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VPIN, Jump Dynamics, Inventory Announcements in

Energy Futures Markets

Abstract

The Volume-Synchronized Probability of Informed Trading (VPIN) metric is pro-
posed by Easley et al. (2011, 2012) as a real-time measure of order flow toxicity in
an electronic trading market. This paper examines the performance of VPIN around
inventory announcements and price jumps in crude oil and natural gas futures markets
with a sample period from January 2009 to May 2015. We have obtained several inter-
esting results: (1) VPIN increased significantly around the inventory announcements
with price jumps (scheduled events) and at jumps not associated with any scheduled
announcements (unscheduled events). (2) VPIN did not peak prior to the events but
shortly after. (3) A minor variation of VPIN based on exponential smoothing signifi-
cantly improved its early warning signal property. Moreover, this estimate of toxicity
returns faster to the pre-event level following a spike. (4) In general, the VPIN estimate
of the toxicity level is higher in natural gas futures than in crude oil futures during our
sample period.
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1 Introduction

High frequency trading (HFT) accounts for a major portion of trading volume in the

U.S. equity and futures markets. In electronic limit order markets, there are no des-

ignated market markers, and liquidity arises endogenously from the orders submitted

by HFT and non-HFT market participants. Technological advances in computation

and communication allow HFT traders to play a crucial role in liquidity supply and

demand in the trading environment. For example, Hendershott et al. (2011) present

empirical evidence that algorithmic trading improves liquidity for large stocks; and

Hasbrouck and Saar (2013) analyze low-latency activity and find that HFT improves

market quality measures such as liquidity in the limit order book. Brogaard et al.

(2014) provide evidence that HFT trading accelerates price efficiency and provision of

liquidity at stressed times such as during the most volatility days. This literature focus

primarily on normal market conditions.

It has been recognized that when HFT participants have significant exposure to

large downside market moves and if the toxicity increases, they may become liquidity

consumers rather than providers or even abandon market-making activities. This will

result in illiquid markets and induce an increase in short term price volatility.1 Easley

et al. (2011, 2012) present the Volume Synchronized Probability of Informed Trading

(VPIN) as a real-time indicator for measuring “order flow toxicity” faced by market

makers in HFT trading environments. The order flow is regarded as toxic when mar-

ket makers face strong adverse selection risk. They may be unaware of when such

market conditions arise resulting in them providing liquidity at a loss. Hence, market

markers’ estimate of the real time-varying toxicity level becomes a essential component

to managing their liquidity provision. VPIN is a timely new innovation developed to

meet the demand to measure the order flow toxicity for market makers, exchanges and

regulators. Easley et al. (2012) have successfully demonstrated that VPIN reached the

highest level of order flow toxicity in E-mini futures contracts two hours prior to the

so-called flash crash on May 6, 2010. They also provided evidence that VPIN achieved

very high levels (the cumulative distribution function (CDF) of VPIN was equal or

1On May 6, the market flash crash is an example (see Kirilenko et al. (2015) and Easley et al. (2012)).
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greater than 0.9) on May 5, 2011, when speculators unwound their large speculative

positions in WTI crude oil futures. As speculators sought liquidity and as market mak-

ers realized that the selling pressure was persistent, they started to withdraw, which in

turn increased the level of order flow toxicity. Andersen and Bondarenko (2014, 2015),

conversely, documented in their empirical investigation that VPIN is a poor predicator

of short-run volatility, and that VPIN did not reach an all-time high prior to the flash

crash on May 6 but rather following the event. They suggest that the predictive power

of VPIN is mainly due to a mechanical relationship with underlying trading intensity.

In a rejoinder, Easley et al. (2014) point out there is a confusion with the analysis

Andersen and Bondarenko (2014) carry out explaining the contradictory conclusion.

Wu et al. (2013) analyze five and half years of data from the 100 most liquidity futures

contracts traded worldwide in major exchanges. Their test results confirm that VPIN

is a strong predictor of liquidity-induced volatility. With selection of parameter choices,

the false positive rates are about 7% averaged over all futures contracts in their data

set. When the CDF of VPIN rises above 0.99, the volatility in the subsequent time

windows is higher than 93% on average. Using 120 stocks in NASDAQ for 2008 and

2009, Yildiz et al. (2013) document that the order flow toxicity in volume bucket τ − 1

is positively related to the volatility in bucket τ even after controlling for trade inten-

sity variables. Cheung et al. (2015) study the behavior of VPIN around the mandatory

call events of callable bull/bear option contracts at the Hong Kong Option Exchange.

They conclude that high values of VPIN around mandatory call events indicates the

existence of large volume imbalances.

In short, there is an ongoing debate on the predictive power of VPIN and future

liquidity-induced short run volatility.2 In general, most previous literature assesses the

usefulness of VPIN as a signal for order flow toxicity at a single event such as the May

6 market flash crash and selected single trading day events in crude oil futures.3

Observers of energy futures markets have long noted that energy futures prices are

very volatile and often exhibit jumps (price spikes) at inventory news releases. The

theory of storage (see Kaldor (1939), Working (1948, 1949), Brennan (1958), Telser

2For other empirical works related to using VPIN refer to Wei et al. (2013) and others.
3See Easley et al. (2012).
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(1958) and others) demonstrates that the level of inventory is one of major factors

determining spot and futures prices of consumption-based commodities.4 Volatility

behavior of energy futures prices has been investigated by Mu (2007), Chan et al. (2010)

and others. Mu (2007) finds that extreme weather conditions and low inventories are

important factors affecting natural gas futures volatility within a single equation model

with a GARCH error process. Chan et al. (2010) studies the common jump dynamics in

natural gas futures and spot markets within a bivariate autoregressive jump intensity

GARCH framework. They particularly examine the role of weather as a short-run

demand factor and inventory as a short-run supply factor in explaining price spikes

and time varying volatility in spot and futures returns.

Previous papers examining price behavior and volatility surrounding inventory an-

nouncements of energy stocks include Linn and Zhu (2004), Gay et al. (2009), and

others. Linn and Zhu (2004) report an increase in volatility before and after the re-

lease of inventory reports by the Energy Information Administration. Gay et al. (2009)

demonstrate that one percent unexpected increase in natural gas inventory results in

an approximately one percent drop in the natural gas price. Furthermore, they provide

evidence that prices react most strongly to forecasts of analysts with better prior fore-

cast accuracy. Bjursell et al. (2015) applies nonparametric methods to identify jumps

in futures prices and intraday jumps surrounding inventory announcements of crude

oil, heating oil and natural gas contracts traded on the New York Mercantile Exchange

with a sample period of the intraday data spanning from 1990 to 2008. They obtained

several interesting empirical results. (1) Large volatility days are often associated with

large jump components and large jump components are often associated with the En-

ergy Information Administrations inventory announcement dates and other important

news related to energy markets. (2) The volatility jump component is less persistent

than the continuous sample path component. (3) Volatility and trading volume are

higher on days with a jump at the inventory announcement than on days without a

jump at the announcement. Furthermore, the intraday volatility returns to normal

faster following inventory announcements with jumps than after announcements with-

4Crude oil and natural gas are classified as consumption-based commodities. Furthermore, we should
mention that convenience yield has an inverse relationship with level of inventory.
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out jumps. Based on previous results, we can expect that the order flow becomes more

toxicity due to high volatility and trading volume during inventory announcement pe-

riods. Therefore, we have an ideal empirical test setting for examining the performance

of VPIN as a real-time indicator of order flow toxicity and early warning indicator for

market turbulence around repetitive scheduled information and liquidity events.

The major purposes of this paper are twofold: (1) We examine the behavior of

VPIN around inventory announcements with price jumps (scheduled events) and price

jumps not associated with scheduled events in crude oil and natural gas futures mar-

kets during a recent sample period spanning from January 1, 2009 to May 31, 2015;

and (2) we propose a minor variation to the calculation of VPIN by applying expo-

nential smoothing in the last stage of the calculation. We believe this will increase the

sensitivity of VPIN to capture recent order flow toxicity. We have obtained several

interesting results:

1. The VPIN levels increase significantly around inventory announcements with a

price jump (scheduled events) as well as at jumps not associated with any inven-

tory announcements (unscheduled events).5

2. VPIN does not peak prior to the scheduled inventory announcements but rather

after these events.

3. A minor variant of VPIN applying exponential smoothing significantly improves

the early warning signals property and the modified VPIN estimate returns faster

to normal levels after the events.

4. In general, the values of VPIN in natural gas futures are higher than the VPINs

in crude oil futures during our sample period. These results are consistent with

previous findings by Bjursell et al. (2015) that volatility in natural gas futures

are higher than in crude oil futures.

The organization of the paper is as follows. Section 2 presents the empirical method-

ology on identification of intraday price jumps and estimation of the VPIN metric.

Section 3 discusses inventory announcements, the contract specifications and the data.

5Unscheduled events refer to jumps which cannot be associated with any event based on Bloomberg’s
economic calendar.
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Section 4 presents empirical results. We conclude the paper in Section 5.

2 Empirical Methodology

This section consists of two parts. Section 2.1 presents the statistical procedure used

to identify the intraday timing of price jumps. Section 2.2 describes the computational

algorithm of Volume-Synchronized Probability of Informed Trading (VPIN) metric

proposed by Easley et al. (2012) (EOL) and its variants.

2.1 Asset Price Dynamics and Jumps Statistics

Let Xt = logSt denote the logarithmic price where St is the observed price at time t.

Assume that the logarithmic price process follows a continuous-time diffusion process

Xt coupled with a discrete process defined as,

dXt = µtdt+ σtdWt + κtdqt, (1)

where µt is the instantaneous drift process and σt is the diffusion process; Wt is the

standard Wiener process; dqt is a Poisson jump process with intensity λt, that is

P(dqt = 1) = λtdt; and κt is the logarithmic size of the price jump at time t if a

jump occurred. If Xt− denotes the price immediately prior to the jump at time t, then

κ = Xt −Xt−.

We use a nonparametric test developed by Lee and Mykland (2008), which identifies

the significant intraday jump returns and thus provides the intraday arrival time, real-

ized size and direction of jumps. The test statistic is applied to the intraday logarithmic

returns, rti , by comparing its size to the local variation (or instantaneous volatility) of

the return process at time ti. Specifically, the realized intraday return is compared to

an estimate of the instantaneous volatility of the price process observed immediately

prior to the tested return, rti . Lee and Mykland (2008) suggest estimating the volatil-

ity by using a variation of the realized bipower variation (see Barndorff-Nielsen and

Shephard (2004, 2006)),
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BVt =
π

2

mt

mt − 1

mt∑
j=2

|rtj ||rtj−1 |, (2)

which is robust to jumps. The jump detection statistic is calculated as Lti = rti σ̂
−1
ti

where σ̂ti = (K − 2)−1∑i−1
j=i−K+2

∣∣rtj ∣∣ ∣∣rtj−1

∣∣. Hence, the volatility is estimated based

on the K intraday returns preceding rti where a sufficiently large window size is chosen

so that the impact from previous jumps is minimized. Lee and Mykland (2008) report

that there exists a range of values of K such that larger values only make a marginal

contribution. The appropriate choice of K depends on the sampling interval. We apply

the statistic to five-minute intraday returns, and follow the recommendation by Lee

and Mykland (2008) and calculate the statistic based on the past 270 returns.

Lee and Mykland (2008) obtain a rejection region by deriving the limiting distri-

bution of the maximum of the statistic under the null hypothesis of no jump. The

statistic is calculated as (|Lt| − Cn) /Sn where

Cn =
1

c
(2 log n)1/2 − log π + log (log n)

2c (2 log n)1/2

where c =
√
2/

√
π and Sn = 1/

(
c (2 log n)1/2

)
. The cumulative distribution function

is derived as, P (ξ ≤ x) = exp (−e−x) . Thus, for a given significance level, we can solve

for X to determine the threshold for significant jumps. We report empirical results for

the one percent significance level. Hence, we reject the null hypothesis of no jump for

values of the maximum statistic larger than β0.01 = − log (− log (0.99)) = 4.60.

2.2 VPIN Metric

Volume-Synchronized Probability of Informed Trading (VPIN) is calculated following

the algorithm described in Easley et al. (2012) and Abad and Yagüe (2012) and outlined

here.

1. Time bars: Initially, trades are aggregated based on one-minute intervals into

time bars. We also produce results based on ten-second intervals. The trade

volume is aggregated per time bar and the closing price is recorded in order to

calculate the return per time bar. The overnight return is omitted; instead, the
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open to close return is used for the first time bar per day. The trade activity

within the time bar is then treated as if the contracts were traded at the closing

price and thus have the same return.

2. Volume buckets and bulk classification: A volume bucket is obtained by adding

trading volume from consecutive time bars until the total volume reaches the

volume bucket size (VBS), where after a new volume bucket is constructed. Hence,

depending on the trade activity, a volume bucket may require multiple time bars

or just a fraction of one time bar. The remaining trades from a time bar are

applied to the subsequent volume bucket. VBS is set to the average number of

daily traded contracts divided by 50 following EOL’s work.6

3. The trade direction is determined per time bar in probabilistic terms where the

buy volume is obtained by multiplying the trade volume by Z (∆P/σ∆P ) where

σ∆P denotes the standard deviation of all price changes for the whole sample.

Similarly, the sell volume is given by the volume multiplied by 1− Z (∆P/σ∆P ).

The order imbalance, OIτ , is then calculated as the absolute difference between

buy and sell volumes.

4. Finally, VPIN is calculated based on n consecutive volume buckets and is given

by, ∑n
τ=1 OIτ

nVBS
. (3)

The time series of VPIN estimates are obtained using a moving window of volume

buckets. That is, the first VPIN is calculated using the volume buckets [1, n]. The

next estimate is based on [2, n+ 1] and so on.

We can rewrite the VPIN equation (3) as follows,

VPIN =
n∑

τ=1

1

n

OIτ

VBS
(4)

From equation (4), we see that VPIN is based on a simple moving average with equal

weight (1/n) given to current and past observations. VPIN is designed to have a

6The results reported are based on using the daily average across the whole sample. We also divided the
sample into two subsets and updated the VBS based on these but obtained qualitatively analogous results.
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forecasting property; thus it may be desirable to give more weight to recent observations

in order to capture newly arrived information. For this reason, we propose to use

exponential weighted moving average to calculate VPIN instead of a simple moving

average with equal weights. The VPIN with exponential smoothing, EXPS VPINα, where

α is the smoothing constant is described as follows. Let,

ντ =
OIτ

VBS
, (5)

EXPS VPIN(α) is then defined as,

EXPS VPINα,τ = αντ + (1− α)EXPS VPINα,τ−1. (6)

Given a moving window of size n, the initial value of EXPS VPINα is then based

on the first n values of νt. We need to select the smoothing constant α. The higher

value of α, the more weight is given to the current and most recent observations.7 In

this paper, we specify α = 0.1 (i.e., EXPS VPINα=0.1) and a moving window of n = 50

observations to calculate VPIN.

3 Contract Specifications, Data and Inventory

Announcements

3.1 Contract Specifications and Data

In this study, we examine price series for two contracts from the U.S. energy futures

markets. The contracts are on crude oil and natural gas which are traded on the New

York Mercantile Exchange (NYMEX).

The futures contract on crude oil began trading in 1983. The contract calls for

delivery of both domestic as well as international crude oils of different grades in

Cushing, Oklahoma. The contract, which is listed nine years forward, trades in units

of 1, 000 U.S. barrels (42, 000 gallons) and is quoted in U.S. dollars and cents per barrel.

7Further discussions on exponential smoothing moving average procedures and the statistical properties
are referred to in Brown (1962), Chatfield et al. (2001) and Diebold (2007).
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The natural gas futures contract began trading on April 3, 1990 and is based on

delivery at the Henry Hub in Louisiana.8 The contract trades in units of 10,000 million

British thermal units (mmBtu) and is quoted in dollars and cents per mmBtu. Con-

tracts are traded for about thirteen years forward (the current calendar year plus the

next twelve years). Appendix A.I presents detailed specifications for these contracts.

The price series range from January 1, 2009 to May 31, 2015. Each transaction

includes a date and time stamp and the transaction price. Since January 31, 2007,

the trading hours have been 9 : 00 AM to 2 : 30 PM. The contracts began trading

electronically via the Globex trading platform in the spring of 2007. The electronic

trading became consistently higher than pit trading around September of 2007 for these

contracts, and has since remained the predominant trading platform. Hence, we use

prices from this platform. The electronic trading takes place from 6:00 PM to 5:45 PM

the following day; however, for consistency we consider only the transactions for the

same hours during which the pit trading takes place as this is the most liquid time.

Furthermore, we use the data series from nearby contract months. During the maturity

month, we shift to the first deferred contract month, using the daily trading frequency

as the switch indicator. The data are filtered to limit any biased results due to illiquid

trading.

3.2 Inventory Announcements

EIA releases weekly reports on the inventory status of crude oil and natural gas. Since

2003, a smaller version of the inventory report for crude oil with highlights and sum-

marizing tables is released at 10:30 AM on Wednesdays; a full report is published after

1:00 PM on the same day. The EIA also compiles and releases a weekly natural gas

storage report with estimates of natural gas in underground storage. EIA releases the

report at 10:30 AM on Thursdays.9

Data on the market’s expectation on the weekly changes in inventories in these com-

modities are obtained from Bloomberg. Bloomberg reports weekly surveys of market

8The natural gas futures contract is commonly cited as the benchmark for the spot market, which accounts
for nearly 25 percent of the energy consumption in the U.S.

9Further discussion on the inventory reports is referred to EIA’s website: http://www.eia.doe.
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analysts’ forecasts of the inventory levels. The reports include statistics such as mean,

median, low and high values of the forecasts where the number of analysts ranges from

fifteen to thirty for these commodities. The surveys also include actual inventory levels

and, hence, allow us to obtain the surprise at time t defined as the difference between

the actual value, At, and the consensus forecast, Ft, where the median is chosen as the

forecast. Since small differences between actual and forecast values can be expected

without materially impacting the market, we focus on significant surprises, which we

define as surprises larger than one standard deviation, σt (i.e., standard deviation of

the differences between actual and forecast values).

4 Empirical Results

Section 4.1 reports summary statistics of VPIN and the time series behavior of VPIN

and price returns over the sample period. Section 4.2 documents the toxicity metrics’

behavior on a particular day, and their properties around price jumps at inventory

announcements and jumps not associated with any scheduled event.

4.1 Exploratory Data Analysis

Figure 1 plots daily time series of VPIN and daily continuous returns for crude oil

(Panel A) and natural gas (Panel B). The black lines are the continuous returns based

on close to close prices. The green lines denotes the daily VPIN represented by the

last VPIN estimate per day.

[Insert Figure 1 here]

Table 1 summarizes the number of trading days with significant positive and nega-

tive jumps per year, and highlight two interesting results: (1) natural gas futures have

a greater number of jumps than crude oil futures; and (2) there are more negative than

positive jumps in both commodities. These empirical results are consistent with the

findings by Bjursell et al. (2015) using sample data from 1990 to January 2008.

[Insert Table 1 here]
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Table 2 reports statistical properties of VPIN and EXPS VPINα=0.1 for the two com-

modities based on the whole sample period and two subsample periods. Results denoted

by EXPS VPINa are based on the sample period from 2009 to 2011 and EXPS VPINb from

2012 to 2015, May 31. Based on skewness and kurtosis values, we reject that VPIN and

its variants have a normal distribution. The result of the Augmented Dickey-Fuller

test confirms that they are stationary time series. We also present the percentiles of

the empirical distributions of VPIN and EXPS VPINα=0.1 at 0.1, 0.25, 0.5, 0.75 and 0.9,

respectively. Comparing EXPS VPINα=0.1,a and EXPS VPINα=0.1,b show that the distri-

bution has been relatively stable over time. Furthermore, VPIN is higher for natural

gas as well as more volatile.

[Insert Table 2 here]

Table 3 reports the average number of contracts traded for crude oil and natural

gas futures for the whole sample period and two subsample periods. We observe that

both contracts have been more actively traded over the last three years as indicated by

the increased average daily trading volume. Following Easley et al. (2012), we set the

daily number of volume buckets to 50. That is, the volume buckets size (VBS) is set to

the average daily volume divided by 50. VBS has increased in both commodities over

the latter half of the sample data. Nevertheless, the main conclusions henceforth do

not change based on whether the empirical analyze is based on the VBS on all data or

updated per subsets. We only include analyses based on the whole sample to preserve

space.

[Insert Table 3 here]

4.2 The Behavior of VPIN around News Events and Price

Jumps

In this section we first examine VPIN versus EXPS VPINα=0.1 on May 5, 2011, for crude

oil futures. Easley et al. (2011) analyzed VPIN’s behavior on this day when there was a

large selling pressure due to market participants taking profits. This single day event

provides an ideal setting to compare the performance of VPIN and EXPS VPINα=0.1.
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Table 4 presents details of the behavior of the intraday returns, VPIN, EXPS VPINα=0.1

and ECDF(VPIN) and ECDF(EXPS VPINα=0.1), respectively. Figure 2 plots the intraday

dynamics of VPIN for May 5, 2011, in the crude oil market.

From Table 4 and Figure 2 we observe that the intraday returns (continuous line in

the top panel) starts falling shortly after the pit trading commences. Initially, the price

fall at a relatively slow pace but around 10:40AM begins to drop faster and continues

to drop until 11:13AM, after which the price stabilizes for a while and even increases

a bit before dropping for the remainder of the day. Referring to the EXPS VPINα=0.1

values (dashed line in Panel B), we see an increase immediately after open to about

the 80th percentile, which may indicate some adverse market conditions. Subsequently

the EXPS VPINα=0.1 falls for about an hour.

Referring to Panel C and the empirical cumulative density function of the VPIN

metrics, the ECDF(EXPS VPINα=0.1) starts increasing rapidly around 10:15AM and peaks

around 10:55AM. At this time the futures markets is dropping quickly but has yet to

drop 2% in the next 15 minutes and 4% for the day; hence EXPS VPINα=0.1 provides

an indication to get out of the market or widen bid-asks spreads significantly. It is

noticeable that while both VPIN and EXPS VPINα=0.1 start increasing rapidly shortly

before 11AM, EXPS VPINα=0.1 increases faster by putting more weight on more recent

observations. EXPS VPINα=0.1 peaks for the day at around 11:15AM whereas VPIN

peaks around 12:00AM. In short, we find that EXPS VPINα=0.1 significantly improve

the early warning signals in comparison with VPIN on May 5, 2011.

[Insert Table 4 and Figure 2 here]

Next, we broaden the analysis and look at the behavior and predictive power of

VPIN versus EXPS VPINα=0.1 to detect adverse conditions at inventory releases. In

particular, we test whether VPIN on average increases prior to these events conditioned

on whether there are significant jumps and surprises in the announcement. We use

one-way analysis of variance and estimate the regression model,

VPINt,k = β0 +
∑
j∈J

βjDj + ϵ. (7)

13



The dependent variable VPINt,k is the tth VPIN estimate associated with the kth event.

The dummy variable Dj denotes the jth time of the VPIN estimate where j ∈ J is the

timings of VPIN observations surrounding the event. In the regression results below,

we consider j = −19, . . . ,−1, 1, . . . , 60. That is, we include 20 VPIN estimates prior

to the event and 60 following the event where D−1 and D1 denote the VPIN estimates

just prior and after the event. Notice that there is no zero dummy variable, D0. D−20

serves as the benchmark assumed to be absent any information about the content of the

event. The value of D−20 is the intercept of our regression. We include 60 subsequent

observations since VPIN is calculated based on a moving window with 50 observations.

Table 5 presents regression results for the scheduled event when the inventory report

is released. We consider cases when there is a surprise in the forecast greater than one

standard deviation and a negative and significant jump at the time of the release. There

are three sets of results per commodity. Column I gives the results for the original VPIN

definition (by EOL) using a simple average based on the 50 past observations. Columns

II and III report estimates using exponential moving average with smoothing parameter

α set to 0.05 and 0.10. Panel A (crude oil) and C (natural gas) in Figure 3 plot the

mean values of VPIN, EXPS VPINα=0.05 and EXPS VPINα=0.1 derived from the estimates

in Table 5.

[Insert Tables 5 and 6, and Figure 3 here]

Table 6 documents the results of the regression model for VPIN versus EXPS VPINα=0.05

and EXPS VPINα=0.1 at jumps which are not associated with any inventory reports. The

time series behavior of the mean values of VPIN, EXPS VPINα=0.05, and EXPS VPINα=0.1

derived from the regression coefficients reported in Table 6, are plotted in Figure 4.

Table 7 reports estimates from the regression model, Equation (7), with the empiri-

cal cumulative densities (ECDF) of VPIN, EXPS VPINα=0.05 and EXPS VPINα=0.10 for the

same events considered in Table 5. Table 8 presents the equivalent results for jumps

which are not associated with any scheduled events. Panels B and D in Figure 3 and

4 plot the derived mean values.

[Insert Tables 7 and 8, and Figure 4 here]
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From the above empirical results, we can summarize the following interesting re-

sults. First, the values of VPIN and its variant increased significantly around the

inventory announcements period with price jump (scheduled events) and jumps with-

out inventory announcements (unscheduled events). These results suggest that VPIN

provides a signal that order flow becomes more toxic around the release of new events

and at price jumps.

Second, we observe that on average VPIN and EXPS VPINα did not reach local max-

ima prior to these events but rather shortly following the events. For example, VPIN

did not reach its highest value until the 53rd VPIN after the news release with jumps

while on average EXPS VPINα=0.1 reached its highest value at the 4th VPIN observed

value following the event. Furthermore, the value of EXPS VPINα=0.1 is statistically

different from the benchmark values prior to the occurrence in crude oil futures. The

equivalent conclusions hold for natural gas futures in Table 5 and Figure 3 as well as

for price jumps without inventory release events reported in Table 6 and Figure 4.

Third, these empirical results support that applying exponential smoothing to the

VPIN calculation (EXPS VPINα=0.1) can significantly improve the early warning signals

property.

Fourth, the ECDF results from Table 7 and panels B and D in Figure 3 show that

the ECDF of VPIN never goes above 0.9 whereas ECDF(EXPS VPINα=0.1) surpasses

0.98 shortly after the inventory report is released, which affirms that using exponential

smoothing gives a stronger and faster indication of toxicity. Furthermore, the results

confirm that there is no clear pattern in VPIN prior to the scheduled releases. Table

8 and panels B and D in Figure 4 for unscheduled events show a similar story though

the ECDF values do not reach as high levels.

In summary, we find that VPIN is a useful tool to signal periods of turbulent price

behaviors during news releases and price jumps, but the metric does not demonstrate

its early warning signal property in crude oil and natural gas futures. Our results

are consistent with the finding of Andersen and Bondarenko (2014) and Andersen

and Bondarenko (2015) on assessing the early warning signal power of VPIN in S&P

500 E-mini futures. The minor variant of VPIN (EXPS VPINα=0.1) we proposed, can
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significantly improve the warning signal property of the VPIN and it returns faster to

the normal pre-event levels following the turbulent period.

5 Summary and Conclusions

This paper assesses the performance of VPIN and a variant of VPIN applying exponential

smoothing around inventory announcements with price jumps and price jumps not

associated with scheduled events in crude oil and natural gas futures markets. Our

sample period spans from January 1, 2009 to May 31, 2015. We believe that over six

years of intraday sample data provide reliable and robust empirical results rather than

relying on single day or a short time period as previous evaluations of the properties

of VPIN have done. We obtain several interesting empirical results.

First, we document that VPIN increased significantly around inventory announce-

ments with price jump (scheduled events) and jumps not associated with unscheduled

events. These results suggest that order flow gains more toxicity during the release of

new events and periods with price jumps.

Second, we find VPIN did not reach local maxima prior to the events but rather

after the occurrences of the events. Our results are consistent with previous findings

by Andersen and Bondarenko (2014) and Andersen and Bondarenko (2015).

Third, we demonstrate that a minor variant of VPIN with exponential smoothing

significantly improves the early warning signals property of the VPIN and returns faster

than VPIN to normal levels after the event time.

Fourth, in general, the values of VPIN in natural gas futures are higher than the

VPIN in crude oil futures during our sample period. These results are consistent with

previous findings by Bjursell et al. (2015) that the volatility of natural gas futures

markets is higher than the volatility of crude oil futures markets.

In the final version of this paper, we will include an examination of VPIN versus

EXPS VPINα=0.1 (and other values of the smoothing parameter α) on the contribution

to forecasting power of short-term volatility with the control of trading volume and

realized volatility or implied volatility of crude oil and natural gas futures around news

events and price jumps.
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Tables

Table 1: Yearly summary per commodity. No. Days denotes the number of days with trade data. Total
presents the number of significant jumps with the number of positive and negative jumps in the two following
columns. The time series for 2015 ends at the end of May.

Crude Oil - No. Jumps Natural Gas - No. Jumps
Year No. Days Total Positive Negative Total Positive Negative
2009 258 10 7 3 34 17 17
2010 258 22 9 13 41 14 27
2011 258 18 8 10 55 24 31
2012 258 21 7 14 41 18 23
2013 258 8 2 6 46 23 23
2014 258 19 9 10 44 21 23

201505 101 7 7 0 13 5 8

Table 2: Summary statistics for VPIN per futures contract and for EXPS VPINα=0.10. The third
(EXPS VPINα=0.10,a) and fourth columns (EXPS VPINα=0.10,b) per commodity denote results for subsets of
the sample data using the exponential smoothing approach. EXPS VPINα=0.10,a is based on data from Jan-
uary 2009 to December 2011, and EXPS VPINα=0.10,b is based on data from January 2012 to May 2015.
Kurtosis denotes estimates of the excess kurtosis. AR(1) is the auto correlation for lag 1 for the VPIN time
series. ADF is the augmented Dickey-Fuller test statistic. No. Obs denotes the number of observations. The
values labelled CDF are the respective percentile based on the ECDF of the VPIN values.

Crude Oil Natural Gas
VPIN EXPS VPIN EXPS VPINa EXPS VPINb VPIN EXPS VPIN EXPS VPINa EXPS VPINb

Mean 0.12 0.12 0.13 0.11 0.30 0.30 0.30 0.29
Std Dev 0.04 0.06 0.06 0.05 0.09 0.12 0.10 0.12
Skew 1.59 1.93 1.69 2.30 0.84 1.07 0.94 1.14
Kurtosis 4.34 6.81 4.95 9.93 0.99 1.37 1.13 1.38
AR(1) 0.996 0.972 0.970 0.973 0.996 0.977 0.969 0.980
ADF −26.00 −27.28 −20.99 −22.74 −29.39 −29.73 −22.57 −24.58
No. Obs 82424 82424 37850 44574 82435 82435 31635 50800
CDF(0.1) 0.08 0.07 0.08 0.06 0.19 0.17 0.19 0.16
CDF(0.25) 0.09 0.09 0.10 0.08 0.23 0.21 0.23 0.20
CDF(0.5) 0.12 0.11 0.12 0.10 0.28 0.27 0.29 0.26
CDF(0.75) 0.14 0.15 0.16 0.13 0.34 0.35 0.36 0.35
CDF(0.9) 0.18 0.19 0.21 0.18 0.41 0.45 0.44 0.47
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Table 3: Avg Vol denotes the average daily trading volume in the futures contracts for the full sample
period, 2009-2015, and the subperiods 2009-2011 and 2012-2015. VBS denotes the volume bucket size per
period and commodity.

Crude Oil Natural Gas1
2009-2015 2009-2011 2012-2015 2009-2015 2009-2011 2012-2015

Avg Vol 153144 149935 155982 67929 55592 78842
VBS 3063 2999 3120 1359 1112 1577
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Table 4: The table lists intraday time series of returns, VPIN and EXPS VPINα=0.10 for crude oil on May
5, 2011. The first column are timestamps in hours and minutes. These are the end timebars per VPIN

calculation. The returns are calculated based on these timestamps. The second column are the intraday
returns, log(pti/pti−1). The two following columns are VPIN and EXPS VPINα=0.10. The last two columns are
the ECDF(VPIN) and ECDF(EXPS VPINα=0.10). The VPIN and EXPS VPINα=0.10 calculations are based on
one-minute time bars and averaged over a window with 50 observations.

ECDF
Return VPIN EXPS VPIN VPIN EXPS VPIN

09:01 0.000 0.15 0.08 0.77 0.22
09:02 −0.000 0.14 0.11 0.73 0.48
09:03 −0.001 0.13 0.11 0.67 0.47
09:06 −0.003 0.13 0.11 0.67 0.50
09:07 −0.003 0.14 0.16 0.75 0.82
09:08 −0.002 0.13 0.15 0.65 0.75
09:11 −0.002 0.13 0.14 0.62 0.70
09:16 −0.001 0.12 0.12 0.58 0.61
09:18 0.001 0.13 0.15 0.64 0.78
09:21 0.001 0.13 0.14 0.63 0.70
09:26 0.002 0.13 0.13 0.62 0.67
09:32 0.001 0.13 0.12 0.61 0.59
09:35 −0.000 0.13 0.13 0.63 0.62
09:38 −0.001 0.13 0.12 0.64 0.61
09:45 0.000 0.12 0.12 0.58 0.59
09:50 0.000 0.12 0.11 0.56 0.49
09:55 −0.001 0.12 0.11 0.54 0.46
09:58 −0.003 0.12 0.11 0.56 0.50
10:01 −0.001 0.12 0.12 0.55 0.57
10:05 −0.000 0.12 0.12 0.53 0.55
10:11 −0.001 0.12 0.11 0.51 0.46
10:15 −0.004 0.12 0.12 0.55 0.55
10:17 −0.004 0.12 0.13 0.59 0.62
10:19 −0.004 0.12 0.12 0.56 0.60
10:21 −0.006 0.12 0.14 0.59 0.69
10:25 −0.004 0.13 0.14 0.62 0.74
10:30 −0.007 0.12 0.15 0.60 0.74
10:31 −0.006 0.13 0.16 0.63 0.80
10:35 −0.005 0.13 0.15 0.64 0.77
10:37 −0.005 0.13 0.16 0.67 0.81
10:41 −0.006 0.12 0.16 0.57 0.80
10:45 −0.006 0.12 0.15 0.59 0.77
10:50 −0.008 0.12 0.14 0.54 0.70
10:51 −0.009 0.13 0.17 0.62 0.83
10:52 −0.010 0.13 0.18 0.66 0.88
10:53 −0.011 0.13 0.19 0.68 0.90
10:54 −0.014 0.15 0.25 0.78 0.96
10:55 −0.018 0.16 0.31 0.86 0.99
10:56 −0.016 0.17 0.33 0.89 0.99
10:56 −0.016 0.18 0.35 0.91 0.99
10:57 −0.016 0.19 0.34 0.92 0.99
10:59 −0.015 0.19 0.32 0.92 0.99
11:01 −0.017 0.19 0.32 0.93 0.99
11:03 −0.019 0.20 0.31 0.94 0.99
11:05 −0.025 0.21 0.35 0.96 0.99
11:05 −0.025 0.23 0.42 0.97 1.00
11:05 −0.025 0.25 0.47 0.98 1.00
11:06 −0.025 0.25 0.44 0.98 1.00
11:07 −0.024 0.25 0.41 0.98 1.00
11:09 −0.025 0.25 0.38 0.98 1.00
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Table 4 continue

ECDF
Return VPIN EXPS VPIN VPIN EXPS VPIN

11:10 −0.025 0.25 0.34 0.98 0.99
11:11 −0.027 0.25 0.37 0.98 0.99
11:12 −0.033 0.27 0.41 0.99 1.00
11:13 −0.041 0.28 0.47 0.99 1.00
11:13 −0.041 0.29 0.52 0.99 1.00
11:13 −0.041 0.31 0.57 1.00 1.00
11:14 −0.039 0.32 0.56 1.00 1.00
11:14 −0.039 0.34 0.58 1.00 1.00
11:15 −0.035 0.34 0.61 1.00 1.00
11:16 −0.035 0.35 0.58 1.00 1.00
11:17 −0.033 0.36 0.57 1.00 1.00
11:19 −0.030 0.37 0.57 1.00 1.00
11:20 −0.028 0.37 0.54 1.00 1.00
11:22 −0.028 0.37 0.50 1.00 1.00
11:24 −0.027 0.37 0.46 1.00 1.00
11:25 −0.022 0.39 0.50 1.00 1.00
11:26 −0.024 0.39 0.46 1.00 1.00
11:28 −0.028 0.39 0.45 1.00 1.00
11:30 −0.027 0.39 0.42 1.00 1.00
11:33 −0.030 0.40 0.40 1.00 1.00
11:37 −0.026 0.40 0.39 1.00 1.00
11:40 −0.026 0.40 0.36 1.00 0.99
11:43 −0.025 0.40 0.36 1.00 0.99
11:47 −0.020 0.40 0.33 1.00 0.99
11:48 −0.019 0.41 0.36 1.00 0.99
11:49 −0.022 0.41 0.34 1.00 0.99
11:52 −0.023 0.41 0.32 1.00 0.99
11:55 −0.024 0.41 0.30 1.00 0.99
11:58 −0.029 0.41 0.32 1.00 0.99
11:59 −0.030 0.42 0.33 1.00 0.99
12:01 −0.026 0.42 0.34 1.00 0.99
12:04 −0.028 0.42 0.30 1.00 0.99
12:09 −0.028 0.42 0.28 1.00 0.98
12:13 −0.029 0.42 0.27 1.00 0.98
12:19 −0.031 0.41 0.26 1.00 0.97
12:23 −0.032 0.41 0.24 1.00 0.96
12:28 −0.028 0.40 0.23 1.00 0.95
12:35 −0.031 0.38 0.22 1.00 0.94
12:38 −0.031 0.37 0.21 1.00 0.93
12:43 −0.031 0.37 0.21 1.00 0.93
12:49 −0.031 0.36 0.19 1.00 0.90
12:53 −0.034 0.36 0.19 1.00 0.90
12:56 −0.038 0.37 0.24 1.00 0.96
12:58 −0.037 0.37 0.23 1.00 0.95
13:00 −0.037 0.36 0.22 1.00 0.94
13:04 −0.033 0.34 0.23 1.00 0.95
13:09 −0.034 0.33 0.22 1.00 0.94
13:13 −0.030 0.33 0.23 1.00 0.95
13:20 −0.031 0.33 0.21 1.00 0.93
13:27 −0.031 0.33 0.21 1.00 0.92
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Table 4 continue

ECDF
Return VPIN EXPS VPIN VPIN EXPS VPIN

13:27 −0.031 0.33 0.21 1.00 0.92
13:36 −0.036 0.33 0.19 1.00 0.90
13:39 −0.037 0.32 0.20 1.00 0.91
13:42 −0.038 0.31 0.20 1.00 0.91
13:45 −0.038 0.29 0.19 0.99 0.89
13:49 −0.038 0.27 0.17 0.99 0.86
13:51 −0.041 0.26 0.21 0.99 0.93
13:53 −0.043 0.27 0.25 0.99 0.96
13:53 −0.043 0.25 0.23 0.98 0.95
13:56 −0.046 0.24 0.22 0.98 0.94
13:57 −0.048 0.25 0.27 0.98 0.97
13:58 −0.046 0.24 0.25 0.98 0.97
14:00 −0.045 0.23 0.25 0.97 0.96
14:02 −0.044 0.23 0.24 0.97 0.96
14:04 −0.048 0.24 0.26 0.97 0.97
14:05 −0.051 0.25 0.32 0.98 0.99
14:07 −0.053 0.24 0.31 0.98 0.99
14:08 −0.051 0.25 0.33 0.98 0.99
14:09 −0.052 0.24 0.33 0.98 0.99
14:11 −0.057 0.25 0.35 0.98 0.99
14:11 −0.057 0.26 0.38 0.99 1.00
14:12 −0.053 0.26 0.37 0.99 0.99
14:13 −0.055 0.26 0.35 0.99 0.99
14:14 −0.054 0.26 0.34 0.99 0.99
14:16 −0.053 0.26 0.33 0.99 0.99
14:18 −0.054 0.26 0.33 0.98 0.99
14:20 −0.051 0.26 0.33 0.99 0.99
14:22 −0.050 0.26 0.33 0.99 0.99
14:24 −0.052 0.26 0.30 0.99 0.99
14:25 −0.054 0.27 0.33 0.99 0.99
14:27 −0.057 0.27 0.36 0.99 0.99
14:28 −0.059 0.27 0.36 0.99 0.99
14:29 −0.057 0.27 0.34 0.99 0.99
14:29 −0.057 0.28 0.36 0.99 0.99
14:30 −0.058 0.28 0.34 0.99 0.99
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Table 5: The table presents changes in VPIN surrounding the release of the inventory report for crude oil
and natural gas. Since VPIN estimates are asynchronous, they are indexed in order relative to the timing
of the inventory release where index −1 and 1 denote the first observations immediately before and after
the release, respectively. Only events with a negative and significant jump and a surprise greater than one
standard deviation are included in the regression where 20 VPIN estimates prior to the inventory release and
60 observations following the inventory are considered. The estimates are obtained via OLS of the regression
equation,

Vt,k = β0 +
∑
i̸=l

βiDi + ϵt,k,

where Di is a dummy variable for the ith VPIN estimates. There is no dummy variable D0. The regression
table only reports estimates for the dummy variables in the range [-10,14] to preserve space. Regression I
includes results for VPIN based on a simple average; Regression II and II are results for EXPS VPINα=0.05 and
EXPS VPINα=0.10 respectively. The VPIN calculation is based on one minute time bars. All VPIN calculations
are based on a moving window with 50 VPIN observations.

Crude Oil Natural Gas
I II III I II III

Intercept 0.10 0.09 0.09 0.25 0.25 0.24
(7.64) (6.70) (4.51) (19.36) (16.88) (12.85)

D−10 −0.004 0.004 0.008 0.001 0.01 0.02
(−0.23) (0.22) (0.28) (0.06) (0.50) (0.70)

D−9 −0.004 0.004 0.007 4e − 04 0.01 0.02
(−0.23) (0.20) (0.25) (0.02) (0.49) (0.65)

D−8 −0.002 0.006 0.01 −2e − 04 0.01 0.02
(−0.11) (0.30) (0.40) (−0.01) (0.51) (0.67)

D−7 −0.002 0.008 0.02 −0.003 0.005 0.007
(−0.09) (0.43) (0.57) (−0.17) (0.26) (0.27)

D−6 −0.003 0.007 0.01 −0.006 0.001 −0.001
(−0.15) (0.36) (0.46) (−0.30) (0.05) (−0.04)

D−5 −3e − 06 0.01 0.03 −0.008 −0.004 −0.01
(−2e − 04) (0.70) (0.92) (−0.43) (−0.20) (−0.41)

D−4 5e − 05 0.01 0.02 −0.01 −0.007 −0.02
(0.003) (0.61) (0.77) (−0.52) (−0.36) (−0.62)

D−3 −0.001 0.008 0.01 −0.01 −0.01 −0.03
(−0.07) (0.39) (0.44) (−0.61) (−0.62) (−0.98)

D−2 −0.002 0.004 0.004 −0.01 −0.02 −0.03
(−0.12) (0.19) (0.15) (−0.69) (−0.78) (−1.16)

D−1 0.003 0.02 0.03 −0.009 −0.007 −0.01
(0.18) (0.96) (1.25) (−0.49) (−0.34) (−0.42)

D1 0.02 0.05 0.10 0.006 0.03 0.06
(0.98) (2.71) (3.65) (0.34) (1.37) (2.26)

D2 0.03 0.08 0.16 0.02 0.06 0.12
(1.61) (4.28) (5.69) (1.05) (2.96) (4.59)

D3 0.04 0.11 0.20 0.03 0.09 0.18
(2.27) (5.51) (7.14) (1.77) (4.37) (6.56)

D4 0.05 0.12 0.21 0.04 0.12 0.22
(2.68) (6.13) (7.70) (2.42) (5.54) (8.05)

D5 0.05 0.12 0.20 0.06 0.13 0.24
(2.77) (5.96) (7.13) (3.01) (6.43) (9.06)

D6 0.05 0.12 0.19 0.06 0.15 0.27
(2.90) (5.98) (6.88) (3.52) (7.20) (9.84)

D7 0.05 0.12 0.18 0.07 0.17 0.29
(2.91) (5.91) (6.53) (4.03) (8.02) (10.70)

D8 0.05 0.12 0.18 0.08 0.18 0.30
(2.95) (6.14) (6.62) (4.43) (8.58) (11.12)

D9 0.06 0.12 0.18 0.09 0.19 0.31
(3.13) (6.23) (6.53) (4.80) (9.14) (11.54)

D10 0.06 0.12 0.17 0.09 0.19 0.31
(3.28) (6.18) (6.25) (5.11) (9.32) (11.39)

D11 0.06 0.12 0.16 0.10 0.20 0.30
(3.36) (5.99) (5.81) (5.37) (9.54) (11.32)

D12 0.06 0.11 0.15 0.10 0.20 0.30
(3.45) (5.86) (5.47) (5.67) (9.68) (11.15)

D13 0.06 0.11 0.15 0.11 0.20 0.29
(3.57) (5.86) (5.35) (5.86) (9.65) (10.74)

D14 0.07 0.11 0.14 0.11 0.20 0.27
(3.63) (5.65) (4.95) (6.04) (9.51) (10.21)

R2 Adj 0.56 0.66 0.70 0.38 0.37 0.43
F Stat 6.08 8.82 10.32 21.29 20.29 25.78
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Table 6: The table presents changes in VPIN at jumps which are not associated with the inventory report
for crude oil and natural gas. Since VPIN estimates are asynchronous, they are indexed in order relative to
the timing of the inventory release where index −1 and 1 denote the first observations immediately before
and after the release, respectively. Only events with a negative and significant jump are included in the
regression where 20 VPIN estimates prior to the inventory release and 60 observations following the inventory
are considered. The estimates are obtained via OLS of the regression equation,

Vt,k = β0 +
∑
i̸=l

βiDi + ϵt,k,

where Di is a dummy variable for the ith VPIN estimates. There is no dummy variable D0. The regression
table only reports estimates for the dummy variables in the range [-10,14] to preserve space. Regression I
includes results for VPIN based on a simple average; Regression II and II are results for ECDF(EXPS VPINα=0.05)
and ECDF(EXPS VPINα=0.10), respectively. The VPIN calculation is based on one minute time bars. All VPIN
calculations are based on a moving window with 50 VPIN observations.

Crude Oil Natural Gas
I II III I II III

Intercept 0.11 0.11 0.11 0.26 0.25 0.25
(9.43) (8.98) (7.13) (17.77) (17.28) (14.15)

D−10 0.007 0.01 0.02 0.005 0.003 0.006
(0.43) (0.75) (1.17) (0.24) (0.13) (0.23)

D−9 0.008 0.01 0.03 0.004 0.004 0.008
(0.50) (0.81) (1.22) (0.22) (0.17) (0.31)

D−8 0.008 0.01 0.03 0.005 0.005 0.01
(0.52) (0.81) (1.19) (0.26) (0.24) (0.42)

D−7 0.01 0.02 0.03 0.006 0.008 0.02
(0.60) (0.95) (1.37) (0.30) (0.37) (0.62)

D−6 0.01 0.02 0.04 0.006 0.009 0.02
(0.75) (1.18) (1.71) (0.27) (0.45) (0.74)

D−5 0.01 0.02 0.04 0.008 0.01 0.03
(0.85) (1.29) (1.84) (0.38) (0.68) (1.10)

D−4 0.02 0.02 0.04 0.007 0.01 0.03
(0.92) (1.35) (1.88) (0.33) (0.66) (1.04)

D−3 0.02 0.02 0.04 0.008 0.02 0.03
(0.96) (1.41) (1.92) (0.38) (0.86) (1.32)

D−2 0.02 0.02 0.04 0.006 0.02 0.03
(0.95) (1.33) (1.73) (0.28) (0.75) (1.10)

D−1 0.02 0.03 0.05 0.007 0.02 0.04
(1.15) (1.70) (2.28) (0.36) (0.99) (1.46)

D1 0.03 0.05 0.09 0.01 0.04 0.07
(1.69) (2.95) (4.27) (0.69) (1.89) (2.91)

D2 0.04 0.07 0.13 0.02 0.06 0.11
(2.27) (4.15) (6.08) (1.02) (2.78) (4.27)

D3 0.04 0.08 0.15 0.02 0.07 0.12
(2.66) (4.83) (6.94) (1.18) (3.23) (4.83)

D4 0.05 0.09 0.16 0.03 0.08 0.14
(2.96) (5.31) (7.45) (1.50) (3.93) (5.80)

D5 0.05 0.10 0.16 0.04 0.09 0.16
(3.21) (5.60) (7.63) (1.81) (4.49) (6.49)

D6 0.06 0.10 0.16 0.04 0.10 0.17
(3.37) (5.68) (7.47) (2.04) (4.88) (6.87)

D7 0.06 0.10 0.15 0.05 0.11 0.18
(3.50) (5.76) (7.35) (2.24) (5.19) (7.13)

D8 0.06 0.10 0.15 0.05 0.11 0.17
(3.65) (5.88) (7.29) (2.36) (5.26) (6.98)

D9 0.06 0.10 0.15 0.05 0.11 0.17
(3.75) (5.95) (7.18) (2.47) (5.22) (6.66)

D10 0.06 0.10 0.15 0.05 0.11 0.17
(3.87) (5.98) (7.03) (2.60) (5.34) (6.64)

D11 0.06 0.10 0.14 0.06 0.11 0.17
(3.94) (5.90) (6.69) (2.75) (5.48) (6.67)

D12 0.07 0.10 0.14 0.06 0.11 0.16
(4.08) (5.95) (6.61) (2.84) (5.51) (6.52)

D13 0.07 0.10 0.14 0.06 0.12 0.16
(4.21) (5.94) (6.43) (2.98) (5.58) (6.45)

D14 0.07 0.10 0.13 0.06 0.11 0.15
(4.30) (5.85) (6.14) (3.07) (5.51) (6.18)

R2 Adj 0.14 0.12 0.15 0.08 0.10 0.15
F Stat 8.32 7.42 9.51 5.03 6.53 9.37
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Table 7: The table presents changes in the empirical cumulative density function of the VPIN metrics
surrounding the release of the inventory report for crude oil and natural gas. Since VPIN estimates are
asynchronous, they are indexed in order relative to the timing of the inventory release where index −1 and
1 denote the first observations immediately before and after the release, respectively. Only events with a
negative and significant jump and a surprise greater than one standard deviation are included in the regres-
sion where 20 VPIN estimates prior to the inventory release and 60 observations following the inventory are
considered. The estimates are obtained via OLS of the regression equation,

Vt,k = β0 +
∑
i̸=l

βiDi + ϵt,k,

where Di is a dummy variable for the ith ECDF(VPIN) estimates. There is no dummy variable D0. The regres-
sion table only reports estimates for the dummy variables in the range [-10,14] to preserve space. Regression
I includes results for VPIN based on a simple average; Regression II and II are results for EXPS VPINα=0.05 and
EXPS VPINα=0.10 respectively. The VPIN calculation is based on one minute time bars. All VPIN calculations
are based on a moving window with 50 VPIN observations.

Crude Oil Natural Gas
I II III I II III

Intercept 0.31 0.26 0.29 0.36 0.36 0.38
(3.80) (3.46) (3.37) (10.35) (9.61) (9.55)

D−10 −0.05 0.04 0.07 0.004 0.03 0.06
(−0.46) (0.42) (0.57) (0.09) (0.61) (1.02)

D−9 −0.06 0.04 0.06 9e − 04 0.03 0.06
(−0.49) (0.35) (0.50) (0.02) (0.59) (0.98)

D−8 −0.04 0.06 0.10 −3e − 04 0.03 0.06
(−0.32) (0.54) (0.84) (−0.007) (0.61) (0.98)

D−7 −0.04 0.08 0.15 −0.01 0.01 0.02
(−0.31) (0.80) (1.22) (−0.20) (0.27) (0.41)

D−6 −0.05 0.07 0.12 −0.02 −0.003 −0.003
(−0.41) (0.65) (0.98) (−0.40) (−0.06) (−0.06)

D−5 −0.02 0.14 0.23 −0.03 −0.02 −0.04
(−0.17) (1.35) (1.89) (−0.58) (−0.47) (−0.66)

D−4 −0.02 0.12 0.19 −0.03 −0.04 −0.06
(−0.16) (1.18) (1.61) (−0.66) (−0.72) (−1.02)

D−3 −0.03 0.07 0.11 −0.04 −0.06 −0.09
(−0.27) (0.71) (0.91) (−0.82) (−1.17) (−1.63)

D−2 −0.04 0.03 0.04 −0.04 −0.08 −0.11
(−0.34) (0.28) (0.29) (−0.91) (−1.41) (−1.93)

D−1 0.02 0.19 0.27 −0.03 −0.04 −0.04
(0.20) (1.84) (2.23) (−0.66) (−0.76) (−0.72)

D1 0.18 0.45 0.53 0.03 0.11 0.21
(1.56) (4.25) (4.38) (0.56) (2.02) (3.74)

D2 0.28 0.55 0.61 0.08 0.24 0.38
(2.44) (5.24) (5.03) (1.63) (4.55) (6.71)

D3 0.37 0.62 0.66 0.13 0.35 0.47
(3.24) (5.94) (5.49) (2.73) (6.49) (8.27)

D4 0.43 0.68 0.69 0.18 0.41 0.51
(3.77) (6.43) (5.71) (3.70) (7.70) (8.95)

D5 0.45 0.68 0.69 0.22 0.45 0.53
(3.96) (6.51) (5.72) (4.55) (8.45) (9.29)

D6 0.47 0.69 0.69 0.26 0.48 0.54
(4.11) (6.53) (5.70) (5.27) (8.94) (9.47)

D7 0.47 0.68 0.68 0.29 0.50 0.55
(4.09) (6.50) (5.66) (5.99) (9.43) (9.67)

D8 0.46 0.68 0.68 0.32 0.52 0.55
(4.07) (6.49) (5.62) (6.45) (9.71) (9.78)

D9 0.47 0.67 0.67 0.34 0.53 0.56
(4.11) (6.41) (5.53) (6.91) (9.96) (9.87)

D10 0.47 0.66 0.65 0.36 0.53 0.55
(4.14) (6.31) (5.42) (7.25) (9.99) (9.78)

D11 0.48 0.66 0.64 0.37 0.53 0.55
(4.19) (6.25) (5.32) (7.48) (9.97) (9.64)

D12 0.48 0.65 0.63 0.38 0.53 0.54
(4.24) (6.19) (5.24) (7.81) (9.98) (9.53)

D13 0.49 0.66 0.64 0.39 0.53 0.53
(4.31) (6.23) (5.27) (7.95) (9.94) (9.42)

D14 0.50 0.65 0.62 0.40 0.52 0.52
(4.36) (6.15) (5.15) (8.12) (9.84) (9.23)

R2 Adj 0.65 0.68 0.62 0.46 0.42 0.40
F Stat 8.49 9.42 7.46 29.70 24.86 23.04

27



Table 8: The table presents changes in empirical cumulative density function of the VPIN metrics at jumps
which are not associated with the inventory report for crude oil and natural gas. Since VPIN estimates are
asynchronous, they are indexed in order relative to the timing of the inventory release where index −1 and
1 denote the first observations immediately before and after the release, respectively. Only events with a
negative and significant jump are included in the regression where 20 VPIN estimates prior to the inventory
release and 60 observations following the inventory are considered. The estimates are obtained via OLS of
the regression equation,

Vt,k = β0 +
∑
i ̸=l

βiDi + ϵt,k,

where Di is a dummy variable for the ith ECDF(VPIN) estimates. There is no dummy variable D0. The
regression table only reports estimates for the dummy variables in the range [-10,14] to preserve space.
Regression I includes results for ECDF(VPIN) based on a simple average; Regression II and II are results
for ECDF(EXPS VPINα=0.05) and ECDF(EXPS VPINα=0.10) respectively. The VPIN calculation is based on one
minute time bars. All VPIN calculations are based on a moving window with 50 VPIN observations.

Crude Oil Natural Gas
I II III I II III

Intercept 0.40 0.42 0.41 0.36 0.35 0.37
(9.04) (9.28) (9.19) (7.82) (7.79) (8.52)

D−10 0.05 0.04 0.07 0.004 −0.005 −0.003
(0.74) (0.65) (1.14) (0.05) (−0.07) (−0.05)

D−9 0.05 0.04 0.07 0.001 −0.006 −0.003
(0.87) (0.67) (1.16) (0.02) (−0.09) (−0.04)

D−8 0.05 0.04 0.07 7e − 04 −0.007 −0.001
(0.81) (0.63) (1.08) (0.01) (−0.11) (−0.02)

D−7 0.06 0.04 0.06 0.007 0.007 0.02
(0.90) (0.63) (0.99) (0.10) (0.10) (0.39)

D−6 0.07 0.04 0.06 0.008 0.02 0.03
(1.05) (0.62) (0.94) (0.13) (0.24) (0.57)

D−5 0.07 0.04 0.05 0.02 0.03 0.06
(1.10) (0.55) (0.82) (0.28) (0.52) (1.03)

D−4 0.08 0.04 0.07 0.02 0.04 0.07
(1.20) (0.69) (1.06) (0.26) (0.57) (1.07)

D−3 0.08 0.06 0.09 0.02 0.05 0.08
(1.25) (0.92) (1.39) (0.37) (0.82) (1.36)

D−2 0.08 0.05 0.08 0.02 0.05 0.07
(1.20) (0.82) (1.20) (0.30) (0.77) (1.15)

D−1 0.10 0.10 0.17 0.03 0.07 0.10
(1.55) (1.58) (2.64) (0.40) (1.03) (1.68)

D1 0.15 0.23 0.34 0.05 0.13 0.20
(2.47) (3.67) (5.40) (0.77) (2.02) (3.30)

D2 0.22 0.34 0.45 0.07 0.19 0.28
(3.49) (5.34) (7.07) (1.16) (2.99) (4.62)

D3 0.25 0.37 0.46 0.09 0.22 0.31
(3.98) (5.78) (7.29) (1.35) (3.48) (5.09)

D4 0.27 0.38 0.46 0.11 0.27 0.35
(4.30) (5.93) (7.27) (1.74) (4.17) (5.70)

D5 0.28 0.38 0.45 0.13 0.29 0.36
(4.52) (5.89) (7.05) (2.07) (4.51) (5.89)

D6 0.29 0.37 0.43 0.15 0.31 0.37
(4.64) (5.83) (6.83) (2.33) (4.82) (6.05)

D7 0.29 0.37 0.42 0.17 0.32 0.37
(4.67) (5.75) (6.67) (2.56) (5.04) (6.16)

D8 0.30 0.36 0.41 0.18 0.33 0.37
(4.74) (5.66) (6.48) (2.71) (5.12) (6.12)

D9 0.29 0.36 0.40 0.19 0.33 0.37
(4.66) (5.58) (6.31) (2.86) (5.13) (6.01)

D10 0.29 0.35 0.39 0.19 0.33 0.36
(4.68) (5.46) (6.07) (3.01) (5.18) (5.97)

D11 0.29 0.34 0.38 0.20 0.34 0.36
(4.67) (5.41) (5.93) (3.15) (5.30) (5.99)

D12 0.30 0.35 0.38 0.21 0.34 0.36
(4.79) (5.53) (6.02) (3.21) (5.35) (5.93)

D13 0.31 0.36 0.40 0.21 0.34 0.35
(4.90) (5.69) (6.24) (3.30) (5.28) (5.72)

D14 0.31 0.36 0.39 0.22 0.33 0.34
(4.98) (5.68) (6.12) (3.36) (5.22) (5.54)

R2 Adj 0.13 0.12 0.14 0.10 0.11 0.12
F Stat 8.24 7.56 8.42 6.23 6.61 7.78
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Figures

Panel A: Crude Oil - Return and VPIN
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Panel B: Natural Gas - Return and VPIN
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Figure 1: The figure graphs daily returns (blue) and VPIN (green) for crude oil (Panel A) and natural gas
(Panel B). The daily returns are based on closing prices, log(pt/pt−1). The daily VPIN is represented by the
last VPIN per day. The VPIN calculation is based on one-minute time bars, and averaged over a window with
50 observations.
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Crude Oil: 2011-05-05
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Figure 2: The figure graphs the intraday time series of returns, VPIN and EXPS VPINα=0.10, and ECDF
of the VPIN estimates for crude oil on May 5, 2011. The x-axis is time stamps in minutes. The top
panel plots the intraday return, log(pti/pti−1). The second panel plots the VPIN (red continuous line) and
EXPS VPINα=0.10 (green dashed line). The third panel plots the ECDF(VPIN) (dark blue continuous line)
and ECDF(EXPS VPIN) (pink dashed line). The VPIN and EXPS VPINα=0.10 calculations are based on
one-minute time bars and averaged over a window with 50 observations.
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Panel A: Crude Oil
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Panel B: Crude Oil - ECDF
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Panel C: Natural Gas
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Panel D: Natural Gas - ECDF
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Figure 3: The figure graphs the mean values of VPIN (y-axis) at the release of the inventory levels in crude
oil (Panel A) and natural gas (Panel C). Values from applying the empirical cumulative density function to
the VPIN metrics are plotted in Panel B (crude oil) and Panel D (natural gas). Since VPIN estimates are
asynchronous, they are indexed in order relative to the timing of the inventory release where index −1 and 1
denote the first observations immediately before and after the release, respectively. Only days with a negative
and significant jump and a surprise greater than one standard deviation are included in the regression where
20 VPIN estimates prior to and 60 following the inventory release are considered. Non-black dots denote
estimates which are significantly greater (t-stat greater than 1.68) than the dummy variable D−20, which
is used as the basis. The three plotted time series compare results for different VPIN calculations. The
classical VPIN (green dots), EXPS VPINα=0.10 (dark blue dots), and EXPS VPINα=0.10 (light blue dots). The
VPIN calculation is based on one minute time bars. All averages are on a window with 50 observations.
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Panel A: Crude Oil
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Panel B: Crude Oil - ECDF
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Panel C: Natural Gas
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Panel D: Natural Gas - ECDF
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Figure 4: The figure graphs the mean values of VPIN (y-axis) at jumps in crude oil (Panel A) and natural
gas (Panel C) returns which are not associated with the releases of inventory levels. Values from applying
the empirical cumulative density function to the VPIN metrics are plotted in Panel B (crude oil) and Panel D
(natural gas). Since VPIN estimates are asynchronous, they are indexed in order relative to the timing of the
inventory release where index −1 and 1 denote the first observations immediately before and after the release,
respectively. 20 VPIN estimates prior to and 60 following the inventory release are considered. Non-black
dots denote estimates which are significantly greater (t-stat greater than 1.68) than the dummy variable
D20, which is used as the basis. The three plotted time series compare results for different VPIN calculations.
The classical VPIN based on average (green dots), EXPS VPINα=0.10 (dark blue dots), and EXPS VPINα=0.10

(light blue dots). The VPIN calculation is based on one minute time bars. All averages are on a window with
50 observations.

32



A Appendix

A.I Contract Specifications

Table A.1: Key features of contract specifications for crude oil, heating oil and natural gas.

Panel A: Light, Sweet Crude Oil Futures
Trading Unit
1000 U.S. barrels (42000 gallons)
Price Quotation
U.S. dollars and cents per barrel
Trading Hours
Open outcry trading is conducted from 9:00 AM until 2:30 PM.
Trading Months
Crude oil futures are listed nine years forward using the following listing schedule: consecutive months are
listed for the current year and the next five years; in addition, the June and December contract months are
listed beyond the sixth year.
Minimum Price Flucuation
$0.01 (1¢) per barrel ($10.00 per contract).
Maximum Daily Price Flucuation
$10.00 per barrel ($10, 000 per contract) for all months.
Last Trading Day
Trading terminates at the close of business on the third business day prior to the 25th calendar day of the
month preceding the delivery month. If the 25th calendar day of the month is a non-business day, trading
shall cease on the third business day prior to the business day preceding the 25th calendar day.
Settlement Type
Physical
Delivery
F.O.B. seller’s facility, Cushing, Oklahoma, at any pipeline or storage facility with pipeline access to TEP-
PCO, Cushing storage, or Equilon Pipeline Co., by in-tank transfer, in-line transfer, book-out, or inter-
facility transfer (pumpover).
Trading Symbol
CL

Panel B: Henry Hub Natural Gas Futures
Trading Unit
10, 000 million British thermal units (mmBtu).
Price Quotation
U.S. dollars and cents per barrel
Trading Hours
Open outcry trading is conducted from 9:00 AM until 2:30 PM.
Trading Months
The current year plus the next twelve years through December 2020. A new calendar year will be added
following the termination of trading in the December contract of the current year.
Minimum Price Flucuation
$0.001 (0.1¢) per mmBtu ($10.00 per contract).
Maximum Daily Price Flucuation
$3.00 per barrel ($30, 000 per contract) for all months.
Last Trading Day
Trading terminates three business days prior to the first calendar day of the delivery month.
Settlement Type
Physical
Delivery
The Sabine Pipe Line Co. Henry Hub in Louisiana. Seller is responsible for the movement of the gas through
the Hub; the buyer, from the Hub. The Hub fee will be paid by seller.
Trading Symbol
NG
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