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Abstract 

We propose a new approach to estimating the minimum variance hedge ratio (MVHR) based 
on the wild bootstrap. We consider a range of alternative hedging strategies associated with 
the percentiles of the MVHR’s bootstrap distribution, from conservative to aggressive ones. 
This can be much more informative and safer than the conventional method of hedging solely 
based on a single point estimate. The percentile-based hedge ratios are robust to influential 
outliers, non-normality, and unknown forms of heteroskedasticity. The effectiveness of the 
bootstrap percentile-based hedging strategies is compared with those from the naïve method 
and DCC-GARCH model for a range of financial assets. We find that the wild bootstrap 
percentiles-based hedging (particularly those associated with the 50th and 75th percentiles) 
outperforms its alternatives overall, in terms of hedging effectiveness, downside risk, and the 
return variability.  
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1. Introduction 

The optimal hedge ratio (or the minimum variance hedge ratio; MVHR) is widely 

adopted in financial risk management. Derivative instruments, such as futures contracts, are 

crucial to a diversified portfolio in controlling and reducing the risk associated with 

unfavorable price changes. Since the first establishment of the futures market in the Chicago 

Mercantile Exchange in 1975, there have been a large number of studies in estimating the 

optimal hedge ratio and evaluating its effectiveness (see, for example, Chen, Lee, and 

Shrestha, 2003; Chen, Ho, and Tzeng, 2014). By taking a proper position guided by the 

optimal hedge ratio, an investor can effectively hedge the risk associated with price change of 

an underlying asset. Ederington (1979) presents an earliest empirical study of the optimal 

hedge ratio as a means of risk minimization.  

 

While the conventional method of estimating the optimal hedge ratio is based on the 

ordinary least-squares (OLS) method, a number of new alternatives have been proposed in 

the literature, including the vector error-correction (VEC) model (Kroner and Sultan, 1993; 

Li, 2010); the generalized autoregressive conditional heteroskedasticity (GARCH) model  

(Caporin, Jimenez-Martin, and Gonzalez-Serrano, 2014; Chang, Gonzalez-Serrano, and 

Jimenez-Martin, 2013; Hsu, Tseng, and Wand,  2008;  Ku, Chen, and Chen, 2007; Park and 

Jei, 2010; Lien, Tse, and Tsui, 2002); and the Markov regime-switching method (Alizadeh 

and Nomikos, 2004; Chen and Tsay, 2011; Lee, 2009, 2010; Lee and Yoder, 2011; Su and 

Wu, 2014). These new methods are designed to overcome the well-known shortcomings of 

the OLS-based method, which cannot fully capture the salient features of financial data such 

as non-normality and heteroskedasticity. However, the superiority of these new methods over 

the OLS-based method has not been fully confirmed, in terms of hedging effectiveness and 

variance reduction. A number of studies report that the OLS-based method has been found to 
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outperform the newly proposed methods: see, for example, Lien and Shrestha (2008) and 

Lien (2009). 

 

A notable feature of the past studies is that they rely solely on the point estimators for 

the optimal hedge ratio. A point estimator is a single number as an estimate of the unknown 

population value. Although it may represent the most likely outcome from a sampling or 

predictive distribution, it carries no information about the degree of intrinsic uncertainty 

associated. As Chatfield (1993) points out in the forecasting context, an interval estimator is 

more informative, offering a range of possible alternatives or contingencies with a prescribed 

level of confidence. For this reason, one may justifiably argue that risk analysis based solely 

on a point estimate of the optimal hedge ratio is of limited usefulness. By presenting the 

percentiles within a confidence interval for the optimal hedge ratio, a researcher is able to 

conduct a better-informed hedging and detailed risk analysis, taking full account of the 

uncertainty associated with estimation. In addition, the researcher can consider a range of 

possible scenarios based on a group of alternative optimal hedge ratio values. For example, a 

number of hedging strategies within a 95% confidence interval for the optimal hedge ratio 

(e.g., the 25th, 50th, and 75th percentiles) can be considered.   

 

  In this paper, we propose a new method of hedging based on interval estimation of the 

optimal hedge ratio. It is possible to construct an OLS-based interval or percentile estimator 

for the optimal hedge ratio using a normal approximation. However, in the presence of strong 

non-normality and heteroskedasticity in financial data, there are shortcomings for an interval 

estimator based on a normal approximation. For example, it is always symmetric around the 

value of the optimal hedge ratio, fails to capture a high degree of volatility of financial data, 

and may be subject to the adverse effects of influential outliers.  For this reason, we propose 

  3 



the wild bootstrap method (Davidson and Flachaire, 2008) to estimate a confidence interval 

or percentiles for the optimal hedge ratio. The wild bootstrap is a non-parametric method of 

approximating the sampling distribution of a statistic based on data resampling. It is well 

known to provide a superior alternative to the conventional normal approximation when the 

data shows unknown forms of (conditional) heteroskedasticity (see, for example, Kim, 2006). 

This paper conducts extensive empirical analyses to evaluate the hedging effectiveness based 

on the wild bootstrap percentiles, in comparison with the strategies based on the dynamic 

conditional correlation (DCC-GARCH) and the naïve method2. We consider two alternative 

wild bootstrap procedures, i.e. one based on resampling the residuals of a regression, and the 

other resampling the pairs of observations.  

 

Using daily spot and futures price indices of equities, commodities (oil, gold, corn), 

and the U.S. dollar from January 1980 to June 2015, we find that the hedging strategies based 

on central percentiles (particularly the 50th and 75th) of the optimal hedge ratio distribution 

outperform those based on the DCC-GARCH model and the naïve hedge, in terms of hedging 

effectiveness, downside risk, and hedged return variability. It is also found that the optimal 

hedging based on pairs bootstrap is marginally better than that based on the residual 

bootstrap. This paper is organized as follows. Section 2 presents a brief literature review. 

Section 3 provides the methodological details; Section 4 the data details; and Section 5 

presents the empirical results. Section 6 concludes the paper. 

 

2. Literature Review 

Chen, Lee, and Shrestha (2003) conduct a survey of different optimization functions 

and techniques to estimating an optimal hedge ratio. They concluded that, in general, there is 

2 The naïve strategy is static with hedge ratio of 1, taking a hedging position equal to the exact exposure in spot 
market.. 
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no particular optimal hedge ratio that is significantly superior to the alternatives. According 

to Chen, Ho, and Tzeng (2014), numerous studies have been conducted to provide a solution 

to the risk minimizing function of the MVHR. Nonetheless, the conclusion of the best 

hedging effectiveness from different estimation methods has still been mixed on an out-of-

sample evaluation basis. It has been suggested that the major cause of these mixed results is 

the estimation error (Lien and Shrestha, 2008).   

 

From the in-sample analysis, the VEC hedging model with GARCH error structure 

employed in Kroner and Sultan (1993) is reported to be the best currency hedging strategy 

based on 4.5 percent and 1.5 percent variance reduction compared to the naïve and OLS 

models, respectively. With regard to currency hedging, Ku, Chen, and Chen (2007) document 

that the estimation of hedge ratios using the dynamic conditional correlation (DCC–GARCH) 

model can reduce 0.14 percent of the variation in the unhedged portfolio relative to the 

constant OLS model, which is reported as the second most effective strategy, followed by the 

VEC and constant conditional correlation (CCC-GARCH) models. Park and Jei (2010), 

evaluating the hedging effectiveness for corn and soybeans spot and futures prices, conclude 

that incorporation of asymmetry and flexible distribution specification in the DCC-GARCH 

model cannot yield a better hedge outcome compared to the OLS hedge ratio, as the variance 

reduction benefits are relatively small. This finding is consistent with the study of Lien, Tse, 

and Tsui (2002), which compares the CCC-GARCH and constant OLS approaches to 

hedging a spot position with different corresponding futures indices on currency, commodity 

and equity securities. They also agree on indifferent hedging benefits among the models. In 

an effort to document the effect of the Euro sovereign debt crisis on currency hedging, 

Caporin, Jimenez-Martin, and Gonzalez-Serrano (2014) conclude that static OLS estimates 

for hedging strategy were appropriate during the calm (non-crisis) period and after the 
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intervention of the European Central Bank. Although, the authors assert that the exponential 

weighted moving average filter technique outperforms several other multivariate GARCH 

models and the static OLS model in terms of hedging effectiveness in the aftermath of the 

Lehman Brothers failure. 

 

By using the Markov Regime Switching (MRS) model, Alizadeh and Nomikos (2004) 

report a new technique for estimating the hedge ratio which is dependent on prevailing 

market conditions and also free from the non-trivial persistence effect of the distant past 

volatilities in the GARCH models. Although outperformance of MRS ratios over the others is 

found from the in-sample analysis, the results from the out-of-sample analysis are mixed. In 

particular, the authors report that MRS ratios provide better variance reduction for the FTSE 

100 hedge, but not for the S&P 500 index in comparison with the GARCH and constant OLS 

hedging estimates. Following Alizadeh and Nomikos (2004), Lee and Yoder (2011) and Su 

and Wu (2014) combine the MRS with the GARCH models (BEKK and DCC) to allow 

parameters to vary over time and to be state-dependent. Then, the optimal hedge ratio is 

estimated from the conditional second moments of the spot and futures series that are 

dependent on the market states. They found better in-sample performance with the new 

approach, but only marginal dominance in the out-of-sample analysis as compared to the 

benchmark strategies based on no hedging and the constant OLS hedge ratio. The variance 

reductions for hedging nickel and corn in Lee and Yoder (2011), and the S&P 500 and Nikkei 

225 indices in Su and Wu (2014), are reported to be within the range from 0 to 2%. In the 

aforementioned studies, the evidence that the alternative techniques for the MVHR estimation 

outperform the OLS approach has been modest in the post-sample analysis. That raises a 

question regarding the effective predictability of the proposed models, and the superiority of 

their time-varying properties to the static OLS model for estimating the optimal hedge ratio. 
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Based on similar concerns, Lee and Yoder (2011) implement statistical testing of forecasting 

superiority of the best model over a given benchmark, for instance: regime switching–

GARCH compared to the traditional GARCH and the constant OLS models. They report that 

the tests for forecasting superiority among these methods are not statistically significant via 

White’s method for data-snooping reality check (White, 2000). 

 

As discussed above, the most popular methodology employed in recent studies are the 

GARCH-class models, which are able to capture dynamic relationships between the spots and 

futures, while the constant approaches, such as the static OLS model or the naïve strategy, 

fail in capturing such relationships. The rationale for the use of the GARCH models is the 

fact that high volatility in one period tends to have persistence effects in the following 

periods. Convergence is also a typical problem in estimating the GARCH models. In 

addition, Brooks, Cerny, and Miffre (2011), in an evaluation of the effectiveness of 

multivariate GARCH models in estimating the optimal hedge ratio, conclude that the models 

at best have provided very modest enhancement on an out-of-sample basis. This assertion can 

be re-examined by reviewing reported tables of variance reduction and hedging effectiveness 

employing various methods against a specific benchmark in many studies within the 

literature. The differences in hedging improvement among the models are minor and the 

estimated hedge ratios appear to be slightly different. Thus far, the main disadvantage of the 

OLS model is that it fails in capturing the time-varying nature of the relationship among 

financial time series. In addition, the OLS also assumes a constant variance of financial return 

and normality is often assumed for statistical inference. Despite these shortcomings, the OLS-

based MVHRs are still utilized universally by financial professionals due to its computational 

efficiency and simplicity. 
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As mentioned earlier, all past studies rely exclusively on the point estimates of the 

optimal hedge ratio generated from alternative models. They report empirical results on the 

hedging effectiveness that are often mixed and inconclusive, possibly due to the point that the 

degree of uncertainty associated with the optimal hedging ratio estimation is not reflected in 

their evaluation. In this paper, we propose the percentile-based optimal hedging based on the 

wild bootstrap method. The method is based on the simple OLS-based regression and 

conducted with a time-varying framework using rolling-sub-sample windows. The wild 

bootstrap also provides estimation and statistical for the optimal hedge ration robust to non-

normality and heteroscedasticity.  

 

3. Methodology 

In this section, we present the methodological details, including the wild bootstrap 

methods and DCC-GARCH model for the optimal hedge ratio. We also discuss the measures 

for the hedging effectiveness.  

 

3.1. Background 

The hedge ratio is defined as the number of contracts to be taken out by an investor in 

the futures market in order to hedge her position in the spot market. The value of the hedge 

ratio is a dollar amount in futures contracts entered into by an investor or a hedger to protect 

against the risk of any loss from holding every one-dollar in the spot market. The minimum 

variance hedge ratio (MVHR) can be estimated by regressing a spot return against the return 

of the corresponding futures, using the OLS method. The MVHR minimizes the variance of 

the hedged return, which can be expressed as  

    𝑅𝑅ℎ = 𝑅𝑅𝑆𝑆 + 𝛽𝛽 𝑅𝑅𝐹𝐹                                                                                                    (1) 
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where 𝑅𝑅ℎ is a vector of the hedged portfolio’s returns, 𝑅𝑅𝑆𝑆 is a vector of spot returns of a risky 

asset,  𝑅𝑅𝐹𝐹 is a vector of futures return of the risky asset and 𝛽𝛽 is the hedge ratio reflecting the 

dollar amount of futures contracts that needs to be entered into for the sake of hedging the 

risk of $1 in the spot market. Note that each vector of the above returns has a length of n, 

which also denotes the sample size. 

 

The purpose of taking a position in the futures market is to protect the value of a 

position in the spot market. In other words, a hedge through the use of futures contracts with 

a size determined by the hedge ratio is aimed to protect the initial value of an investment or 

commodity position from any changes in price: ∆𝑅𝑅ℎ = ∆𝑅𝑅𝑆𝑆 + 𝛽𝛽 ∆𝑅𝑅𝐹𝐹 = 0.  The conventional 

approach to this task is to use the estimate of 𝛽𝛽 based on the regression of the form:  

                         𝑅𝑅𝑆𝑆 = 𝑐𝑐 + 𝛽𝛽 𝑅𝑅𝐹𝐹 + 𝜀𝜀                                                                                           (2) 

The OLS estimator for β in (2) is expressed as:  

        = (𝑅𝑅𝐹𝐹𝑇𝑇 𝑅𝑅𝐹𝐹)−1𝑅𝑅𝐹𝐹𝑇𝑇𝑅𝑅𝑆𝑆,                                                                                           (3) 

where the superscript T refers to the transpose of the corresponding vector.  

 

3.2. Hedging with wild bootstrap percentiles 

As mentioned earlier, we propose a new approach to estimation of the MVHR with 

the wild bootstrap, accounting for the heteroskedasticity and non-normality issues of the error 

term in equation (2). We consider the percentiles within a confidence interval for the MVHR, 

which covers the true value of the MVHR with a prescribed level of confidence. By 

constructing a confidence interval and its percentiles for the MVHR, the degree of estimation 

uncertainty is explicitly presented. We first consider the wild bootstrap based on residual 

resampling, which is employed in conjunction with the heteroskedasticity consistent 

covariance matrix estimator (HCCME) as proposed in Flachaire (2005), Davidson and 

β̂
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Flachaire (2008), and Cribari-neto and Lima (2009). In addition, we also consider the wild 

bootstrap based on resampling the pairs of observations. The former bootstrap method 

assumes that  𝑅𝑅𝐹𝐹 in regression (2) is exogenous and uncorrelated with the error term; while 

the latter assumes that it is random. The pairs bootstrap addresses the potential endogeneity 

problem, when both 𝑅𝑅𝑆𝑆 and  𝑅𝑅𝐹𝐹 may be driven by the same market shocks. The two wild 

bootstrap methods are proposed as alternatives for the percentile-based hedging strategy. 

  

The wild bootstrap based on residual resampling can be described as follows: 

Step 1: Estimate the optimal hedge ratio 𝛽̂𝛽 given in (3) for the regression (2). 

Step 2: Draw a bootstrap sample (𝑅𝑅𝑆𝑆𝑆𝑆∗ ,𝑅𝑅𝐹𝐹𝐹𝐹) based on 𝛽̂𝛽 for each ith observation from 1 to n: 

RSi
* =𝛽̂𝛽 RFi+ 𝑡𝑡𝑖𝑖∗ εi�/(1 – hi) 

where 𝑡𝑡𝑖𝑖∗ is a independent random variable with zero mean and unit variance and εi�/(1 – hi) is 

the transformed residual from the regression (2), robust to heteroskedasticity3. 

Step 3: Compute the new estimate of the hedge ratio 𝛽̂𝛽∗ with the bootstrap sample (𝑅𝑅𝑆𝑆𝑆𝑆∗ ,𝑅𝑅𝐹𝐹𝐹𝐹) 

(for i = 1, …, n) following the regression (2). 

Step 4: Repeat Step 2 and 3 many times, say B, to form the bootstrap distribution of  

 for 𝛽̂𝛽.  

Step 5: The (1- α)100% wild bootstrapping confidence interval is constructed with the lower 

limit and upper limits representing the 0.5α percentile and (1 – 0.5α) percentile, respectively, 

of the bootstrap distribution . The percentiles within the confidence interval can be 

estimated in a similar way. The number of bootstrap iterations B is set at 1000. The wild 

bootstrap based on resampling the pairs is identical to the above-mentioned procedure, except 

3 hi is the ith diagonal element of the orthogonal projection matrix H =  RF(RF
T RF)−1RF

T (see Long and Ervin, 
2000).  

{ }B

ii 1
* )(ˆ

=β

{ }B

ii 1
* )(ˆ

=β
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in Steps 2 and 3, resampling and estimations are conducted as ; and 

𝛽̂𝛽∗ is the OLS estimator from (for i = 1, …, n). 

 

The bootstrap (Efron, 1979) is a method of approximating the sampling distribution of a 

statistic in a non-parametric way by repeated resampling of the observed data. The wild 

bootstrap (Liu, 1988; Mammen, 1993) is a bootstrap method designed for the data that shows 

an unknown form of heteroskedasticity, which has been shown to be asymptotically valid 

(Cribari-neto and Lima, 2009; Cribari-Neto, Souza, and Vasconcellos, 2007; Davidson and 

Flachaire, 2008; Flachaire, 2005). Considering and  where X and Y are 

random variables, the variance and covariance of resampled data X* and Y*, conditional on X 

and Y respectively, can effectively replicate those of X and Y. That is,  

 ,   

A choice of an distribution should be made for 𝑡𝑡𝑖𝑖∗. In this paper, we use Mammen’s (1993) 

two-point distribution: 

𝑡𝑡𝑖𝑖∗ =

⎩
⎪
⎨

⎪
⎧−

√5 − 1
2

 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝 =
√5 + 1

2√5
√5 + 1

2
  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (1 − 𝑝𝑝)

 

which is well-known to give higher-order refinements.  

 

In this study, we construct the 95 percent confidence interval, paying attention to the 

10th, 25th, 50th, 75th, and 90th percentiles. Hedging strategies are then produced based on the 

percentile hedge ratios. A hedged position based on an upper percentile may be regarded as 

an aggressive strategy, whereas that based on a lower percentile may be considered as a 

conservative one. The 50th percentile (median) hedging position may be regarded as a neutral 

),(),( ****
FiiSiiFiSi RtRtRR =

),( **
FiSi RR

iii XtX ** = iii YtY ** =

iiiiiiiiiiii YXYXYXCovYYYVarXXXVar === ),|,(;)|(;)|( **2*2*
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one. We argue that these percentile-based hedging strategies effectively provide different 

scenarios under different market conditions, since the interval will be tighter in normal times, 

but wider under turbulent market conditions. As a result, these hedging strategies are much 

more informative than the one based on a single point estimate of the hedge ratio. In addition, 

it can be more beneficial in terms of hedging effectiveness, downside risk, and the hedged 

return fluctuation that are discussed hereafter. 

 

3.3. Hedging based on the DCC-GARCH 

As an alternative to the wild bootstrap, we use the bivariate DCC-GARCH(1,1) model 

developed by Engle (2002), which is widely used in the prior literature  The model has been 

popular due to its superiority to the OLS approach in considering time-varying conditional 

variance and covariance of the spot and futures returns. This model is defined as follows:  

𝑅𝑅𝑆𝑆,𝑡𝑡 = 𝜇𝜇𝑆𝑆 + 𝑢𝑢𝑆𝑆,𝑡𝑡 

𝑅𝑅𝐹𝐹,𝑡𝑡 = 𝜇𝜇𝐹𝐹 + 𝑢𝑢𝐹𝐹,𝑡𝑡 

�
𝑢𝑢𝑆𝑆,𝑡𝑡
𝑢𝑢𝐹𝐹,𝑡𝑡

� Ω𝑡𝑡−1� ~𝑁𝑁(0,𝐻𝐻𝑡𝑡) 

ℎ𝑆𝑆,𝑡𝑡 = 𝑐𝑐𝑆𝑆 + 𝑎𝑎𝑆𝑆𝑢𝑢𝑆𝑆,𝑡𝑡
2 + 𝑏𝑏𝑆𝑆ℎ𝑆𝑆,𝑡𝑡−1 

ℎ𝐹𝐹,𝑡𝑡 = 𝑐𝑐𝐹𝐹 + 𝑎𝑎𝐹𝐹𝑢𝑢𝐹𝐹,𝑡𝑡
2 + 𝑏𝑏𝐹𝐹ℎ𝐹𝐹,𝑡𝑡−1 

ℎ𝑆𝑆𝑆𝑆,𝑡𝑡 = 𝜌𝜌𝑆𝑆𝑆𝑆,𝑡𝑡�ℎ𝑆𝑆,𝑡𝑡�ℎ𝐹𝐹,𝑡𝑡 

𝜌𝜌𝑆𝑆𝑆𝑆,𝑡𝑡 =
𝑞𝑞𝑆𝑆𝑆𝑆,𝑡𝑡

�𝑞𝑞𝑆𝑆𝑆𝑆,𝑡𝑡𝑞𝑞𝐹𝐹𝐹𝐹,𝑡𝑡
 

𝑞𝑞𝑆𝑆𝑆𝑆,𝑡𝑡 = 𝜌̅𝜌𝑆𝑆𝑆𝑆 +  𝛾𝛾�𝑧𝑧𝑆𝑆,𝑡𝑡−1𝑧𝑧𝐹𝐹,𝑡𝑡−1 − 𝜌̅𝜌𝑆𝑆𝑆𝑆� + 𝛿𝛿( 𝑞𝑞𝑆𝑆𝑆𝑆,𝑡𝑡−1 − 𝜌̅𝜌𝑆𝑆𝑆𝑆)                                                (5) 

where 𝜌𝜌𝑆𝑆𝑆𝑆,𝑡𝑡 is the dynamic conditional correlation, 𝑞𝑞𝑆𝑆𝑆𝑆,𝑡𝑡 is the conditional correlation,  𝜌̅𝜌𝑆𝑆𝑆𝑆 is 

the constant unconditional correlation, 𝑧𝑧𝑆𝑆,𝑡𝑡−1𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧𝐹𝐹,𝑡𝑡−1 are the standardized residuals of the 

spot and futures returns, respectively. Hence, the time-varying hedge ratio 𝛽𝛽𝑡𝑡�  can be 
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calculated based on the conditional covariance matrix from the DCC-GARCH(1,1) model as 

follows: 

𝛽𝛽𝑡𝑡�  = ℎ𝑆𝑆𝑆𝑆,𝑡𝑡
ℎ𝐹𝐹,𝑡𝑡

  (6)   

                                                                                                                 

3.4. Computational details and evaluation of hedging strategies 

To conduct the hedging with time-varying estimators, we adopt the rolling sub-sample 

window of 250 trading days4 for both the wild bootstrap and the DCC-GARCH(1,1) model. 

From each sub-sample window, one-step ahead prediction from the DCC-GARCH(1,1) 

model is generated, along with the wild bootstrap percentiles. To compare the predictive 

ability of the alternatives, hedged portfolios are constructed by combining the long position in 

the spot market and the short position in the futures market from all windows. These hedging 

strategies are evaluated in terms of variance reduction, downside risk and stability of the 

hedged portfolio returns.  

The hedging effectiveness of the strategies is measured by the percentage decrease in 

volatility of the hedged portfolio return relative to the unhedged portfolio return. An optimal 

hedging strategy is expected to have a relatively stable hedge ratio and to provide the largest 

variance reduction from the unhedged position, which is the purely long position in the spot 

market in this study. The hedging effectiveness (HE) is given by 

 
)(

)()(
UVar

HVarUVarHE −
= ,                                                                                 (7) 

where Var(U) and Var(H) denotes the variances of the unhedged return and hedged return 

respectively. We also use the semi-variance (SV), which is the average squared deviation of 

the observations below the mean of the hedged returns, which can be written as  

4 The length of the time window is constructed for rebalancing needs of a portfolio for every 12 months when 
the portfolio manager can revise their hedging position based on the time-varying spot-futures relationship. The 
choice of the time window length is also to facilitate the convergence issue of the rolling DCC-GARCH model.  
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where m is the number of hedged return observations Xi below the average. By comparing the 

SV values across the proposed hedging strategies, we can identify which strategy may 

potentially expose an investor to higher downside risks that are associated with losses. It 

provides information as to which of the available strategies is safer in situations of adverse 

market conditions or situations of high volatility in market movements. In addition to these 

measures, we compare the inter-quartile range (difference between the 3rd and 1st quartiles) 

and 95% range (difference between the 97.5th and 2.5th percentiles) of the return distributions.  

 

Finally, a variance equality test between hedged returns using different models is 

performed with an F-test. This is to examine whether the strategy using time-varying DCC-

GARCH hedge ratios is equal or larger than the one from the bootstrap distribution of the 

optimal hedge ratio. The test statistic is calculated as the ratio of the sample variance of the 

DCC-GARCH hedged returns to that of an alternative strategy’s hedged returns5, following 

an F-distribution with appropriate degrees of freedom. The alternative hypothesis is that the 

variance ratio is greater than 1, which means the DCC-GARCH hedge is riskier than its 

alternative.  Rejection of the null hypothesis that the ratio of these variances is equal to one 

indicates that daily returns from the DDC-GARCH model are more volatile than those of its 

alternative. The F-statistic for this test is written as  

22 / iDCCF σσ=  ,                                                                                                       (9) 

where 2
DCCσ  denotes the sample variance of the hedged returns on the DCC-GARCH hedge; 

and 2
iσ   the sample variance of the hedged returns on an alternative hedge. 

5 Alternative hedging strategies to the DCC-GARCH approach are, within this study, the naïve strategy and 
percentiles from the bootstrap distribution of the MVHR (at 10th, 25th, 50th, 75th, 90th percentiles) 
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4. Data Details 

Hedging effectiveness is evaluated for a range of assets, including equites (S&P500, 

FTSE100), commodities (crude oil mid-price, S&P gold spot price index, and corn number 2 

yellow), and the currency (US dollar index6). The futures contracts employed for hedging 

instruments are continuous settlement price indices available from DataStream7. The data 

ranges from January 1980 to June 2015, although some assets have different starting values 

due to data availability, covering the periods of a number of economic and financial crises. 

Descriptive statistics for the spot and futures returns of each asset are presented in Table 1. 

The mean and variance properties of the returns are typical of financial returns. The Lagrange 

multiplier test for the ARCH effect indicates the presence of conditional heteroskedasticity, 

which justifies the use of a dynamic strategy to reduce the price risk exposure in the spot 

market, such as the rolling OLS and DCC-GARCH models. The Jarque-Bera test for non-

normality indicates the non-normal returns. The strong evidence of heteroskedasticity and 

non-normality justifies the use of the wild bootstrap. For all assets, the Pearson correlations 

among the spot and futures returns indicate strong linear association. Although the details are 

not reported, we find that the spot and futures prices of all employed assets are co-integrated. 

Figures 1 and 2 present the time plots of the price and return of the different financial assets 

and their futures. The futures price indices appear to be more sensitive and volatile relative to 

changes in the spot price indices. The price reaction in the futures market is stronger than in 

6 The US dollar index, which has been existed since 1973, is a geometrically weighted average of a basket of six 
currencies against the US dollar, i.e. British pound, Canadian dollar, the Euro, Japanese yen, Swedish krona and 
Swiss franc. Since the US dollar is freely floated against all other foreign currencies, the Federal Reserve Bank 
initiated the measure of the US dollar index to provide an external bilateral trade-weighted average of the US 
dollar. 
7 The continuous futures indices are perpetual series of futures prices, volumes and open interest derived from 
individual futures contracts. They starts at the nearest contract month, which forms the first price values for the 
continuous series until either the contract reaches its expiry date or until the first business day of the notional 
contract month, whichever is sooner. At this point prices from the next trading contract month are taken. No 
adjustment for price differentials is made. Thomson Reuters DataStream provides the methodology. 
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the spot market, as shown by the sharper spikes in the return plots. This suggests that an 

incoherent strategy involving futures transaction may result in higher risk than anticipated. 

 

5. Empirical result 

In this section, we present the optimal hedge ratio estimates based on two alternative 

bootstrap methods and DCC-GARCH model. In addition, we evaluate and compare hedging 

effectiveness of the strategies across the alternative methods.  

 

5.1. Optimal hedge ratio estimates 

The time-varying optimal hedge ratios are shown from Figures 3 to 8 for all six assets, 

generated using 250-trading-day moving sub-sample window. In each figure, the bootstrap 

percentile-based hedge ratios, using the residual resampling procedure, are reported in the top 

panel; and those based on the pairs bootstrap appear in the middle panel. These plots present 

95% confidence band with the percentiles indicated within, which are used for percentile-

based hedging. The naïve strategy is also indicated by the horizontal line at the hedge ratio of 

1, in each panel for comparison. The two alternative bootstrap confidence intervals appear to 

show similar pattern over time, but the one based on pairs bootstrap is slightly more stable 

overall. By looking at the width of the bootstrap confidence band, we can assess the degree of 

uncertainty associated over time. The interval between appropriate percentiles represents the 

wild bootstrap confidence interval for the optimal hedge ratio: for example, the 2.5h and 

97.5th percentiles are the lower bound and upper bound of the 95 percent confidence interval. 

A wider band indicates a higher degree of uncertainty in estimation. It is likely that the width 

of the band changes depending on the prevailing market conditions that drive the degree of 

risk. We observe tighter confidence bands for the equities than the commodities and the US 

dollar. This may be explained by more complicated fundamentals affecting the commodities 
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spot and futures returns, especially the global supply and demand (Ai, Chatrath, and Song, 

2006; Groen and Pesenti, 2010; Gorton, Hayashi, and Rouwenhorst, 2013), effects of US 

dollar strength (Akram, 2009), and the speculative activities and active positions of hedge 

funds in both commodity and equity futures markets (Büyükşahin and Robe, 2014; Gorton, 

Hayashi, and Rouwenhorst, 2013).  

 

Another advantage of using the confidence band is that the hedger can conduct a test 

for statistical significance. For example, if the confidence band does not cover the value of 1, 

we cannot accept the null hypothesis that the optimal hedge ratio is equal to one, at the 

prescribed level of significance, which means that the optimal hedge ratio is statistically 

different from the naïve hedge ratio. It appears that, for most of the assets, the optimal hedge 

ratio is statistically different from 1 frequently over time, at the 5% level of significance. This 

tendency has been particularly strong before 2000. For the U.S. dollar, the naïve strategy has 

never been optimal over the entire period at the 5% level of significance, since the 95% 

confidence band does not cover 1 for nearly the entire period. For gold, the wild bootstrap 

confidence band has become tighter and increasingly convergent to 1.   

 

A high degree of estimation uncertainty of the optimal hedge ratio for most of the 

assets obviously appears in some common periods: 1987-1988 (effect of Black Monday), 

1992-1993 (European Currency crisis), 1997-1998 (Asian Financial crisis), 2001-2003 (Dot-

com bubble that caused a deep decrease in the US dollar index) and 2007-2010 (the US 

Subprime Housing crisis and the Global Financial crisis). These turbulent episodes have 

influenced not only the US market, but have also impacted on the global financial markets. 

However, the gold appears as an exception among the analyzed asset classes, and especially 
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during and after the crisis in 2007. This may represent the popularity of gold as a safe haven 

asset, as discussed and identified by Nguyen and Liu (2017).  

 

It is evident that the DCC-GARCH hedge ratios are considerably more volatile than 

the wild bootstrap hedge ratios, especially during the periods of turbulent financial markets. 

Visually, substantial swings are observed in the time-varying DCC-GARCH ratios across the 

assets. The high volatility of daily MVHRs using the DCC-GARCH is also documented in 

previous studies (Park and Jei, 2010; Chang, Gonzalez-Serrano, and Jimenez-Martin, 2013; 

Caporin, Jimenez-Martin, and Gonzalez-Serrano, 2014). From Figures 3 to 8, it is noteworthy 

that the movements in the DCC-GARCH hedge ratios are well outside the bootstrap 

confidence bands. The wild bootstrap hedge ratios are stable, mostly well above 0 and less 

than 1. In contrast, the DCC-GARCH hedge ratios are often negative and can be greater than 

2. The negative hedge ratio reflects a negative relationship between the spot and futures 

indices, indicating an inverse co-movement of the futures price to the current spot price, a 

signal of speculation opportunity. The remarkable observed volatility of the DCC-GARCH 

hedge ratios is probably due to the highly parametric nature of the DCC-GARCH model.  

 

5.2. Comparing the hedging effectiveness: 

A hedged portfolio is constructed taking a combined position in spot and futures 

returns of an asset so as to minimize the exposed risk in the physical market, using the 

optimal hedge ratios obtained from alternative methods. The hedged return in percentage is 

calculated daily. Table 2 presents the statistics for the hedging effectiveness and Table 3 

reports the F-test statistics for variance equality discussed in Section 3. Overall, the wild 

bootstrap percentile hedging strategies are found to be more effective than those based on the 
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DCC-GARCH and the naïve methods, in terms of the variance reduction, downside risk, and 

stability in the hedged returns. 

  

We first compare the hedging effectiveness between the bootstrap percentiles-based 

methods with the naïve one. For S&P500, the variance of hedged returns are consistently 

lower with the bootstrap methods. The naïve hedge shows the variance of 0.11 while the 

bootstrap methods show the variance in the neighborhood of 0.08. The SV value of the naïve 

hedge is around 0.33, much higher than the bootstrap values which are around 0.29. The HE 

values also indicate a higher reduction in variance for the bootstrap methods. The IQ and 

95% ranges also indicate a lower variability in the hedged returns based on the wild 

bootstrap. Similar results are evident for the FTSE100 and USD where the bootstrap-based 

optimal hedging shows a better performance than the naïve method. For oil and corn, the 

evidence is not as strong as the other assets, but there is a tendency that the bootstrap-based 

methods are slightly better in terms of overall variance reduction. For the gold, all measures 

indicate that the naïve method beats the wild bootstrap alternatives.  

 

Now we compare the hedging performance between the wild bootstrap and the DCC-

GARCH model. For all assets considered, all measures of hedging performance indicate that 

the wild bootstrap outperforms the DCC-GARCH. The latter is found to beat the naïve 

method for the equities and USD, but not in the commodities. As we find above, the 

bootstrap method beats the native method in hedging performance for all assets, except for 

the gold. Overall, the bootstrap percentile-based hedge ratios, especially at the 50th and 75th 

percentiles of the bootstrap distribution, which may be regard as the neutral strategy and 

aggressive strategy respectively, provide more effective hedging. The variance reduction in 
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the hedged portfolio returns using the pairs bootstrap is marginally higher than the residual 

bootstrap, especially for the S&P500 index and corn.  

 

To further evaluate the riskiness among the hedging positions associated with the 

different strategies, the F-test statistics for the equality of variances discussed in Section 3 are 

reported in Table 3. The F-statistic is the ratio of the two variances, in particular the DCC-

GARCH based strategy against any competing hedging strategy. Rejection of the null 

hypothesis of the equal variances means that the variance ratio is greater than 1, as stated in 

the alternative hypothesis. This implies a higher degree of volatility of the DCC-GARCH 

hedge. The significant F-statistics in Table 3 indicate the potential inferior performance of the 

hedging strategy based on the DCC-GARCH model. The bootstrap method appear to provide 

a safer hedge with less volatility in returns than the DCC-GARCH in most of the asset 

classes. The two bootstrap approaches are shown indifferent in providing the better stability 

in the hedged returns compared to the DCC-GARCH. However, hedging positions in the US 

dollar show different outcomes, since the variance comparison test fails to conclude that the 

DCC-GARCH hedged returns are more volatile than their counterparts. For the commodities, 

we find the hedged returns from the naïve strategy are less volatile than the DCC-GARCH 

based strategy, but not for the equities and the US dollar index.  

 

Overall, the hedging strategies based on the 50th and 75th percentiles of the wild 

bootstrap distribution of the optimal hedge ratio are found to outperform those based on the 

DCC-GARCH and naïve method. This is plausible since the central percentiles are highly 

likely to be associated with the true value of the optimal hedge ratio. The wild bootstrap 

based on resampling the pairs of observations appears to be marginally better than the one 

based on resampling the residuals of the regression model, showing moderately narrower 
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interval width of the percentile-based hedge ratios and the improved stability in the hedged 

returns. This suggests that the endogeneity issue in the estimation of the optimal hedge ratio 

may play a role, since the spot and futures returns are both possibly affected by the same 

shocks. 

 

6. Conclusion 

The paper proposes a new method of hedging based on the percentiles of the optimal 

hedge ratio. The proposed method provides a range of possible hedging strategies within the 

95% confidence interval for the optimal hedge ratio. This is more informative than the 

conventional hedging based on a single point estimate, since it provides a hedger with a clear 

sense of estimation uncertainty and a range of alternative strategies, with a prescribed level of 

confidence. In order to estimate the percentiles of the optimal hedge ratio distribution, we 

employ the wild bootstrap (the one based on residual resampling and the other based on pairs 

resampling), which is a non-parametric method of approximating the sampling distribution of 

a statistic based on repeated data resampling. The wild bootstrap percentiles exhibit a range 

of desirable features, being robust to influential outliers; and robust to non-normality and 

unknown forms of heteroskedasticity. These hedging strategies are compared to those based 

on the naïve method and the DCC-GARCH model, adopting 250-day rolling sub-sample 

windows.  

 

Hedging effectiveness among the alternative approaches is evaluated for a range of 

assets, i.e. the equities (S&P500 and FTSE100), commodities (gold, oil, and corn) and the US 

dollar, using the daily spot and futures prices from 1980. The estimation uncertainty of the 

optimal hedge ratio is presented with a varying width of the bootstrap percentile-based hedge 

ratios during the historical turbulent periods of financial and commodity market activity. The 
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DCC-GARCH hedge ratios are found to fluctuate in a highly volatile manner, in comparison 

with the bootstrap percentile-based alternatives. The high volatility of the DCC-GARCH 

estimates adversely impact on the hedging position and increase the uncertainty in hedging.  

 

Overall, the hedging strategies based on the wild bootstrap percentiles are found to 

outperform those based on the DCC-GARCH model and the naïve hedge, in terms of hedging 

effectiveness, downside risk and hedged return variability. In particular, those based on the 

central percentiles (the 50th and 75th) show highly desirable hedging performance. The two 

alternative bootstrap methods show similar performance in hedging effectiveness, but the one 

based on resampling the pairs provide more stable hedging performance. This may indicate 

the importance of endogeneity issue in estimation, which is widely neglected in the past 

studies. While the conventional hedging methods rely solely on the point estimate of the 

optimal hedge ratio, this paper represents the first study that proposes hedging based on 

interval or percentile estimation. The latter is associated with a richer information content 

with a range of alternative hedging strategies, which can lead to safer and more informed risk 

analysis.   
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Table 1: Descriptive statistics for the asset returns 

  
S&P 500 FTSE 100 USD 

  
SPOT FUTURES SPOT FUTURES SPOT FUTURES 

Mean 0.032 
*** 

0.032 
**** 

0.022 
* 

0.022 
* -0.004 -0.004 

Variance 1.246 
*** 

1.467 
*** 

1.186 
*** 

1.334 
*** 

0.278 
*** 

0.310 
*** 

Skewness -1.28 -2.38 -0.49 -0.59 0.53 0.56 
Kurtosis 29.44 84.28 10.00 11.35 1.98 1.88 

J-B test 307483.4 
*** 

2509963 
*** 

34103.25 
*** 

43991.54 
*** 

1254.43 
*** 

1136.25 
*** 

ARCH test 679.49 
*** 

721.33 
*** 

1621.28 
*** 

1196.89 
*** 

156.76 
*** 

132.99 
*** 

Pearson Correlation  0.96*** 0.96*** 0.97*** 

        
  

GOLD OIL CORN 

  
SPOT FUTURES SPOT FUTURES SPOT FUTURES 

Mean 0.009 0.009 0.011 0.011 0.004 0.004 

Variance 1.39 
*** 

1.434 
*** 

6.129 
*** 

5.846 
*** 

2.997 
*** 

2.700 
*** 

Skewness -0.13 -0.18 -0.76 -0.82 -0.28 -0.70 
Kurtosis 7.20 8.43 15.33 15.22 4.49 14.68 

J-B test 20011.39 
*** 

27428.62 
*** 

75893.53 
*** 

74956.42 
*** 

6767.62 
*** 

71919.36 
*** 

ARCH test 1167.84 
*** 

1261.52 
*** 

321.96 
*** 

398.72 
*** 

660.53 
*** 

57.62 
*** 

Pearson Correlation  0.99*** 0.89*** 0.82*** 
Note: Asset return is presented in percentage. J-B test is the Jarque-Bera normality test for the asset returns’ 
distribution with the test statistic following the χ2 distribution. The ARCH test is the Lagrange Multiplier test for 
conditional heteroskedasticity. *, **, and *** denote the statistical significance at the 10%, 5% and 1% levels, 
respectively. 
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Table 2: Statistics for the Hedged portfolio returns and Hedging effectiveness 
 

 

S&P 500 Mean Variance SV HE IQ 95% range 

 
Unhedged 0.0312 1.26 1.175   0.9769 4.4320 

 
Naïve hedge 0.00029 0.108 0.332 91.41% 0.2534 1.1376 

 
DCC hedge 0.00485 0.094 0.311 92.57% 0.2537 1.1047 

R
es

id
ua

l B
oo

ts
tr

ap
 10th Percentile hedge 0.00596 0.08 0.286 93.69% 0.2583 1.1313 

25th Percentile hedge 0.0055 0.079 0.283 93.78% 0.2545 1.0996 

50th Percentile hedge 0.00436 0.081 0.29 93.62% 0.2516 1.0787 

75th Percentile hedge 0.00391 0.081 0.292 93.56% 0.2499 1.0744 

90th Percentile hedge 0.00354 0.083 0.293 93.46% 0.2498 1.0647 

Pa
ir

s B
oo

ts
tr

ap
 10th Percentile hedge 0.0054 0.081 0.290 93.62% 0.2570 1.1217 

25th Percentile hedge 0.0050 0.080 0.288 93.70% 0.2541 1.0956 

50th Percentile hedge 0.0045 0.080 0.288 93.67% 0.2515 1.0777 

75th Percentile hedge 0.0040 0.081 0.289 93.63% 0.2502 1.0707 

90th Percentile hedge 0.0036 0.082 0.291 93.53% 0.2504 1.0629 

 
 

      

 

FTSE 100 Mean Variance SV HE IQ 95% range 

 
Unhedged 0.0208 1.19 1.126   1.1010 4.3396 

 
Naïve hedge 0.0001 0.102 0.326 91.47% 0.2734 1.2188 

 
DCC hedge 0.00261 0.094 0.332 92.14% 0.2617 1.1080 

R
es

id
ua

l B
oo

ts
tr

ap
 10th Percentile hedge 0.0041 0.082 0.299 93.16% 0.2610 1.0908 

25th Percentile hedge 0.00387 0.079 0.296 93.35% 0.2600 1.0743 

50th Percentile hedge 0.00351 0.079 0.296 93.38% 0.2583 1.0719 

75th Percentile hedge 0.00323 0.08 0.296 93.33% 0.2578 1.0781 

90th Percentile hedge 0.00294 0.082 0.299 93.13% 0.2583 1.0836 

Pa
ir

s B
oo

ts
tr

ap
 10th Percentile hedge 0.0041 0.080 0.297 93.29% 0.2613 1.0833 

25th Percentile hedge 0.0038 0.079 0.296 93.35% 0.2589 1.0697 

50th Percentile hedge 0.0035 0.079 0.296 93.37% 0.2581 1.0738 

75th Percentile hedge 0.0032 0.080 0.296 93.34% 0.2582 1.0775 

90th Percentile hedge 0.0029 0.082 0.299 93.17% 0.2576 1.0817 

        
SV: semivariance given in (7); HE: Hedging effectiveness given in (8) 
IQ: inter-quartile range; 95% range: difference between 97.5th and 2.5th percentiles  
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Table 2: Statistics for the Hedged portfolio returns and Hedging effectiveness 
(continued) 
 

 

USD Mean Variance SV HE IQ 95% range 

 
Unhedged -0.00199 0.275 0.536   0.5724 2.1496 

 
Naïve hedge 0.00001 0.019 0.152 92.99% 0.0656 0.5906 

 
DCC hedge -0.00121 0.017 0.150 93.78% 0.0681 0.5485 

R
es

id
ua

l B
oo

ts
tr

ap
 10th Percentile hedge -0.00062 0.018 0.147 93.63% 0.0723 0.5519 

25th Percentile hedge -0.0006 0.017 0.146 93.74% 0.0699 0.5421 

50th Percentile hedge -0.00044 0.017 0.146 93.81% 0.0671 0.5376 

75th Percentile hedge -0.00039 0.017 0.147 93.80% 0.0654 0.5396 

90th Percentile hedge -0.00035 0.017 0.147 93.77% 0.0638 0.5412 

Pa
ir

s B
oo

ts
tr

ap
 10th Percentile hedge -0.0006 0.0175 0.1465 93.63% 0.0720 0.5504 

25th Percentile hedge -0.0005 0.017 0.146 93.74% 0.0699 0.5416 

50th Percentile hedge -0.0004 0.017 0.146 93.81% 0.0672 0.5369 

75th Percentile hedge -0.0004 0.017 0.147 93.81% 0.0655 0.5398 

90th Percentile hedge -0.0003 0.017 0.147 93.78% 0.0638 0.5403 

        

 

GOLD Mean Variance SV HE IQ 95% range 

 
Unhedged 0.00795 1.23 1.104   0.9643 4.5533 

 
Naïve hedge -0.00018 0.034 0.207 97.24% 0.0160 0.6303 

 
DCC hedge -0.00164 0.065 0.337 94.72% 0.0351 0.6813 

R
es

id
ua

l B
oo

ts
tr

ap
 10th Percentile hedge -0.00048 0.035 0.212 97.12% 0.0399 0.6694 

25th Percentile hedge -0.00043 0.035 0.209 97.19% 0.0356 0.6521 

50th Percentile hedge -0.00032 0.034 0.208 97.24% 0.0295 0.6343 

75th Percentile hedge -0.0003 0.034 0.207 97.24% 0.0259 0.6372 

90th Percentile hedge -0.00031 0.034 0.208 97.23% 0.0251 0.6369 

Pa
ir

s B
oo

ts
tr

ap
 10th Percentile hedge -0.0004 0.035 0.211 97.14% 0.0399 0.6646 

25th Percentile hedge -0.0004 0.034 0.209 97.20% 0.0353 0.6488 

50th Percentile hedge -0.0003 0.034 0.207 97.24% 0.0294 0.6351 

75th Percentile hedge -0.0003 0.034 0.207 97.24% 0.0259 0.6348 

90th Percentile hedge -0.0003 0.034 0.208 97.23% 0.0259 0.6374 
SV: semivariance given in (7); HE: Hedging effectiveness given in (8) 
IQ: inter-quartile range; 95% range: difference between 97.5th and 2.5th percentiles  
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Table 2: Statistics for the Hedged portfolio returns and Hedging effectiveness 
(continued) 
 

 

OIL Mean Variance SV HE IQ 95% range 

 
Unhedged 0.018 5.73 2.449   2.3018 9.2202 

 
Naïve hedge 0.00002 1.21 1.073 78.80% 0.3823 3.5886 

 
DCC hedge 0.0136 1.36 1.135 76.27% 0.4755 3.8056 

R
es

id
ua

l B
oo

ts
tr

ap
 10th Percentile hedge 0.00729 1.21 1.098 78.94% 0.5058 3.6924 

25th Percentile hedge 0.00564 1.18 1.082 79.37% 0.4729 3.5777 

50th Percentile hedge 0.00402 1.17 1.075 79.52% 0.4408 3.5063 

75th Percentile hedge 0.00307 1.18 1.074 79.44% 0.4177 3.4902 

90th Percentile hedge 0.0022 1.19 1.08 79.22% 0.4131 3.5203 

Pa
ir

s B
oo

ts
tr

ap
 10th Percentile hedge 0.0070 1.200 1.096 79.04% 0.5018 3.6684 

25th Percentile hedge 0.0056 1.180 1.081 79.40% 0.4682 3.5545 

50th Percentile hedge 0.0040 1.172 1.075 79.52% 0.4380 3.5059 

75th Percentile hedge 0.0030 1.175 1.073 79.47% 0.4183 3.5013 

90th Percentile hedge 0.0022 1.187 1.080 79.28% 0.4105 3.5125 

 
 

      

 

CORN Mean Variance SV HE IQ 95% range 

 
Unhedged 0.00483 3.06 1.7   1.6907 7.2176 

 
Naïve hedge 0.00012 1.01 1.031 66.99% 0.5001 3.5860 

 
DCC hedge 0.0052 1.13 1.079 63.18% 0.6069 3.7265 

R
es

id
ua

l B
oo

ts
tr

ap
 10th Percentile hedge -0.00778 1.15 1.164 62.34% 0.7018 4.2345 

25th Percentile hedge -0.00784 1.1 1.135 64.13% 0.6464 4.0389 

50th Percentile hedge -0.00138 0.986 1.067 67.83% 0.5636 3.6470 

75th Percentile hedge -0.00168 0.994 1.075 67.56% 0.5343 3.6293 

90th Percentile hedge -0.00176 1.01 1.081 67.11% 0.5160 3.6321 

Pa
ir

s B
oo

ts
tr

ap
 10th Percentile hedge -0.0038 1.034 1.092 66.26% 0.6784 3.8622 

25th Percentile hedge -0.0040 1.019 1.084 66.75% 0.6324 3.7911 

50th Percentile hedge -0.0017 0.990 1.069 67.70% 0.5681 3.6396 

75th Percentile hedge -0.0022 0.996 1.077 67.49% 0.5391 3.6410 

90th Percentile hedge -0.0024 1.008 1.084 67.09% 0.5195 3.6280 
SV: semivariance given in (7); HE: Hedging effectiveness given in (8) 
IQ: inter-quartile range; 95% range: difference between 97.5th and 2.5th percentiles  
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Table 3: The F-test statistics for the Variance Equality test of the Hedged Returns 
among Hedging strategies against DCC-GARCH based hedge 
 

 DCC hedge against S&P 500 FTSE 100 USD GOLD OIL CORN 
 Naïve hedge 0.865 0.9215 0.8871 1.9111 1.1196 1.1152 
   (1) (0.9999) (1) (0.0000) (0.0000) (0.0000) 

R
es

id
ua

l B
oo

ts
tr

ap
 

10th Percentile hedge 1.1778 1.1485 0.976 1.8355 1.1267 0.9777 
  (0.0000) (0.0000) (0.8533) (0.0000) (0.0000) (0.8387) 
25th Percentile hedge 1.1937 1.1816 0.9932 1.8774 1.1501 1.0263 
  (0.0000) (0.0000) (0.6154) (0.0000) (0.0000) (0.1272) 
50th Percentile hedge 1.1638 1.1871 1.005 1.9118 1.1587 1.1443 
  (0.0000) (0.0000) (0.4152) (0.0000) (0.0000) (0.0000) 
75th Percentile hedge 1.1535 1.1789 1.004 1.915 1.1542 1.1351 
  (0.0000) (0.0000) (0.4322) (0.0000) (0.0000) (0.0000) 
90th Percentile hedge 1.1356 1.1435 0.9987 1.906 1.1421 1.1193 
  (0.0000) (0.0000) (0.5222) (0.0000) (0.0000) (0.0000) 

Pa
ir

s B
oo

ts
tr

ap
 

10th Percentile hedge 1.1648 1.1704 0.9792 1.8505 1.1323 1.0914 
  (0.0000) (0.0000) (0.8184) (0.0000) (0.0000) (0.0000) 
25th Percentile hedge 1.1787 1.1814 0.9938 1.8854 1.1517 1.1074 
  (0.0000) (0.0000) (0.606) (0.0000) (0.0000) (0.0000) 
50th Percentile hedge 1.1749 1.1854 1.0046 1.912 1.159 1.1399 
  (0.0000) (0.0000) (0.4212) (0.0000) (0.0000) (0.0000) 
75th Percentile hedge 1.1657 1.1795 1.004 1.916 1.1558 1.1326 
  (0.0000) (0.0000) (0.4316) (0.0000) (0.0000) (0.0000) 
90th Percentile hedge 1.1486 1.1509 0.9992 1.908 1.145 1.1188 
  (0.0000) (0.0000) (0.5143) (0.0000) (0.0000) (0.0000) 

The entries are the F-test statistic for the equality of variance given in (9) and its p-values in the 
bracket. 
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Figure 1: Spot and Futures Price Plots 
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Figure 2: Spot and Futures Return Plots 
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Figure 3: Optimal Hedge Ratios for S&P 500: 250-day rolling sub-sample window 

 
Note: The plots for bootstrap present 95% confidence band for the optimal hedge ratio. The blue horizontal line indicates the hedge ratio of 1. 
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Figure 4: Hedge Ratio Plots for FTSE 100: 250-day rolling sub-sample window 
 

 
Note: The plots for bootstrap present 95% confidence band for the optimal hedge ratio. The blue horizontal line indicates the hedge ratio of 1. 
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Figure 5: Hedge Ratio Plots for the US dollar index: 250-day rolling sub-sample window 
 

 
Note: The plots for bootstrap present 95% confidence band for the optimal hedge ratio. The blue horizontal line indicates the hedge ratio of 1. 
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Figure 6: Hedge Ratio Plots for GOLD: 250-day rolling sub-sample window 
 

 
 
Note: The plots for bootstrap present 95% confidence band for the optimal hedge ratio. The blue horizontal line indicates the hedge ratio of 1. 

  38 



Figure 7: Hedge Ratio Plots for Oil: 250-day rolling sub-sample window 
 

 
Note: The plots for bootstrap present 95% confidence band for the optimal hedge ratio. The blue horizontal line indicates the hedge ratio of 1. 
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Figure 8: Hedge Ratio Plots for CORN: 250-day rolling sub-sample window 
 

 
Note: The plots for bootstrap present 95% confidence band for the optimal hedge ratio. The blue horizontal line indicates the hedge ratio of 1.  
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