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Abstract

We define a realized third comoment of arithmetic returns, which can be obtained from
subperiod returns and option prices. In a similar manner, we also propose realized fourth (joint)
cumulants, which are standardized (co)moments, and show that there are no realized fourth
(co)moments. These realized estimators help to access the ex-post moments of a return for a
specific period because they are obtained from the data only within the period. Moreover,
unlike realized estimators suggested by previous studies, our estimators can reflect stochastic
volatility as well as jump components. Furthermore, we show that neither realized fourth
moments nor third comoments of log returns exist under the similar condition. Lastly, empirical

results about our realized estimators are consistent with the literature.
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I. Introduction

If periodical returns of an asset are i.i.d., sample moments of a total return for a period
become accurate as sample size increases. However, distribution of security returns appears to
be time varying, and it is prominent when there is a shock in the market as a series of financial
crises show (Engle 1982; Ang and Timmermann 2012; Baur 2012). Therefore, sample
moments can deviate from true moments of a total return for a specific period. Accordingly,
alternative methods have been developed for the moment estimation. One of them is a forward-
looking measure (or implied moments), which is obtained from option prices. Because option
prices reflect perspectives on their underlying assets, they can provide moments of a return on

their underlying asset for the next period (e.g., Bakshi, Kapadia and Madan (2003)).

Although implied moments provide information for the future, it is also needed to access
what happened in a past specific period. For example, when we test whether an implied
variance of a monthly return really forecasts realization, we use an ex-post variance estimation
as a reference. As aforementioned, sample variance of monthly returns cannot be used for the
reference because it is contaminated by returns from the other months.! In this respect, the
following two characteristics are required for the reference estimator: Data only within the
specific period (a month, in the example) are enough to yield the estimator, and horizon of the
estimator coincides with coverage of data (a month, in the example). Realized variance in the
literature satisfies these two characteristics (e.g., Andersen et al. (2003)).2 Accordingly,
realized variance helps to understand the specific period clearly and is obtainable even for
newly issued securities, which have limited data period. Because of these merits, Neuberger
(2012) develops realized third moment. However, none of realized fourth moment, realized
third comoments, and realized fourth comoments are known although many theoretical and
empirical studies show that the third and the fourth (co)moments are related to returns of
securities (e.g., Kraus and Litzenberger 1976; Harvey and Siddique 2000; Dittmar 2002; Ang
et al. 2006; Conrad, Dittmar and Ghysels 2013).

1 Alternatively, one may use sample variance of daily returns within the specific month but it is a variance of

daily returns rather than a variance of the monthly return.

2 Accordingly, Jiang and Tian (2005) test whether the implied volatility really forecasts the realized volatility of
the future period, and Bollerslev, Gibson and Zhou (2011) estimate volatility risk premium from the implied

volatility and realized volatility.



In this paper, by extending Neuberger (2012), we provide the realized third comoment of
arithmetic returns with an assumption that price of each asset is a martingale. As a realized
comoment, it helps to access the ex-post third comoment of returns for a specific period of our
concern because it does not require data from any extra periods, which may have different
statistical characteristics from the specific period. In the case of the fourth order, we show that
there are neither realized fourth moment nor realized fourth comoments. Instead, we propose
definitions of realized fourth (joint) cumulants, which are standardized (co)moments. Moreover,
we show that neither realized third comoments nor fourth moments of log returns exist under

the similar condition.

According to our data set from January 1996 to August 2014, sample moments are closer to
average of realized moments than average of implied moments. In addition, empirical result
with the realized cumulants is consistent with the literature although there are some differences
in the significances. For example, the empirical result shows that portfolio with high beta, low
gamma, low skewness, or high kurtosis is linked with low return like the result of Harvey and
Siddique (2000), Conrad, Dittmar and Ghysels (2013), Frazzini and Pedersen (2014), and
Amaya et al. (2015).

Among these studies, the work of Amaya et al. (2015) is closely related to ours because the
authors also investigate realized third and fourth moments and discover the relation between
the moments and subsequent returns. However, unlike their interesting result, their realized
moments have a limitation in that these estimators cannot capture volatility of volatility
contribution to the moments as they address. As a result, their measures are biased from total
cubic and total quartic variations.®> This problem arises because they define a realized kth order
moment as a sum of the kth powers of sub-period returns, which is a natural extension of a

realized variance, a sum of squares of sub-period returns, defined from the following relation

3 Albeit the limitation, their realized moments are developed to describe moments of total return of a specific
period. However, they revise their realized moments when they get their skewness and kurtosis. This revision

makes their skewness and kurtosis to be sample measures of sub-periodical returns rather than realized measures
1 N 1 N k/2
of the total specific period because those are represented as (WZI}kj/(WZI}ZJ for k=3 and 4,
i=1 i=1

respectively, where each r represents a sub-periodical return.
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E|(F - F) = EO{Z(EI - Ftll)k} 0=t, <t <--<t, =T 1)

i=1
with k=2 and a martingale property of F.

However, for k >3, Equation (1) does not generally hold, and diffusive contribution in the
right hand side diminishes as the partition {t,,---,t,} become finer. Therefore, a sum of the

third or fourth powers of sub-period returns cannot capture whole characteristics of total return.
To resolve this problem, Neuberger (2012) generalizes Equation (1) through Aggregation
Property and confirms that realized moments over the second order are not obtainable when
the provided information is limited to the price process F. Moreover, the author shows that we
can additionally obtain the third moment but no higher order moments when the information
set is extended to include variance process additionally. The addition of only the variance
process is reasonable because of its importance and accessibility; some derivatives are quoted
in volatility of their underlying assets. However, as mentioned above, the third and fourth
moments are also important, and they are also obtainable as Bakshi, Kapadia and Madan (2003)
show. Therefore, we extend our information set to include the implied third moment.* As a
result, we show that this extension contributes to get the realized fourth moment. In addition,
different from Amaya et al. (2015), our realized fourth moment reflects characteristics of
volatility of volatility as well as jump contributions. More specifically, volatility clustering
increases the fourth moment, and a negative correlation between skewness and returns reduces

the fourth moment.

Meanwhile, previous studies show that covariations between securities’ returns are also
important in asset pricing. For example, traditional CAPM addresses the role of covariance in
the asset pricing, and Harvey and Siddique (2000) addresses that of coskewness. In this respect,
Neuberger (2011) investigates coskewness although it is omitted in the published version. The
author provides a new perspective with a new definition of coskewness, which is a sensitivity
of expected realized skewness with respect to the investments. A point that it is defined without
covariance process improves its accessibility and usefulness in the future studies. However,
another point that it is not developed based on the traditional definition causes a weak link

between the new coskewness and the other studies from the traditional coskewness. Therefore,

4 We do not include implied fourth moment because we guess that realized moment for an order requires lower

order implied moments.



we investigate the realized third and fourth comoments in accordance with the traditional
definition. Like the case of the fourth moment, we show that lower order implied moments and
comoments contribute to yield realized third and fourth comoments. In addition, we show that
contagion effect, which represents high correlation between returns during downturns, reduces

the realized third comoment.

Despite the usefulness of the realized higher order comoments, estimating them has a
practical obstacle. That is, while we require lower order implied moments and comoments to
obtain a realized comoment, implied comoments are hardly accessible because they require
exotic options like basket options or spread options. We partially overcome this issue by
adopting Kempf, Korn and SaBning (2015).°

The finance literature mostly uses log returns instead of arithmetic returns because short
term returns are easily transformed to long term returns and vice versa because of additivity of
log returns. However, we do not require the transformation when the sample period coincides
to the time horizon as we get the realized moments. In addition, upon occasion such as asset
allocation, arithmetic returns are more adequate than log returns. Therefore, this paper
concentrates on the moments of arithmetic returns although we also investigate existence of

the realized moments of log returns.

The rest of the paper is organized as follows. Section Il reviews about the Aggregation
Property of Neuberger (2012) and investigates some properties about higher-order moments
and comoments. Section 111 discusses estimation methods of implied moments and comoments
in advance of estimations of realized moments. Section IV presents empirical results about our

realized moments. Section V concludes this study.

Il. The Aggregation Property Given Comoment Processes

As mentioned above, in general, Equation (1) does not hold unless k {1,2}. Therefore, a

sum of the kth orders of sub-period returns is biased from the true kth order moment. For

> Kempf, Korn and SaRning (2015) obtain implied covariance just with index and individual options through an
assumption of index model and an additional assumption about idiosyncratic risk. As a result, they show that this

covariance is effective in asset allocation.



generalizing Equation (1) to higher orders, Neuberger (2012) provides a new framework,

Aggregation Property. The first part of this section reviews this framework.

I1.1. Review of the Aggregation Property

We use a notation X =(X,,0<t<T) for an adapted vector valued stochastic process

defined on a filtration. Then, the Aggregation Property is defined as follows.

Definition 1. The Aggregation Property (Neuberger 2012)

A function g on a vector valued process X has the Aggregation Property if and only if

E.Jo(X, - X)]=E[g(X, - X)]+EJa(X, - X)], ¥(s,t,u) st 0<s<t<u<T. (2)

When the above definition is combined with a law of iteration, we have
N
EO[g(XT _Xo)]: EO{ZQ(AX]')} 3)
j=1

for any partition 0=t, <t <---<t, =T .® Therefore,

N
> g(AX)) (4)
j=1
can be called a realized measure of
Eo[9(X; = X,)] (5)

because the expression (4) is an ex-post estimator of (5). For example, given a martingale

process S,

> (as)) ©)

® Hereafter, when we describe a process X only at tj’s with j=0,...,N, tj is denoted by j. In addition, Xj—

X1 and Xi,j— Xi,j1 are denoted by AX; and AXi,j, respectively, for an (possibly vector valued) index i.



is an unbiased estimator of
Eol(S; —S0)?] W

because g(x)=X’ satisfies the Aggregation Property. More interestingly, Neuberger (2012)

show that

i((AS )}+3AS,AV,) ©)

j=1
satisfies the Aggregation Property. As a result, we have’
Eol(Sr = S0)° |= Eo(Sy —S0)° +3(v; ~Vo)(S; - Sy)]

= EO[ZN:((ASJ.)B +3AV,AS; )|

j=1

9)

Accordingly, he names (8) as a realized third moment. Furthermore, he shows that there are no

additional higher order moments when the information process X is defined as (S,V), and

he leaves an open question of whether extended information sets can produce realized higher

order moments.

I1.2. Realized higher order comoments

In the rest of this section, we investigate the existence of the realized fourth moment and
realized comoments up to the fourth order by extending the information set to include all the
implied moments and comoments up to the third order. Therefore, let X be a vector valued

process {(S,;,S,;,M,):0<t<T}, where S, and S, are martingale processes and M,

represents:

Mt = (M 2,0t Ml,l,t ) Mo,z,t M 3,017 M 2,111 Ml,2,t M 0,3,t) (10)
with

M, =E [(Sl,T - Sl,t)k(sz,T - SZ,t)I ] (11)

" The first equality is from martingale property of the process S, and the second equality is from the Aggregation
Property of a function g(4S,4V) = (45)3 + 3454V.



Then, Proposition 1 provides a general form of functions which have the Aggregation Property

on X.

Proposition 1. When S, and S, are martingale processes, a two dimensional analytic

function g has the Aggregation Property on the vector valued process X if and only if g can be
represented as follows:

9(AS,,AS,,AM )= h,AS, +h,AS, +h,(AS,)* + h,AM, ;, + h;AS,AS,
+hsAM ; +h, (AS,)? + hyAM , + hy ((AS,)° +3AS,AM )
+hAM o+ ((AS;)?AS, + 2AS,AM; + AS,AM, ;) + h,,AM, |
+h5(AS,(AS,)? +2AS,AM , + AS,AM,) + h,,AM
+h5((AS,)* +3AS,AM,) + h;sAM
+h,;((AS,)* +6(AS;)?AM,, ; + 4AS,AM; , +3(AM,)?)
(AS,)*AS, + AS,AM ,, +3(AM,, (AS,)? J

+h
P+ AM,,AS, + AM, AS,AS, + AM, AM, ;)

+h
Pl +4AM,,AS,AS, + 2AM,,AS, + 2AM,,AS,

AS,(AS,)® + AS,AM , +3(AM, (AS,)?

+AM 1’ZASZ +AM 0YZASlASZ +AM o,zAM 1,1)

+h,,((AS,)* +6(AS,)?AM, + 4AS,AM , +3(AM,)?) (12)

((AS,)* +AM,,)((AS,)* + AM g ,) +2(AMM)2]

+h,,

for some constants h,,---,h,,.

Proof is in the Appendix.

By symmetry, it is enough to investigate the terms related to SS) with k>1. In this

regard, a function with the Aggregation Property is represented with a sum of 12 individual

terms as follows:



g(AS,,AS,,AM )=h,AS, +h,(AS,)* +h,AM,, ; + h,AS,AS, +h,AM,
+hg ((AS,)° +3AS,AM, ) + h,AM
+hg ((AS,)?AS, + 2AS,AM, ; + AS,AM, ;) + h,AM , ;
+ho((AS;)* +6(AS,)?AM, ; +4AS,AM, ; + 3(AM, )?)
(AS,)°AS, + AS,AM,, +3(AM , (AS,)?
“L AM,,AS, + AM, (AS,AS, +AM 2,OAMM)J

“h ((Asl)2 +AM 2,0)((A52)2 +AM 0,2) + Z(AMl,l)z
P +4AM,AS,AS, + 2AM,,AS, + 2AM,,,AS,

(13)

In Equation (13), the Aggregation Property of each AM,, is obvious and those of AS,,

(AS,)%, and (AS,)? +3AS,AM,, , are shown by Neuberger (2012). Among remainder terms,

while AS,AS, is well known as an estimator of covariance, the 8", 10", 11", and 12 terms

have not been discovered from the previous studies.

To analyze the 8" term among them, let us define asum cTM,5, as®
| S 2
rea
CTM[ = ((AS,,)?AS, , +AS, AM, o, +2AS, AM,, ). (14)
j=1

Then we have®

Eo lCTer,i,aZIJ: Eo l(sl,T - S1,0)2 (SZ,T - Sz,o) - (SZ,T - Sz,o)M 2,00 2(Sl,T - Sl,O)Ml,l,OJ

15
= Eo [(Sl,T _Sl,o)z(sz,T _SZ,O)] ( )

Because the last line of Equation (15) is the third comoment, cTM{fz' is an unbiased estimator

of the third comoment. Accordingly, we name it a realized third comoment. These discussion

8 At the terminology in Equation (14), prefix ¢ and TM are from co(moment) and third moment, respectively.
Additionally, a subscript a,b,c implies that the term is about Eo[(Sa1-Sa,0)(Sb,1-Sb.0)(Sc.7-Sc,0)] and the superscript
‘real’ represents that the estimator is a realized moment. Afterward, TM is replaced by FM for the fourth cumulant,
which is linked to the fourth moment. Then, FMa denotes an estimator which is related to the fourth moment of
(Sat- Sa0), and cFMap ¢ q denotes an estimator which is related to the fourth comoment, Eo[(Sa-Sa,0)(Sb,7-Sb,0)(Sc,7-
Sc,0)(Sd1-Sa0)]- In the strict sense, FM and cFM represent the fourth cumulant and joint cumulant, respectively,

and more detailed description of FM and cFM will be given later.

® The first equality is from the Aggregation Property and identities My x=0 for any k and I. Then, the second

equality is from the martingale property for each S; and S..



N
implies that an estimator Z(ASLJ.)ZASZ]J- cannot capture whole the third comoment.
j=1

However, addition of AS,;AM,,; and 2AS,;AM,,; makes the estimator complete. Among

the additional terms, inclusion of the former term into the realized third comoment implies that,

if S, becomes more volatile while S, decreases, third comoment is reduced. Similarly,
inclusion of the latter term implies that, if the covariance between returns increases while S,

decreases, third comoment is reduced. From a series of financial crises, we observe that
covariance of returns increases in economic downturns, which is known as contagion effect

and interdependence (e.g., Allen and Gale 2000; Forbes and Rigobon 2002; Cespa and Foucault

N
2014). This empirical evidence implies that Z(ASLJ.)ZASZ,J- may be biased upward from the

j=1

actual third comoment.

Now let us investigate the fourth moment through the 10" term in Equation (13). To analyze

this term, let us define asum FM/®' as

N
FM :{eal = Z((ASLJ' )4 + 6(A811j)2AM 20,] + 4Asl,jAM 3,0, + 3(AM Z’O,j)z), (16)
j=1
Then we have
Eo [FM 1real:|= Eo [(Sl,T _ 81’0)4 _ 6(51’1_ — 81’0)2 M 200~ 4(81’1- - Sl,o)Ms,O,o + 3(M 2,0,0)2]

2 1)
= Eo [(Sl,T - S1,0)4 ]_ 3(Eo [(Sl,T - S1,0)2])

due to the Aggregation Property, martingale property, and identities M, , , =0. Although the

last line of Equation (17) is not the fourth moment, it is also an important value as the numerator
of kurtosis and is called the fourth cumulant. Accordingly, we name FM,*' a realized fourth
cumulant because it is an unbiased estimator of the fourth cumulant as Equation (17) shows.
We would like to decompose the terms in Equation (16) into three parts: (AS“)4 ,
6(AS, )’AM, ; +3(AM )?,and 4AS, /AM, ;. Like the third comoment case, the first part

(AS, j)4 does not entirely capture the fourth cumulant of total return even though it is related

to the fourth cumulant of total return. More specifically, Amaya et al. (2015) address that the

10



first part captures only jump contribution and cannot capture the volatility of volatility

contribution.

However, this problem can be resolved by the second part 6(AS, ;)*AM,, ; +3(AM,4,)°.

To investigate its property, let us take an approximation:°
6(AS,|)°AM, 5, +3(AM, 5 ,)? = 3(AS, )’ AM, 4 ;. (18)

This approximation shows that the second part is related to autocorrelation of variance because

AM,,; and (AS; J.)2 represent variance (until the maturity) innovation and instantaneous

variance, respectively. The literature such as Ghose and Kroner (1995) reports that
autocorrelation of variance is positive, which is known as volatility clustering, and such

literature shows that this is related to fat-tail of distribution. Therefore, Equations (16), (17),
and (18) do not only show the necessity of 6(AS, |)*AM,,, +3(AM,, ;)* for the estimation

of the fourth cumulant, but also confirm the relation between volatility clustering and fat-tail,

consistent with the literature. Additionally, the other part in Equation (16), 4AS,;AM,, ;,

implies that fourth cumulant is related to the correlation between skewness and return. Unlike
the second part, this part seems to reduce fourth cumlant because empirical evidence shows
that there is a negative relation between skewness and return (e.g., Boyer, Mitton and Vorkink
(2010)).

Like the realized fourth cumulant, we can also define realized fourth order joint cumulants

based on the 111" and 12" terms of Equation (13) as follows:*

N
CFM[, = 37((AS, )°AS,  +AS, AM,, )

=1

(19)
N
+3Z (AMy, (AS,;)? +AM,, AS, |+ AM,  AS, [AS, | +AM, o AM, ; ;)

=1

10 The approximation is from Ej.1[AMz,0,+(AS4,j)?]=0.

11 The third order joint cumulant of (X1, X2, X3) and the fourth order joint cumulant of (X1, X2, X3, X4) are E[X1X2X3]
and E[X1X2X3X4] - E[X1X2]E[X3X4] - E[X1X3]E[X2X4] - E[X1X4]E[X2X3], respectively, when expectation of each Xi
is zero. Therefore, the last line of Equation (15) is the third order joint cumulant as well as the third comoment

because each S; is martingale.

11



and

N
cFM 1ri32|2 = Z((Asl,j )2 +AM 2,0, )((Asz,j )2 +AM o,z,j)
j=1

(20)
N
+Z(2(AMLL )FH4AM, AS AS,  +2AM,, (AS,  +2AM,, AS, ).

j=1

From the realized third comoment and the realized fourth (joint) cumulants, we can define the
third and the fourth (co)moment swaps described in Table 1. Then, these swaps can be hedged

with some securities as Proposition 2 describes.

[Table 1 about here]

Proposition 2. Higher order (co)moment swaps

When we define higher order (co)moment swaps as Table 1 describes, each swap can be

replicated with risk free asset and the securities that pay S,;, S,r, Sr, S;+S,r, Sir,

S5S,.,0r ;S5 attimeT.

Proof is in the appendix.

One may wonder about the Aggregation Property for log prices because of log returns’
merits like an additivity over time. However, in the case of realized moment, we do not require
the transformation. In addition, upon occasion such as asset allocation, arithmetic returns are
more adequate than log returns. So we want to focus on the Aggregation Property with
arithmetic returns, but we also investigate a generalized function with the Aggregation Property
for log price series through the next propositions. Because the Aggregation Property is
meaningful when we can find realized moments, we define generalized comoments and

realized comoments as follows, to explore realized moments in a general sense:

Definition 2. A generalized (k,I)-comoment function

12



We call f*' a generalized (kl)-comoment function if and only if f*' is a two

dimensional analytic function such that s("; ) —1 as (s,s,)—(0,0). In addition, we
1

call both a generalized (k,0)-comoment function and a generalized (0,k)-comoment function as

a generalized k-moment function and denote them with fx.

Definition 3. Arealized (k,1)-comoment element

Let x=(s,,s,,m) be a partitioned vector process where m, consists of m, . such that

m =E[f . (S;1 =S, 8,1 —S,,)] for a generalized (k,I)-comoment function f“'. Then, a

function g with the Aggregation Property is called a realized (k,1)-comoment element if and

only if it is decomposed as follows
g(xr_xt):ﬂ(xr_xt)"'g (Slr SiS Zt) (21)

where 7 is a function that satisfies E[r(x. —x)]=0 for t<z and g*' is a function that

satisfies the condition of a generalized (k,1)-comoment function. In addition, we call both a
realized (k,0)-comoment element and a realized (0,k)-comoment element as a realized k-moment

element.

As Neuberger shows, there is a realized (3,0)-comoment element with the following

decomposition:

g(AX) = =12(e* —1) +6As, —3Av, +3e" (Av, + 2As,)

22
=3Av, (™ —1) +6(As,e™ — 26" + As, +2) (2)

However, as shown in the next propositions and corollaries, we cannot get other realized
moments under our condition; more specifically, both realized (2,1)-comoment element and
realized 4-moment element do not exist. We finish this section with presenting propositions
and corollaries about the Aggregation Property of log prices and the existence of realized
moments, respectively. In the propositions, sit denotes In(Si:) for a martingale process Si, and

13



mii; denotes E.[f*'(s,+ —S,,, S, —S,)] with a generalized (k,I)-comoment function f*

(or f* when 1=0).

Proposition 3. An analytic function g on a vector valued process X =(s;,m,,,m,,) has the

Aggregation Property on the vector valued process x if and only if g is represented as follows:

g(s;,m,g,my ) = h(e* -1)+h,s, + h,m, , +h,m, (23)
+hy (M, +am,; —2s,)* + hy (M, , +am, , +2s,)e”

for some constants h,,---,h, and a, which have one of the following 3 conditions:
i) h,=h, =0.

i) h,=0 and f?(s)+af’(s)=2(e’~s—1) for the constant a.

iii) h,=0 and f?(s)+af’(s)=2(se®~e*+1) forthe constant a.

Proof is in the Appendix B.

Corollary 4. When information set is given by x=(s,m,,,m,,), there is no realized 4-

moment element.

Proof is in the Appendix B.

Proposition 5. A multidimensional analytic function g has the Aggregation Property on the

vector valued process X =(s;,S,,m,,,M,,,m,,) ifandonly if g is represented as follows:

9(8,.S5:M, 0, My, My, ) =hy (€™ =1) +h,s, + hy(e” ~1) +h,s, +hym,
+hgmg , +h,m; +hg(m,, - 251)2 +hy(my, — 232)2
+ th(mZ,O - 251)(mo,2 - 252) + hlle51 (2m1,1 - mo,z + 232) (24)
+h,,e% (Zmn —m,, + 231)+ he*(m,, +2s,)

+h,e*(my, +2s,)

14



for some constants h,,---,h,, which have one of the following 5 conditions:
) h,=hy=h,=0, f¥(s,s,)=5,(6"~1),and f*(s)=2(e°~s-1),

i) hy=h,=h,=0, f"(s;s,)=s5("-1),and f°(s)=2("-s-1),
i) h,=h,=h,=h,=0 and f*(s)=2(e°~s-1),

iv) hy=hy=hy=h;=h,=0 and f*(s)=2(se’~e"+1),

v) hy=hy=h,=h,=h,=h,=h,=

Proof is in the Appendix B.

Corollary 6. When information set is given by X =(s;,s,,m,,,m,,,m,,), there is no realized

(2,1)-comoment element.

Proof is similar to the proof of Corollary 4.

I11. Practical Issues in the Estimation

In this section, we discuss practical issues in the estimation of the realized (joint) cumulants.
Since the propositions assume that each security is martingale, we use forward prices for each

S, ;.** Then, without loss of generality, we assume S;, to be one.”® Accordingly, S;;-S,,

implies an arithmetic return between time O and T.

For the estimation of the realized fourth cumulant, we require the second and the third
implied moments. Although we cannot directly observe moments of the price in the market,

12 Note that prices are derived through the risk neutral measure while they evolve under the real measure.
Therefore both of the implied moment and the realized moment in this paper can be understood as proxies. Bias
of the estimate due to the different probability measure is the payoff of hedging strategy of each swap in the proof

of Proposition 2. Hereafter, expectations in this section are in terms of the risk neutral measure.

13 In other words, hereafter, Si; represents S;;/Sio.

15



Bakshi, Kapadia and Madan (2003) provide a method to overcome this issue. By adopting their

method, we can obtain implied moments of S, —S;; from the following equality:

E |5 -5, J]=n(n —1)005"" (x=S,,)" 2P, (dx+ [ (x-S, )" C, (x)dxj, n>2 (25)

where P;(x) isaforward price of a European put option at time j with an exercise price x and

amaturity T. Similarly, C,(x) is aforward price of a European call option defined as P;(x).

Now let us discuss about estimation of the realized joint cumulants. For the estimation, we
require implied comoments. However, unlike the case of implied moments of a security’s price,
implied comoments between securities’ prices are not obtainable with only individual European
options. Instead, utilizing some exotic options makes it possible to get the implied comoments.

For example, when we have continuum of basket options or spread options, Equation (25) with

n=2 makes us to get var;(S;; +S,;) or var;(S;; —S,;), respectively. One of these two in

addition to variance of each individual security yields covariance as follows:

var; (Sl,T + SZ,T ) —var, (Sl,T ) —var, (Sz,T )

5 (26)

Cov; (Sl,T J Sz,T) =%

Similarly, if we have continuum of both basket options and spread options in addition to the

individual options, we can get implied third moments of both S, +S,; and S,;-S,;.
Therefore, we can obtain implied third comoment due to Equation (27) with A=S,; —S,

and B=S,; =S,

g

E,[(A+B)'] - E,[(A- B)’]- 2E [B°]

E;[A’B] = -

(27)

Practically, basket options (and spread options), composed with an individual security and
a market index, are not traded enough. However, as Kempf, Korn and SaRning (2015) point,
index options are already basket options because an index is a portfolio of individual securities.
Thus, the following two assumptions make it possible to get covariance between returns of an
individual stock and an index. One of the assumptions is that asset returns follow an index
model with time varying « and . Then, at each time t;, conditional distribution between a stock

index (Sm,t) and an each stock price (Si) are represented as follows:

Sit =& ;+B,;Sur +&; il 1}10<t, <t =T. (28)

ij

16



The second assumption is that ratio of systematic risk over total risk is same for all securities

at each time t; with a value p;. The combination of these two assumptions yields that

BiNuj=pNM,; or
B ‘/ Y (29)
i = p .
] JVMyj

where V; ; =var;(S;;) and V, ; =var;(S, ;). Because the beta of the index portfolio is one,

|
ZWLJ-,B” =1 holds where w, ; is the weight of security i within the index at time t;. This
i=1

condition with Equation (29) yields

V,, .
Ry = - ' (30)
g (Zi:lwivi\/\T'j)z

Hence, the covariance between the price and the index are represented as follows:

C;=coY(Si1,Syur)
:IBi,jVM,j
:\/pjvi,jvi,M

\ ;i,j

=———V, . (31)
| M,j
Do WiV
Then, from Equation (14), the realized third comoment between the individual return and the

index return is represented as follows:

N

M =S {(as,,  FAS, | +AS, AV,  +24S,, AC; | (32)

j=1

To standardize this, we adopt coskewness of Kraus and Litzenberger (1976) which is defined

as

cTMM,M,i

Sl VAVE 33
7i ™., (33)
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where TM,, is the third moment of S, ;.** Accordingly, we define the realized coskewness

CTM real )
as y E—TMT“Q‘A L with
M

™ =3 {(as,, | F +348,, AV, | (34)

=1

Additionally, one can show that implied gamma at time zero »™ is same with B, under

our assumption.

V. Empirical Results

The empirical analysis of this study is two folds. The first part investigates behaviors of the
cumulants of S&P 500 returns such as predictability of historical or implied cumulants to the
realized cumulants, and the second is about relations between lagged cumulants of individual
stock returns and subsequent returns for the components of Dow Jones Industrial Average
(DJIA). For the analysis, we use implied volatilities, prices of underlying securities, dividends,
and risk-free rate from January 1996 to August 2014. We get those of S&P 500, and the
components of DJIA from Option Metrics in Wharton Research Data Services (WRDS). To get
continuum of option prices for each strike price, we use the methodology of Carr and Wu (2009)

and Neuberger (2012), after options with zero bid price are deleted.
IV.1. Cumulants of the S&P 500 returns

Table 2 shows descriptive statistics of cumulants of the S&P 500 returns. It shows that each

realized value is closer to sample values than implied values for monthly and quarterly returns,

14 Under the definition, they show the relation E[R{]=8iA1+7il2, where R; is a return of asset i, and 1; and A, are

constants.
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although standard deviations of realized values are greater than those of implied values.
However, in the case of annual returns, implied values are closer to sample values with small
standard deviations. In addition, returns become less negatively skewed and less leptokurtic as
time to maturity increases. This pattern may be related to i.i.d. returns because moment of n-
period return is n times moment of 1-period return when return of multi-period is additive and
each 1-period return is i.i.d.. However, as shown in Table 3, adjusted skewness and adjusted
kurtosis are not appears to be constant.® It can be from ignored compounding of arithmetic
return but it holds even when the compound effect is small; they are different even in the 1-
month and 3-month comparison. It implies that sum of nth order returns of sub-periods cannot

generate nth order moment of a full period.
[Table 2 about here]
[Table 3 about here]

Since the real probability measure is different from the risk neutral measure, the process of
the price is not genuine martingale. Therefore, using the implied second and third moments to
get the realized fourth cumulants arises a question of whether the fourth cumulants are reliable.
To clarify the validity of lower order implied moments, Table 4 represents time series
regression of each realized value on implied and lagged realized values. According to Table
4.A, both implied and lagged realized moments are significant in the univariate regression of
the second and the third moments. In addition, implied moments are significant even in the
two-variable regression of the second and the third moments while the significances of lagged
realized moments vanish. Therefore using the implied second and third moments to yield the
realized fourth cumulants is justified in some sense. Now let us deal with standardized moments,
which are skewness and kurtosis. Both implied and lagged realized terms are significant in the
regression of both skewness and kurtosis. Therefore, lagged realized kurtosis provides some

information to future realized kurtosis.

15 When monthly returns are i.i.d., each moment of n-month return is proportional to n. Accordingly, if the returns
are i.i.d., skewness is proportional to 1/4/n and non-excess kurtosis is proportional to 1/n. Therefore, we define
adjusted skewness and adjusted kurtosis by /n times sample skewness of n-month return and n times non-excess
kurtosis of n-month return minus 3, respectively. Then, adjust skewness and adjusted kurtosis should be irrelevant

to the n if the returns are i.i.d..
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The characteristics of the second and the third moments are also valid in the quarterly and
semiannual returns; both the implied and lagged realized moments are significant in the
univariate regression, and implied moments are significant in the two variable regression.
However, they are insignificant in the annual analysis. In addition, implied skewness and
kurtosis are significant as like the monthly case. But lagged realized terms are mostly

insignificant.

[Table 4 about here]

IV.2. (Joint) cumulants of returns and subsequent returns

This section investigates relations between cumuanlts of returns and subsequent returns on
a month-end by month-end basis. Because expirations of the options are not the end of the
month, as a proxy, we use interpolated 30-day volatilities of options from volatility surface of
Option Metrics for each day. This analysis, based on the end of the month, provides similar
results to the analysis based on the expiration of the options. However, this makes it easy to get
risk adjusted returns based on Fama and French (1993).

[Table 5 about here]

Table 5 shows average of regression results about comoments. Panel A is about average of
time series regression for each security, and Panel B is about average of cross sectional
regression for each time. These show that implied comoments have the greatest determinant
coefficient among the univariate regressions in the both of time series and cross sectional
analysis. In addition, it shows that using the implied covariance to yield the realized third

comoment is reasonable.
[Table 6 about here]

Table 6 compares portfolio’s return and moments after it is constructed based on implied or
realized moments. Panel A represents return, moments, and comoments after it is constructed
based on the rank of implied variance. It shows that portfolios keep their order of variance. In
other words, a portfolio with the greatest (smallest) implied variance precedes the greatest
(smallest) realized variance and the difference between the realized variances is significant.
However, the difference of the returns is insignificant. Panel B — Panel G shows the similar

results; portfolios keep their order of moments with significant differences but the differences
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of returns are insignificant. Despite the insignificance of the differences of returns, sizes of the
differences are not economically ignorable. For the robustness, Table 7 provides the
performances with controlling risk of the other sources while the portfolios in the Table 6 are
constructed without controlling risk of the other sources.

[Table 7 about here]

Panel A of Table 7 shows that a portfolio constructed from small implied volatility takes
high return. However, it is vague whether the result is based on the idiosyncratic volatility risk
solely because implied beta or implied gamma is equivalent to the implied variance under the
assumption of market model. To decompose the effects among idiosyncratic volatility, beta,
and gamma, we construct the portfolios based on lagged realized moments. Panel D, E, and F
show that all of idiosyncratic risk, beta, and gamma are linked to the returns of portfolios;
portfolios with low variance, beta, and gamma are along with high return which is consistent
with the Panel A. Likewise, other panels show the link between higher order moments and
returns of portfolios. Although Panel B and C show insignificant difference of the zero cost
portfolios, the size of the return is not economically ignorable. In addition, Panel G and H show
that portfolios with low skewness and high kurtosis are along with high return. Hence the
results, which use the realized moments, are generally in line with the literature; more
specifically, Frazzini and Pedersen (2014) show that high beta is linked with low return, and
Harvey and Siddique (2000) show that low gamma is linked to high return, and Conrad, Dittmar
and Ghysels (2013) and Amaya et al. (2015) show that low skewness or high kurtosis is linked
to high return.

V. Concluding Remark

Although many theoretical and empirical studies show that the third and the fourth
(co)moments are related to returns of securities, estimation of realized higher order moments
is not as simple as estimation of the second moments. In this paper, we propose the realized
third comoment and the realized fourth (joint) cumulants. Different from previous studies, our
realized estimates reflect characteristics of volatility of volatility as well as jump contributions.
In addition, we could show that volatility clustering increases the fourth cumulant, and a
negative correlation between skewness and returns reduces the fourth cumulant, and contagion

effect reduces the third comoment.
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Lack of exotic options may limits the accessibility of the implied and realized comoments.
However, we present an alternative solution and it is supported by predictability of the implied
lower-order comoments about the realized comoments. This solution may be incomplete but
we can get the complete measure of higher order moments when derivative market expands in

the future.

In addition, we conduct several empirical tests about the realized moments. All the realized
moments are explained with implied moments with greater determinant coefficients. It implies
both the realized and implied moments are well functioning. Finally, the relations between
realized moments of returns and subsequent returns coincide with the literature. Since the
realized moments make it possible to understand the distribution of a return of asset for a

specific period, we hope these estimators to be applied in the future research.
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Appendix A: Proofs of Proposition 1 and 2.
Proof of Proposition 1.

Let us consider a vector valued process {(S,,,S,,,M,):t=012} and assume®

(Sl,l’ SZ,l’ a) - (Sl,l + 771, SZ,l + 772,6) Pr= T

(5.5, M): (00,m) | &2%220 > (52:5%20) Pr=r,
pre : : ; (Al)

(Sl,n’SZ,n ’6) - (Sl,n’SZ,n ,6) PI’ = ﬂ-n

t: 0 — 1 - 2
with Z”izl' Zﬂjsi,jzo! E[7,]1=0, E[771k77£1=ak,|,and
j=1 =1
”1akl+z7f51152,1 if k+1=2

mk,I = = (AZ)

n
k Il H
Ty + 1y Sy K@ 480) + D78y Sy I k+1=3
=l

where x, =max(x,0), & =(0 0,0 1100,,050,0,,,0,,0,3), and m=(m,,,---,m, ;). Then,
S, and S, are martingale, and the process M =(M,,,M;;,M;,,M;,M,,;,M,,,M,,)

satisfies Equation (A3).

Mire = E[(S12 =510 (820 =8, (A3)
The Aggregation Property implies g(0,...,0)=0 and

n

E[ﬂlg(sl,l +1,5;,, + 772’_m)]+ zﬂj g(sl,j 152, ] ’_m)
j=2

(A4)
—72'19( S1108 1 X — m)+ E[ﬂlg 771’772’ ]+Z7[ g(l]' So. 7 )

16 In Appendix A, s and m represent realizations of S and M, respectively. They are irrelevant to the In(S) or

generalized moments from the log prices.
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or
Elg(s,. + 7,8, +72,-m)| = 981y, 8,00~ M)+ E[g (7,72, -a)]. (A5)

Equation (A5) holds for any pair (s,;,S,,) including (0,0). Therefore, we have:
Elg(m7,,~m)]= 9(0.0.a ~m)+ Elg(n 7, ~e)]. (A6)

Differentiating Equation (A6) with respectto m,_, yields Equation (A7)

E[gk(ﬂpﬂz’_m)] = gk(o’o’ a- m) (A7)
where @, is a partial differentiation with respect to the (k-2)™" term of the M. i.e. g, = 8|\a/|g :
2,0
__99 _ 9
g4 - 5|V|1,1 LA ] 99 - aMog '
When we construct m tobe «,'” we have
E[gk(7711772'_0‘)] =9,(0,0,0,00). (A8)

Therefore, g, is represented as follows:

9 (5,8, M) =3, , + A ,(M)s + A ,(M)s, + A ;(M )(s; + M,,)
+ A (M58, + My,) + A ((M)(S; +Mg,) + A g(M)(s) +Myo)  (A9)
+ A, (M)(s(s, + M, ) + A g(M)(s;S; + M, ;) + Ao (M)(s; + M, )

17 Regardless the value of «, by making 7 close to zero and using large n in Equation (A1), we can

construct arbitrary m.
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where a,, is a constant and A ,,---,A o are functions of M. Then, substituting

M__, =a_,_, and (A9) into the (A7) yields following:*®
A (—m)(e_, —m,) = A 0,..0,¢,, —m_,,0,.0) (e, —m,,) , I=3,...9. (A10)

Since 7, s;;, o are arbitrary, A ;,---,A, are constants. Therefore, we use notations

ij?

aky3a“'aakyg instead Of A(,3’.“’A<'g-

9 (s,,8,,M) =2, + A, (M)s, + A ,(M)s, + ak,3(512 +My,)
+3,4(8S, +My,) + ak,5(522 +Mg,) + ak,zs(sl3 +Mj,) (Al1)

2 2 3
+8,7(5S, + My ) +a,5(8,S; +My,) +3,4(S; + M ;5)

Now let us simplify functions A, and A, ,. Differentiating (A5) with respect to m,_,
yields:

Elgk (51,1 +17,S;, + Uz’_m)J =0 (51,1’ S)n & — m)- (A12)
Substituting (A11) into (A12) yields

(Ak,l(a —m)— A (—m) =38 ¢, — 28,0, — 8y gy )51,1 (A13)
= _(Ak,z(a —m)— A ,(-m) -3, ;0,, — 28, g0, — 3ak,9a0,2)sz,l

Because Equation (A13) is valid for arbitrary o and s,

A(,l(M) = 3ak,6M 20t 2ak,7M1,1 + ak,SMO,Z +a, (A14)
Akz(M) = ak,7M2,o + 2ak,8M1,1 +3ak,9Mo,2 +a, (A15)

for some constants a,, and a, ,. Therefore we obtain the following

18 . represents a without the it" element. For example, a1 =(a11, @02, ..., 0o3). M. is defined similarly.
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0 (51,8,,M) =23, ; +8,,5 +a,,5, + ak,3(512 +Myo) +3y (5, + My)
+ ak,5(322 +Mg,) +a,6 (Sf +Mj, +3M,5))
+a,; (51252 + My, +2My,8 + My s,) (A16)
+ ak,8(31322 + My, +Mg,8 +2M,;s,)

3
+a4(S; + Mg5 +3M,8,)

When k =3, integrating (A16) with respectto M, , yields Equation (Al7).

1
g(sl’ s2’ M ) = a3,OM 2,0 + a‘S,lM 2,0sl + a‘S,ZM 2,052 + a3,3(SZL2M2,0 + E MZZ,O)
+ a3,4(5182|\/|2,0 + Ml,lMZ,O) + a3,5(S§M2,O + MO,ZMZ,O)

3
+ as,e(slsM 2,0 +M 3,0M 2,0 + E M 22,031)

1
+ a3,7 (SJ.ZSZM 2,0 +M 2,1'\/I 2,0 + 2'\/Il,llvI 2,081 + E M 22,082) (A17)

+ aS,B(SlSZZMZ,O + Ml,ZMZ,O + MZ,OMO,Zsl + 2Ile,O'\/ll,lSZ)
+ %’9(M2’OS§ + MZ,OMO,S + 3I\/|2,0|\/|0,2S2)
+Ay10(My)

Similarly, we can get alternative forms of g(s,,s,,M) adopting k =4...9. When we combine

these forms, g(s,,s,,M) can be represented as

9(51,8,,M) =0y (M;$,,5,) +9,(8,,5,) (A18)

where g,, is a multivariate polynomial whose coefficients are (multivariate polynomial)
functions of s, and s, with a condition of g,,(0;s,,s,)=0 and g, is a function of s,

and s, with g.(0,0)=0 because g(0,0,0)=0.

Substituting (A18) and M=a into Equation (A5) and multiplying 2/k* yields:

2
F(E[gs(sl,l + 70,85, 17, )]_ 95(51,1’ S2,1) - E[gs(nl’ﬂz)])
2
k?

) (A19)
(E[gM (_ 07;31,1 +1,8;,, 772)]_ Om (0;51,1’32,1) - E[gM (_ 07;7711772)])
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When we substitute ( ) (k0 Pr=1/2 into the (A19), the left hand side of (A19)
we substitu 1,) = I ) I
)=\ (ko) Pr=1/2

82gs(sl’ S2) _ 8295(0!0)

. : as k — 0 because ¢,(0,0)=0. Therefore
0s; 0s;

converges to

6295 (Sl’ SZ) — 8295 (010)
0s? 0s?

+ g pl(sl’ SZ) (AZO)

with some polynomial g, because g, is a multivariate polynomial. Similarly adopting

0,k) Pr=1/2

;)= eld
(. 72) @Q—M pr=1/2 /O

82gs(sl’ SZ) — 8295 (0’0)
oss 0s?

+ ng(Sl’SZ) (A21)

with some polynomial g, .

Now consider an alternative form of (A19)

1
2k K,
1

2k k,

(E[gs(sl,l TSy, + 17, )]_ gs(51,1' 52,1) - E[gs(ﬂl’nz )])
B (A22)
(E[gM (_ O3Sy, + 17,8y, + 772)]_ I (038,1,8,1) — E[gM (_ 5‘;771’772)]

(k. k,) Pr=1/2
(~k,,—k,) Pr=1/2

(k,,—k,) Pr=1/2

Next, when we substitute (771,772):( (Ck.k) Prei/2
R Ry r=

and (7,1,) :(

into Equation (A22) and subtract each other we get

azgs (Sl’ S2) — azgs (010)
05,08, 05,08,

+0,3(51:8,) (A23)

as (k;,k,) —>(0,0) with some polynomial g,,. (A20), (A21), and (A23) implies that

g(s,,s,,M) isapolynomial of s, s,, M,,,...,and M.
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Now let us substitute (1,S,,1,S,) into (S;,S,) for the function g. Since g satisfies the
Aggregation Property for any I, and 1, , each coefficient of Ilkllzkz also satisfies the

Aggregation Property. Hence, for the coefficients of Ilkllé‘2 , We can construct a spanning set of

functions that has the Aggregation Property and it is represented in Table Al for k, >k, .

[Table Al about here]

Note that, in the case of (k,,k,)=(4,0), M;, and M,.s; come together as the form

(% M 22'0 +M zyosfj rather than represented separately. It is due to the form of Equation (A17).

Some of the other combined terms are from alternatives of (A17) that are omitted in this paper.

According to Neuberger, s,, s7, M,, and 513+331M2,0 satisfies the Aggregation Property.

In addition, every M, ; also satisfies the Aggregation Property by definition of M, ;. Now let

us consider a case of (k,k,)=(21). Substituting
9(s,, S, M) =bs/s, +b,s;M, ; +b,5,M, s +b,M, (A24)
into Equation (A5) yields
b (2s,,0,, +$,,a,,) = 0,80, +b,S, 2, (A25)

Therefore b, =2b,=2b and b, =b, because & andsarearbitrary numbers. It implies that

expression (A26) is a candidate for a function with the Aggregation Property.
b,(s/'s, +25M,; +5,M, ) +b, M, (A26)

Similarly we can try for the other pairs of (k;,k,) and the result is arranged in the Table A2.

Without loss of generality, we can let (s,t,u,T)=(0,12,3) in Equation (2) and
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(8,(2),5,(2)) {i Rl,j,iRz,,-] (A27)

for £=0123 and Rij such that E;,[R ;]=0. Then each element of the Table A2 satisfies

Equation (3).

Proof of Proposition 2.

Let us consider the securities that pay S,;, S,r, Sir, SirS,r, Sirs SirS,r, or S;;Ss;
at T. Then the price of each security at time jis S,;, S,;, Sfj +Myois $;S, + My,
S}, +35 My, + My

: SFS,;+25, My +S, My + M,y , or
S,;S5;+25, My ;+S, My, ; +M,, ;, respectively.
Equipped with M, =0 for each k and I, we have the following equality:
N
( 1T 10) (SZT Z(( 1])ZASZJ+AS AMZO,j+2ASLjAM1,1,j)
j=1
N-1
ZZ(S S 2 0 Ml,l,j)Asl,j+l
> 0( £ =St~ M, )AS, 1y (A28)
N-1
+ Z(S ZO)A(Sl jat 20,j+1)

-
=1

-1

+2

Ing

o

(Sy,; = Sy0)A(S, 155,11 T Myy 1)

J:

Left hand side of (A28) describes the difference between receiving leg and paying leg of the
third comoment swap described in Table 1. In addition, right hand side of Equation (A28)

describes strategy of a self-financing portfolio which is managed with securities that pay S, 1,

S,1, SfT , 0rS,;S,; at T. Therefore (A28) shows the fairness and replicability of the third
comoment swap.
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To deal with the properties about the fourth moment swap and non-zero fourth moment swap,
we present the following equality:

(Sl,T - S1,0)4 - 3a(Sl,T - S1,0)2 M 2,0,0

N
> {(As, )" +6(AS, )2 AM, | +4AS, AM,, , +3(AM,, )*}

=1

N-1 3

=4 (M 30,j — 3S1, j M 20 T EaSLoM 2001 Sfj - Sfo)ASLjﬂ
j=0

1 1

+6> (M, — Eal\/l 200 = SL; +SL)A(S] 1+ Mg i)

(A29)

p=4

[u—
o

=z
AN

+ 4_ (S, - Sl,O)A(Sfj+l +38,.uMyg 1+ Mg i)
j=

+31-a)MJ,,

o

Left hand side of Equation (A29) with a=0 describes the difference between receiving leg and
paying leg of the non-zero fourth moment swap. Since the right hand side of Equation (A29)

describes strategy of a self-financing portfolio with initial cost 3M 22’0'0 when a=0, we see the

fairness and replicability of the non-zero fourth moment swap. Similarly, we can see the
properties about the fourth moment swap, non-zero asymmetric fourth comoment swap,
asymmetric fourth comoment swap, non-zero symmetric fourth comoment swap, and
symmetric fourth comoment swap from Equation (A29) with a=1, Equation (A30) with
(a1,a2)=(0,0), Equation (A30) with (a1,a2)=(a,1-a), Equation (A31) with (as,as,as)=(0,0,0), and
Equation (A31) with (as,as,as)=(a,1-a,1), respectively.
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(Sl,T - Sl,O)S(SZ,T - Sz,o) - 3a1(Sl,T - Sl,O)(SZ,T - Sz,o)M 2,00 3a2 (Sl,T - S1,0)2 Ml,l,O

{(AS1 S, +AS, AM,, | +3(AS, )*AM,, |}

M= 1=

{3As1 AS, AM,;  +3AM,, AS, +3AM,, AM,, |

Il
N

= Mz,l,j - Zsl,le,l,j - Sz,jMz,o,j + 28‘281,0'\/'1,1,0

1j+1

2 2
j=o{ + aisz,oM 200 T Sl,jSZ,j - S1,082,0

N-1
+ Z(MS,O,j - 381,jM 20j T 3a,S,,My 0, + Sfj - Sfo)Asz,ju
=0
N-1
+3Z(M1'1'j Mo =SS, +SlOSZO)A(S it Mz,o,j+1)

+3 (MZOJ aiMZOO Slzj+810)A(Slj+l 2j+l+Mllj+l)

+ ‘ (Sz,j - Sz,o)A(SEju + 381,j+1M 2,0,j+1 T M3,0,j+l)

+ 3NZ_:1(31,J' —S;0)A Sfj+1sz,j+1 +25, 1My ja (A30)

j=0 +S,uMyg it Moy

+3(1-a —-a,)M 200M110
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(Sl,T - S1,0)2 (SZ,T - Sz,o)2 —a, (Sl,T - S1,0)2 M 0,2,0
—a, (SZ,T - S2,0)2 M 2,00 2a5 (Sl,T - Sl,O)(SZ,T - Sz,o)Ml,l,o

3 (A8, )7+ AM 0 )((AS, )7 + AM, )+ 2(AM, )]

i1

N
—3 {4AM, AS, AS,  +2AM,, AS, | +2AM,, AS, |

=

=0

_ ZE M1,z,j _282,jM1,1,j _Sl,jMo,z,j +a582,0M1,1,0 AS
- 1,j+1
+ assl,oM 0,2,0 + Sl,j S22,j - S1,0822,0 J

+2N*1 M,.; _281,1M1,1,j _Sz,jMz,OVJ +855,0My,1 S
2,j+1
j=0 +"3‘482,0“/'2,0,0 +812,1'82,i _81%08210 |
N-1
+2 (Mg, —aMg,0 - 822,1' + SZZYO)A(SEH +Mzp5)
=0
= 2 2 2
+ (M 2,0,j a4M 2,00 Sl,j + Sl,o)A(Sz,j+1 +M 0,2,J'+1)
=0
N3 My —lalelo
+4. 2 A S My )
1=0 =515, 510520
N-1 SZi1S, 1m 25 My,
+22(Sz,j —-S,0)A e S (A3
i=0 +82,j+1M2,0.j+1 + IV|2,1,1+1
N-1 Sz-+S L, +25, M
+ZZ(SM =Si0)A e Co
i—0 +3,1aMos My,

+(-a;,-a,)M 200Mo20 t+ 2(1-a;)M :

11,0
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Appendix B: Proofs of Propositions 3 and 5 and Corollary 4.

In Appendix B, we deal with log price s and generalized moment m instead of price S and
moment M. However, we keep the notations in Appendix A although required conditions are

changed. The changed conditions are represented between Equations (B1) and (B2)

Common property B.

Consider a vector valued process {(S,,,S,,, M,):t=0.,2}. The moment vector process M

is defined as (M, ,,M,;,M,,,M;,,M,,,M,,,M,,). In addition assume

(81181, @) = (S +7,8,, 7, ,6) Pr=r,

(S,,S,,M): (0,0,m) - (51,2’?2,25) - (Sl'z’fzvz’a) I
(slyn,s.,zyn,ﬁ) N (Sl,n’S.Z,nla) Pr=r,
wity 3, -1 jz”;n,.exmsi,j):o o Elepm)=l . E[fOun)|=a, .
< -
& =(00, ", 03), and M=M(0)
where
m,, = mE[f k"(51,1+771’32,1+772)]+Zn:7fj f'(s,;05,;) (B2)

j=2

and f“" is a generalized moment function such that f“'(0,00=0 and

£ (a,b)

(a,b)—>(0,0) kbl =1’ flvk(a’b): fk'l(baa),and fk(a): fk’o(a,b)_
a,b)—(0, a

Again, g(0,...,0)=0 and Equations (A5) - (A12) hold here. Let us represent some of them:
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Elg(s,y +771, S50 +17,—M) | = 9(511, 8,0, & — M) + E[9 (17, 77,,~)] (B3)
E[g, (7,,77,,—M)]= 9, (0,0, & — M) (B4)

04 (5,5, M) =35+ A (M)(E™ D)+ A, (M)(E™ —1) +a,5(f*(5) + M,,)
+8,, (F7(5,5,) + My;) +8 5 (F2(5,) + My,) +8,6(F3(s) + M) (B5)

+ 8, (F71(51,5,) + M) + 8 (F77(55,8) + My ) + 3,5 (F7(3,) + My )

E[gk (31,1 +7170,S;, +772,—I’T1)]= Ok (31,11 Sy a —m) (B6)

Substituting (B5) into (B6) and differentiating with respectto m, yields

aA(,l(_m) _ aA(,l(a - m) apkz(_m) _ 6A<,2(a - m)

1=3,..9 (B7)
om, om, om, om,

Therefore each A (M) is an affine function. Accordingly (B5) is represented as follows:

0 (5,8, M) =a, o+ (b o +b M, +B My, +.. 4D M ;) (€™ =1)
+(C o +C M, +C My +..+C Mg 5) (€7 —1)
+a,(F2(s) + Myo) +a, ,(FH(s,s,) + M) +a, 5(F2(s,) + My,)  (B8)
+a s (F3(s)+M;o) +a,(F2(s,s,) + M,,)

+ ak,B( f 2'1(32151) + Ml,z) + ak,g( f 3(Sz) + Mo,s)

Proof of Proposition 3.

We use the Common property B with omitting all terms related the second security.

Accordingly, we ignore the S, and restrict M to be (M,,M,) with M,=M,, and

M; =M, . Then integrating (B8) with respectto M, yields
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9(s,M;,M3) =3, (M, + (b, (M, + b1,1M22/2+ bl,slvle,lvlz)(esl -1
+a,,(M, f?(s)) + M7 /2) +a,,M,(f3(s) + M,) (B9)
+gl(s1'M3)

Similarly, we can get alternative form of (B9) by integrating (B8) with respect to M;. By

combining (B9) and the alternative form, we obtain the following form

a(s,M,,M,)=aM, +a,M, +(aM, +a,M, +a.M? +a,M,M, +a,M?)(e* -1)
+a,(M? +2M,f?(s)) +a,(MZ +2M, 3(s)) (B10)
+238,((M,M; + f2(s)M; + f3(s)M,) + g°(s)

for some constants a,,---,a,, and afunction g° suchthat g°(0)=0. Substituting (B10)

n Pr=p :
and 7, = 0, Pr=i-p into (B3) yields

(" —D(asa, + 8,05 — 28M,a, + 8 (~M,a; — Mya,) — 28;Myez,)
+28,((F2(s, +77) — F2(5) —a)m, + 1, F2(s,))
0= p| +28,((F°(s+17) — £2(5) )y + s F(s) -_
5 (f2(51+77)—fZ(Sl)—az)m3+0£3f2(Sl)
a10[+(f3(sl +17)— 13(s) —a)m, + a, f 3(31)]
—E[g°(s, +7)]1+9°(s,) + E[9° ()]
+p’(e™ —1)(a50522 + A0, + a7a§)

Because we can set p arbitrary, coefficients of p and p? are zero. Therefore,
a.al + a0, +aal =0. (B12)

It implies that a;,=a;=4a, =0 because 7 is arbitrary function with E[e”]zl.

Accordingly we have the following relation:
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0=(e* -1)(a, +a,,)
+28,((F2(s, + 1) — £2(5.) — )M, + 2, T 2(5,))
+ 28, ((F3(s,+ 1) — 2(s,) — )My + 2, F5(5,)) (B13)
' O{(fz(sl+77)—fz(sl)—ocz)m3+a3f2(sl) J

+(f3(81 +n) - fs(sl) —az)M, +a, f 3(51)
—E[g°(s, +m]+g°(s)) + E[9° ()]

In addition, coefficients of m, and m, are zero because we can set them arbitrary. Thus we

have:
O=ay(f*(s,+7)— F7(s)) — ) +a,(F3(s,+77) = F7(s) ~ ) (B14)
O=ay,(f*(s,+m)— T°(s) — )+, (F3(s, +1m) = T7(s)) ~a5) (B15)
We have three cases that satisfy both (B14) and (B15).

Condition B.1
) =8 =2a,=0,
i) 3f° suchthat V(s,7), f3(s,+7)—f%(s)-a, =0 and a,=a,=0

i) 32,2 1%) st V(s.n), (F2(s+m)— F2(s) — ) +a(fo(s,+7)— F3(s) — @) =0

with a,=a,a and a, =a’a,.

: - y - log(1+k), Pr=05 .
First, to check about the condition B1.ii), substituting 7= into
log(1-k), Pr=0.5
k—zz(f3(sl+77)—f3(sl)—a3):0 and taking the limit for k —0 yields:
f2(s)-f%(s)=0 (B16)
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Then f°(s,)=hs, +b,e* isasolution of (B16) for some constants b, and b, . However, then f°

cannot be a generalized (3,0)-comoment function. It implies that the condition B1.ii) is impossible. Now

let us check the condition BL.iii).

log(1+k), Pr=0.5 .
Let f2(x)=f?*(x)+af®(x) and = gL+ . Then like the method above, we
log(1-k), Pr=0.5

can show that
fa(s)—f*(s)-2=0 (B17)

Since f” and f® are a generalized (2,0)-comoment function and a generalized (3,0)-

comoment function, respectively, we have the following solution
f2(s)=2(e* —s—1)—af *(s) (B18)
for some generalized (3,0)-comoment function f*. Therefore (B13) is arranged as follows:

ELg* (5, + 7)1 9"(s) ~ E[g" ()] = (6" ~D(@sct, + a,) ©19)
+28,(c, + ac)(17(s) +af °(s,)

log(1+k), Pr=0.5

and taking limit, g° is represented as follows:
log(1-k), Pr=0.5

Again, by letting 7 :{

9°(s) =a,s+a,,(e° —1) +4a,s” +(8a, + 2a,)s€’ (B20)

9(5’ MZ' Ms) = aiMZ +a2M3 +(aaM2 +a-lea)(eS _1)
+3,((M, +aM,)*+2(M, +aM,)(f ?(s) +af °(s))) (B21)
+a,5+a,,(e° —1) +4a,s” + (8a, +2a,)se’

Then, (B18) implies that

9(s,M,,M;) =aM, +a,M; +(a;M, +a,M;)(e’ -1)
+a,(M, +aM, —2s)* + 4a,(M, + aM,)(e* -1) (B22)
+ 8,5 +a,,(e’ —1) + (83, + 2a,)s€’
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or

g(s,M,,M,;)=d,M, +d,M, +d,M.e* +d,(M, +aM, — 2s)*

(B23)
+d;(M, +aM, + 2s)e* +d.s+d,(e* —1)

where d, =& -a,, d,=a,—a,, d;=a,—-aa,, d,=a,, d,=a,+4a,, d,=d,, and
d, =d,,.1° Then substituting it into (B3) yields

d,(4s, +2(m, +am, — a, —aw,))(E[27] + o, + acs)

+ (e ~1)(ds (E[2776"] - @, — ;) — et ) = 0 (B24)

Since s, is arbitrary, we have the following cases
Condition B.2

i) dy=d,=d. =0

i) d;=d. =0 & E[27]+a,+ac,;=0

iii) d,=0 & E[276"]-a,~ha, =0 with h=a+d,/d,

When the Condition B.2.ii) holds, f?(s)+af*(s) =2(e* —s—1). And because iii) and ii) are

exclusive, Condition B.2.iii) is equivalentto d, =d, =0 with
E[2ne"]-a, —ac,; =0. (B25)

(B25) is equivalent to

19 Note that form (B23) include the condition B.1.i).
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f2(s)+af °(s) =2(se’ —€* +1) (B26)

Arranging all above vyields the equation and the condition of Proposition 3. Without loss of

generality, we can let (s,t,u,T)=(0,1,2,3) in Equation (2) and

S(7) = exp[i r,} (B27)

for 7=01,2,3 and rjsuch that Ejfllexp(rj)le. Then g above satisfies Equation (3).

Proof of Corollary 4.

If a function is a realized (4,0)-comoment element, it should be decomposed as
9(31’ mz,o’ ma,o) = (eSl _1)77(31’ m2,0’ m3,0) +0 ' (51)

such that g"(s,)=0(s;) because of the restriction, E[eAsl]:l.Now let us investigate the

each condition in Proposition 3. At the first condition, if h, or h, are not zero, they cannot

be eliminated. Therefore, h, =h, =0. However, h(e* —1)+h,s, isatmost O(s’) as

s,—0.

At the second condition, if h. is zero, it is a case of the first condition. Therefore, it suffices

to show the case of nonzero h,. However, if h; is not zero, mzz]0 is not eliminated with

zero expectation.
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Similarly, at the third condition, investigating nonzero h, is enough. However, if h, is not

zero, h,=-h; and h, =-ah; should hold to eliminate m,, and m,,. And then, the

remaining term is at most O(s’) as s, —>0.

Proof of Proposition 5.

Proof of Proposition 5 is similar to Proof of Proposition 3. For a convenience, let us replace
some notations. At the Common property B, letus restrictthe M =(V,,V,,V,) with V,=M,,
V,=Mg,,and V,=M,,. Inaddition, f and f, replace f* and f™*, respectively. Then

integrating (B8) with respect to V, yields

9(s,5,, V1, Vo, Ve ) = a oV + (bl,Ovl + bl,lV12 2+ bl,ZVch + b1,3V1V2)(651 -1)
+(CLoVa +CLV 124 € WV, + ¢ VY, ) (6% —1)
+a,(V,f2(s) + Vi 12) +a, Vi(FH(sys,) +Vo)
+a,V,(f 2(5,) +V,) +97(5,,8,, V5, V)

(B28)

Similarly, we can get alternative form of (B28) by integrating (B8) with respectto Vv, or V..

By combining (B28) and the alternatives, we obtain the following form
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0(5,,5, V.V, V. ) = bV, + bV, + bV, + (€% —1(bV, + bV, +bV, + bV,
+ b7VCV2 + b8VlV2 + bgvcz + blOVl2 + bll\/ 22)
+ (esz _1)(b12Vc + b13V1 + b14\/2 + b15VcV1
+ b16VcV2 + b17VlV2 + bl8VC2 + blgvl2 + bZ 0V22)
+0,,(f(s)V, +VV, +V, f.(s,8,)) (B29)
+ b22(f (SZ)VC +V2Vc + fc (Sl’ sz)Vz)
+0,5(f(s,)V, +VV, + f(s))V,)
+D0,,(21(s,,8,) +V )V, +bys(2F (s,) +V)V,
+0,6(21(s,) +V,)V, +0°(s,,,)

with g°(0,0) =0. Let us substitute (B29) into equation (B3). Then

b, + b, + b, + b (.0, — v, — V)
0= (eS“ —1) +b, (a2, — .V, —  V,) + by (a2, — v, — V)
+by(a? —2av,) + by (a? — 20V, + by, (af — 2a,V,)
by,a, +bysa +byar, + b5 (a0 — v, —a V)
+1e% =1 + b (a0, — aV, —aV,) + b (e, —av, —ayv,)
+hg(a? —2a.V,) +bg(af —2aV,) + b, (af — 2a,V,)
(ELf (s, +m)]— T(s) —a)v. + f(s)a, + T (S, 821)]
+ (ELfe (8104770, 850 +772)] = £e(810,820) 2 vy
(ELT (800 + 1)1 = T(S50) =)V, + F(Sp0) + @, o (S, Su)j
+(ELf (S + 71,80 +17,)] = £.(S14,850) — )V,
(ELf(syy+m)]—f(sy)—e)Vv, + F(s,)o + f (Sll)azj
+(E[f (s + 7)1 F(s2) )V
+ 20, (B[ fo (8104 721, S0 +17,)] = T (S10,S50) — )V, + fo (811, 8,0) ;)
+ 20, ((ELf (s, + 7)1 — T(Spy) —a)v, + T (s,)e)
+ 20,6 ((ELT (S50 + 7,)] = T(S21) — )V, + F(5,1),)
—E[9° (S + 77, +7,)1+ 9°(81,8,) + E[9° (17,,7,)]

+b,,

+b,,

+b,, (B30)

Let

(171,71,) Pr=p
P PY _
(n°.m3) —( (0,0) Pr=1-p (B31)
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Then, for ie{l,2} , Ee”i"le , E[f(7")]=a,p and E[f.(7°,n))]=c.p . Therefore,

substituting (77°,775') into (77,,77,) of the previous equation yields

b,a, +b,a + b, + b (a0 p— v, — V)
0= p(eSll 1) +b, (@, p— Vv, —  V,) + by (e, p — v, — v,
+hy (e’ p-2aV,) +b (& p-2a\,) + b, (al p-2a,V,)
b,o. +ba +b,a, +b (a0 p -V, —aV,)
+ p(esz =1f +b(a,a.p— N, —aV,)+ b, (e, p—av, —ayV,)

+ blB(acz p—2a.\V,)+ 1319(0‘12 p—2aV,)+ bzo(O‘z2 p—2a,V,)

(ELf (i +m)]= T (sp0) —a)v, + F(s)a, +a, f.(8,1,8,,)
+ pb,,

+(ELfe (S0 + 7,800 + )] = £o(810,8,1) —a)vy

(ELF (S0 +m)]= F(S,0) =)V, + F(S0)exe + @, T(14,8,)

+ (ELfo (S + 170,800 +112)]1 = To(S14,801) — 2 )V, ]

(ELf (s +m)] = f(s1) — )V, + F(s,)a + f(s)e, (B32)
+(ELf (8o + 7)1 - T(s2) —a,)v, J

+2pby, ((ELfo (811 + 771,850+ 172)] = T (811, 850) — @)V, + Fo(Si1, o))

+2pby,s ((ELF (s, + 7)1 = T(811) —a)vy + f(sp)en)

+ 2 by (B[ f (S5, +722)] = F(S21) — )V, + F(8,),)

+ pb,,

+ pb,,

— PE[Q° (81 + 771,850 +12,)1+ PO° (8., S,) + PE[Q° (71, 72,)]

Because (B32) holds for arbitrary p, the coefficient of p2 should be zero.

0= (es“ —1Xb605(:051 +b,a,a, +boa, +byal +bol + bllazz)

S 2 2 2 (833)
+ (e 2 —1Xb1505c051 +ba,a, +b,a,a, +bal +ba +b,a, )
Since s;, and s,, are arbitrary, the following holds:
0=ha.a, +ba,a, +baa, +bal +b 0 +b ol (B34)

_ 2 2 2
0=ba.a +bx,a. +b,aa, +ba; +bga +bya;
Because «, isarbitrary, given ¢, and «,,
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b, =b,e, +b,a, =bya,a, +b el +bal =0. (B35)
According to the similar logic with the «; and «,, the followings hold.
by =b,=---=b,=0 and b =b,=---=b,,=0. (B36)
Because, at Equation (B32), coefficient of p is zero, we have:

0= (es“ —le3ac +bo, + b))+ (eSZ —1Xb1205c +ba, +b,a,)
(ELF(sis+m)]— F(s1) —en)v, + F(s)a, + i fo(511,8,1)
+(ELfo (S + 7100821 +172)] = (814, 800) — e )y ]
(ELT (S + 1)1 = f(S50) =)V + F(Sp0)e + £ (811,850)

+ (E[f (S + 71,850 +1,)] = £.(S10,851) — @ )V, J
(ELT (s + )] = F(s) =)V, + F () + F(s)e, (B37)
+(ELf (S, + )] = F(s2) —a)vy J

+ 20, ((EL o (S1 + 71,800 + 1701 = £:(S14,S50) — @ )Ve + Fo(SinS20) )
+ 20,5 ((ELF (s, +m)] = F(510) —a)vy + F(811) )

+ 20,6 ((ELF (S0 + 7,)] = £(S50) — )V, + T (S50)a,)

—E[9° (811 + 71,81 +17,)]1+ 9°(S1,8,) + E[9° (1,77,)]

+b,,

+Db,,

+b,,

Because v, is arbitrary, coefficient of v_ is zero.

B, (ELf (Si )] — T (S11) — ) + by (ELF (S50 +7,)]— F(S21) — )

(B38)
+ 20, (E[ f (S, + 77,85 +17,)] = (511, 8,1) —¢)) =0
d
Now consider a random variable 7, with 7,~n, and E[f (7,,7,)]1# E[f.(77,,7,)]. Then,
B, (E[f (s, + )] T (sy1) — ) + 0, (E[f (S5, +77,)]— T (S,)) — ;) (B39)

+20,,(E[ f.(S1 + 77,85, +775)] = T.(S11,8,1) —EL[f. (7, 725)]) =0

By subtracting these two equations, one can see that b,, =0 or

ELf.(Syy +77,,85 +1,)1= E[f (Sy, + 7,851 +15)1+ ELf. (1, m,)] - E[ £ (17,,775)]  (B40)

When we substitute
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(log(1+ vk),log(1+vk)) Pr=1/2

Ur1t:) :((Iog(l—\/F)JOg(l—\/E)) Pr=1/2

(log(1++/k),log(1-vk)) Pr=1/2

0r1:) = ((Iog(l— Vk),log(1++k)) Pr=1/2

into Equation (B40) and multiply 2/(In(1+ \/E) —In(1- \/F)) to the both hand side of the equation,

and take the limit with k — 0, we get

fa2(S11:S20) =1 (B41)

Hence
fo(S12,521) = 811851 + i (S11) + Fo(S2) (B42)
for some functions F, and F,. In addition the condition of  lim AACRES) =1 provides

$11,521—0,0 311521
f.(S11)S51) =S4S,,. Therefore, (B40) implies f,(S;;,S,,) =S,;S,;. When one substitute function f,

into previous of previous equation (B42), we get the following equation:

B, (ELF (Si+m)]— T (S11) — ) + by (ELF (S0 +772,)]— F(S1) — )

(B43)
+2b,,(s,,E[7,]+5,,E[,]) =0

When s, =0, (B43) is changed to b,,(E[f (s,, +7,)]— T (S,,) —,) +2b,,s,,E[7,] = 0. Because

n, can be chosen independently on s,, and 7,,
b,, =0. (B44)

Instead of Equation (B38), let us consider the coefficients of v, and v,. Then adopting same logic

from (B37) to (B44) yields
b,,=b,, =0. (B45)

Because the coefficient of v, is at Equation (B37), the equations (B44) and (B45) implies:
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B, (EL T (Sp1+77.)]1— f(S,0) — o) + 20,5 (ELf (S, +721)] = T(S1) —e) =0 (B46)
Substituting s,, =0 or s,;, =0 into the (B46) yields:
.5 (ELT (S50 +72:)1— T(Sy1) — ) = 0,5 (ELF (s, +7)]— f(S11) —) =0 (B47)

Similarly, we can get an alternative form of (B47) by using the coefficient of v,. The combination

between these two yields the following
(ELf(s+m)]-f(s)—E[f()])=0 or by,=b, =b,=0. (B48)
Here, E[f(s;;+m)]— f(s;;)—a =0 isequivalentto
f(x)=2(e"-1-x) (B49)

by Neuberger (2012). In sum, (B37) with (B44), (B45), and (B48) yields

0=(b,e, + b, + b, )(es“ —1)+ (b, + b, + b0, )(eSz —1)
+ bzs(f (S + f (311)a2)+ 20,5 (sy1)a; + 20,6 (5,,) 2, (B50)

—E[9° (S, + 771,850+ 17,)1+ 9° (810, S1) + E[9° (1 72,)]

log(1++k) Pr=1/2

and =0 into the (B50) and taking limit yields:
log(1—vk) Pr=1/2 2 (850) 9y

Substituting 7, =(

0=2b, (€™ —1)+ 2b,,(e% 1)+ 4b,,(€ —1-s,,) +8b,q(e* —1-5,,)

S S S S (851)
- 911(311' s21) + gl (511’ S21) + 911(010) - gl (0’0)
. Iog(1+\/E) Pr=1/2 . .
Similarly, when use = and =0, we get the following relation
Y 7 [log(1—\/E) Pr=1/2 " : °
0= 20, (€% —1)+ 20,,(€ —1)+ 4by,(e% —1—s5,,) +8b,g (e —1-5,,) &2

—055(811,821) + 95(8,1,S51) + 95,(0,0) — 95(0,0)

Now let us consider 7, and 7, that are dependent each other. If we substitute (B53) or (B54) into

Equation (B50) and subtract each other, then then taking limits yields the (B55).
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(log(1+ k), log(1+vk)) Pr=1/2
11 112) = B53
0rm) {(Iog(l—\/E),log(l—\/F)) Pr=1/2 (B53)
(log(1+vk),log(1—vk)) Pr=1/2
. = B54
0ron) ((Iog(l—ﬁ),log(ﬂ Jk)) Pr=1/2 (B54)
0=by(e ~1)+b, (6™ ~1)- g5,(5:1,5,.) + 65,(0.0) (855)
Then the solutions of the (B51), (B52), and (B55) are given as
9°(x,y) =bs(e" = X)y +by,(e” = y)x+h(X) + hy(y) + by Xy (B56)
9°(x,y) =2b,(e"x—e* + x) — 2b,(e” —1)x —4b,.x(e’ —y-1) (57)
+4b, (26" x — 28" + X* + 4X) + e*h,(y) + h, () + bex
s _ Yy _ @Y _ X _ _ X _yw—
g’ (xy)=2b,(y-e +y)-2b(e" -1y —4b,y(e" —x-1) (B58)

+4b,(2e"y — 26" + y* +4y) +e’h (X) + hy (X) + b,y
for some functions h;,---,h, and constants b, . Therefore g°(x,y) is a linear combination of
e*y,e¥x, xy,e*x,e*, x%,x,e”y,e’, y*,y and 1. Consistency about coefficients of €*y and e’x

1
requires b5=—§b3—2b23 and blsz—%bl?_—szs. Because g°(0,0) is zero, g and g° are

given by

9(5,,5,, V.V, V. )= bV, + bV, + bV, + (bsvc by, - (% b, + 2b23)\/2](e51 ~1)

o[~ B2 v, o ) (859
1,267 — 5, — 1), +VV, + 2% =5, - 1), )
+ b25(4(e51 - —1)+V1)\/1 + b26(4(eSz -5, —1)+V2)\/2 +09°(s,,S,)

g°(x,y) =d, (" —1) +d,x+d,(e’ —1) +d,y + 4b,.xy + 4b,.x* + 4b, y*

(B60)
+be*y +be’x+(2b, +8b,.)e*x+ (2b,, +8b,,)e’y
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(B59) and (B60) are arranged as

9(s,,s,,V,,V,, V. ) =d, (e —1) + d,5,, + d (e —1) + d,S,, + dV, + d.V, +d.V,
+ ds (Vl - 231)2 + dg (Vz - 232)2 + le(Vl - 251)(\/2 - 252)
+d, e (2VC -V, + 232)+ d,e* (2VC -V, + 231)
+de"(V, +2s)+d e (V, +25,)

(B61)

where d5:b1—b4+%b12—4b25, d6=bz+%b3—bl4—4b26, d, =b, b, —b,, d,=b,.

1 1
d9:b261 d10:b23’ d11:§b3’ d1225b12’ d13=b4+4b25: dl4:b14+4b26'20

Substituting it into equation (B3) yields the following:

0=2d,(—V, — 25, + &, N, + 2E[1,]) + 2dq (= v, — 25,, + @, (@, + 2E[1,])
+d,((—v, = 28, + a))(@, + 2E[13,]) + (=V, — 25,, + &, ) (e, + 2E[1,]))
+ (e —1)(dy(c, — E[20€™]) + 0, (2, — 2E[1,6™] - a1,))
+ (e —1)(dyy (e, — E[217,67 1) + dyp(20r, — 2E[7" ] - a1, )

(B62)

Since coefficients of v, and v, are zero, E[f(;7)]=E[-27] or dy =dq =d,; =0. In addition,

because s,,,S,, are arbitrary,

0=ds(e;, —E[277,€™]) +d};(2er, — 2E[1,6™ ]~ ;)

(B63)
O0=d,(a, —E[2n,™]) + d12(2ac —2E[n,e™ ]~ 0{1)

(1) If d, isnot zero, for some constants k, and k., the following holds

2 The ten coefficients, by,---,b;,b,,,0,,,0,5,0,., and b, are replaced with dg,---,d,,. More
precisely, (d;,dg,d,,,d;5) replace (b,,b,,b,,b,). (dg,dg,dy;,d;,) replace (b,,bs,b,,,0,).

d,, replaces b,,. And d, replaces b, given b; and b,,.
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fo(mm,) =1,8" + %az + Zd(f @2me™ —ay) +k, (e —1)+k,(e” —1)
11

d f (X,
Then 2dls (2™ —ay) + k1(e’71 _1)2 0 and %ag +k2(e’72 —1): -1, because fy) -1

11

F(x)

as X,y —>0 . Accordingly, k,=-1 because ———>1 as X,y—>0 . And it implies
X

k, =d,;; =0. Therefore, f.(1,,7,)=n,("-1), f(n)= 2(e’7 —77—1). Then d, =d,, =0.

(2) Similarly, if d, is not zero, f_(n,7,)=n"-1) , f(n):Z(e”—n—l) and

d,=d,;=d;, =0
3)or d;, =d,, =d;;=d;, =0, f(n)= Z(e’7 -n —1) with arbitrary function f,.
(4) dg=dy =d,,=d;, =d,, =0, f(r7)=2(e" —e" +1) with arbitrary function f..

(5) dg =dg =d,,=d,, =d,, =d,;; =d,, =0 with arbitrary functions f and f_.
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Table 1. Higher order moment swaps

Type of swap Receivingat T Payingat je{l---,N} Costat 0

Third comoment (Sir —S10)%(S,1 —S50) (AS,|)2AS, , +AS, AM, ,  +2AS, AM,, 0

Non-zero fourth (Sir = S0)" (AS,,)* +6(AS, )2AM, ¢ | +4AS, AM,; +3(AM, )2 3M2,,
moment

Fourth moment (Sur = Si0)* —3(Sir = S16)* My (AS,,)" +6(AS, )?AM, o  +4AS, AM,; +3(AM,, ;)? 0

Nor;:;r;ometric (57 = 810) (ar = S20) (ASy)°AS, ; +AS; jAMy o ; +3AM,, ;(AS, ;)* 3M;00My1
fourth comoment +3AM, jAS, j +3AM, 5 jAS, jAS, ; +3AM, o ;AM

Asymmetric fourth ( 1T 10) (SZT 20) (Asl,j)aASZ,j +ASZ,jAM3,O,j +3AM1,1,j(ASl,j)2 0
comoment with a ’
—=3a(S,1 —S,0)(S,1 = S,0)M, 00 +3AM,, JAS,  +3AM, AS, JAS, | +3AM, , ;AM, |

- 3(1 - a)(Sl,T - S1,0)2 Ml,l,o
with a constant a

Nor;_zertcr)w Symmetrict (Sur = S10)*(Sar = S20)° (AS,})° +AM, 0 )(AS, ) + AMg, ) + 2(AM, )’ Mz200Moz0
ourth comomen
+4AM,, |AS, AS,  +2AM,, AS, | +2AM,; AS, | +2M7
Symmetric fourth (Sir —S10)°(Sor —Sy0)° (AS, ;)" +AM,5 )((AS, )" + AM, , ) + 2(AM,; ;)° 0
comoment with a
—2(S,7 =S16)(S31 =S, )My +4AM,; AS, JAS, | +2AM,, jAS, | +2AM, AS, |

- a(sl,T - S1,0)2 M 0,2,0

2
—(1=-a)(S,1 =S50) M,
with a constant a
This table describes various (co)moment swaps. Each row represents structure of a swap. The second, the third, and the fourth column represent amount of

receiving leg, paying leg, and initial cost, respectively. Paying leg consists of the terms of realized cumulant and the receiving leg is a product of total returns
possibly with additional terms. Since each swap is constructed to be fair, some swaps require additional cost at time zero and they have a prefix, non-zero, at
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the name. The non-zero swaps are modified to be zero cost swaps by changing the receiving legs. As a result, expectation of receiving leg of a non-zero swap
becomes (co)moment and expectation of receiving leg of a modified swap becomes (joint) cumulant. There are two kinds of comoment in the case of the fourth
comoment. When the receiving leg is related to the product of square of returns, then it has an affix, symmetric, at the name; otherwise, it has an affix of
asymmetric. In the case of the fourth comoments, there are various forms for zero cost swaps. Adopting a constant a allows these variations for each fourth

comoments.
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Table 2. Statistics of cumulants of the S&P 500 returns

This table represents descriptive statistics of cumulants, skewness, and kurtosis of S&P 500 returns
from January 1996 to August 2014. Panel A shows the statistics of 30-day returns up to the last trading
day of each option. The second column represents sample moments. The third and fourth column
represent averages for the implied and realized values, respectively. Implied cumulants are calculated
through Equation (25). Realized cumulants are calculated through the expressions (6), (8), and (16).
Numbers in parentheses are standard deviations for each term. The other panels are similar to the Panel

A except the time horizon and frequency of sample.

A. 30 days
Sample  Implied Realized
2nd cumulant 0.24 0.40 0.32
(x100) (0.37) (0.50)
3rd cumulant -0.11 -0.34 -0.22
(x1000) (0.46) (0.57)
Skewness -0.90 -1.37 -1.11
(0.50) (0.72)
4th cumulant 0.18 0.80 0.25
(x10000) (1.27) (0.97)
Kurtosis 3.04 5.94 4.33
(4.02) (5.87)
B. 90 days
Sample  Implied Realized
2nd cumulant 0.75 1.18 0.89
(x100) (0.80) (0.97)
3rd cumulant -0.11 -1.42 -0.92
(x1000) (1.13) (1.49)
Skewness -0.16 -1.17 -1.11
(0.38) (0.49)
4th cumulant 0.62 3.76 1.28
(x10000) (3.30) (2.33)
Kurtosis 1.11 3.35 2.93
(1.95) (2.51)
C. 180 days
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Sample  Implied Realized
2nd cumulant 1.65 2.32 1.93
(x100) (1.36) (2.03)
3rd cumulant 0.05 -3.01 -2.12
(x1000) (2.09) (2.44)
Skewness 0.02 -0.91 -1.03
(0.33) (0.53)
4th cumulant 3.04 6.75 3.84
(x10000) (5.44) (13.05)
Kurtosis 1.11 1.67 2.10
(1.08) (2.03)
D. 360 days
Sample  Implied Realized
2nd cumulant 3.97 4.63 7.81
(x100) (2.27) (28.59)
3rd cumulant 1.97 -4.23 6.40
(x1000) (4.89) (81.53)
Skewness 0.25 -0.50 -0.81
(0.40) (0.58)
4th cumulant -12.91 8.63 468.85
(x10000) (16.02) (3652.54)
Kurtosis -0.82 0.62 1.27
(0.61) (1.63)
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Table 3. Adjusted skewness and kurtosis

The adjusted skewness and kurtosis are defined to be irrelevant to the n if the returns are i.i.d.. More
specifically, adjusted skewness represents monthly skewness which is calculated by skewness of n-
month return; /n times sample skewness of n-month returns of the Table 2. In addition, adjusted

kurtosis represents n times non-excess kurtosis of n-month returns minus 3.

Months (n) 1 3 6 12
Adjusted skewness -0.90 -0.28 0.06 0.86
Adjusted kurtosis 3.04 9.34 21.68 23.19
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Table 4. Time series regression of cumulants of S&P 500 returns

Panel A represents the time series regression about cumulants of monthly returns of S&P 500 from
January 1996 to August 2014. Each row represents the result of the regression with coefficients and t-
values in parentheses. The first column represents the measure that we analyze. Within the measure,
dependent variables are realized cumulants and the independent variables are implied or lagged realized

cumulants. The other panels are similar to the Panel A except the time horizon.

A. 30 days
Intercept Implied Realized(-1) Adj. R2
2nd cum. 0.00 0.95 0.51
(-1.23) (6.31)
0.00 0.71 0.50
(2.44) (4.71)
0.00 0.54 0.37 0.55
(-0.51) (3.06) (1.47)
3rd cum. 0.00 0.82 0.43
(0.98) (4.00)
0.00 0.61 0.37
(-2.02) (2.46)
0.00 0.57 0.25 0.46
(0.73) (3.01) (0.92)
Skew -0.20 0.67 0.22
(-2.30) (9.42)
-0.68 0.39 0.15
(-7.59) (4.68)
-0.20 0.52 0.19 0.24
(-2.21) (5.81) (2.26)
4th cum. 0.00 0.23 0.08
(0.64) (1.13)
0.00 -0.13 0.01
(3.99) (-0.46)
0.00 0.28 -0.24 0.13
(0.83) (1.62) (-0.74)
Kurt 1.48 0.48 0.10
(3.25) (6.27)
3.18 0.27 0.07
(7.01) (3.40)
1.38 0.38 0.16 0.12
(3.01) (4.94) (2.31)
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B. 90 days

Intercept Implied Realized(-1) Adj. R2
2nd cum. 0.00 0.66 0.29
(1.66) (7.91)
0.00 0.48 0.22
(4.66) (3.85)
0.00 0.58 0.08 0.28
(1.81) (4.56) (0.64)
3rd cum. 0.00 0.56 0.17
(-1.06) (4.56)
0.00 0.35 0.11
(-3.71) (5.03)
0.00 0.48 0.08 0.16
(-1.43) (2.39) (0.79)
Skew -0.17 0.80 0.39
(-1.59) (9.27)
-0.48 0.57 0.31
(-4.69) (6.49)
-0.17 0.59 0.22 0.40
(-1.55) (3.44) (1.41)
4th cum. 0.00 0.20 0.06
(1.42) (1.81)
0.00 0.32 0.09
(2.93) (2.15)
0.00 0.11 0.25 0.10
(1.56) (0.89) (1.40)
Kurt 0.39 0.75 0.34
(1.01) (6.81)
1.28 0.55 0.30
(3.78) (4.61)
0.26 0.51 0.32 0.40
(0.76) (3.53) (2.74)
C. 180 days
Intercept Implied Realized(-1) Adj. R2
2nd cum. 0.01 0.62 0.16
(2.55) (6.65)
0.01 0.27 0.06
(5.18) (2.52)
0.01 0.60 0.03 0.15
(2.60) (5.26) (0.40)
3rd cum. 0.00 0.53 0.19
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(-2.02) (6.76)
0.00 0.29 0.07
(-4.90) (3.73)
0.00 0.63 -0.11 0.19
(-1.77) (4.49) (-0.95)
Skew 0.14 1.29 0.63
(1.53) (13.06)
-0.31 0.71 0.48
(-3.45) (9.44)
0.12 1.12 0.13 0.63
(1.26) (5.35) (0.95)
4th cum. 0.00 0.07 -0.01
(0.89) (0.18)
0.00 0.04 -0.01
(2.14) (0.47)
0.00 0.05 0.04 -0.03
(0.87) (0.14) (0.48)
Kurt -0.30 1.43 0.57
(-1.27) (8.10)
0.87 0.60 0.32
(3.18) (4.13)
-0.30 1.25 0.15 0.57
(-1.37) (5.48) (1.36)
D. 360 days
Intercept Implied Realized(-1) Adj. R2
2nd cum. 0.02 1.18 -0.01
(1.00) (1.24)
0.08 -0.01 -0.02
(2.19) (-0.72)
0.02 1.27 -0.03 -0.02
(0.90) (1.22) (-0.99)
3rd cum. 0.01 0.47 -0.01
(0.83) (1.29)
0.01 0.00 -0.02
(0.67) (-0.31)
0.01 0.47 -0.01 -0.03
(0.83) (1.28) (-0.45)
Skew -0.31 1.03 0.49
(-3.66) (9.11)
-0.39 0.58 0.32
(-3.79) (6.71)
-0.26 0.85 0.18 0.50
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(-2.87) (5.16) (1.47)
4th cum. 0.08 -34.24 0.01
(1.04) (-0.91)
0.05 -0.02 -0.02
(1.08) (-1.12)
0.08 -36.47 -0.05 -0.01
(1.03) (-0.90) (-1.00)
Kurt 0.19 1.73 0.41
(1.07) (6.68)
0.87 0.37 0.10
(3.81) (3.08)
0.20 1.81 -0.05 0.40
(1.11) (5.90) (-0.50)
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Table 5. Average of regression about comoments

Panel A represents average of time series regression results about comoments of monthly returns
between S&P 500 and each stock contained in Dow Jones Industrial Average from January 1996 to
August 2014. Each row represents the result of the regression with coefficients and t-values in
parentheses. The first column represents the measure that we address. Within the measure, dependent
variables are realized comoments and the independent variables are implied, lagged realized, and
historical comoments; the implied and the realized moments are calculated as Section 3 describes and
the historical comoments are calculated from the previous 24 monthly returns. Panel B is similar to the

Panel A except that Panel B is about average of cross sectional regressions.

A. Average of time series regressions.

Intercept Implied Realized(-1)  Historical Adj. R2

covar 0.000 0.691 0.403
(-1.304) (11.510) (13.477)
0.001 0.495 0.322
(15.013) (11.042) (11.394)
0.002 0.568 0.037
(5.899) (4.992) (3.641)
0.000 0.521 0.134 0.010 0.429
(2.246) (7.532) (3.247) (0.057) (13.846)
3rd comom 0.000 0.907 0.440
(1.065) (13.638) (16.983)
0.000 0.401 0.234
(-18.145) (9.255) (10.566)
0.000 0.676 0.053
(-13.645) (6.809) (6.086)
0.000 0.872 0.039 -0.184 0.466
(1.212) (13.435) (1.155) (-2.593) (18.530)
beta 0.133 0.716 0.114
(1.152) (7.605) (4.903)
0.686 0.257 0.084
(18.651) (8.738) (5.228)
0.698 0.223 0.066
(9.104) (3.244) (4.418)
-0.022 0.586 0.111 0.150 0.167
(-0.094) (4.134) (3.780) (1.142) (5.527)

58



gamma 0.310 0.648 0.045
(2.092) (5.382) (2.966)

0.952 0.042 0.005

(26.977) (1.835) (0.520)

0.992 -0.009 -0.004
(26.816) (-0.610) (-0.688)

0.339 0.644 -0.010 -0.027 0.035

(2.225) (4.913) (-0.521) (-1.167) (2.141)

B. Average of cross sectional regressions.

Intercept Implied Realized(-1)  Historical Adj. R2

covar 0.000 0.668 0.282
(-0.283) (12.675) (15.831)

0.001 0.600 0.269
(5.618) (11.946) (15.827)

0.001 0.834 0.265
(7.379) (8.181) (16.990)

0.000 0.282 0.269 0.298 0.386
(0.845) (6.442) (9.210) (5.823) (21.012)

3rd comom 0.000 0.617 0.358
(-3.601) (9.245) (18.601)

0.000 0.784 0.227
(-6.649) (3.331) (12.863)

0.000 0.107 0.075

(-6.574) (1.522) (8.438)

0.000 0.510 0.308 0.006 0.409
(-3.713) (10.603) (2.942) (0.203) (21.448)

beta 0.036 0.861 0.282
(0.748) (18.166) (15.831)

0.455 0.508 0.269
(20.007) (21.210) (15.827)

0.485 0.459 0.265
(23.011) (22.536) (16.990)

0.109 0.374 0.240 0.212 0.386
(2.539) (8.198) (12.797) (12.072) (21.012)

gamma 0.254 0.687 0.358
(4.256) (12.425) (18.601)

0.626 0.345 0.227
(18.817) (8.397) (12.863)

0.884 0.085 0.075

(16.109) (1.906) (8.438)
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0.221 0.570 0.111 0.042 0.409
(4.809) (7.507) (2.606) (1.062) (21.448)
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Table 6. Return and realized moments of (co)moment portfolios

Panel A represents performance of portfolios that are constructed based on the rank of the implied volatility. We
classify the firms in the DJIA index into the three groups, based on the model free implied variance at each month-
end, with breakpoints 30% and 70%. Using the three groups, we make three equally weighted portfolios and zero
cost portfolio which is denoted by 3-1. The numbers in the second column is the average of returns over the
subsequent month. Similarly, the other columns present realized moments of return over the subsequent month.
The last row represents t-value of the statistics for the 3-1 portfolio. Panel B and C are similarly constructed except
that the portfolios are sorted based on the model free implied skewness or kurtosis at each month-end. The other

Panels are similar except that the portfolios are sorted based on the realized moment of each month-end.

A. var_imp return  volatility  beta gamma skewness kurtosis
1 (lowest) 0.0060 0.0601 0.669 0.7571 -0.2129  0.4505
2 0.0081 0.0764 0.9360 0.9829 -0.1533 0.3106
3 (highest) 0.0048 0.1045 1.2115 1.1614 -0.0187 0.3439
3-1 -0.0012  0.0444 05419 0.4042 0.1942 -0.1065
t(3-1) -0.2795 15.7341 18.6191 9.9106 12.5295 -2.1609
B. skew_imp
1 0.0031 0.0696 0.8378 0.9174 -0.2355 0.5461
2 0.0078 0.0772 09281 0.9559 -0.1415 0.3151
3 0.0082 0.0938 1.0535 1.0373 -0.0122 0.2428
3-1 0.0051 0.0242 0.2156 0.1199 0.2233  -0.3033
t(3-1) 14832 12.0778 9.1469 3.4865 15.5593 -5.6128
C. kurt_imp
1 0.0056 0.0824 0.9939 1.0043 -0.1188 0.2503
2 0.0066 0.0776  0.9303 1.0021 -0.1376  0.3469
3 0.0071 0.0806 0.8946 0.8885 -0.1337  0.4957
3-1 0.0015 -0.0019 -0.0992 -0.1157 -0.0149 0.2454
t(3-1) 0.5322 -1.1838 -5.0005 -2.8297 -0.9675 4.7449
D. var_real(-1)
1 0.0071 0.0631 0.7206 0.7985 -0.1972 0.4541
2 0.0075 0.0770 0.9240 0.9660 -0.1561  0.3687
3 0.0043 0.1005 1.1762 1.1415 -0.0311 0.2638
3-1 -0.0028 0.0374  0.4556 0.3430 0.1661  -0.1903
t(3-1) -0.6844 13.3402 15.9114 5.6637 10.7673 -4.3224
E. p_real(-1)
1 0.0072  0.0679 0.6813 0.7999 -0.1563  0.4433
2 0.0060 0.0756  0.9085 0.9738 -0.1476  0.3998
3 0.0063 0.0976  1.2352 1.1297 -0.0833 0.2319
3-1 -0.0008  0.0297 0.5539 0.3298 0.0730 -0.2114
t(3-1) -0.2000 10.2679 19.7464 4.8118 4.6119 -5.5192
F.y _real(-1)
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1 0.0068 0.0709 0.7527 0.8522 -0.1470 0.4466
2 0.0076  0.0758  0.9117 0.9583 -0.1524  0.3477
3 0.0046  0.0943  1.1598 1.0976 -0.0864  0.2992
3-1 -0.0022  0.0233  0.4072 0.2454  0.0605 -0.1475
t(3-1) -0.6941 9.3553 15.1543 6.1452 39138  -3.4842

G. skew_real(-1)
1 0.0081 0.0747 0.8937 0.9548 -0.2189 0.4011
2 0.0071 0.0783 0.9419 0.9596 -0.1430 0.3038
3 0.0038 0.0872 0.9796 0.9939 -0.0264  0.4030
3-1 -0.0043 0.0125 0.0859 0.0391 0.1924  0.0019
t(3-1) -1.4363 5.0359 3.3964 1.3867 12.1968 0.0411

H. kurt_real(-1)

1 0.0048 0.0811 0.9763 0.9747 -0.1265 0.2200
2 0.0061 0.0799 09569 0.9720 -0.1219  0.3555
3 0.0086 0.0787 0.8775 0.9580 -0.1467 0.5152
3-1 0.0038 -0.0024 -0.0988 -0.0167 -0.0202 0.2953
t(3-1) 15108 -1.9058 -5.2212 -0.4412 -1.3980 6.8189
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Table 7. Fama and French 3 factor risk adjusted return

This table constructs the portfolios as the Table 6 describes. And then this table shows coefficients and t-values
about time series regression of excess return of each portfolio on the Fama and French 3 factors; mkt, smb, and

hml are market excess return, SMB factor, and HML factor, respectively.

A. var_imp
Intercept  MKT SMB HML  Adj. R2
1 0.002 0.632 -0.291 0.125 0.603
(1.332) (14.561) (-3.266) (2.047)
2 0.002 0.974 -0.262 0.195 0.802
(1.164) (22.550) (-4.078) (3.317)
3 -0.006 1.457 0.077 0.536 0.782
(-2.417) (22.227) (0.886) (5.559)
3-1 -0.008 0.825 0.368 0.411 0.457
(-2.626) (9.949) (2.710) (3.367)
B. skew_imp
1 -0.002 0.832 -0.259 0.131 0.695
(-1.283) (19.125) (-4.225) (2.028)
2 0.002 0.957 -0.222 0.190 0.785
(1.028) (23.678) (-3.212) (3.141)
3 -0.001 1.279 -0.005 0.531 0.733
(-0.561) (18.955) (-0.056) (5.018)
3-1 0.001 0.448 0.254 0.400 0.213
(0.273)  (5.234) (2.176) (2.968)
C. kurt_imp
1 -0.002 1.086 -0.209 0.277 0.779
(-1.025) (23.439) (-2.683) (3.880)
2 0.000 0.934 -0.163 0.207 0.802
(0.300) (24.613) (-2.787) (4.051)
3 0.000 1.057 -0.137 0.366 0.669
(-0.185) (16.557) (-1.657) (4.089)
3-1 0.001 -0.029 0.072 0.090  -0.007

(0.471)  (-0.370) (0.626) (0.818)

D. var_real(-1)

1 0003 0708 -0.298 0.156  0.636
(1.566) (14.523) (-3.319) (2.266)

2 0001 0970 -0.291  0.173  0.840
(1.051) (31.984) (-7.558) (3.326)

3 -0.006 1387 0114 0541  0.741
(-2.294) (19.808) (1.169) (4.794)

3-1 0009 0678 0411 0385  0.358
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(-2.663) (7.396) (3.083) (2.693)
E. B real(-1)
1 0.003 0.680 -0.224  0.126 0.572
(1.637) (13.065) (-2.511) (1.863)
2 -0.001 0.965 -0.195  0.297 0.769
(-0.418) (23.806) (-2.675) (4.698)
3 -0.004 1.423 -0.081 0.397 0.762
(-1.406) (18.277) (-0.920) (3.476)
3-1 -0.006 0.744 0.143 0.271 0.334
(-1.897) (6.974) (1.001) (1.809)
F.y_real(-1)
1 0.001 0.853 -0.224  0.144 0.679
(0.778)  (15.463) (-2.805) (2.392)
2 0.001 0.990 -0.216 0.275 0.799
(0.593) (25.051) (-3.492) (4.082)
3 -0.004 1.214 -0.057 0.416 0.723
(-1.735) (19.612) (-0.636) (3.870)
3-1 -0.006 0.360 0.167 0.271 0.140
(-1.792)  (4.106) (1.297) (1.988)
G. skew_real(-1)
1 0.003 0.836 -0.255  0.117 0.673
(1.664) (17.148) (-3.579) (1.607)
2 0.000 0.995 -0.188 0.309 0.804
(0.136) (27.431) (-3.413) (5.855)
3 -0.005 1.227 -0.064  0.396 0.799
(-2.608) (19.122) (-0.797) (4.414)
3-1 -0.008 0.390 0.190 0.279 0.199
(-3.013) (4.351) (1.838) (2.385)
H. kurt_real(-1)
1 -0.002 1.017 -0.054  0.346 0.785
(-1.555) (25.606) (-0.732) (6.021)
2 -0.001 1.044 -0.182 0.257 0.798
(-0.609) (26.825) (-3.018) (4.785)
3 0.002 0.980 -0.269 0.233 0.704
(1.134) (17.813) (-3.916) (2.719)
3-1 0.005 -0.037  -0.215 -0.113  0.026
(1.935) (-0.580) (-2.920) (-1.184)
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Table Al. Elements of a spanning set of functions that satisfy Equation (A5) for each pair (ki,k2)

ki+ko  (ki,k2) Elements of a spanning set of functions for each pair (ki,k»)

1 (1,0) s,
2 2,0) s, M,

1, $S,, My,
3 30 8, sMyg, My,

(2’1) S1282 ! SlMl,l’ SZI\/IZ,O ! M2,1
1
4 (40 s sMy, SMIg+Mys
(3,1) S1382 ! M 2,0M1,1 + Ivll,lsl2 +M 2,05182 ' M 2,1817 M 3,082

1
(2,2) 312322 , My oMy, + Mo,zsl2 + M2,0522 'S M12,1 +My;88,, My,s, M,s,

3
5 (510) S15 ' M2,0M3,o + E M22,051 + I\/|3,0512 + Mz,osl3
(41) Sy, 4My M, +4M, .S +4M,ss, +12M, (M,,S, +3MJ (s, + 6M, (M, , +6M,,57 +6M, (s7s,
S13322 1 I\/|3,0'v|0,2 + 6M2,1M1,1 +3Ml,2M2,0 +3M 2,0M0,251 + 6M12,lsl + 6le,o'vll,lSZ + MS,OSS + 6I\/Iz,lslsz +3M1,2512 + M0,2813

3,2
(3.2) +6M,,57S, +3M, 4SS,
6 (610) Sf’%MSiO +3M3,0M2,051 + MS,OSf

(5.1) stz M;3oMy, +2M; My, +3M, (M, 8, + M (M, 08, + MZ,le + M3,os1232
1
(4,2) S14522 M3 My, + M3 M, +3M,M, 08 +2M 5 My js, + I\/|1,2313 + M3,031322 'S M 22,1 +2M,,M, ;5 + M, M, s, + M 2,131232

Slgsg’ M3,0M0,3 +3M2,0M0,351 +3M3,OM0,282 + M0,3Sf + M3,OS:23 ! MZ,lMl,Z + 2M1,1M1,231 + M0,2M2,151 +2M2,1M1,182 + Ml,ZMZ,OSZ

3,3
43 + M1,231252 + M2,151822
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Each row of this table represents elements of spanning set of functions that satisfies Equation (A5) and
9(,S,.1,S,,M(1,S,,1,S,)) = 14152 9(S,,S,,M(S,,S,)) for each pair (ki,kz) with k, >k,. The cases of k, >k, are omitted because they are

represented by symmetry.
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Table A2. Elements of basis of functions that satisfies Equation (A5) for each pair (k1,k2)

kitko  (ki,ko) Elements that satisfies Equation (A5)
1 (1,0) s,
2 (20)  sf, My,
(1)1) SlSZ ’ Ml,l
3 (30) S +35M,,, My,
(211) 51252 +231M1,1+82M2,0’ MZ,l
4 4,0) S +65/M,,+45M,,+3M;,
(3.1) S1332 +5,M;,+ 3(Mz,oMn + M1,1512 +M, 088, +M,,8))
22) SISy +M, M, +M,87+M, s> +2M7 +4M,S5S, +2M, s, +2M, s,
5 (5,0 N/A
(4,1) N/A
(3,2) N/A
6 (6,00 N/A
(5,1) N/A
4,2) N/A
(3,3) N/A

Each row of this table represents elements of basis of functions that satisfies the Aggregation

Property and g(1,S,,1,S,,M(l,S,,1,S,)) =1“1}29(S,,S,,M(S,,S,)) for each pair (ku,k2).
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