
1 

 

 

Realized Higher-Order Comoments 

 

Kwangil Bae* and Soonhee Lee** 

Abstract 

We define a realized third comoment of arithmetic returns, which can be obtained from 
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specific period because they are obtained from the data only within the period. Moreover, 
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I. Introduction 

If periodical returns of an asset are i.i.d., sample moments of a total return for a period 

become accurate as sample size increases. However, distribution of security returns appears to 

be time varying, and it is prominent when there is a shock in the market as a series of financial 

crises show (Engle 1982; Ang and Timmermann 2012; Baur 2012). Therefore, sample 

moments can deviate from true moments of a total return for a specific period. Accordingly, 

alternative methods have been developed for the moment estimation. One of them is a forward-

looking measure (or implied moments), which is obtained from option prices. Because option 

prices reflect perspectives on their underlying assets, they can provide moments of a return on 

their underlying asset for the next period (e.g., Bakshi, Kapadia and Madan (2003)). 

Although implied moments provide information for the future, it is also needed to access 

what happened in a past specific period. For example, when we test whether an implied 

variance of a monthly return really forecasts realization, we use an ex-post variance estimation 

as a reference. As aforementioned, sample variance of monthly returns cannot be used for the 

reference because it is contaminated by returns from the other months.1 In this respect, the 

following two characteristics are required for the reference estimator: Data only within the 

specific period (a month, in the example) are enough to yield the estimator, and horizon of the 

estimator coincides with coverage of data (a month, in the example). Realized variance in the 

literature satisfies these two characteristics (e.g., Andersen et al. (2003)). 2  Accordingly, 

realized variance helps to understand the specific period clearly and is obtainable even for 

newly issued securities, which have limited data period. Because of these merits, Neuberger 

(2012) develops realized third moment. However, none of realized fourth moment, realized 

third comoments, and realized fourth comoments are known although many theoretical and 

empirical studies show that the third and the fourth (co)moments are related to returns of 

securities (e.g., Kraus and Litzenberger 1976; Harvey and Siddique 2000; Dittmar 2002; Ang 

et al. 2006; Conrad, Dittmar and Ghysels 2013). 

                                                           
1 Alternatively, one may use sample variance of daily returns within the specific month but it is a variance of 

daily returns rather than a variance of the monthly return. 

2 Accordingly, Jiang and Tian (2005) test whether the implied volatility really forecasts the realized volatility of 

the future period, and Bollerslev, Gibson and Zhou (2011) estimate volatility risk premium from the implied 

volatility and realized volatility. 
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In this paper, by extending Neuberger (2012), we provide the realized third comoment of 

arithmetic returns with an assumption that price of each asset is a martingale. As a realized 

comoment, it helps to access the ex-post third comoment of returns for a specific period of our 

concern because it does not require data from any extra periods, which may have different 

statistical characteristics from the specific period. In the case of the fourth order, we show that 

there are neither realized fourth moment nor realized fourth comoments. Instead, we propose 

definitions of realized fourth (joint) cumulants, which are standardized (co)moments. Moreover, 

we show that neither realized third comoments nor fourth moments of log returns exist under 

the similar condition. 

According to our data set from January 1996 to August 2014, sample moments are closer to 

average of realized moments than average of implied moments. In addition, empirical result 

with the realized cumulants is consistent with the literature although there are some differences 

in the significances. For example, the empirical result shows that portfolio with high beta, low 

gamma, low skewness, or high kurtosis is linked with low return like the result of Harvey and 

Siddique (2000), Conrad, Dittmar and Ghysels (2013), Frazzini and Pedersen (2014), and 

Amaya et al. (2015). 

Among these studies, the work of Amaya et al. (2015) is closely related to ours because the 

authors also investigate realized third and fourth moments and discover the relation between 

the moments and subsequent returns. However, unlike their interesting result, their realized 

moments have a limitation in that these estimators cannot capture volatility of volatility 

contribution to the moments as they address. As a result, their measures are biased from total 

cubic and total quartic variations.3 This problem arises because they define a realized kth order 

moment as a sum of the kth powers of sub-period returns, which is a natural extension of a 

realized variance, a sum of squares of sub-period returns, defined from the following relation 

                                                           
3 Albeit the limitation, their realized moments are developed to describe moments of total return of a specific 

period. However, they revise their realized moments when they get their skewness and kurtosis. This revision 

makes their skewness and kurtosis to be sample measures of sub-periodical returns rather than realized measures 

of the total specific period because those are represented as 
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respectively, where each r represents a sub-periodical return. 
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with k=2 and a martingale property of F. 

However, for 3k , Equation (1) does not generally hold, and diffusive contribution in the 

right hand side diminishes as the partition },,{ 0 Ntt   become finer. Therefore, a sum of the 

third or fourth powers of sub-period returns cannot capture whole characteristics of total return. 

To resolve this problem, Neuberger (2012) generalizes Equation (1) through Aggregation 

Property and confirms that realized moments over the second order are not obtainable when 

the provided information is limited to the price process F. Moreover, the author shows that we 

can additionally obtain the third moment but no higher order moments when the information 

set is extended to include variance process additionally. The addition of only the variance 

process is reasonable because of its importance and accessibility; some derivatives are quoted 

in volatility of their underlying assets. However, as mentioned above, the third and fourth 

moments are also important, and they are also obtainable as Bakshi, Kapadia and Madan (2003) 

show. Therefore, we extend our information set to include the implied third moment.4 As a 

result, we show that this extension contributes to get the realized fourth moment. In addition, 

different from Amaya et al. (2015), our realized fourth moment reflects characteristics of 

volatility of volatility as well as jump contributions. More specifically, volatility clustering 

increases the fourth moment, and a negative correlation between skewness and returns reduces 

the fourth moment. 

Meanwhile, previous studies show that covariations between securities’ returns are also 

important in asset pricing. For example, traditional CAPM addresses the role of covariance in 

the asset pricing, and Harvey and Siddique (2000) addresses that of coskewness. In this respect, 

Neuberger (2011) investigates coskewness although it is omitted in the published version. The 

author provides a new perspective with a new definition of coskewness, which is a sensitivity 

of expected realized skewness with respect to the investments. A point that it is defined without 

covariance process improves its accessibility and usefulness in the future studies. However, 

another point that it is not developed based on the traditional definition causes a weak link 

between the new coskewness and the other studies from the traditional coskewness. Therefore, 

                                                           
4 We do not include implied fourth moment because we guess that realized moment for an order requires lower 

order implied moments.  
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we investigate the realized third and fourth comoments in accordance with the traditional 

definition. Like the case of the fourth moment, we show that lower order implied moments and 

comoments contribute to yield realized third and fourth comoments. In addition, we show that 

contagion effect, which represents high correlation between returns during downturns, reduces 

the realized third comoment.  

Despite the usefulness of the realized higher order comoments, estimating them has a 

practical obstacle. That is, while we require lower order implied moments and comoments to 

obtain a realized comoment, implied comoments are hardly accessible because they require 

exotic options like basket options or spread options. We partially overcome this issue by 

adopting Kempf, Korn and Saßning (2015).5 

The finance literature mostly uses log returns instead of arithmetic returns because short 

term returns are easily transformed to long term returns and vice versa because of additivity of 

log returns. However, we do not require the transformation when the sample period coincides 

to the time horizon as we get the realized moments. In addition, upon occasion such as asset 

allocation, arithmetic returns are more adequate than log returns. Therefore, this paper 

concentrates on the moments of arithmetic returns although we also investigate existence of 

the realized moments of log returns.  

The rest of the paper is organized as follows. Section II reviews about the Aggregation 

Property of Neuberger (2012) and investigates some properties about higher-order moments 

and comoments. Section III discusses estimation methods of implied moments and comoments 

in advance of estimations of realized moments. Section IV presents empirical results about our 

realized moments. Section V concludes this study. 

 

II. The Aggregation Property Given Comoment Processes 

As mentioned above, in general, Equation (1) does not hold unless }2,1{k . Therefore, a 

sum of the kth orders of sub-period returns is biased from the true kth order moment. For 

                                                           
5 Kempf, Korn and Saßning (2015) obtain implied covariance just with index and individual options through an 

assumption of index model and an additional assumption about idiosyncratic risk. As a result, they show that this 

covariance is effective in asset allocation. 
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generalizing Equation (1) to higher orders, Neuberger (2012) provides a new framework, 

Aggregation Property. The first part of this section reviews this framework.  

 

II.1. Review of the Aggregation Property 

We use a notation )0,( TtXX t   for an adapted vector valued stochastic process 

defined on a filtration. Then, the Aggregation Property is defined as follows. 

 

Definition 1. The Aggregation Property (Neuberger 2012) 

A function g on a vector valued process X has the Aggregation Property if and only if  

      )()()( ststussus XXgEXXgEXXgE  , ),,( uts  s.t. Tuts 0 . (2) 

 

When the above definition is combined with a law of iteration, we have  
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can be called a realized measure of 

  )( 00 XXgE T   (5) 

because the expression (4) is an ex-post estimator of (5). For example, given a martingale 

process S,  
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2)(  (6) 

                                                           
6 Hereafter, when we describe a process X only at tj’s with j=0,…,N, tj is denoted by j. In addition, Xj – 

Xj-1 and Xi,j – Xi,j-1 are denoted by ∆Xj and ∆Xi,j, respectively, for an (possibly vector valued) index i. 



7 

 

is an unbiased estimator of  

  2

00 )( SSE T   (7) 

because 
2)( xxg   satisfies the Aggregation Property. More interestingly, Neuberger (2012) 

show that 
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satisfies the Aggregation Property. As a result, we have7 
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Accordingly, he names (8) as a realized third moment. Furthermore, he shows that there are no 

additional higher order moments when the information process X  is defined as ),( VS , and 

he leaves an open question of whether extended information sets can produce realized higher 

order moments. 

 

II.2. Realized higher order comoments 

In the rest of this section, we investigate the existence of the realized fourth moment and 

realized comoments up to the fourth order by extending the information set to include all the 

implied moments and comoments up to the third order. Therefore, let X  be a vector valued 

process }0:),,{( ,2,1 TtMSS ttt  , where 
1S  and 

2S  are martingale processes and 
tM  

represents: 

 ),,,,,,( ,3,0,2,1,1,2,0,3,2,0,1,1,0,2 tttttttt MMMMMMMM   (10) 

with 

  ltT

k

tTttlk SSSSEM )()( ,2,2,1,1,,  . (11) 

                                                           
7 The first equality is from martingale property of the process S, and the second equality is from the Aggregation 

Property of a function 𝑔(𝛥𝑆, 𝛥𝑉) = (𝛥𝑆)3 + 3𝛥𝑆𝛥𝑉. 
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Then, Proposition 1 provides a general form of functions which have the Aggregation Property 

on X . 

 

Proposition 1. When 
1S  and 

2S  are martingale processes, a two dimensional analytic 

function g has the Aggregation Property on the vector valued process X if and only if g can be 

represented as follows: 
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for some constants 211 ,, hh  . 

Proof is in the Appendix. 

 

By symmetry, it is enough to investigate the terms related to 
lk SS 21  with lk  . In this 

regard, a function with the Aggregation Property is represented with a sum of 12 individual 

terms as follows: 
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In Equation (13), the Aggregation Property of each lkM ,  is obvious and those of 1S , 

2

1)( S , and 0,21

3

1 3)( MSS   are shown by Neuberger (2012). Among remainder terms, 

while 
21 SS   is well known as an estimator of covariance, the 8th, 10th, 11th, and 12th terms 

have not been discovered from the previous studies. 

To analyze the 8th term among them, let us define a sum 
realcTM 2,1,1  as8 
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Because the last line of Equation (15) is the third comoment, 
realcTM 2,1,1  is an unbiased estimator 

of the third comoment. Accordingly, we name it a realized third comoment. These discussion 

                                                           
8 At the terminology in Equation (14), prefix c and TM are from co(moment) and third moment, respectively. 

Additionally, a subscript a,b,c implies that the term is about E0[(Sa,T-Sa,0)(Sb,T-Sb,0)(Sc,T-Sc,0)] and the superscript 

‘real’ represents that the estimator is a realized moment. Afterward, TM is replaced by FM for the fourth cumulant, 

which is linked to the fourth moment. Then, FMa denotes an estimator which is related to the fourth moment of 

(Sa,T - Sa,0), and cFMa,b,c,d denotes an estimator which is related to the fourth comoment, E0[(Sa,T-Sa,0)(Sb,T-Sb,0)(Sc,T-

Sc,0)(Sd,T-Sd,0)]. In the strict sense, FM and cFM represent the fourth cumulant and joint cumulant, respectively, 

and more detailed description of FM and cFM will be given later.  

9 The first equality is from the Aggregation Property and identities Mk,l,N=0 for any k and l. Then, the second 

equality is from the martingale property for each S1 and S2. 
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if 1S  becomes more volatile while 2S  decreases, third comoment is reduced. Similarly, 

inclusion of the latter term implies that, if the covariance between returns increases while 2S  

decreases, third comoment is reduced. From a series of financial crises, we observe that 

covariance of returns increases in economic downturns, which is known as contagion effect 

and interdependence (e.g., Allen and Gale 2000; Forbes and Rigobon 2002; Cespa and Foucault 

2014). This empirical evidence implies that 
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due to the Aggregation Property, martingale property, and identities 0,, NlkM . Although the 

last line of Equation (17) is not the fourth moment, it is also an important value as the numerator 

of kurtosis and is called the fourth cumulant. Accordingly, we name 
realFM1  a realized fourth 

cumulant because it is an unbiased estimator of the fourth cumulant as Equation (17) shows. 

We would like to decompose the terms in Equation (16) into three parts: 
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4

,1 )( jS  does not entirely capture the fourth cumulant of total return even though it is related 

to the fourth cumulant of total return. More specifically, Amaya et al. (2015) address that the 
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first part captures only jump contribution and cannot capture the volatility of volatility 

contribution. 

However, this problem can be resolved by the second part 
2
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To investigate its property, let us take an approximation:10 
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implies that fourth cumulant is related to the correlation between skewness and return. Unlike 

the second part, this part seems to reduce fourth cumlant because empirical evidence shows 

that there is a negative relation between skewness and return (e.g., Boyer, Mitton and Vorkink 

(2010)). 

Like the realized fourth cumulant, we can also define realized fourth order joint cumulants 

based on the 11th and 12th terms of Equation (13) as follows:11 

 

 













N

j

jjjjjjjjj

N

j

jjjj

real

MMSSMSMSM

MSSScFM

1

,1,1,0,2,2,1,0,2,1,1,2

2

,1,1,1

1

,0,3,2,2

3

,12,1,1,1

))((3

)(

 (19) 

                                                           
10 The approximation is from Ej-1[∆M2,0,j+(∆S1,j)2]=0. 

11 The third order joint cumulant of (X1, X2, X3) and the fourth order joint cumulant of (X1, X2, X3, X4) are E[X1X2X3] 

and E[X1X2X3X4] - E[X1X2]E[X3X4] - E[X1X3]E[X2X4] - E[X1X4]E[X2X3], respectively, when expectation of each Xi 

is zero. Therefore, the last line of Equation (15) is the third order joint cumulant as well as the third comoment 

because each Si is martingale. 
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and 

 

.)224)(2(

)))(()((

1

,2,1,2,1,2,1,2,1,1,1

2

,1,1

1

,2,0

2

,2,0,2

2

,12,2,1,1













N

j

jjjjjjjj

N

j

jjjj

real

SMSMSSMM

MSMScFM

 (20) 

From the realized third comoment and the realized fourth (joint) cumulants, we can define the 

third and the fourth (co)moment swaps described in Table 1. Then, these swaps can be hedged 

with some securities as Proposition 2 describes. 

 [Table 1 about here] 

 

Proposition 2. Higher order (co)moment swaps 

When we define higher order (co)moment swaps as Table 1 describes, each swap can be 

replicated with risk free asset and the securities that pay TS ,1 , TS ,2 , 
2

,1 TS , TT SS ,2,1 , 
3

,1 TS , 

TT SS ,2

2

,1 , or 
2

,2,1 TT SS  at time T. 

Proof is in the appendix. 

 

One may wonder about the Aggregation Property for log prices because of log returns’ 

merits like an additivity over time. However, in the case of realized moment, we do not require 

the transformation. In addition, upon occasion such as asset allocation, arithmetic returns are 

more adequate than log returns. So we want to focus on the Aggregation Property with 

arithmetic returns, but we also investigate a generalized function with the Aggregation Property 

for log price series through the next propositions. Because the Aggregation Property is 

meaningful when we can find realized moments, we define generalized comoments and 

realized comoments as follows, to explore realized moments in a general sense: 

 

Definition 2. A generalized (k,l)-comoment function 
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We call 
lkf ,

 a generalized (k,l)-comoment function if and only if 
lkf ,

 is a two 

dimensional analytic function such that 1
),(

21

21

,


lk

lk

ss

ssf
 as )0,0(),( 21 ss . In addition, we 

call both a generalized (k,0)-comoment function and a generalized (0,k)-comoment function as 

a generalized k-moment function and denote them with 
kf .  

 

Definition 3. A realized (k,l)-comoment element 

Let ),,( 21 mssx   be a partitioned vector process where tm  consists of tlkm ,,  such that 

)],([ ,2,2,1,1

,

,, tTtT

lk

ttlk ssssfEm   for a generalized (k,l)-comoment function 
lkf ,
. Then, a 

function g with the Aggregation Property is called a realized (k,l)-comoment element if and 

only if it is decomposed as follows 

 ),()()( ,2,2,1,1

,

tt

lk

rtt ssssgxxxxg     (21) 

where η is a function that satisfies 0)]([  tt xxE   for t  and 
lk

rg ,
 is a function that 

satisfies the condition of a generalized (k,l)-comoment function. In addition, we call both a 

realized (k,0)-comoment element and a realized (0,k)-comoment element as a realized k-moment 

element. 

 

As Neuberger shows, there is a realized (3,0)-comoment element with the following 

decomposition: 

 
)22(6)1(3

)2(336)1(12)(

111

1111

111

11









seesev

svevsexg

sss

ss

 (22) 

However, as shown in the next propositions and corollaries, we cannot get other realized 

moments under our condition; more specifically, both realized (2,1)-comoment element and 

realized 4-moment element do not exist. We finish this section with presenting propositions 

and corollaries about the Aggregation Property of log prices and the existence of realized 

moments, respectively. In the propositions, si,t denotes ln(Si,t) for a martingale process Si, and 
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mk,l,t denotes )],([ ,,2,1,1

,

tsTtT

lk

t ssssfE   with a generalized (k,l)-comoment function 
lkf ,
 

(or 
kf  when l=0).  

 

Proposition 3. An analytic function g on a vector valued process ),,( 0,30,21 mmsx   has the 

Aggregation Property on the vector valued process x if and only if g is represented as follows: 

 
1

1

)2()2(

)1(),,(

10,30,26

2

10,30,25

0,340,231210,30,21

s

s

esammhsammh

mhmhshehmmsg




 (23) 

for some constants 61 ,, hh   and a, which have one of the following 3 conditions: 

i) 065  hh . 

ii) 06 h  and )1(2)()( 32  sesafsf s
 for the constant a. 

iii) 05 h  and )1(2)()( 32  ss esesafsf  for the constant a. 

Proof is in the Appendix B. 

 

Corollary 4. When information set is given by ),,( 0,30,21 mmsx  , there is no realized 4-

moment element. 

Proof is in the Appendix B. 

 

Proposition 5. A multidimensional analytic function g has the Aggregation Property on the 

vector valued process ),,,,( 1,12,00,221 mmmssx   if and only if g is represented as follows: 

  

 

)2(

)2(22

22)2)(2(

)2()2(

)1()1(),,,(

22,014

10,21310,21,112

22,01,11122,010,210

2

22,09

2

10,281,172,06

0,252431211,12,00,22,1

2

12

1

21

smeh

smehsmmeh

smmehsmsmh

smhsmhmhmh

mhshehshehmmmssg

s

ss

s

ss











 (24) 
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for some constants 
141 ,, hh   which have one of the following 5 conditions: 

i) 0141312  hhh , )1(),( 1

221

1,1 
s

esssf , and )1(2)(2  sesf s
, 

ii) 0141311  hhh , )1(),( 2

121

1,1 
s

esssf , and )1(2)(2  sesf s
, 

iii) 014131211  hhhh  and )1(2)(2  sesf s
, 

iv) 012111098  hhhhh  and )1(2)(2  ss esesf , 

v) 0141312111098  hhhhhhh . 

Proof is in the Appendix B. 

 

Corollary 6. When information set is given by ),,,,( 1,12,00,221 mmmssx  , there is no realized 

(2,1)-comoment element. 

Proof is similar to the proof of Corollary 4. 

 

III. Practical Issues in the Estimation 

In this section, we discuss practical issues in the estimation of the realized (joint) cumulants. 

Since the propositions assume that each security is martingale, we use forward prices for each 

jiS , .12 Then, without loss of generality, we assume 0,iS  to be one.13 Accordingly, 0,, iTi SS   

implies an arithmetic return between time 0 and T.  

For the estimation of the realized fourth cumulant, we require the second and the third 

implied moments. Although we cannot directly observe moments of the price in the market, 

                                                           
12 Note that prices are derived through the risk neutral measure while they evolve under the real measure. 

Therefore both of the implied moment and the realized moment in this paper can be understood as proxies. Bias 

of the estimate due to the different probability measure is the payoff of hedging strategy of each swap in the proof 

of Proposition 2. Hereafter, expectations in this section are in terms of the risk neutral measure. 

13 In other words, hereafter, Si,j represents Si,j/Si,0. 
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Bakshi, Kapadia and Madan (2003) provide a method to overcome this issue. By adopting their 

method, we can obtain implied moments of jiTi SS ,,   from the following equality: 

    






  




ji

ji

S
j

n

ji

S

j

n

ji

n

jiTij dxxCSxdxxPSxnnSSE
,

,

)()()()()1( 2

,
0

2

,,,
, 2n  (25) 

where )(xPj  is a forward price of a European put option at time j with an exercise price x and 

a maturity T. Similarly, )(xC j  is a forward price of a European call option defined as )(xPj . 

Now let us discuss about estimation of the realized joint cumulants. For the estimation, we 

require implied comoments. However, unlike the case of implied moments of a security’s price, 

implied comoments between securities’ prices are not obtainable with only individual European 

options. Instead, utilizing some exotic options makes it possible to get the implied comoments. 

For example, when we have continuum of basket options or spread options, Equation (25) with 

n=2 makes us to get )(var ,2,1 TTj SS   or )(var ,2,1 TTj SS  , respectively. One of these two in 

addition to variance of each individual security yields covariance as follows: 

 
2

)(var)(var)(var
),(cov

,2,1,2,1

,2,1

TjTjTTj

TTj

SSSS
SS


  (26) 

Similarly, if we have continuum of both basket options and spread options in addition to the 

individual options, we can get implied third moments of both TT SS ,2,1   and TT SS ,2,1  . 

Therefore, we can obtain implied third comoment due to Equation (27) with jT SSA ,1,1   

and jT SSB ,2,2  . 

 
6

][2])[(])[(
][

333

2
BEBAEBAE

BAE
jjj

j


  (27) 

Practically, basket options (and spread options), composed with an individual security and 

a market index, are not traded enough. However, as Kempf, Korn and Saßning (2015) point, 

index options are already basket options because an index is a portfolio of individual securities. 

Thus, the following two assumptions make it possible to get covariance between returns of an 

individual stock and an index. One of the assumptions is that asset returns follow an index 

model with time varying α and β. Then, at each time tj, conditional distribution between a stock 

index (SM,T) and an each stock price (Si,T) are represented as follows: 

 TttIiSS NjjiTMjijiTi  0},,,1{,,,,,,  . (28) 
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The second assumption is that ratio of systematic risk over total risk is same for all securities 

at each time tj with a value j . The combination of these two assumptions yields that 

jijjMji VV ,,

2

,    or 

 
jM

ji

jji
V

V

,

,

,   . (29) 

where )(var ,, Tijji SV   and )(var ,, TMjjM SV  . Because the beta of the index portfolio is one, 





I

i

jijiw
1

,, 1  holds where jiw ,  is the weight of security i within the index at time tj. This 

condition with Equation (29) yields  

 
 2

1 ,,

,

 


I

i jiji

jM

j

Vw

V
 . (30) 

Hence, the covariance between the price and the index are represented as follows: 

      ),(c o v ,,, TMTijji SSC   

jMji V ,,  

Mijij VV ,,  

jMI

i jiji

ji
V

Vw

V
,

1 ,,

,

 

  (31) 

Then, from Equation (14), the realized third comoment between the individual return and the 

index return is represented as follows: 

   



N

j

jijMjMjijijM

real

iMM CSVSSScTM
1

,,,,,

2

,,, 2 .  (32) 

To standardize this, we adopt coskewness of Kraus and Litzenberger (1976) which is defined 

as 

 
M

iMM

i
TM

cTM ,,
  (33) 
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where MTM  is the third moment of TMS , .14 Accordingly, we define the realized coskewness 

as 
real

M

real

iMMreal

i
TM

cTM ,,
  with  

   



N

j

jMjMjM

real

M VSSTM
1

,,

3

, 3  (34) 

Additionally, one can show that implied gamma at time zero 
imp

i  is same with 0,i  under 

our assumption. 

 

 

IV. Empirical Results 

The empirical analysis of this study is two folds. The first part investigates behaviors of the 

cumulants of S&P 500 returns such as predictability of historical or implied cumulants to the 

realized cumulants, and the second is about relations between lagged cumulants of individual 

stock returns and subsequent returns for the components of Dow Jones Industrial Average 

(DJIA). For the analysis, we use implied volatilities, prices of underlying securities, dividends, 

and risk-free rate from January 1996 to August 2014. We get those of S&P 500, and the 

components of DJIA from Option Metrics in Wharton Research Data Services (WRDS). To get 

continuum of option prices for each strike price, we use the methodology of Carr and Wu (2009) 

and Neuberger (2012), after options with zero bid price are deleted.  

 

IV.1. Cumulants of the S&P 500 returns 

  

Table 2 shows descriptive statistics of cumulants of the S&P 500 returns. It shows that each 

realized value is closer to sample values than implied values for monthly and quarterly returns, 

                                                           
14 Under the definition, they show the relation E[Ri]=βiλ1+γiλ2, where Ri is a return of asset i, and λ1 and λ2 are 

constants. 

 



19 

 

although standard deviations of realized values are greater than those of implied values. 

However, in the case of annual returns, implied values are closer to sample values with small 

standard deviations. In addition, returns become less negatively skewed and less leptokurtic as 

time to maturity increases. This pattern may be related to i.i.d. returns because moment of n-

period return is n times moment of 1-period return when return of multi-period is additive and 

each 1-period return is i.i.d.. However, as shown in Table 3, adjusted skewness and adjusted 

kurtosis are not appears to be constant.15 It can be from ignored compounding of arithmetic 

return but it holds even when the compound effect is small; they are different even in the 1-

month and 3-month comparison. It implies that sum of nth order returns of sub-periods cannot 

generate nth order moment of a full period. 

 [Table 2 about here] 

 [Table 3 about here] 

Since the real probability measure is different from the risk neutral measure, the process of 

the price is not genuine martingale. Therefore, using the implied second and third moments to 

get the realized fourth cumulants arises a question of whether the fourth cumulants are reliable. 

To clarify the validity of lower order implied moments, Table 4 represents time series 

regression of each realized value on implied and lagged realized values. According to Table 

4.A, both implied and lagged realized moments are significant in the univariate regression of 

the second and the third moments. In addition, implied moments are significant even in the 

two-variable regression of the second and the third moments while the significances of lagged 

realized moments vanish. Therefore using the implied second and third moments to yield the 

realized fourth cumulants is justified in some sense. Now let us deal with standardized moments, 

which are skewness and kurtosis. Both implied and lagged realized terms are significant in the 

regression of both skewness and kurtosis. Therefore, lagged realized kurtosis provides some 

information to future realized kurtosis.  

                                                           
15 When monthly returns are i.i.d., each moment of n-month return is proportional to n. Accordingly, if the returns 

are i.i.d., skewness is proportional to 1/√𝑛 and non-excess kurtosis is proportional to 1/n. Therefore, we define 

adjusted skewness and adjusted kurtosis by √𝑛 times sample skewness of n-month return and n times non-excess 

kurtosis of n-month return minus 3, respectively. Then, adjust skewness and adjusted kurtosis should be irrelevant 

to the n if the returns are i.i.d.. 
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The characteristics of the second and the third moments are also valid in the quarterly and 

semiannual returns; both the implied and lagged realized moments are significant in the 

univariate regression, and implied moments are significant in the two variable regression. 

However, they are insignificant in the annual analysis. In addition, implied skewness and 

kurtosis are significant as like the monthly case. But lagged realized terms are mostly 

insignificant. 

 [Table 4 about here] 

 

IV.2. (Joint) cumulants of returns and subsequent returns 

This section investigates relations between cumuanlts of returns and subsequent returns on 

a month-end by month-end basis. Because expirations of the options are not the end of the 

month, as a proxy, we use interpolated 30-day volatilities of options from volatility surface of 

Option Metrics for each day. This analysis, based on the end of the month, provides similar 

results to the analysis based on the expiration of the options. However, this makes it easy to get 

risk adjusted returns based on Fama and French (1993). 

 [Table 5 about here] 

Table 5 shows average of regression results about comoments. Panel A is about average of 

time series regression for each security, and Panel B is about average of cross sectional 

regression for each time. These show that implied comoments have the greatest determinant 

coefficient among the univariate regressions in the both of time series and cross sectional 

analysis. In addition, it shows that using the implied covariance to yield the realized third 

comoment is reasonable.  

 [Table 6 about here] 

Table 6 compares portfolio’s return and moments after it is constructed based on implied or 

realized moments. Panel A represents return, moments, and comoments after it is constructed 

based on the rank of implied variance. It shows that portfolios keep their order of variance. In 

other words, a portfolio with the greatest (smallest) implied variance precedes the greatest 

(smallest) realized variance and the difference between the realized variances is significant. 

However, the difference of the returns is insignificant. Panel B – Panel G shows the similar 

results; portfolios keep their order of moments with significant differences but the differences 



21 

 

of returns are insignificant. Despite the insignificance of the differences of returns, sizes of the 

differences are not economically ignorable. For the robustness, Table 7 provides the 

performances with controlling risk of the other sources while the portfolios in the Table 6 are 

constructed without controlling risk of the other sources.  

 [Table 7 about here] 

Panel A of Table 7 shows that a portfolio constructed from small implied volatility takes 

high return. However, it is vague whether the result is based on the idiosyncratic volatility risk 

solely because implied beta or implied gamma is equivalent to the implied variance under the 

assumption of market model. To decompose the effects among idiosyncratic volatility, beta, 

and gamma, we construct the portfolios based on lagged realized moments. Panel D, E, and F 

show that all of idiosyncratic risk, beta, and gamma are linked to the returns of portfolios; 

portfolios with low variance, beta, and gamma are along with high return which is consistent 

with the Panel A. Likewise, other panels show the link between higher order moments and 

returns of portfolios. Although Panel B and C show insignificant difference of the zero cost 

portfolios, the size of the return is not economically ignorable. In addition, Panel G and H show 

that portfolios with low skewness and high kurtosis are along with high return. Hence the 

results, which use the realized moments, are generally in line with the literature; more 

specifically, Frazzini and Pedersen (2014) show that high beta is linked with low return, and 

Harvey and Siddique (2000) show that low gamma is linked to high return, and Conrad, Dittmar 

and Ghysels (2013) and Amaya et al. (2015) show that low skewness or high kurtosis is linked 

to high return. 

 

V. Concluding Remark 

Although many theoretical and empirical studies show that the third and the fourth 

(co)moments are related to returns of securities, estimation of realized higher order moments 

is not as simple as estimation of the second moments. In this paper, we propose the realized 

third comoment and the realized fourth (joint) cumulants. Different from previous studies, our 

realized estimates reflect characteristics of volatility of volatility as well as jump contributions. 

In addition, we could show that volatility clustering increases the fourth cumulant, and a 

negative correlation between skewness and returns reduces the fourth cumulant, and contagion 

effect reduces the third comoment. 
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Lack of exotic options may limits the accessibility of the implied and realized comoments. 

However, we present an alternative solution and it is supported by predictability of the implied 

lower-order comoments about the realized comoments. This solution may be incomplete but 

we can get the complete measure of higher order moments when derivative market expands in 

the future. 

In addition, we conduct several empirical tests about the realized moments. All the realized 

moments are explained with implied moments with greater determinant coefficients. It implies 

both the realized and implied moments are well functioning. Finally, the relations between 

realized moments of returns and subsequent returns coincide with the literature. Since the 

realized moments make it possible to understand the distribution of a return of asset for a 

specific period, we hope these estimators to be applied in the future research. 
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Appendix A: Proofs of Proposition 1 and 2. 

Proof of Proposition 1. 

Let us consider a vector valued process }2,1,0:),,{( ,2,1 tMSS ttt  and assume16 
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where )0,max( xx 
, ),,,,,,( 3,02,11,20,32,01,10,2   , and ),,( 3,00,2 mmm  . Then, 

1S  and 2S  are martingale, and the process ),,,,,,( 3,02,11,20,32,01,10,2 MMMMMMMM 

satisfies Equation (A3).  

  lt

k

tttlk SSSSEM )()( ,22,2,12,1,,  . (A3) 

The Aggregation Property implies 0)0,...,0( g  and 
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16 In Appendix A, s and m represent realizations of S and M, respectively. They are irrelevant to the ln(S) or 

generalized moments from the log prices. 
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or 

   mssgE  ,, 21,211,1        ,,,, 211,21,1 gEmssg . (A5) 

Equation (A5) holds for any pair ),( 1,21,1 ss  including (0,0). Therefore, we have: 

   mgE ,, 21        ,,,0,0 21gEmg . (A6) 

Differentiating Equation (A6) with respect to 2km  yields Equation (A7) 

   mgE k ,, 21   mgk  ,0,0  (A7) 

where kg  is a partial differentiation with respect to the (k-2)th term of the M. i.e. 
0,2

3
M

g
g




 , 

1,1

4
M

g
g




 , … , 

3,0

9
M

g
g




 . 

When we construct m  to be  ,17 we have 

     0,0,0,0,0,, 21 kk ggE  . (A8) 

Therefore, kg  is represented as follows: 

 

))(())(())((

))(())(())((

))(()()(),,(

3,0

3

29,2,1

2

218,1,22

2

17,

0,3

3

16,2,0

2

25,1,1214,

0,2

2

13,22,11,0,21

MsMAMssMAMssMA

MsMAMsMAMssMA

MsMAsMAsMAaMssg

kkk

kkk

kkkkk







 (A9) 

                                                           
17 Regardless the value of α, by making π1 close to zero and using large n in Equation (A1), we can 

construct arbitrary m. 
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where 0,ka  is a constant and 9,1, ,, kk AA   are functions of M. Then, substituting 

)2()2(   llm   and (A9) into the (A7) yields following:18 

 ))(0,..0,,0,...0())(( 2222,22,   lllllklllk mmAmmA  , l=3,..,9. (A10) 

Since  , jis , ,   are arbitrary, 9,3, ,, kk AA   are constants. Therefore, we use notations 

9,3, ,, kk aa   instead of 9,3, ,, kk AA  . 

 

)()()(

)()()(

)()()(),,(

3,0

3

29,2,1

2

218,1,22

2

17,

0,3

3

16,2,0

2

25,1,1214,

0,2

2

13,22,11,0,21

MsaMssaMssa

MsaMsaMssa

MsasMAsMAaMssg

kkk

kkk

kkkkk







 (A11) 

Now let us simplify functions 1,kA  and 2,kA . Differentiating (A5) with respect to 2km  

yields: 

   mssgE k  ,, 21,211,1   mssgk  ,, 1,21,1 . (A12) 

Substituting (A11) into (A12) yields 

 
 

  1,22,09,1,18,0,27,2,2,

1,12,08,1,17,0,26,1,1,

32)()(

23)()(

saaamAmA

saaamAmA

kkkkk

kkkkk








 (A13) 

Because Equation (A13) is valid for arbitrary   and s , 

 1,2,08,1,17,0,26,1, 23)( kkkkk aMaMaMaMA   (A14) 

 2,2,09,1,18,0,27,2, 32)( kkkkk aMaMaMaMA   (A15) 

for some constants 1,ka  and 2,ka . Therefore we obtain the following  

                                                           
18 α-i represents α without the ith element. For example, α-1 =(α1,1, α0,2,…, α0,3). m-i is defined similarly.  
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)3(

)2(

)2(

)3()(

)()(),,(
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2
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1,1214,0,2

2
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sMMsa

sMsMMssa

sMsMMssa

sMMsaMsa
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k

k
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kkkkkk


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





 (A16) 

When 3k , integrating (A16) with respect to 2kM  yields Equation (A17). 
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2

218,3

2

2
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2

17,3

1

2

0,20,20,30,2

3

16,3

0,22,00,2

2

25,30,21,10,2214,3

2

0,20,2

2

13,320,22,310,21,30,20,321
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











MA

sMMMMsMa

sMMsMMMMMssa

sMsMMMMMssa

sMMMMsa

MMMsaMMMssa

MMsasMasMaMaMssg

 (A17) 

Similarly, we can get alternative forms of ),,( 21 Mssg  adopting 9...4k . When we combine 

these forms, ),,( 21 Mssg  can be represented as 

 ),(),;(),,( 212121 ssgssMgMssg sM   (A18) 

where 
Mg  is a multivariate polynomial whose coefficients are (multivariate polynomial) 

functions of 
1s  and 

2s  with a condition of 0),;0( 21 ssgM


 and sg  is a function of 

1s  

and 
2s  with 0)0,0( sg  because 0)0,0,0( 


g . 

Substituting (A18) and 


m  into Equation (A5) and multiplying 2/2 k  yields: 

 

      

      211,21,121,211,12

211,21,121,211,12

,;),;0(,;
2

,),(,
2










MMM

sss

gEssgssgE
k

gEssgssgE
k

 (A19) 
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When we substitute 









2/1Pr)0,(

2/1Pr)0,(
),( 21

k

k
  into the (A19), the left hand side of (A19) 

converges to 
2

1

2

2

1

21

2 )0,0(),(

s

g

s

ssg ss









 as 0k  because 0)0,0( sg . Therefore  

 ),(
)0,0(),(

2112

1

2

2

1

21

2

ssg
s

g

s

ssg
p

ss 








 (A20) 

with some polynomial 1pg  because 
Mg  is a multivariate polynomial. Similarly adopting 











2/1Pr),0(

2/1Pr),0(
),( 21

k

k
  yields 

 ),(
)0,0(),(

2122

2

2

2

2

21

2

ssg
s

g

s

ssg
p

ss 








 (A21) 

with some polynomial 2pg . 

Now consider an alternative form of (A19) 

 

      

      211,21,121,211,1

21

211,21,121,211,1

21

,;),;0(,;
2

1

,),(,
2

1










MMM

sss

gEssgssgE
kk

gEssgssgE
kk

 (A22) 

Next, when we substitute 










2/1Pr),(

2/1Pr),(
),(

21

21

21
kk

kk
  and 











2/1Pr),(

2/1Pr),(
),(

21

21

21
kk

kk


into Equation (A22) and subtract each other we get 

 ),(
)0,0(),(

213

21

2

21

21

2

ssg
ss

g

ss

ssg
p

ss 








 (A23) 

as )0,0(),( 21 kk  with some polynomial 3pg . (A20), (A21), and (A23) implies that 

),,( 21 Mssg  is a polynomial of 
1s , 

2s , 0,2M , …, and 3,0M .  



28 

 

Now let us substitute ),( 2211 SlSl  into ),( 21 SS  for the function g. Since g satisfies the 

Aggregation Property for any 
1l  and 

2l , each coefficient of 21

21

kk
ll  also satisfies the 

Aggregation Property. Hence, for the coefficients of 21

21

kk
ll , we can construct a spanning set of 

functions that has the Aggregation Property and it is represented in Table A1 for 
21 kk  . 

 [Table A1 about here] 

Note that, in the case of )0,4(),( 21 kk , 
2

0,2M  and 
2

10,2 sM  come together as the form  









 2

10,2

2

0,2
2

1
sMM  rather than represented separately. It is due to the form of Equation (A17). 

Some of the other combined terms are from alternatives of (A17) that are omitted in this paper.  

According to Neuberger, 
1s , 

2

1s , 0,2M  and 0,21

3

1 3 Mss   satisfies the Aggregation Property. 

In addition, every jiM ,  also satisfies the Aggregation Property by definition of jiM , . Now let 

us consider a case of )1,2(),( 21 kk . Substituting  

 1,240,2231,1122

2

1121 ),,( MbMsbMsbssbMssg   (A24) 

into Equation (A5) yields 

 0,21,231,11,120,21,21,11,11 )2(  sbsbssb   (A25) 

Therefore 132 22 bbb   and 13 bb   because   and s are arbitrary numbers. It implies that 

expression (A26) is a candidate for a function with the Aggregation Property. 

 1,240,221,112

2

11 )2( MbMsMsssb   (A26) 

Similarly we can try for the other pairs of ),( 21 kk  and the result is arranged in the Table A2. 

Without loss of generality, we can let )3,2,1,0(),,,( Tuts  in Equation (2) and 
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












 






1

,2

1

,121 ,))(),((
j

j

j

j RRSS  (A27) 

for 3,2,1,0  and Ri,j such that 0][ ,1  jij RE . Then each element of the Table A2 satisfies 

Equation (3). 

  ■ 

 

 

Proof of Proposition 2. 

Let us consider the securities that pay TS ,1 , TS ,2 , 
2

,1 TS , TT SS ,2,1 , 
3

,1 TS , TT SS ,2

2

,1 , or 
2

,2,1 TT SS  

at T. Then the price of each security at time j is jS ,1 , jS ,2 , jj MS ,0,2

2

,1  , jjj MSS ,1,1,2,1  , 

jjjj MMSS ,0,3,0,2,1

3

,1 3  , jjjjjjj MMSMSSS ,1,2,0,2,2,1,1,1,2

2

,1 2  , or 

jjjjjjj MMSMSSS ,2,1,2,0,1,1,1,2

2

,2,1 2  , respectively. 

Equipped with 0,, NlkM  for each k and l, we have the following equality: 
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N

j
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 (A28) 

Left hand side of (A28) describes the difference between receiving leg and paying leg of the 

third comoment swap described in Table 1. In addition, right hand side of Equation (A28) 

describes strategy of a self-financing portfolio which is managed with securities that pay TS ,1 , 

TS ,2 , 
2

,1 TS , or TT SS ,2,1  at T. Therefore (A28) shows the fairness and replicability of the third 

comoment swap.  
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To deal with the properties about the fourth moment swap and non-zero fourth moment swap, 

we present the following equality: 

 

 
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0,0,2
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
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
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

 (A29) 

Left hand side of Equation (A29) with a=0 describes the difference between receiving leg and 

paying leg of the non-zero fourth moment swap. Since the right hand side of Equation (A29) 

describes strategy of a self-financing portfolio with initial cost 
2

0,0,23M  when a=0, we see the 

fairness and replicability of the non-zero fourth moment swap. Similarly, we can see the 

properties about the fourth moment swap, non-zero asymmetric fourth comoment swap, 

asymmetric fourth comoment swap, non-zero symmetric fourth comoment swap, and 

symmetric fourth comoment swap from Equation (A29) with a=1, Equation (A30) with 

(a1,a2)=(0,0), Equation (A30) with (a1,a2)=(a,1-a), Equation (A31) with (a3,a4,a5)=(0,0,0), and 

Equation (A31) with (a3,a4,a5)=(a,1-a,1), respectively. 
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 (A30) 
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Appendix B: Proofs of Propositions 3 and 5 and Corollary 4. 

In Appendix B, we deal with log price s and generalized moment m instead of price S and 

moment M. However, we keep the notations in Appendix A although required conditions are 

changed. The changed conditions are represented between Equations (B1) and (B2) 

 

Common property B. 

Consider a vector valued process }2,1,0:),,{( ,2,1 tMSS ttt


. The moment vector process M


 

is defined as ),,,,,,( 3,02,11,20,32,01,10,2 MMMMMMM . In addition assume 

 

























nnnnn ssss

ssss

ssss

mMSS







Pr

Pr

Pr

)0,,()0,,(

)0,,()0,,(

)0,,(),,(

),0,0(:),,(
2

1

,2,1,2,1

2,22,12,22,1

21,211,11,21,1

21









 (B1) 

with 1
1




n

j

j , 0)exp(
1

, 


n

j

jij s , 1)][exp( iE  ,   lk

lkfE ,21

, ),(   , 

),,( 3,00,2  

 , and )0(Mm


  

where  

 



n

j

jj

lk

j

lk

lk ssfssfEm
2

,2,1

,

21,211,1

,

1, ),()],([   (B2) 

and 
lkf ,

 is a generalized moment function such that 0)0,0(, lkf  and 

1
),(

lim
,

)0,0(),(


 lk

lk

ba ba

baf
, ),(),( ,, abfbaf lkkl  , and ),()( 0, bafaf kk  . 

 

Again, g(0,…,0)=0 and Equations (A5) - (A12) hold here. Let us represent some of them: 
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   )],,([),,(),,( 211,21,121,211,1 


 gEmssgmssgE  (B3) 

 ),0,0()],,([ 21 mgmgE kk


   (B4) 

 

))(()),(()),((

))(())(()),((

))(()1)(()1)((),,(

3,02

3

9,2,112

1,2

8,1,221

1,2

7,

0,31

3

6,2,02

2

5,1,121

1,1

4,

0,21

2

3,2,1,0,21
21

MsfaMssfaMssfa

MsfaMsfaMssfa

MsfaeMAeMAaMssg

kkk

kkk

k

s

k

s

kkk







 (B5) 

   ),,(),,( 1,21,121,211,1 mssgmssgE kk


   (B6) 

Substituting (B5) into (B6) and differentiating with respect to lm  yields 

 
l

k

l

k

m

maA

m

mA








 )()( 1,1,



, 
l

k

l

k

m

maA

m

mA








 )()( 2,2,



,  l=3,..9 (B7) 

Therefore each )(,* MAk  is an affine function. Accordingly (B5) is represented as follows: 

 

))(()),((

)),(())((

))(()),(())((

)1)(...(

)1)(...(),,(

3,02

3

9,2,112

1,2

8,

1,221

1,2

7,0,31

3

6,

2,02

2

5,1,121

1,1

4,0,21

2

3,

3,07,1,12,0,21,0,

3,07,1,12,0,21,0,0,21

2

1

MsfaMssfa

MssfaMsfa

MsfaMssfaMsfa

eMcMcMcc

eMbMbMbbaMssg

kk

kk

kkk

s

kkkk

s

kkkkkk











 (B8) 

 

Proof of Proposition 3. 

We use the Common property B with omitting all terms related the second security. 

Accordingly, we ignore the 
2S  and restrict M to be ),( 32 MM  with 0,22 MM   and 

0,33 MM  . Then integrating (B8) with respect to 
2M  yields 
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),(

))(()2/)((

)1)(2/(),,(

31

1

31

3

26,1

2

21

2

23,1

233,1

2

21,120,120,1321
1

Msg

MsfMaMsfMa

eMMbMbMbMaMMsg
s







 (B9) 

Similarly, we can get alternative form of (B9) by integrating (B8) with respect to 3M . By 

combining (B9) and the alternative form, we obtain the following form  

 

)())()((2

))(2())(2(

)1)((),,(

2

3

3

2

3210

3

3

2

39

2

2

2

28

2

37326

2

253423322132

sgMsfMsfMMa

sfMMasfMMa

eMaMMaMaMaMaMaMaMMsg

s

s







 (B10) 

for some constants 101 ,, aa   and a function 
sg  such that 0)0( sg . Substituting (B10) 

and 









p

p
p

1Pr,0

Pr,
  into (B3) yields 

 

 

 
 

 2

37326

2
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1

3
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3

1
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2

1

2
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3
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3

1

3

9

1

2
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2

1

2

8
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)())()((
2
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)())()((2
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0

1

1
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
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sfmsfsf
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a
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mammamaaae

p

s

sss

s


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
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
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





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
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






























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
 (B11) 

Because we can set p arbitrary, coefficients of p and p2 are zero. Therefore,  

 02

37326

2

25   aaa . (B12) 

It implies that 0765  aaa  because   is arbitrary function with   1eE . 

Accordingly we have the following relation: 
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s
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sfmsfsfa
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












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
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 (B13) 

In addition, coefficients of 
2m  and 3m  are zero because we can set them arbitrary. Thus we 

have: 

 ))()(())()((0 31

3

1

3

1021

2

1

2

8   sfsfasfsfa  (B14) 

 ))()(())()((0 31

3

1

3

921

2

1

2

10   sfsfasfsfa  (B15) 

We have three cases that satisfy both (B14) and (B15). 

Condition B.1 

i) 01098  aaa ,  

ii) 
3f  such that 0)()(),,( 31

3

1

3

1   sfsfs  and 0108  aa  

iii) ),,( 32 ffa  s.t. 0))()(())()((),,( 31

3

1

3

21

2

1

2

1   sfsfasfsfs  

with aaa 810   and 8

2

9 aaa  . 

First, to check about the condition B1.ii), substituting 









5.0Pr),1log(

5.0Pr),1log(

k

k
  into 

  0)()(
2

31

3

1

3

2
  sfsf

k
 and taking the limit for 0k  yields: 

 0)(')(" 1

3

1

3  sfsf  (B16) 
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Then 1

2111

3 )(
s

ebsbsf   is a solution of (B16) for some constants 
1b  and 

2b . However, then 
3f  

cannot be a generalized (3,0)-comoment function. It implies that the condition B1.ii) is impossible. Now 

let us check the condition B1.iii). 

Let )()()( 32 xafxfxf a   and 









5.0Pr),1log(

5.0Pr),1log(

k

k
 . Then like the method above, we 

can show that 

 02)(')(" 11  sfsf aa
 (B17) 

Since 
2f  and 

3f  are a generalized (2,0)-comoment function and a generalized (3,0)-

comoment function, respectively, we have the following solution 

 )()1(2)( 32 safsesf s   (B18) 

for some generalized (3,0)-comoment function 
3f . Therefore (B13) is arranged as follows: 

 
))()()((2

))(1()]([)()]([

1

3

1

2
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342311
1

safsfaa

aaegEsgsgE
ssss


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
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 (B19) 

Again, by letting 









5.0Pr),1log(

5.0Pr),1log(

k

k
  and taking limit, 

sg  is represented as follows: 

 
sss seaasaeasasg )28(4)1()( 38

2

8109   (B20) 
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s
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2
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2
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
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 (B21) 

Then, (B18) implies that 

 

ss

s

s

seaaeasa

eaMMasaMMa

eMaMaMaMaMMsg

)28()1(

)1)((4)2(

)1)((),,(

38109

328

2

328

3423322132







 (B22) 
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or 

 
)1()2(

)2(),,(

76325

2

32433322132





ss

s

edsdesaMMd

saMMdeMdMdMdMMsg
 (B23) 

where 311 aad  , 
422 aad  , 343 aaad  , 84 ad  , 835 4aad  , 96 dd  , and 

107 dd  .19 Then substituting it into (B3) yields 

 
  0)]2[()1(

)]2[))((24(

33325

32323214

1 







 daeEde

aEaammsd

s
 (B24) 

Since 
1s  is arbitrary, we have the following cases 

Condition B.2 

i) 0543  ddd  

ii) 053  dd  & 0]2[ 32   aE  

iii) 04 d  & 0]2[ 32    heE  with 53 / ddah   

 

When the Condition B.2.ii) holds, )1(2)()( 32  sesafsf s
. And because iii) and ii) are 

exclusive, Condition B.2.iii) is equivalent to 043  dd  with 

 0]2[ 32    aeE .  (B25) 

(B25) is equivalent to 

                                                           
19 Note that form (B23) include the condition B.1.i). 
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 )1(2)()( 32  ss esesafsf  (B26) 

Arranging all above yields the equation and the condition of Proposition 3. Without loss of 

generality, we can let )3,2,1,0(),,,( Tuts  in Equation (2) and 

 












 






1

exp)(
j

jrS  (B27) 

for 3,2,1,0  and rj such that   1)exp(1  jj rE . Then g above satisfies Equation (3). 

  ■ 

 

Proof of Corollary 4. 

If a function is a realized (4,0)-comoment element, it should be decomposed as 

 )(),,()1(),,( 10,30,210,30,21
1 sgmmsemmsg rs

   

such that )()( 4

11 sOsg r   because of the restriction,   11 
s

eE . Now let us investigate the 

each condition in Proposition 3. At the first condition, if 3h  or 
4h  are not zero, they cannot 

be eliminated. Therefore, .043  hh  However, 121 )1( 1 sheh
s

  is at most )( 2

1sO  as 

01 s . 

At the second condition, if 5h  is zero, it is a case of the first condition. Therefore, it suffices 

to show the case of nonzero 5h . However, if 5h  is not zero, 
2

0,2m  is not eliminated with 

zero expectation. 
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Similarly, at the third condition, investigating nonzero 6h  is enough. However, if 6h  is not 

zero, 63 hh   and 64 ahh   should hold to eliminate 0,2m  and 0,3m . And then, the 

remaining term is at most )( 3

1sO  as 01 s . 

  ■ 

 

Proof of Proposition 5. 

Proof of Proposition 5 is similar to Proof of Proposition 3. For a convenience, let us replace 

some notations. At the Common property B, let us restrict the ),,( 21 cVVVM   with 0,21 MV  , 

2,02 MV  , and 1,1MVc  . In addition, f  and cf  replace 
2f  and 

1,1f , respectively. Then 

integrating (B8) with respect to 
1V  yields 
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)1)(2/(),,,,(
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2
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1,1
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2
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2
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2

11,110,110,12121

2

1

c

c

s

c

s
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VVssgVsfVa

VssfVaVsfVa

eVVcVVcVcVc

eVVbVVbVbVbVaVVVssg









 (B28) 

Similarly, we can get alternative form of (B28) by integrating (B8) with respect to 
2V  or cV . 

By combining (B28) and the alternatives, we obtain the following form 



41 

 

 

   

 

),())(2(

))(2()),(2(

))()((

)),()((

)),()((

)

(1

)

(1,,,,

2122226

111252124

21211223

2212222

2111121

2

220

2

119

2

182117216
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ssfVVVVsfb
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s
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s
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s

cc




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 (B29) 

with 0)0,0( sg . Let us substitute (B29) into equation (B3). Then 

 

 

 

)],([),()],([

))())()]([((2

))())()]([((2

)),()),()],([((2

))()]([(

)()())()]([(

)),()],([(

),()())()]([(

)),()],([(

),()())()]([(

)2()2()2(

)()(

)(

1

)2()2()2(

)()(

)(

10

2121221111

221222122126

111111111125

2111211122111124

1221221

2111212111111

23

22111221111

2111221221221

22

12111221111

2111111111111

21

22

2

22011

2

119

2

18

2112211722216

1111521411312

22

2

21111

2

110

2

9

21122182227

111625143

2

11

































sss

cccccc

ccc

ccc

ccc

ccc

ccc

ccc

cccc

s

ccc

ccc

cccc

s

gEssgssgE

sfvsfsfEb

sfvsfsfEb

ssfvssfssfEb

vsfsfE

sfsfvsfsfE
b

vssfssfE

ssfsfvsfsfE
b

vssfssfE

ssfsfvsfsfE
b

vbvbvb

vvbvvb

vvbbbb

e

vbvbvb

vvbvvb

vvbbbb

e



































































































 (B30) 

Let  

 









p

p
pp

1Pr)0,0(

Pr),(
),(

21

21


   (B31) 
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Then, for }2,1{i ,   1
p

ieE


, pfE i

p

i  )]([  and pfE c

pp

c  )],([ 21 . Therefore, 

substituting ),( 21

pp   into ),( 21   of the previous equation yields 
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 (B32) 

 )],([),()],([ 2121221111  sss gpEsspgssgpE   

 

Because (B32) holds for arbitrary p , the coefficient of 
2p  should be zero. 
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 (B33) 

Since 
11s  and 

21s  are arbitrary, the following holds: 
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2
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2
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2
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0
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
 (B34) 

Because c  is arbitrary, given 
1  and 

2 , 
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 02

211

2

11021827169   bbbbbb . (B35) 

According to the similar logic with the 
1  and 

2 , the followings hold. 

 01176  bbb   and 0201615  bbb  . (B36) 

Because, at Equation (B32), coefficient of p  is zero, we have: 
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 (B37) 

Because 
cv  is arbitrary, coefficient of 

cv  is zero. 

 
0)),()],([(2

))()]([())()]([(

211122111124
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ccc ssfssfEb

sfsfEbsfsfEb




 (B38) 

Now consider a random variable 3  with 23 ~
d

 and )],([)],([ 2131  cc fEfE  . Then, 

 
0)]),([),()],([(2

))()]([())()]([(

31211132111124

2212212211111121









ccc fEssfssfEb
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 (B39) 

By subtracting these two equations, one can see that 024 b  or 

 )],([)],([)],([)],([ 3121321111221111  cccc fEfEssfEssfE   (B40) 

When we substitute 
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 











2/1Pr))1log(),1(log(

2/1Pr))1log(),1(log(
),( 21

kk

kk
 , 

 











2/1Pr))1log(),1(log(

2/1Pr))1log(),1(log(
),( 31

kk

kk
  

into Equation (B40) and multiply ))1ln()1/(ln(2 kk   to the both hand side of the equation, 

and take the limit with 0k , we get 

 1),( 211112 ssfc  (B41) 

Hence  

 )()(),( 21211121112111 sFsFssssfc   (B42) 

for some functions 
1F  and 

2F . In addition the condition of 1
),(

lim
2111

2111

0,0, 2111


 ss

ssfc

ss
 provides 

21112111 ),( ssssfc  . Therefore, (B40) implies 21112111 ),( ssssfc  . When one substitute function cf  

into previous of previous equation (B42), we get the following equation: 
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))()]([())()]([(
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
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



EsEsb

sfsfEbsfsfEb
 (B43) 

When 011 s , (B43) is changed to 0][2))()]([( 1212422122122   EsbsfsfEb . Because 

1  can be chosen independently on 
21s  and 

2 , 

 024 b . (B44) 

Instead of Equation (B38), let us consider the coefficients of 
1v  and 

2v . Then adopting same logic 

from (B37) to (B44) yields 

 02221  bb . (B45) 

Because the coefficient of 
1v  is at Equation (B37), the equations (B44) and (B45) implies: 



45 

 

 0))()]([(2))()]([( 1111112522122123   sfsfEbsfsfEb  (B46) 

Substituting 011 s  or 021 s  into the (B46) yields: 

 0))()]([())()]([( 1111112522122123   sfsfEbsfsfEb  (B47) 

Similarly, we can get an alternative form of (B47) by using the coefficient of 
2v . The combination 

between these two yields the following 

 0)])([)()]([(   fEsfsfE  or  0262523  bbb . (B48) 

Here, 0)()]([ 111111   sfsfE  is equivalent to 

 )1(2)( xexf x   (B49) 

by Neuberger (2012). In sum, (B37) with (B44), (B45), and (B48) yields 
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 (B50) 

Substituting 











2/1Pr)1log(

2/1Pr)1log(
1

k

k
  and 02   into the (B50) and taking limit yields: 
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 (B51) 

Similarly, when use 











2/1Pr)1log(

2/1Pr)1log(
2

k

k
  and 01  , we get the following relation 

 
   

)0,0()0,0(),(),(

)1(8)1(412120

22221112211122

21261123145
21112111

ssss

ssss

ggssgssg

sebsebebeb




 (B52) 

Now let us consider 
1  and 

2  that are dependent each other. If we substitute (B53) or (B54) into 

Equation (B50) and subtract each other, then then taking limits yields the (B55). 
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 











2/1Pr))1log(),1(log(
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  (B54) 

     )0,0(),(110 12211112123
2111 ssss

gssgebeb   (B55) 

Then the solutions of the (B51), (B52), and (B55) are given as  

 xybyhxhxyebyxebyxg yxs

2721123 )()()()(),(   (B56) 
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 (B57) 
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 (B58) 

for some functions 61 ,, hh   and constants ib . Therefore ),( yxg s  is a linear combination of 

yyeyexxexexyxeye yyxxyx ,,,,,,,,,, 22
 and 1. Consistency about coefficients of ye x

 and xe y
 

requires 2335 2
2

1
bbb   and 231213 2

2

1
bbb  . Because )0,0(sg  is zero, g  and sg  are 

given by 
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 (B59) 
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(B59) and (B60) are arranged as 
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 (B61) 

where 2512415 4
2

1
bbbbd  , 2614326 4

2

1
bbbbd  , 12307 bbbd  , 258 bd  , 

269 bd  , 2310 bd  , 311
2

1
bd  , 1212

2

1
bd  , 25413 4bbd  , 261414 4bbd  .20 

Substituting it into equation (B3) yields the following: 
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Since coefficients of 
1v  and 

2v  are zero, ]2[)]([   EfE  or 01098  ddd . In addition, 

because 
2111, ss  are arbitrary, 
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 (1) If 11d  is not zero, for some constants 
1k  and 

2k , the following holds 

                                                           

20  The ten coefficients, 2523141250 ,,,,,, bbbbbb  , and 26b  are replaced with 145 ,, dd  . More 

precisely, ),,,( 131285 dddd  replace ),,,( 251241 bbbb . ),,,( 141196 dddd  replace ),,,( 261432 bbbb . 

10d  replaces 23b . And 7d  replaces 0b  given 3b  and 
12b .  
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1
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 ek  because 1
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as 0, yx . Accordingly, 12 k  because 1
)(

2


x

xf
 as 0, yx . And it implies 

0131  dk . Therefore, )1(),( 1

221 
 efc ,  12)(   ef . Then 01412  dd . 

 

(2) Similarly, if 12d  is not zero, )1(),( 2

121 
 efc ,  12)(   ef  and  

0141311  ddd  

 

(3) or 014131211  dddd ,  12)(   ef  with arbitrary function cf . 

 

(4) 012111098  ddddd , )1(2)(   eef  with arbitrary function cf . 

 

(5) 0141312111098  ddddddd  with arbitrary functions f  and cf . 

  ■ 
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Table 1. Higher order moment swaps 

Type of swap Receiving at T Paying at },,1{ Nj   Cost at 0 

Third comoment )()( 0,2,2

2

0,1,1 SSSS TT   jjjj MSSS ,0,2,2,2

2

,1 )(  jj MS 1,1,12    0 

Non-zero fourth 

moment 

4

0,1,1 )( SS T    jjj MSS ,0,2

2

,1

4

,1 )(6)(  2

,0,2,0,3,1 )(34 jjj MMS    
2

0,0,23M  

Fourth moment 
0,0,2

2

0,1,1

4

0,1,1 )(3)( MSSSS TT   jjj MSS ,0,2

2

,1

4

,1 )(6)(  2

,0,2,0,3,1 )(34 jjj MMS   0 

Non-zero 

asymmetric 

fourth comoment 

)()( 0,2,2

3

0,1,1 SSSS TT   

jjjjjjj

jjjjjj

MMSSMSM

SMMSSS

,1,1,0,2,2,1,0,2,1,1,2

2

,1,1,1,0,3,2,2

3

,1

333

)(3)(




 

0,1,10,0,23 MM  

Asymmetric fourth 

comoment with a 

0,1,1

2

0,1,1

0,0,20,2,20,1,1

0,2,2

3

0,1,1

))(1(3

))((3

)()(

MSSa

MSSSSa

SSSS

T

TT

TT







 

with a constant a 

jjjjjjj

jjjjjj

MMSSMSM

SMMSSS

,1,1,0,2,2,1,0,2,1,1,2

2

,1,1,1,0,3,2,2

3

,1

333

)(3)(




 

0 

Non-zero symmetric 

fourth comoment 

2

0,2,2

2

0,1,1 )()( SSSS TT   

jjjjjjj

jjjjj

SMSMSSM

MMSMS

,2,1,2,1,2,1,2,1,1,1

2

,1,1,2,0

2

,2,0,2

2

,1

224

)(2)))(()(




 

2

0,1,1

0,2,00,0,2

2M

MM


 

Symmetric fourth 

comoment with a 

0,0,2

2

0,2,2

0,2,0

2

0,1,1

0,1,10,2,20,1,1

2

0,2,2

2

0,1,1

))(1(

)(

))((2

)()(

MSSa

MSSa

MSSSS

SSSS

T

T

TT

TT









 

with a constant a 

jjjjjjj

jjjjj

SMSMSSM

MMSMS

,2,1,2,1,2,1,2,1,1,1

2

,1,1,2,0

2

,2,0,2

2

,1

224

)(2)))(()(




 

0 

This table describes various (co)moment swaps. Each row represents structure of a swap. The second, the third, and the fourth column represent amount of 

receiving leg, paying leg, and initial cost, respectively. Paying leg consists of the terms of realized cumulant and the receiving leg is a product of total returns 

possibly with additional terms. Since each swap is constructed to be fair, some swaps require additional cost at time zero and they have a prefix, non-zero, at 
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the name. The non-zero swaps are modified to be zero cost swaps by changing the receiving legs. As a result, expectation of receiving leg of a non-zero swap 

becomes (co)moment and expectation of receiving leg of a modified swap becomes (joint) cumulant. There are two kinds of comoment in the case of the fourth 

comoment. When the receiving leg is related to the product of square of returns, then it has an affix, symmetric, at the name; otherwise, it has an affix of 

asymmetric. In the case of the fourth comoments, there are various forms for zero cost swaps. Adopting a constant a allows these variations for each fourth 

comoments.
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Table 2. Statistics of cumulants of the S&P 500 returns 

This table represents descriptive statistics of cumulants, skewness, and kurtosis of S&P 500 returns 

from January 1996 to August 2014. Panel A shows the statistics of 30-day returns up to the last trading 

day of each option. The second column represents sample moments. The third and fourth column 

represent averages for the implied and realized values, respectively. Implied cumulants are calculated 

through Equation (25). Realized cumulants are calculated through the expressions (6), (8), and (16). 

Numbers in parentheses are standard deviations for each term. The other panels are similar to the Panel 

A except the time horizon and frequency of sample. 

A. 30 days 

  Sample Implied Realized 

2nd cumulant 0.24 0.40 0.32 

(×100)  (0.37) (0.50) 

3rd cumulant -0.11 -0.34 -0.22 

(×1000)  (0.46) (0.57) 

Skewness -0.90 -1.37 -1.11 

  (0.50) (0.72) 

4th cumulant 0.18 0.80 0.25 

(×10000)  (1.27) (0.97) 

Kurtosis 3.04 5.94 4.33 

    (4.02) (5.87) 

 

B. 90 days 

  Sample Implied Realized 

2nd cumulant 0.75 1.18 0.89 

(×100)  (0.80) (0.97) 

3rd cumulant -0.11 -1.42 -0.92 

(×1000)  (1.13) (1.49) 

Skewness -0.16 -1.17 -1.11 

  (0.38) (0.49) 

4th cumulant 0.62 3.76 1.28 

(×10000)  (3.30) (2.33) 

Kurtosis 1.11 3.35 2.93 

    (1.95) (2.51) 

 

C. 180 days 
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  Sample Implied Realized 

2nd cumulant 1.65 2.32 1.93 

(×100)  (1.36) (2.03) 

3rd cumulant 0.05 -3.01 -2.12 

(×1000)  (2.09) (2.44) 

Skewness 0.02 -0.91 -1.03 

  (0.33) (0.53) 

4th cumulant 3.04 6.75 3.84 

(×10000)  (5.44) (13.05) 

Kurtosis 1.11 1.67 2.10 

    (1.08) (2.03) 

 

D. 360 days 

  Sample Implied Realized 

2nd cumulant 3.97 4.63 7.81 

(×100)  (2.27) (28.59) 

3rd cumulant 1.97 -4.23 6.40 

(×1000)  (4.89) (81.53) 

Skewness 0.25 -0.50 -0.81 

  (0.40) (0.58) 

4th cumulant -12.91 8.63 468.85 

(×10000)  (16.02) (3652.54) 

Kurtosis -0.82 0.62 1.27 

    (0.61) (1.63) 

 

  



53 

 

Table 3. Adjusted skewness and kurtosis 

The adjusted skewness and kurtosis are defined to be irrelevant to the n if the returns are i.i.d.. More 

specifically, adjusted skewness represents monthly skewness which is calculated by skewness of n-

month return; √𝑛 times sample skewness of n-month returns of the Table 2. In addition, adjusted 

kurtosis represents n times non-excess kurtosis of n-month returns minus 3.  

Months (n) 1 3 6 12 

Adjusted skewness -0.90 -0.28 0.06 0.86 

Adjusted kurtosis 3.04 9.34 21.68 23.19 
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Table 4. Time series regression of cumulants of S&P 500 returns 

Panel A represents the time series regression about cumulants of monthly returns of S&P 500 from 

January 1996 to August 2014. Each row represents the result of the regression with coefficients and t-

values in parentheses. The first column represents the measure that we analyze. Within the measure, 

dependent variables are realized cumulants and the independent variables are implied or lagged realized 

cumulants. The other panels are similar to the Panel A except the time horizon. 

A. 30 days 

  Intercept Implied Realized(-1) Adj. R2 

2nd cum. 0.00 0.95   0.51 

 (-1.23) (6.31)   

 0.00  0.71 0.50 

 (2.44)  (4.71)  

 0.00 0.54 0.37 0.55 

  (-0.51) (3.06) (1.47)   

3rd cum. 0.00 0.82   0.43 

 (0.98) (4.00)   

 0.00  0.61 0.37 

 (-2.02)  (2.46)  

 0.00 0.57 0.25 0.46 

  (0.73) (3.01) (0.92)   

Skew -0.20 0.67   0.22 

 (-2.30) (9.42)   

 -0.68  0.39 0.15 

 (-7.59)  (4.68)  

 -0.20 0.52 0.19 0.24 

 (-2.21) (5.81) (2.26)   

4th cum. 0.00 0.23   0.08 

 (0.64) (1.13)   

 0.00  -0.13 0.01 

 (3.99)  (-0.46)  

 0.00 0.28 -0.24 0.13 

  (0.83) (1.62) (-0.74)   

Kurt 1.48 0.48   0.10 

 (3.25) (6.27)   

 3.18  0.27 0.07 

 (7.01)  (3.40)  

 1.38 0.38 0.16 0.12 

  (3.01) (4.94) (2.31)   
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B. 90 days 

  Intercept Implied Realized(-1) Adj. R2 

2nd cum. 0.00 0.66   0.29 

 (1.66) (7.91)   

 0.00  0.48 0.22 

 (4.66)  (3.85)  

 0.00 0.58 0.08 0.28 

  (1.81) (4.56) (0.64)   

3rd cum. 0.00 0.56   0.17 

 (-1.06) (4.56)   

 0.00  0.35 0.11 

 (-3.71)  (5.03)  

 0.00 0.48 0.08 0.16 

  (-1.43) (2.39) (0.79)   

Skew -0.17 0.80   0.39 

 (-1.59) (9.27)   

 -0.48  0.57 0.31 

 (-4.69)  (6.49)  

 -0.17 0.59 0.22 0.40 

 (-1.55) (3.44) (1.41)   

4th cum. 0.00 0.20   0.06 

 (1.42) (1.81)   

 0.00  0.32 0.09 

 (2.93)  (2.15)  

 0.00 0.11 0.25 0.10 

  (1.56) (0.89) (1.40)   

Kurt 0.39 0.75   0.34 

 (1.01) (6.81)   

 1.28  0.55 0.30 

 (3.78)  (4.61)  

 0.26 0.51 0.32 0.40 

  (0.76) (3.53) (2.74)   

 

C. 180 days 

  Intercept Implied Realized(-1) Adj. R2 

2nd cum. 0.01 0.62   0.16 

 (2.55) (6.65)   

 0.01  0.27 0.06 

 (5.18)  (2.52)  

 0.01 0.60 0.03 0.15 

  (2.60) (5.26) (0.40)   

3rd cum. 0.00 0.53   0.19 
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 (-2.02) (6.76)   

 0.00  0.29 0.07 

 (-4.90)  (3.73)  

 0.00 0.63 -0.11 0.19 

  (-1.77) (4.49) (-0.95)   

Skew 0.14 1.29   0.63 

 (1.53) (13.06)   

 -0.31  0.71 0.48 

 (-3.45)  (9.44)  

 0.12 1.12 0.13 0.63 

 (1.26) (5.35) (0.95)   

4th cum. 0.00 0.07   -0.01 

 (0.89) (0.18)   

 0.00  0.04 -0.01 

 (2.14)  (0.47)  

 0.00 0.05 0.04 -0.03 

  (0.87) (0.14) (0.48)   

Kurt -0.30 1.43   0.57 

 (-1.27) (8.10)   

 0.87  0.60 0.32 

 (3.18)  (4.13)  

 -0.30 1.25 0.15 0.57 

  (-1.37) (5.48) (1.36)   

 

D. 360 days 

  Intercept Implied Realized(-1) Adj. R2 

2nd cum. 0.02 1.18   -0.01 

 (1.00) (1.24)   

 0.08  -0.01 -0.02 

 (2.19)  (-0.72)  

 0.02 1.27 -0.03 -0.02 

  (0.90) (1.21) (-0.99)   

3rd cum. 0.01 0.47   -0.01 

 (0.83) (1.29)   

 0.01  0.00 -0.02 

 (0.67)  (-0.31)  

 0.01 0.47 -0.01 -0.03 

  (0.83) (1.28) (-0.45)   

Skew -0.31 1.03   0.49 

 (-3.66) (9.11)   

 -0.39  0.58 0.32 

 (-3.79)  (6.71)  

 -0.26 0.85 0.18 0.50 
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 (-2.87) (5.16) (1.47)   

4th cum. 0.08 -34.24   0.01 

 (1.04) (-0.91)   

 0.05  -0.02 -0.02 

 (1.08)  (-1.12)  

 0.08 -36.47 -0.05 -0.01 

  (1.03) (-0.90) (-1.00)   

Kurt 0.19 1.73   0.41 

 (1.07) (6.68)   

 0.87  0.37 0.10 

 (3.81)  (3.08)  

 0.20 1.81 -0.05 0.40 

  (1.11) (5.90) (-0.50)   
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Table 5. Average of regression about comoments 

Panel A represents average of time series regression results about comoments of monthly returns 

between S&P 500 and each stock contained in Dow Jones Industrial Average from January 1996 to 

August 2014. Each row represents the result of the regression with coefficients and t-values in 

parentheses. The first column represents the measure that we address. Within the measure, dependent 

variables are realized comoments and the independent variables are implied, lagged realized, and 

historical comoments; the implied and the realized moments are calculated as Section 3 describes and 

the historical comoments are calculated from the previous 24 monthly returns. Panel B is similar to the 

Panel A except that Panel B is about average of cross sectional regressions. 

 

A. Average of time series regressions.  

  Intercept Implied Realized(-1) Historical Adj. R2 

covar 0.000 0.691     0.403 

 (-1.304) (11.510)   (13.477) 

 0.001  0.495  0.322 

 (15.013)  (11.042)  (11.394) 

 0.002   0.568 0.037 

 (5.899)   (4.992) (3.641) 

 0.000 0.521 0.134 0.010 0.429 

  (2.246) (7.532) (3.247) (0.057) (13.846) 

3rd comom 0.000 0.907     0.440 

 (1.065) (13.638)   (16.983) 

 0.000  0.401  0.234 

 (-18.145)  (9.255)  (10.566) 

 0.000   0.676 0.053 

 (-13.645)   (6.809) (6.086) 

 0.000 0.872 0.039 -0.184 0.466 

  (1.212) (13.435) (1.155) (-2.593) (18.530) 

beta 0.133 0.716     0.114 

 (1.152) (7.605)   (4.903) 

 0.686  0.257  0.084 

 (18.651)  (8.738)  (5.228) 

 0.698   0.223 0.066 

 (9.104)   (3.244) (4.418) 

 -0.022 0.586 0.111 0.150 0.167 

  (-0.094) (4.134) (3.780) (1.142) (5.527) 
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gamma 0.310 0.648     0.045 

 (2.092) (5.382)   (2.966) 

 0.952  0.042  0.005 

 (26.977)  (1.835)  (0.520) 

 0.992   -0.009 -0.004 

 (26.816)   (-0.610) (-0.688) 

 0.339 0.644 -0.010 -0.027 0.035 

  (2.225) (4.913) (-0.521) (-1.167) (2.141) 

 

 

B. Average of cross sectional regressions. 

  Intercept Implied Realized(-1) Historical Adj. R2 

covar 0.000 0.668     0.282 

 (-0.283) (12.675)   (15.831) 

 0.001  0.600  0.269 

 (5.618)  (11.946)  (15.827) 

 0.001   0.834 0.265 

 (7.379)   (8.181) (16.990) 

 0.000 0.282 0.269 0.298 0.386 

  (0.845) (6.442) (9.210) (5.823) (21.012) 

3rd comom 0.000 0.617     0.358 

 (-3.601) (9.245)   (18.601) 

 0.000  0.784  0.227 

 (-6.649)  (3.331)  (12.863) 

 0.000   0.107 0.075 

 (-6.574)   (1.522) (8.438) 

 0.000 0.510 0.308 0.006 0.409 

  (-3.713) (10.603) (2.942) (0.203) (21.448) 

beta 0.036 0.861     0.282 

 (0.748) (18.166)   (15.831) 

 0.455  0.508  0.269 

 (20.007)  (21.210)  (15.827) 

 0.485   0.459 0.265 

 (23.011)   (22.536) (16.990) 

 0.109 0.374 0.240 0.212 0.386 

  (2.539) (8.198) (12.797) (12.072) (21.012) 

gamma 0.254 0.687     0.358 

 (4.256) (12.425)   (18.601) 

 0.626  0.345  0.227 

 (18.817)  (8.397)  (12.863) 

 0.884   0.085 0.075 

 (16.109)   (1.906) (8.438) 
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 0.221 0.570 0.111 0.042 0.409 

  (4.809) (7.507) (2.606) (1.062) (21.448) 
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Table 6. Return and realized moments of (co)moment portfolios 

Panel A represents performance of portfolios that are constructed based on the rank of the implied volatility. We 

classify the firms in the DJIA index into the three groups, based on the model free implied variance at each month-

end, with breakpoints 30% and 70%. Using the three groups, we make three equally weighted portfolios and zero 

cost portfolio which is denoted by 3-1. The numbers in the second column is the average of returns over the 

subsequent month. Similarly, the other columns present realized moments of return over the subsequent month. 

The last row represents t-value of the statistics for the 3-1 portfolio. Panel B and C are similarly constructed except 

that the portfolios are sorted based on the model free implied skewness or kurtosis at each month-end. The other 

Panels are similar except that the portfolios are sorted based on the realized moment of each month-end.   

A. var_imp return volatility beta gamma skewness kurtosis 

1 (lowest) 0.0060 0.0601 0.6696 0.7571 -0.2129 0.4505 

2 0.0081 0.0764 0.9360 0.9829 -0.1533 0.3106 

3 (highest) 0.0048 0.1045 1.2115 1.1614 -0.0187 0.3439 

3-1 -0.0012 0.0444 0.5419 0.4042 0.1942 -0.1065 

t(3-1) -0.2795 15.7341 18.6191 9.9106 12.5295 -2.1609 

B. skew_imp             

1 0.0031 0.0696 0.8378 0.9174 -0.2355 0.5461 

2 0.0078 0.0772 0.9281 0.9559 -0.1415 0.3151 

3 0.0082 0.0938 1.0535 1.0373 -0.0122 0.2428 

3-1 0.0051 0.0242 0.2156 0.1199 0.2233 -0.3033 

t(3-1) 1.4832 12.0778 9.1469 3.4865 15.5593 -5.6128 

C. kurt_imp       

1 0.0056 0.0824 0.9939 1.0043 -0.1188 0.2503 

2 0.0066 0.0776 0.9303 1.0021 -0.1376 0.3469 

3 0.0071 0.0806 0.8946 0.8885 -0.1337 0.4957 

3-1 0.0015 -0.0019 -0.0992 -0.1157 -0.0149 0.2454 

t(3-1) 0.5322 -1.1838 -5.0005 -2.8297 -0.9675 4.7449 

D. var_real(-1)       

1 0.0071 0.0631 0.7206 0.7985 -0.1972 0.4541 

2 0.0075 0.0770 0.9240 0.9660 -0.1561 0.3687 

3 0.0043 0.1005 1.1762 1.1415 -0.0311 0.2638 

3-1 -0.0028 0.0374 0.4556 0.3430 0.1661 -0.1903 

t(3-1) -0.6844 13.3402 15.9114 5.6637 10.7673 -4.3224 

E. β_real(-1)       

1 0.0072 0.0679 0.6813 0.7999 -0.1563 0.4433 

2 0.0060 0.0756 0.9085 0.9738 -0.1476 0.3998 

3 0.0063 0.0976 1.2352 1.1297 -0.0833 0.2319 

3-1 -0.0008 0.0297 0.5539 0.3298 0.0730 -0.2114 

t(3-1) -0.2000 10.2679 19.7464 4.8118 4.6119 -5.5192 

F. γ_real(-1)       
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1 0.0068 0.0709 0.7527 0.8522 -0.1470 0.4466 

2 0.0076 0.0758 0.9117 0.9583 -0.1524 0.3477 

3 0.0046 0.0943 1.1598 1.0976 -0.0864 0.2992 

3-1 -0.0022 0.0233 0.4072 0.2454 0.0605 -0.1475 

t(3-1) -0.6941 9.3553 15.1543 6.1452 3.9138 -3.4842 

G. skew_real(-1)       

1 0.0081 0.0747 0.8937 0.9548 -0.2189 0.4011 

2 0.0071 0.0783 0.9419 0.9596 -0.1430 0.3038 

3 0.0038 0.0872 0.9796 0.9939 -0.0264 0.4030 

3-1 -0.0043 0.0125 0.0859 0.0391 0.1924 0.0019 

t(3-1) -1.4363 5.0359 3.3964 1.3867 12.1968 0.0411 

H. kurt_real(-1)       

1 0.0048 0.0811 0.9763 0.9747 -0.1265 0.2200 

2 0.0061 0.0799 0.9569 0.9720 -0.1219 0.3555 

3 0.0086 0.0787 0.8775 0.9580 -0.1467 0.5152 

3-1 0.0038 -0.0024 -0.0988 -0.0167 -0.0202 0.2953 

t(3-1) 1.5108 -1.9058 -5.2212 -0.4412 -1.3980 6.8189 
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Table 7. Fama and French 3 factor risk adjusted return 

This table constructs the portfolios as the Table 6 describes. And then this table shows coefficients and t-values 

about time series regression of excess return of each portfolio on the Fama and French 3 factors; mkt, smb, and 

hml are market excess return, SMB factor, and HML factor, respectively.  

 

 A. var_imp 

 Intercept MKT SMB HML Adj. R2 

1 0.002 0.632 -0.291 0.125 0.603 

 (1.332) (14.561) (-3.266) (2.047)  

2 0.002 0.974 -0.262 0.195 0.802 

 (1.164) (22.550) (-4.078) (3.317)  

3 -0.006 1.457 0.077 0.536 0.782 

 (-2.417) (22.227) (0.886) (5.559)  

3-1 -0.008 0.825 0.368 0.411 0.457 

 (-2.626) (9.949) (2.710) (3.367)   

B. skew_imp      

1 -0.002 0.832 -0.259 0.131 0.695 

 (-1.283) (19.125) (-4.225) (2.028)  

2 0.002 0.957 -0.222 0.190 0.785 

 (1.028) (23.678) (-3.212) (3.141)  

3 -0.001 1.279 -0.005 0.531 0.733 

 (-0.561) (18.955) (-0.056) (5.018)  

3-1 0.001 0.448 0.254 0.400 0.213 

 (0.273) (5.234) (2.176) (2.968)   

C. kurt_imp      

1 -0.002 1.086 -0.209 0.277 0.779 

 (-1.025) (23.439) (-2.683) (3.880)  

2 0.000 0.934 -0.163 0.207 0.802 

 (0.300) (24.613) (-2.787) (4.051)  

3 0.000 1.057 -0.137 0.366 0.669 

 (-0.185) (16.557) (-1.657) (4.089)  

3-1 0.001 -0.029 0.072 0.090 -0.007 

 (0.471) (-0.370) (0.626) (0.818)   

D. var_real(-1)      

1 0.003 0.708 -0.298 0.156 0.636 

 (1.566) (14.523) (-3.319) (2.266)  

2 0.001 0.970 -0.291 0.173 0.840 

 (1.051) (31.984) (-7.558) (3.326)  

3 -0.006 1.387 0.114 0.541 0.741 

 (-2.294) (19.808) (1.169) (4.794)  

3-1 -0.009 0.678 0.411 0.385 0.358 
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 (-2.663) (7.396) (3.083) (2.693)   

E. β_real(-1)      

1 0.003 0.680 -0.224 0.126 0.572 

 (1.637) (13.065) (-2.511) (1.863)  

2 -0.001 0.965 -0.195 0.297 0.769 

 (-0.418) (23.806) (-2.675) (4.698)  

3 -0.004 1.423 -0.081 0.397 0.762 

 (-1.406) (18.277) (-0.920) (3.476)  

3-1 -0.006 0.744 0.143 0.271 0.334 

 (-1.897) (6.974) (1.001) (1.809)   

F. γ_real(-1)      

1 0.001 0.853 -0.224 0.144 0.679 

 (0.778) (15.463) (-2.805) (2.392)  

2 0.001 0.990 -0.216 0.275 0.799 

 (0.593) (25.051) (-3.492) (4.082)  

3 -0.004 1.214 -0.057 0.416 0.723 

 (-1.735) (19.612) (-0.636) (3.870)  

3-1 -0.006 0.360 0.167 0.271 0.140 

 (-1.792) (4.106) (1.297) (1.988)   

G. skew_real(-1)      

1 0.003 0.836 -0.255 0.117 0.673 

 (1.664) (17.148) (-3.579) (1.607)  

2 0.000 0.995 -0.188 0.309 0.804 

 (0.136) (27.431) (-3.413) (5.855)  

3 -0.005 1.227 -0.064 0.396 0.799 

 (-2.608) (19.122) (-0.797) (4.414)  

3-1 -0.008 0.390 0.190 0.279 0.199 

 (-3.013) (4.351) (1.838) (2.385)   

H. kurt_real(-1)      

1 -0.002 1.017 -0.054 0.346 0.785 

 (-1.555) (25.606) (-0.732) (6.021)  

2 -0.001 1.044 -0.182 0.257 0.798 

 (-0.609) (26.825) (-3.018) (4.785)  

3 0.002 0.980 -0.269 0.233 0.704 

 (1.134) (17.813) (-3.916) (2.719)  

3-1 0.005 -0.037 -0.215 -0.113 0.026 

  (1.935) (-0.580) (-2.920) (-1.184)   

 

 

 



65 

 

Table A1. Elements of a spanning set of functions that satisfy Equation (A5) for each pair (k1,k2) 

k1+k2 (k1,k2) Elements of a spanning set of functions for each pair (k1,k2)  

1 (1,0) 1s  

2 (2,0) 
2

1s , 0,2M  

 (1,1) 21ss , 1,1M  

3 (3,0) 
3

1s , 0,21Ms , 0,3M  

 (2,1) 2

2

1 ss , 1,11Ms , 0,22Ms , 1,2M  

4 (4,0) 
4

1s , 0,31Ms , 2

10,2

2

0,2
2

1
sMM   

 (3,1) 2

3

1 ss , 210,2

2

11,11,10,2 ssMsMMM  , 11,2 sM , 20,3 sM  

 (2,2) 
2

2

2

1 ss , 
2

20,2

2

12,02,00,2 sMsMMM  , 211,1

2

1,1
2

1
ssMM  , 12,1 sM , 21,2 sM  

5 (5,0) 
5

1s , 3

10,2

2

10,31

2

0,20,30,2
2

3
sMsMsMMM   

 (4,1) 2

4

1 ss , 2

2

10,2

2

11,21,20,22

2

0,211,10,2210,3

3

11,11,10,3 666312444 ssMsMMMsMsMMssMsMMM   

 (3,2) 

2

2

3

1 ss , 2,00,3 MM 1,11,26 MM 0,22,13 MM 12,00,23 sMM 1

2

1,16 sM
21,10,26 sMM

2

20,3 sM
211,26 ssM

2

12,13 sM 3

12,0 sM

2

2

11,16 ssM 2

210,23 ssM  

6 (6,0) 
6

1s , 2

0,3
2

1
M 10,20,33 sMM 3

10,3 sM  

 (5,1) 2

5

1 ss , 1,20,3 MM
11,10,32 sMM 11,20,23 sMM 20,20,3 sMM

3

11,2 sM 2

2

10,3 ssM  

 (4,2) 
2

2

4

1 ss , 2,10,3 MM 12,00,3 sMM 10,22,13 sMM 21,10,32 sMM
3

12,1 sM 2

210,3 ssM , 2

2

11,220,21,211,11,2

2

1,2 2
2

1
ssMsMMsMMM   

 (3,3) 

3

2

3

1 ss , 3,00,3 MM 13,00,23 sMM 22,00,33 sMM
3

13,0 sM 3

20,3 sM , 2,11,2 MM 12,11,12 sMM 11,22,0 sMM 21,11,22 sMM 20,22,1 sMM

2

2

12,1 ssM 2

211,2 ssM  
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Each row of this table represents elements of spanning set of functions that satisfies Equation (A5) and 

)),(,,()),(,,( 21212122112211
21 SSMSSgllSlSlMSlSlg

kk
  for each pair (k1,k2) with 21 kk  . The cases of 12 kk   are omitted because they are 

represented by symmetry. 
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Table A2. Elements of basis of functions that satisfies Equation (A5) for each pair (k1,k2) 

k1+k2 (k1,k2) Elements that satisfies Equation (A5) 

1 (1,0) 1s  

2 (2,0) 
2

1s , 0,2M  

 (1,1) 21ss , 1,1M  

3 (3,0) 0,21

3

1 3 Mss  , 0,3M  

 (2,1) 0,221,112

2

1 2 MsMsss  , 1,2M  

4 (4,0) 
2

0,20,310,2

2

1

4

1 346 MMsMss   

 (3,1) 
2

11,11,10,20,322

3

1 (3 sMMMMsss  )11,2210,2 sMssM   

 (2,2) 
2

2

2

1 ss
2

20,2

2

12,02,00,2 sMsMMM  211,1

2

1,1 42 ssMM 
12,12 sM 21,22 sM  

5 (5,0) N/A 

 (4,1) N/A 

 (3,2) N/A 

6 (6,0) N/A 

 (5,1) N/A 

 (4,2) N/A 

 (3,3) N/A 

Each row of this table represents elements of basis of functions that satisfies the Aggregation 

Property and )),(,,()),(,,( 21212122112211
21 SSMSSgllSlSlMSlSlg

kk
  for each pair (k1,k2). 
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