∗t by optimal consumption and optimal risky portfolio, respectively.

We introduce the following partial differential operator L:

L ≡ ∂

∂t
+

(
rx− c∗t + ϵL + π∗t σθ

) ∂

∂x
+

1

2
(π∗t )

2σ2
∂2

∂x2
.
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We define domains G and D as follows

G =
{
(x, t) ∈ R×R;x ≥ − 1

r + δ

(
ϵL + ϵH

δ

r

)
, t ≥ 0

}
and

D = {(x, t) ∈ G; ϕ̃(x, t) > e−(β+δ)tŨ(x; y)}

for a function ϕ̃ : Ḡ→ R. Then we obtain

Lϕ̃+ e−(β+δ)t
{(c∗t )

1−γ

1− γ
+ δŨ(x; ϵH)

}
=
∂ϕ̃

∂t
+

(
rx− c∗t + ϵL + π∗t σθ

)∂ϕ̃
∂x

+
1

2
(π∗t )

2σ2
∂2ϕ̃

∂x2
+ e−(β+δ)t

{(c∗t )
1−γ

1− γ
+ δŨ(x; ϵH)

}
.

The optimal stopping problem (5) is equivalent to the following variational inequality

(Bensoussan and Lions, 1982; Øksendal, 2007):

Lϕ̃+ e−(β+δ)t
{(c∗t )

1−γ

1− γ
+ δŨ(x; ϵH)

}
= 0 on D,

Lϕ̃+ e−(β+δ)t
{(c∗t )

1−γ

1− γ
+ δŨ(x; ϵH)

}
≤ 0 on G\D.

As a result, we get the following variational inequality:

Lϕ̃+ e−(β+δ)t
{(c∗t )

1−γ

1− γ
+ δŨ(x; ϵH)

}
≤ 0,

ϕ̃(x, t) ≥ e−(β+δ)tŨ(x; y),[
Lϕ̃+ e−(β+δ)t

{(c∗t )
1−γ

1− γ
+ δŨ(x; ϵH)

}](
ϕ̃(x, t)− e−(β+δ)tŨ(x; y)

)
= 0.

(21)

We conjecture the form of ϕ̃ as the following:

ϕ̃(x, t) = e−(β+δ)tϕ(x).

By substituting the conjectured ϕ̃ into the variational inequality (21), we obtain[
− (β + δ)ϕ(x) +

(
rx− c∗t + ϵL + π∗t σθ

)
ϕ′(x) +

1

2
(π∗t )

2σ2ϕ′′(x)

+
(c∗t )

1−γ

1− γ
+ δŨ(x; ϵH)

]
≤ 0,

ϕ(x) ≥ Ũ(x; y),[
− (β + δ)ϕ(x) +

(
rx− c∗t + ϵL + π∗t σθ

)
ϕ′(x) +

1

2
(π∗t )

2σ2ϕ′′(x)

+
(c∗t )

1−γ

1− γ
+ δŨ(x; ϵH)

](
ϕ(x)− Ũ(x; y)

)
= 0.
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Note that optimality conditions for optimal consumption and risky portfolio are given by

c∗t = ϕ′(x)−1/γ and π∗t = − θ

σ

ϕ′(x)

ϕ′′(x)
.

Hence, we derive the variational inequality (6). Finally, if we apply the verification theorem

for an optimal stopping problem given by Øksendal (2007), then the solution to the variational

inequality (6) is the solution to our optimal stopping problem (5).

5.4.3 Proof of Lemma 5.1

We define λ as the marginal value of the value function ϕ and introduce a dual variable λ of

the free boundary x. Specifically,

λ(x) ≡ ϕ′(x), and λ ≡ K(x+ y/r)−γ .

Differentiating the first relationship in (7) with respect to x yields

(β+δ)λ(x)−rλ(x)−(rx+ϵL)λ
′(x)+

1

2
θ2

2λ(x)λ′(x)2 − λ(x)2λ′′(x)

λ′(x)2
+λ(x)−1/γλ′(x) = δK(x+ϵH/r)

−γ .

(22)

We employ a function G satisfying

G(λ(x)) ≡ x+
ϵL
r
.

Then the differential equation (22) is rewritten by

−1

2
θ2λ2G′′(λ)−λG′(λ)(θ2+β+ δ− r)+ rG(λ)+ δK

(
G(λ)− ϵL

r
+
ϵH
r

)−γ

G′(λ) = λ−1/γ , 0 < λ < λ,

where λ is a free boundary to be determined according to the smooth-pasting conditions.

5.4.4 Proof of Theorem 5.1

We can always write the general solution of (8) as the following:

G(λ) =
γλ−1/γ

γA+ δ
+ η(λ)λ−αδ + η∗(λ)λ−α∗

δ , (23)

subject to

η′(λ)λ−αδ + (η∗(λ))′λ−α∗
δ = 0,
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where αδ > 0 and α∗
δ < 0 are the two roots of the characteristic equation (10). The first and

second derivatives of G follow

G′(λ) = −λ
−1/γ−1

γA+ δ
− αδη(λ)λ

−αδ−1 − α∗
δη

∗(λ)λ−α∗
δ−1

and

G′′(λ) =
(1
γ
+ 1

)λ−1/γ−2

γA+ δ
− αδη

′(λ)λ−αδ−1 + αδ(αδ + 1)η(λ)λ−αδ−2

− α∗
δ(η

∗(λ))′λ−α∗
δ−1 + α∗

δ(α
∗
δ + 1)λ−α∗

δ−2,

respectively. Using the general solution (23) of G and its first and second derivatives, we

obtain

− 1

2
θ2λ2G′′(λ)− λG′(λ)(θ2 + β + δ − r) + rG(λ)

= λ−1/γ +
θ2

2
(αδ − α∗

δ)λ
1−αδη′(λ)

= λ−1/γ − θ2

2
(αδ − α∗

δ)λ
1−α∗

δ (η∗(λ))′.

Then the differential equation (8) reduces

θ2

2
(αδ − α∗

δ)λ
1−αδη′(λ) = −δK

(
G(λ)− ϵL

r
+
ϵH
r

)−γ
G′(λ)

and

θ2

2
(αδ − α∗

δ)λ
1−α∗

δ (η∗(λ))′ = δK
(
G(λ)− ϵL

r
+
ϵH
r

)−γ
G′(λ),

for 0 < λ < λ. Thus we get the following relationships:

η(λ) = − 2δK

θ2(αδ − α∗
δ)

∫ λ

0
µαδ−1

(
G(µ)− ϵL

r
+
ϵH
r

)−γ
G′(µ)dµ

and

η∗(λ) = η∗(λ)− 2δK

θ2(αδ − α∗
δ)

∫ λ

λ
µα

∗
δ−1

(
G(µ)− ϵL

r
+
ϵH
r

)−γ
G′(µ)dµ.

Hence, the general solution (23) of G is rewritten as

G(λ) =
γλ−1/γ

γA+ δ
+ η∗(λ)λ−α∗

δ − 2δK

θ2(αδ − α∗
δ)

[
λ−αδ

∫ λ

0
µαδ−1

(
G(µ)− ϵL

r
+
ϵH
r

)−γ
G′(µ)dµ

+ λ−α∗
δ

∫ λ

λ
µα

∗
δ−1

(
G(µ)− ϵL

r
+
ϵH
r

)−γ
G′(µ)dµ

]
.

Note that (
G(µ)− ϵL

r
+
ϵH
r

)−γ
G′(µ) =

d

dµ

{ 1

1− γ

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ}
.
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Then using the integration by parts we obtain

G(λ) =
γλ−1/γ

γA+ δ
+
{
η∗(λ) + λ

α∗
δ−1 1

1− γ

(
G(λ)− ϵL

r
+
ϵH
r

)1−γ}
λ−α∗

δ

+
2δK

θ2(αδ − α∗
δ)(1− γ)

[
(αδ − 1)λ−αδ

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

+ (α∗
δ − 1)λ−α∗

δ

∫ λ

λ
µα

∗
δ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

]
.

We define a constant B∗(λ) as the following:

B∗(λ) =
{
η∗(λ) + λ

α∗
δ−1 1

1− γ

(
G(λ)− ϵL

r
+
ϵH
r

)1−γ}
.

As a result, we derive the analytic solution given by (9) to the non-linear differential equation

(8).

5.4.5 Proof of Lemma 5.2

We rewrite the first relationship given in (7) by using the convex-dual function G as the

following:

(β + δ)ϕ(x) = rG(λ)λ− 1

2
θ2λ2G′(λ) +

γ

1− γ
λ1−1/γ +

δK

1− γ

(
G(λ)− y

r
+
ϵH
r

)1−γ
.

We define a function H by

H(λ) ≡ 1

(β + δ)

[
rG(λ)λ− 1

2
θ2λ2G′(λ) +

γ

1− γ
λ1−1/γ +

δK

1− γ

(
G(λ)− y

r
+
ϵH
r

)1−γ]
. (24)

Then we get the relationship

ϕ(x) = H(λ(x)).

From the equations (8) and (24), the following equality holds:

H ′(λ) = λG′(λ).

Therefore, we obtain that

ϕ′(x) = H ′(λ(x))λ′(x) =
H ′(λ(x))

G′(λ(x))
= λ(x).
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As a result, ϕ(x) is a solution to the differential equation (8). Using the boundary condition

of ϕ(x) at x that ϕ(x) = Ũ(x; y), we obtain the value of H at λ

H(λ) =
K1/γλ

1−1/γ

1− γ
,

which is equivalent to the equality (28).

5.4.6 Proof of Lemma 5.3

A straightforward calculation of the first derivative of G yields that

G′(λ) = −λ
−1/γ−1

γA+ δ
− α∗

δB
∗(λ)λ−α∗

δ−1 +
2δK

θ2λ2

(
G(λ)− ϵL

r
+
ϵH
r

)1−γ

− 2δK

θ2(αδ − α∗
δ)(1− γ)

[
αδ(αδ − 1)λ−αδ−1

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

+ α∗
δ(α

∗
δ − 1)λ−α∗

δ−1

∫ λ

λ
µα

∗
δ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

]
.

Then the value of G′ at λ follows

G′(λ) = −λ
−1/γ−1

γA+ δ
− α∗

δB
∗(λ)λ

−α∗
δ−1

+
2δK

θ2λ
2

(
G(λ)− ϵL

r
+
ϵH
r

)1−γ

− 2δKαδ(αδ − 1)λ
−αδ−1

θ2(αδ − α∗
δ)(1− γ)

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ.

By substituting G(λ) and B∗(λ) given in (11) and (29) into the above, we get

G′(λ) = −
(1− α∗

δγ

γA+ δ
+ α∗

δK
1/γ

)
λ
−1/γ−1

+ α∗
δ

(y
r
− ϵL

r

)
λ
−1

+
2δK

θ2λ

(
K1/γλ

−1/γ − y

r
+
ϵH
r

)1−γ

− 2δK(αδ − 1)λ
−αδ−1

θ2(1− γ)

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ.

(25)

Putting (25) into the relationship (28) in Lemma 5.2 and rearranging give the equation (15).

5.4.7 Proof of Theorem 5.4

Because M δ(λ) and M δ(λ) are lower and upper bounds of Mδ(λ). Moreover, they are

monotonically-decreasing and continuous functions with

M δ(0) =M δ(0) = +∞, and

M δ(+∞) =M δ(+∞) = 0.
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Therefore, λlδ and λuδ satisfying

M δ(λ
l
δ) = Nδ, and M δ(λ

u
δ ) = Nδ

become lower and upper bounds for λ, respectively.

5.4.8 Proof of Theorem 5.4

Let G1 and G2 be the two solution satisfying (9). Then

G1(λ)−G2(λ) =
2δK

θ2(αδ − α∗
δ)(1− γ)

[
(αδ − 1)λ−αδ

∫ λ

0
µαδ−2

{(
G1(µ)−

ϵL
r

+
ϵH
r

)1−γ

−
(
G2(µ)−

ϵL
r

+
ϵH
r

)1−γ}
dµ+ (α∗

δ − 1)λ−α∗
δ

∫ λ

λ
µα

∗
δ−2

{(
G1(µ)−

ϵL
r

+
ϵH
r

)1−γ

−
(
G2(µ)−

ϵL
r

+
ϵH
r

)1−γ}
dµ

]
.

Since γ > 1,

∣∣∣(G1(µ)−
ϵL
r

+
ϵH
r

)1−γ
−
(
G2(µ)−

ϵL
r

+
ϵH
r

)1−γ∣∣∣ ≤ |G1(µ)−G2(µ)|.

Hence,

|G1(λ)−G2(λ)| ≤
2δK

θ2(αδ − α∗
δ)(γ − 1)λ

sup
µ

|G1(µ)−G2(µ)|,

which completes the proof.

5.4.9 Proof of Theorem 5.5

Any solution to (8) satisfies the implicit equation (9). Using the condition (12) and the

assumption in Theorem 5.5 yields that

B∗(λ) =
[
K1/γλ

−1/γ − y

r
+
ϵL
r

− γλ
−1/γ

γA+ δ

− 2δK(αδ − 1)λ
−αδ

θ2(αδ − α∗
δ)(1− γ)

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

]
λ
α∗
δ

≤
[
λ
−1/γ δ

A

{ 1

γA+ δ
− 2

θ2(αδ − α∗
δ)(1− γ)

}
− y

r
+
ϵL
r

]
λα

∗
δ < 0.
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Calculating the derivative of G(λ) gives that

G′(λ) = −λ
−1−1/γ

γA+ δ
− α∗

δB
∗(λ)λ−1−α∗

δ +
2δK

θ2(1− γ)

1

λ2

(
G(λ)− ϵL

r
+
ϵH
r

)1−γ

− 2δK

θ2(αδ − α∗
δ)(1− γ)

[
αδ(αδ − 1)λ−1−αδ

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

+ α∗
δ(α

∗
δ − 1)λ−1−α∗

δ

∫ λ

λ
µα

∗
δ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ

]
≤ − λ−1−1/γ

−γA+ δ
− α∗

δB
∗(λ)λ−1−α∗

δ +
2δK

θ2(1− γ)λ2

[(
G(λ)− ϵL

r
+
ϵH
r

)1−γ

−
αδλ

2
+ (λ2 − λ

2
)α∗

δ

(αδ − α∗
δ)λ

2

(
G(λ)− ϵL

r
+
ϵH
r

)1−γ]
,

where the last inequality is derived by using the fact that γ > 1, accordingly(
G(λ)− ϵL

r
+
ϵH
r

)1−γ
≤

(
G(λ)− ϵL

r
+
ϵH
r

)1−γ
.

Define

P (λ) =
(
G(λ)− ϵL

r
+
ϵH
r

)1−γ
−
αδλ

2
+ (λ2 − λ

2
)α∗

δ

(αδ − α∗
δ)λ

2

(
G(λ)− ϵL

r
+
ϵH
r

)1−γ
.

Then

P (λ) ≥
(
G(λ)− ϵL

r
+
ϵH
r

)1−γ( −λ2α∗
δ

(αδ − α∗
δ)λ

2

)
> 0.

Therefore, G′(λ) < 0.

5.4.10 Proof of Theorem 5.6

Recall the following relationships:

Mδ(λ) =
[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
+
δK(αδ − 1)λ

−αδ

γ − 1

∫ λ

0
µαδ−2

(
G(µ)− ϵL

r
+
ϵH
r

)1−γ
dµ,

Nδ =
(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL),

M δ(λ) =
[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
λ
−1/γ

,

and

M δ(λ) =M δ(λ) +
δK

(γ − 1)λ

(
K1/γλ

−1/γ − y

r
+
ϵH
r

)1−γ
.
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There exists at least one solution λ such that

Mδ(λ) = Nδ,

because Mδ(λ) ≥ M δ(λ), Mδ(λ) ≤ M δ(λ), M δ(0) = M δ(0) = +∞, M δ(+∞) = M δ(+∞) =

0, and Mδ(λ) is continuous. Furthermore, for λlδ ≤ λ ≤ λuδ the following inequalities

2δK

θ2(αδ − α∗
δ)(γ − 1)λlδ

< 1, (26)

(λlδ)
−1/γ δ

A

{ 1

rA+ δ
− 2

θ2(αδ − α∗
δ)(1− γ)

}
− y

r
+
ϵL
r
< 0, (27)

give the assumptions in Theorem 5.4 and Theorem 5.5, respectively. The inequalities (26),

(27) can be rewritten as

M δ

( 2δK

θ2(αδ − α∗
δ)(γ − 1)

)
> Nδ,

M δ

([( δ
A

)γ{ 1

γA+ δ
− 2

θ2(αδ − α∗
δ)(1− γ)

}/(y − ϵL
r

)]γ)
> Nδ,

respectively. Then we obtain the following parameter conditions[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
×

( 2δK

θ2(αδ − α∗
δ)(γ − 1)

)−1/γ
>

(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL),

[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
× A

δ

(y − ϵL
r

)/{ 1

rA+ δ
− 2

θ2(αδ − α∗
δ)(1− γ)

}
>

(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL).

Hence, under the above conditions we can say that there exists a unique free boundary λ and

a unique G(λ) satisfying (12), (15).

5.4.11 Proof of Theorem 5.7

Define

Q(x) ≡ ϕ(x)− Ũ(x; y).

Then Q(x) = 0 because ϕ(x) = Ũ(x; y). Firstly, we show that Q′(x) ≥ 0 for x ≥ x. Then we

can conclude that the second inequality in (6) holds. It is enough to verify that

G(λ) ≥ K1/γλ−1/γ +
ϵL − y

r
,
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for 0 < λ ≤ λ. If we assume that[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
× A

δ

(y − ϵL
r

)/{ 1

rA+ δ
− 2

θ2(αδ − α∗
δ)(1− γ)

}
>

(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL),

then by the proof of Theorem 5.6, G(λ) is monotonically decreasing. SinceG(λ) = K1/γλ−1/γ+

ϵL − y

r
, accordingly

G(λ) ≥ K1/γλ−1/γ +
ϵL − y

r
,

for 0 < λ ≤ λ.

Secondly, we show that the first inequality in (6) holds. For x < x, the free boundary

problem (7) gives that the equality of the first relationship in (6) holds. Hence, it remains to

verify whether or not the solution to (7) satisfies the first inequality in (6) for 0 < x ≤ x. In

fact, we obtain

(β + δ)ϕ(x)− (rx+ ϵL)ϕ
′(x) +

1

2
θ2
ϕ′(x)2

ϕ′′(x)
− γ

1− γ
{ϕ′(x)}1−1/γ − δŨ(x; ϵH)

= K
(
x+

y

r

)1−γ[β + δ

1− γ
− r

x+ ϵL/r

x+ y/r
− θ2

2γ
− γ

1− γ
K−1/γ − δ

1

1− γ

(x+ ϵH/r

x+ y/r

)1−γ]
.

Define

R(x) ≡ β + δ

1− γ
− r

x+ ϵL/r

x+ y/r
− θ2

2γ
− γ

1− γ
K−1/γ − δ

1

1− γ

(x+ ϵH/r

x+ y/r

)1−γ
.

Since R′(x) < 0, R(x) is monotonically decreasing. The following parameter conditions

λlδ ≥ K
[(

− β + δ

1− γ
+
θ2

2γ
+

γ

1− γ
K−1/γ + r

)/
(y − ϵL)

]γ
(28)

for λlδ ≤ λ yield

R(x) ≥ 0.

We have shown that R(x) is monotonically decreasing, hence under the condition (28)

R(x) ≥ 0,

for 0 < x ≤ x. Finally, the condition (28) is equivalent to

M δ

(
λlδ ≥ K

[(
− β + δ

1− γ
+
θ2

2γ
+

γ

1− γ
K−1/γ + r

)/
(y − ϵL)

]γ)
≥ Nδ, (29)
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where

M δ(λ) =
[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
λ
−1/γ

,

and

Nδ =
(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL).

Rewriting the condition (29) gives that[{β + δ

1− γ
− r − 1

2
θ2α∗

δ

}
K1/γ − γ

1− γ
− 1

2
θ2(1− γα∗

δ)
1

γA+ δ

]
× A

δ

(y − ϵL
r

)/{ 1

rA+ δ
− 2

θ2(αδ − α∗
δ)(1− γ)

}
>

(
1 +

θ2

2r
α∗
δ

)
(−y + ϵL).

Therefore, if we take the above parameter conditions, then the solution to the free boundary

problem (7) satisfies the first inequality in (6) for 0 < x ≤ x.

5.5 A Consumption-Saving Model

We have quantified a hedging effect of a market portfolio against undiversifiable idiosyncratic

risk by using an economic concept of the certainty equivalent wealth. We have compared

two value functions where one is allowed to participate in the stock market and the other

is not. In this section, we construct a consumption-saving model for an entrepreneur who

has limited access to the stock market. The wealth process for the entrepreneur with initial

wealth x (x > − 1
r+δ (ϵL + ϵH

δ
r )) follows

dXt = (rXt − ct + ϵt)dt, t ≥ 0.

The entrepreneurial business plan is to maximize her CRRA lifetime utility by controlling

per-period consumption c and the time τ to exit from her risky business and accept a safe

job in the presence of undiversifiable idiosyncratic risk. That is, she would like to find the

following value function:

Ψ(x) ≡ max
(c,τ)

E
[ ∫ τ∧τδ

0
e−βt c

1−γ
t

1− γ
dt+ e−β(τ∧τδ)

∫ ∞

τ∧τδ
e−β(t−τ∧τδ) c

1−γ
t

1− γ
dt
]
. (30)

Firstly, we consider the following maximization problem:

U(x; a) ≡ max
c
E
[ ∫ ∞

0
e−βt c

1−γ
t

1− γ
dt
]
,
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provided that the entrepreneur receives incomes at the rate equal to a infinitely. Then we

obtain the closed form solution given by

U(x; a) = F
(x+ a/r)1−γ

1− γ
, F =

(γ − 1

γ
r +

β

γ

)−γ
,

solving the associated Hamilton-Jacobi-Bellman equation.

By using the conditional expectation of τδ and the principle of dynamic programming, the

value function (30) is reformulated as the following:

Ψ(x) = max
(c,τ)

E
[ ∫ τ

0
e−(β+δ)t

{ c1−γ
t

1− γ
+ δU(Xt; ϵH)

}
dt+ e−(β+δ)τU(Xτ ; y)

]
.

Then the value function satisfies the following optimal stopping problem:

(β + δ)ψ(x)− (rx+ ϵL)ψ
′(x)− γ

1− γ
{ψ′(x)}1−1/γ = δU(x; ϵH), x∗ < x,

ψ(x) = U(x; y), < x ≤ x∗,

ψ(x∗) = U(x∗; y),

ψ′(x∗) = U ′(x∗; y),

(31)

derived similarly as in the optimal stopping problem (7). Here, x∗ is the critical wealth level

under which it is optimal for the entrepreneur who has limited access to the stock market to

quit her risky business and accept a safe job. To solve the optimal stopping problem (31), we

employ the modified convex-duality approach developed by Bensoussan et al. (2013). More

specifically, we introduce a dual variable ρ defined by the marginal value of the value function

ψ. It follows that

ρ(x) ≡ ψ′(x), and ρ̄ ≡ F (x∗ + y/r)−γ .

By differentiating the first equality in (31) with respect to x, we obtain

(β + δ)ρ(x)− rρ(x)− (rx+ ϵL)ρ
′(x) + {ρ(x)}−1/γρ′(x) = δF (x+ ϵH/r)

−γ .

We also introduce a function H satisfying

H
(
ρ(x)

)
≡ x+

ϵL
r
.
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Then the first relationship in (31) is rewritten in terms of newly defined variables ρ, H as the

following:

(β + δ − r)H ′(ρ)ρ− rH(ρ) + ρ−1/γ = δF
(
H(ρ)− ϵL

r
+
ϵH
r

)−γ
H ′(ρ), 0 < ρ < ρ̄, (32)

where ρ̄ is a free boundary to be determined according to the value-matching and smooth-

pasting conditions.

We can always write a general solution to the non-linear differential equation (32) as the

following:

H(ρ) = C(ρ)ρr/(β+δ−r) +
1

{r + (β + δ − r)/γ}
ρ−1/γ ,

where C(ρ) is an arbitrary function of ρ. By substituting the general solution H(ρ) into the

equation (32), we get

H(ρ) =D(ρ)ρr/(β+δ−r) +
δF

(β + δ − r)(1− γ)
ρ−1

(
H(ρ)− ϵL

r
+
ϵH
r

)1−γ

+
1

{r + (β + δ − r)/γ}
ρ−1/γ

− δF (β + δ)

(1− γ)(β + δ − r)2
ρr/(β+δ−r)

∫ ρ

ρ

ξ−r/(β+δ−r)−2
(
H(ξ)− ϵL

r
+
ϵH
r

)1−γ

dξ,

where D(ρ) is a constant to be determined and satisfies

D(ρ) =C(ρ)− δF

(β + δ − r)(1− γ)
ρ−r/(β+δ−r)−1

(
H(ρ)− ϵL

r
+
ϵH
r

)1−γ
.

Using the smooth-pasting condition of ψ′(x∗) = U ′(x∗; y), we obtain

F 1/γρ−1/γ − y

r
+
ϵL
r

= D(ρ)ρr/(β+δ−r) +
δF

(β + δ − r)(1− γ)
ρ−1

(
F 1/γρ−1/γ − y

r
+
ϵH
r

)1−γ

+
1

{r + (β + δ − r)/γ}
ρ−1/γ .

(33)

Furthermore, using the value-matching condition of ψ(x∗) = U(x∗; y) we get

[(β + δ − r)F 1/γ − γ

1− γ

]
ρ1−1/γ + (y − ϵL)ρ =

δF (F 1/γρ−1/γ − y/r + ϵH/r)
1−γ

1− γ
. (34)

The free boundary ρ is easily determined from (34) numerically, accordingly, the relationship

(33) yields the constant D(ρ).
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µ σ γ

δ 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054 1.5 2 2.5

0.20 −33.1610 −33.3528 −33.5374 −33.4288 −33.3528 −33.2831 −36.0946 −33.3528 −30.4592

0.15 −29.9395 −30.2410 −30.5190 −30.3569 −30.2410 −30.1331 −34.0770 −30.2410 −26.2180

0.10 −20.9649 −21.5240 −22.0136 −21.7307 −21.5240 −21.3276 −28.2844 −21.5240 −14.5062

Table 1: Critical wealth level x for various parameter values of µ, σ, and γ. Default

parameter values: β = 0.0371, r = 0.0371, ϵL = 0.25, y = 1.5, and ϵH = 2.5. The borrowing

limits for three value of δ ∈ {0.20, 0.15, 0.10} are computed as the following: −57.8958,

−55.3598, −50.9741, respectively. Note that the values of x are negative and above the

borrowing limits.

46



µ σ

x 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054

x 0.9931 1.0515 1.1210 1.0784 1.0515 1.0288

x+ 5 1.2152 1.2971 1.3933 1.3344 1.2971 1.2654

x+ 10 1.4593 1.5649 1.6880 1.6128 1.5649 1.5242

x+ 15 1.7191 1.8481 1.9978 1.9063 1.8481 1.7985

x+ 20 1.9891 2.1410 2.3168 2.2094 2.1410 2.0826

µ σ

x 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054

x 20.2924 22.3104 24.2082 24.3378 22.3104 20.5369

x+ 5 22.1575 24.7621 27.2861 27.1852 24.7621 22.6599

x+ 10 24.6234 27.8606 31.0440 30.7298 27.8606 25.3837

x+ 15 27.6163 31.5061 35.3581 34.8562 31.5061 28.6223

x+ 20 31.0442 35.5901 40.1062 39.4434 35.5901 32.2777

Table 2: The sensitivity of optimal consumption (top panel) and risky portfolio

(bottom panel) strategies to changes in investment opportunity. Default parameter

values: δ = 0.10, β = 0.0371, r = 0.0371, γ = 2, ϵL = 0.25, y = 1.5, and ϵH = 2.5.
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µ σ

x 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054

x∗ + 5 8.9447 11.0834 12.9441 11.8534 11.0834 10.2833

x∗ + 10 9.9501 12.3184 14.5741 13.2528 12.3184 11.4517

x∗ + 15 10.8978 13.5411 16.1320 14.6036 13.5411 12.5744

x∗ + 20 11.8029 14.7287 17.6173 15.9104 14.7287 13.6564

Table 3: The sensitivity of hedging effect HE(x) to changes in investment opportu-

nity. Default parameter values: δ = 0.10, β = 0.0371, r = 0.0371, γ = 2, ϵL = 0.25, y = 1.5,

and ϵH = 2.5.
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Figure 1: Optimal consumption and risky portfolio strategies which are functions

of initial wealth x. Default parameter values: β = 0.0371, r = 0.0371, µ = 0.1123,

σ = 0.1954, γ = 2, ϵL = 0.25, y = 1.5, and ϵH = 2.5.
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Figure 2: Optimal consumption and risky portfolio strategies which are functions

of initial wealth x. Default parameter values: δ = 0.10, β = 0.0371, r = 0.0371, µ = 0.1123,

σ = 0.1954, ϵL = 0.25, y = 1.5, and ϵH = 2.5.
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Figure 3: Certainty equivalent wealth induced by running a risky business as

a function of initial wealth x for various values of δ. Default parameter values:

β = 0.0371, r = 0.0371, µ = 0.1123, σ = 0.1954, γ = 2, ϵL = 0.25, y = 1.5, and ϵH = 2.5..

Figure 4: Certainty equivalent wealth induced by running a risky business as a

function of initial wealth x for various values of γ. Default parameter values: δ = 0.10,

β = 0.0371, r = 0.0371, µ = 0.1123, σ = 0.1954, ϵL = 0.25, y = 1.5, and ϵH = 2.5.
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Figure 5: The hedging effect HE(x) of risky portfolio against undiversifiable id-

iosyncratic risk as a function of initial wealth x for various values of δ. Default

parameter values: β = 0.0371, r = 0.0371, µ = 0.1123, σ = 0.1954, γ = 2, ϵL = 0.25, y = 1.5,

and ϵH = 2.5.

Figure 6: The hedging effect HE(x) of risky portfolio against undiversifiable id-

iosyncratic risk as a function of initial wealth x for various values of γ. Default

parameter values: δ = 0.10, β = 0.0371, r = 0.0371, µ = 0.1123, σ = 0.1954, ϵL = 0.25,

y = 1.5, and ϵH = 2.5.

52


