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Abstract. This paper studies first passage times of crossing a flat boundary under the

mixed-exponential jump diffusion models. We establish a continuity correction for the

joint distribution of a first passage time and its corresponding stopped process when

the event of crossing is monitored only discretely. The work is done by significantly

extending the method in Keener (2013) from diffusion models to jump diffusion models.

Unlike the exiting literature, the newly proposed correction forms (with respect to the

boundary level) are now getting involved not only the diffusion parameter but also

the jump parameters. Numerical results indicate that the new way to correct does

improve the approximation performance especially when the monitoring frequency is

low and the boundary level is close. Similar results are obtained when applying this

new method to the pricing of discrete path-dependent options.

keywords: boundary crossing, overshoot, continuity correction, Laplace transform,

discrete options, jump-diffusion models.

1. Introduction

In this paper, we establish one continuity correction for first-passage times under the

mixed-exponential jump-diffusion models (MEM) of Cai and Kou (2011), and apply the
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obtained result to the pricing and hedging of discrete barrier and lookback options. The

main subject is the joint moment generating function (MGF) of a first-passage time and its

related stopped process, which is also the key to option pricing of path-dependent type. We

choose the MEM as our working model for two reasons. First, it can be used to approximate

any Levy process of finite activity; see, e.g., Botta and Harris, 1986) and, second, it also

admits many analytical formula for problems with path-dependent feature. In other words,

the MEM fits in with a wide range of applications. The famous double-exponential jump-

diffusion model (DEM) of Kou (2002) is just one special case of the MEM.

Continuity correction is a technique in the approximation of a discrete random variable by

its continuous counterpart which can be studied analytically.1 To the best of our knowledge,

this idea was firstly introduced to the field of “Continuous-time Finance” by Broadie et

al. (1997), who studied the pricing of barrier options when the event of barrier hitting is

monitored only at some equally-spaced points of time. They realized that significant price

errors will arise if one dose not make suitable adjustments before directly applying the closed-

form pricing formula derived under the assumption of continuous monitoring. The continuity

correction just presents in the adjustment of the barrier level.

Their work was then completed by Kou (2003) and Hörfelt (2003) to cover all types of

options with single-barrier and single asset. The approach of continuity correction also can

be applied to other path-dependent options; see Broadie et al. (1999) for lookback options

and Lai et al. (2007) for American options. Note that all the studies mentioned above were

conducted under the Black-Scholes model (BSM). Dia and Lamberton (2011) and Fuh et al.

(2013) then separately extended the correction results to jump diffusion models. Regardless

of the models, the common correction way is to shift away the barrier level to account for

less boundary-hitting likelihood under a discrete monitoring scheme, in comparison with a

continuous correspondent.

Nevertheless, by extending the method in Keener (2013) from PDE (partial differential

equation) to PIDE (partial integro-differential equation), we achieve a different approxi-

mation in which the shift amount is no longer consonant. Instead, it should be varying

across different, say, scenarios. Moreover, unlike the existing results, the correction form

1A classic example is the approximation P (X ≤ k) ≈ P (Y ≤ k + 0.5) for a binomial variable X and

an associated normal variable Y . The addition of 0.5 to any level k is just what we mean by “continuity

correction.”
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now involves the jump parameters in addition to the diffusion volatility. Simulation results

further show that our new approach of correction does have a better numerical performance,

especially when the monitoring frequency is low or the boundary level is not far way initially.

The phenomenon of discordant correction can be understood more intuitively when one

narrows the focus from a broader set of MEM to a narrower one of DEM. To start, notice that

boundary crossing will be observed first under continuously monitoring. In the meantime,

there are two possible scenarios: (i) the observed object coincides with the boundary (no

overshooting); and (ii) the observed object exceeds the boundary (with jumping). So, it is

easy to comprehend that the probability that we still see the event fo boundary crossing at

the succeeding discrete monitoring point of time will be lower in the former scenario than

the latter. Accordingly, the correction amount shall be larger in the former scenario than

the latter. This is one aspect through which one can understand our result, and thus we

hereafter call our new approach a “scenario-dependent” correction (SDC).

Note that our approximation is still of first order, for the convergence rate is still

o(1/
√

∆t). Here ∆t stands for the interval length between two monitoring points of time.

Howison and Steinberg (2007) had obtained a second order approximation for option pricing

with rate o(1/∆t) under the Black-Scholes model, by appealing to the perturbation method

in PDE analysis. However, the main drawback of their approach is the lack of rigorous

proofs. Also, the extension to the calculation of “Greeks” is not as straightforward as the

correction method like ours.

The rest of the paper is organized as follows. Section 2 provides the problem formulation

where we introduce our working model and overview the methodology. Main results can

then be found in Section 3, in which we also apply the new correction to the pricing and

the delta-hedging of a discrete up-and-in put and a discrete floating-strike lookback put.

Numerical examples are given in Section 4, and the final section concludes. All proofs are

deferred to the Appendix.
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2. Problem Formulation and Methodology

2.1. The model

Throughout this paper, the underlying process is assumed to have the form

Xt = σWt + µt+Mt, (1)

where σ > 0 is the volatility, µ ∈ R is the mean rate of log-return, Wt is a standard Brownian

motion withW0 = 0, andMt =
∑Nt

l=1 Υl is a compound Poisson process withM0 = 0. HereNt

is a homogeneous Poisson process with intensity λ, and Υl’s are independent and identically

distributed (i.i.d.) random variables with probability density function

fΥ(y) = pu

nu∑
i=1

piηie
−ηiy1{y≥0} + qd

nd∑
j=1

qjξje
ξjy1{y<0}, (2)

in which pu ≥ 0, qd = 1− pu ≥ 0,

pi ∈ (−∞,∞) for all i = 1, ..., nu,
nu∑
i=1

pi = 1,

qj ∈ (−∞,∞) for all j = 1, ..., nd,

nd∑
j=1

qj = 1,

ηi > 1 for all i = 1, ..., nu, and

ξj > 0 for all j = 1, ..., nd.

From now on, 1{·} stands for an indicator function. Note that all sources of randomness in

(1) are assumed to be independent, and {Ft}t≥0 will denote its natural filtration. Because

pi and qj can be negative, the parameters should satisfy some conditions to qualify fΥ(y) of

(2) as a density function. Interested readers are referred to Cai and Kou (2011) for further

suggestions.

By the celebrated Lévy-Khintchine formula, Xt admits the following characteristic function:

for all t ≥ 0,

Φt(θ) = E
[
eiθXt

]
= eψ(θ)·t, θ ∈ R.

Here i =
√
−1 and ψ(θ) is called the characteristic exponent of a Lévy process. Now, define

G(θ) = ψ(−iθ) such that G : Θ→ R is a real function with respect to some parameter space

Θ ⊆ R containing 0. It then has the expression

G(θ) =
1

2
σ2θ2 + µθ + λ[ΦΥ(−iθ)− 1], (3)
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where

ΦΥ(θ) = E
[
eiθΥ1

]
= pu

nu∑
k=1

pkηk
ηk − iθ

+ qd

nd∑
j=1

qjξj
ξj + iθ

is the characteristic function of the jump size variable Υ1.

According to Theorem 3.1 of Cai and Kou (2011), for sufficiently large α > 0, the

equation G(θ) = α has (nu + 1) positive roots, β1,α, · · · , βnu+1,α, and (nd + 1) negative roots,

γ1,α, · · · , γnd+1,α. Moreover, these roots meet the following relationship:

−∞ < γnd+1,α < · · · < γ2,α < γ1,α < 0 < β1,α < β2,α < · · · < βnu+1,α < +∞. (4)

In other words, there are (nu + nd + 2) distinct roots. These quantities are highly close to

the distribution of a first-passage time we are going to study below. Note finally that we

also have G(0) = 0, and

µ̄ = G′(0) = µ+ λ

(
pu

nu∑
i=1

pi
ηi
− qd

nd∑
j=1

qj
ξj

)
;

σ̄2 = G′′(0) = σ2 + 2λ

(
pu

nu∑
i=1

pi
η2
i

+ qd

nd∑
j=1

qj
ξ2
j

) (5)

are, respectively, the total drift and variance rates of the model (1).

2.2. First-passage times

Motivated from the payoff of a typical barrier option, we are interested in the distribution

of the following random time:

τ = τ(b,X) = inf {t ∈ R+ : Xt ≥ b} (6)

for some constant boundary level b. Without loss of generality, we will assume b > 0 in

the sequel. Indeed, τ is called a first-passage time mathematically and is our main focus in

this study. Cai and Kou (2011, Theorem 3.3), together with (Cai and Sun, 2014, Eq. (3.17)),

showed that the model (1) leads to an analytical joint MGF for τ and Xτ , which is

E
[
e−ατ+θXτ

]
=

nu+1∑
k=1

dk(α, θ) e
−b (βk,α−θ) (7)

for sufficiently large α > 0 and θ < η1. Here βi,α’s are given in (4),

dk(α, θ) =
nu∏
j=1

(
ηj − βk,α
ηj − θ

)
×

nu+1∏
j=1,j 6=k

(
βj,α − θ
βj,α − βk,α

)
(8)
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for k = 1, 2, · · · , nu + 1, and
∑nu+1

k=1 dk(α, θ) = 1.

In the application of barrier-option pricing, the event of interest is like {τ ≤ T}; that

is, whether the underlying process Xt hits the barrier level b during the contract life [0, T ].

However, for sake of feasibility, the monitoring of such event is conducted only discretely as

specified in most of real contracts. Therefore, the associated first-passage time for real cases

should be alternatively described as

τm = τm(b,X) = inf{k ∈ N : Xk∆t ≥ b}, (9)

where ∆t = T/m with m being the monitoring frequency. Then, the problem of calculating

E
[
e−α(τm∆t)+θXτm∆t

]
thus follows. We will sketch our general approach in the next subsection.

Before that, let us introduce an auxiliary model of (1) under the discretization scheme

behind (9). Consider Xm,k = σ
√

∆tWm,k, where Wm,0 = 0 and

Wm,k =
k∑
j=1

(
Zj +

µ

σ

√
∆t+

Mm,j

σ
√

∆t

)
:=

k∑
j=1

Vm,j (10)

for k ∈ N. Here Zj
i.i.d.∼ Normal(0, 1) and Mm,j =

∑Nm,j
l=1 Υj,l with Nm,j

i.i.d.∼ Poisson(λ∆t)

and Υj,l
i.i.d.∼ Υ1. All random variables in this discrete setting are also independent. Note

that in this way Xk∆t and Xm,k will have same distribution. We will utilize (10) to achieve

some asymptotic properties about τm and Xm,τm .

2.3. PIDE approach

It is known that (τm∆t,Xm,τm) weakly converges to (τ,Xτ ). Hence, for any bounded

continuous function f , we have

E [f(τm∆t,Xm,τm)] = E [f(τ,Xτ )] + o(1) as m→∞. (11)

However, the rate of convergence is not sufficiently rapid enough for practical use. Later, we

will show you the evidence via numerical examples. Fortunately, if the function f additionally

meets the “Principle of Smooth-Fit” (see, e.g., Shepp and Shiryaev, 1993), then we could

have E [f(τm∆t,Xm,τm)] = E [f(τ,Xτ )] + o(1/
√
m). This is exactly the insight of Keener

(2013) to improve the convergence for general f .

We now expound on the meaning of smooth-fit. One typical way to derive E [f(τ,Xτ )]

is to solve the associated PIDE satisfied by v(t, x) = E [f(τ̃ , Yτ̃ )] for t ≥ 0 and x < b. Here
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Ys = Ys(t, x) = x+Xs−t is a process starting at time t and position x for s ≥ t and

τ̃ = τ̃(t, x) = inf {s ≥ t : Ys ≥ b} .

In this way, E [f(τ,Xτ )] = v(0, 0). Then, by the celebrated Feynman-Kǎc formula,

∂tv(t, x) + (Lv)(t, x) = 0 (12)

subject to the boundary condition v(t, b) = f(t, b). Here L denotes the infinitesimal generator

associated with Xt in (1), which satisfies

(Lh)(x) =
1

2
σ2h′′(x) + µh′(x) + λ

∫ ∞
−∞

[h(x+ y)− h(x)]fΥ(y)dy

for any twice continuously differentiable function h(·), and fΥ(y) is given by (2). In other

words, we have

v(t, x) =

 u(t, x), x < b;

f(t, x), x ≥ b

for some function u such that u(t, b) = f(t, b). Smooth-fit, associated with v, means that

partial derivatives (respective to x to some order) of u(t, x) and f(t, x) also coincide upon

the boundary b, which is not always the case actually.

To capture the boundary effect brought by the non-smoothness of v, Keener suggests

to decompose f into the sum of f 0 + f 1, in which f 0 is the smoothing part and f 1 is the

remainder. To account for the existence of jumps, we here set

f 0(t, x) = f(t, x)−
∞∑
n=1

1

n!
D(n)
b (t) (x− b)n and

f 1(t, x) =
∞∑
n=1

1

n!
D(n)
b (t) (x− b)n ,

(13)

where

D(n)
b (t) =

∂n

∂xn
f(t, x)

∣∣∣
x=b
− ∂n

∂xn
u(t, x)

∣∣∣
x=b−

(14)

measures the “n-th order” non-smoothness of v upon the boundary. In this way, we have

both u(t, b) = f 0(t, b) and

∂k

∂xk
u(t, x)

∣∣
x=b−

=
∂k

∂xk
f 0(t, x)

∣∣
x=b

(15)
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for each k ∈ N.2 Note that in Keener (2013) f 0 is only required to be smooth of first-order,

but here we require infinite-order smoothness.

Since also f 0(t, b) = f(t, b), we can achieve

E
[
f 0(τm∆t,Xm,τm)

]
= E

[
f 0(τ,Xτ )

]
+ o(1/

√
m) = v(0, 0) + o(1/

√
m); (16)

that is, there is no need to call for continuity correction for such a boundary function

f 0 (see Appendix A.2). Since Ef = Ef 0 + Ef 1, to improve the convergence between

Ef(τm∆t,Xm,τm) and Ef(τ,Xτ ) for general f , the key thus hinges on the estimate of

Ef 1(τm∆t,Xm,τm), which requires the investigation on limiting behavior of τm and the “overs-

hoot”

Xm,τm − b = σ
√

∆t (Wm,τm − bm) := σ
√

∆t Rm, (17)

where bm = b/(σ
√

∆t). The study of limm→∞Ef
1(τm∆t,Xm,τm) is exactly the channel how

we establish our correction result with

f(t, x) = exp(−αt+ θx). (18)

What mainly distinguishes our efforts here from Keener’s is the equation (12). His work

is under pure diffusion model where PIDE (12) reduces to a classic PDE—the heat equation;

and (16) is feasible conditional on the existence of fourth moment. Instead, here we have

exponential moments so that we can adopt Taylor’s expansion (with respect to x) of any order

we want. In this way, we can approximate the smoothing part f 0(t, x) by the Taylor series

of u(t, x) upon the boundary b. This is exactly the intuition behind Lemma 2. Another

difficulty we face here is the algebraic manipulation when working out the expression of

D(1)
b (t) to get the final correction form with our choice of f in (18) (see Lemma 7).

3. Continuity Correction

3.1. Main results

Recall µ̄ in (5), βi in (4), and dk in (8); the next theorem extends Keener’s result to our

jump-diffusion model:

2Since ∂k

∂xk (x − b)n = 0 for each integer n < k, we have ∂k

∂xk f
0(t, x) = ∂k

∂xk f(t, x) − D(k)
b (t) −∑∞

n=k+1
1
n!D

(n)
b (t) ∂k

∂xk (x − b)n. Also, ∂k

∂xk (x − b)n = n!
k! (x − b)n−k for n > k; we hence finally get

∂k

∂xk f
0(t, x)

∣∣
x=b

= ∂k

∂xk f(t, x)
∣∣
x=b
−D(k)

b (t) = ∂k

∂xk u(t, x)
∣∣
x=b− thanks to (14).
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Theorem 1. Suppose µ̄ > 0 in the model (1). For any feasible function f , as m → ∞, we

have

E [f(τm∆t,Xm,τm)] = E [f(τ,Xτ )] + E
[
D(1)
b (τ)

] (
ρ σ
√

∆t
)

+ o
(
1/
√
m
)
, (19)

in which ρ = −ζ(1/2)/
√

2π ≈ 0.5826 with ζ(.) being the Riemann zeta function. In particu-

lar, with the choice (18), we hence get

E
[
e−α(τm∆t)+θXm,τm

]
=

nu+1∑
k=1

dk(α, θ) e
−
(
b+ρσ

√
∆t

β̄(k),α
η̄

)
(βk,α−θ)

+ o
(
1/
√
m
)

(20)

for any sufficiently large α > 0 and real θ < η1. Here

η̄ =
nu∏
i=1

ηi and β̄(k),α =

(
nu+1∏
i=1

βi,α

)/
βk,α, for k = 1, · · · , nu + 1.

Comparing (7) and (20), it is clear to see that one can approximate the distribution

of τm and Xm,τm by its continuous correspondent but with adjustments on the boundary

parameter. Unlike the previous literature, the amounts of adjustment ρσ
√

∆t
(
β̄(k),α/η̄

)
are

now different across distinct exponential terms. We will discuss more on the meaning of each

exponential term and the interpretation of discordant correction in the next subsection.

Remark 1. For DEM case, the equation (20) becomes

E
[
e−α(τm∆t)+θXm,τm

]
=
η1 − β1,α

η1 − θ
β2,α − θ
β2,α − β1,α

e
−
(
b+ρσ

√
∆t

β2,α
η1

)
(β1,α−θ)

+
η1 − β2,α

η1 − θ
β1,α − θ
β1,α − β2,α

e
−
(
b+ρσ

√
∆t

β1,α
η1

)
(β2,α−θ) + o

(
1/
√
m
)
. (21)

On the other hand, Fuh et al. (2013) gets the following result:

E
[
e−α(τm∆t)+θXm,τm

]
=
η1 − β1,α

η1 − θ
β2,α − θ
β2,α − β1,α

e−(b+ρσ
√

∆t)(β1,α−θ)

+
η1 − β2,α

η1 − θ
β1,α − θ
β1,α − β2,α

e−(b+ρσ
√

∆t)(β2,α−θ) + o
(
1/
√
m
)
. (22)

Clearly, the above two approximation results cannot hold concurrently because the first items

on the right hand side of (21) and (22) differ by a term of order O(1/
√
m). What went wrong

in Fuh et al. (2013, pp. 2710–2711) is their construction of approximating functions regar-

ding function u. They do not specify the exact smoothness construction upon the boundary,

not to mention that they only require 3rd-order smoothness. Accordingly, their convergence

rate between EM
(n)
t and EM

(n)
k should be O(1/

√
m) instead of o(1/

√
m) as claimed. Howe-

ver, intriguingly, the numerical difference of this two approximations is quite small; see the

discussion in Section 4.
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With the approximation (20), we then can analytically analyze the joint probability

P (τm∆t ≤ T,XT ≤ a), which is the key in determining the value of a plain barrier option,

via a two-dimensional Laplace transform by analogy with Cai and Kou (2011). Specifically,

let

Lm(α, θ) =

∫ ∞
0

∫ ∞
−∞

e−αT−θaP (τm∆t ≤ T,XT ≤ a) da dT,

and recall (3); then

Corollary 1. For 0 < θ < ξ1 and sufficiently large α > max(0, G(−θ)), if µ̄ > 0, we have

Lm(α, θ) =
1

θ (α−G(−θ))

nu+1∑
k=1

dk(α,−θ) e
−
(
b+ρσ

√
∆t

β̄(k),α
η̄

)
(βk,α+θ)

+ o
(
1/
√
m
)

as m→∞.

For numerical applications, in this paper we will adopt the procedure proposed in Cai

and Kou (2012) to invert the Laplace transforms in Corollaries 1 and 2. Generally speaking,

this procedure is a combination of two-sided Euler inversion and Euler transformation for

alternating series. The inversion parameters we choose are A1 = A2 = 20, n1 = 30, and

n2 = 50. Actually, to meet the criteria about transform parameters α and θ, we have to

modify the transform a bit before implementing the inversion. The details will be given in

next section.

3.2. Application to option pricing

Now, let us formally address the issues of pricing and hedging of a discrete barrier option

and a discrete lookback option.

3.2.1. Barrier options

We will take up-and-in puts (UIP) as the illustrative case in our main derivation. Note

that from now on, whenever we talk about option pricing, we are assuming the model of

log-return (1) is built in a risk-neutral world so that µ = r − σ2/2 − λδ. Here r stands for

the constant risk-free rate and

δ = E
[
eΥ1
]
− 1 = pu

nu∑
i=1

piηi
ηi − 1

+ qd

nd∑
j=1

qjξj
ξj + 1

− 1.
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Suppose S0, K, and H are the initial stock price, the strike price, and the barrier level,

respectively. Define k = log(K) and take b = log(H/S0); then the price of a discrete UIP,

with time to maturity T , can be expressed as

UIPm(k, T ) = e−rTE
[(
ek − S0e

XT
)+

1{τm∆t≤T}

]
.

Accordingly, we can get its delta by taking the first-order partial derivative of UIPm(k, T ),

which is denoted by

∆UIPm(k, T ) =
∂

∂S0

UIPm(k, T ).

Like Corollary 1, UIPm and ∆UIPm can be worked out via two-dimensional Laplace

transforms, which are defined by

ÛIPm(α, θ) =

∫ ∞
0

∫ ∞
−∞

e−αT−θk UIPm(k, T ) dk dT

and

∆̂UIPm(α, θ) =

∫ ∞
0

∫ ∞
−∞

e−αT−θk ∆UIPm(k, T ) dk dT,

respectively. Recall (8); then, we have

Corollary 2. For 1 < θ < 1 + ξ1 and sufficiently large α > max (G(1− θ)− r, 0), if µ̄ > 0,

we have

ÛIPm(α, θ) =
(S0)1−θ ∑nu+1

k=1 dk(r + α, 1− θ) e−(b+ρσ
√

∆t
β̄(k),r+α

η̄
)(βk,r+α−1+θ)

θ(θ − 1) (r + α−G(1− θ))
+ o (

1√
m

)

and

∆̂UIPm(α, θ) =
(S0)−θ

∑nu+1
k=1 dk(r + α, 1− θ) βk,r+α e−(b+ρσ

√
∆t

β̄(k),r+α
η̄

)(βk,r+α−1+θ)

θ(θ − 1) (r + α−G(1− θ))
+ o (

1√
m

)

as m→∞.

Note that, Corollary 2 can also be applied for pricing up-and-out puts (UOP). To see

this, note that

ÛOPm(α, θ) = lim
H→S0

ÛIPm(α, θ)− ÛIPm(α, θ). (23)

Actually, we will only report the results of UOP cases in the numerical analysis next section

for the sake of both compactness and completeness.
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3.2.2. Lookback options

We here only consider a lookback put because a looback call can be obtained by symmetry.

Under the risk-neutral measure, the price of a discrete lookback put, with a pre-maximum

M (≥ S0), can be expressed as

LPm(T ) = E

[
e−rT

(
max

{
M, max

0≤k∆t≤T
Sk∆t

}
− ST

)]
= E

[
e−rT max

{
M, max

0≤k∆t≤T
Sk∆t

}]
− S0.

where k ∈ N. With the introduction of a prescribed maximum, one can easily determine the

price of a lookback option at any time during the contract life.

Similarly, LPm(T ) can be worked out via a Laplace transform (one-dimensional), which

is defined by

L̂Pm(α) =

∫ ∞
0

e−αTLPm(T ) dT.

Then,

Corollary 3. For all sufficiently large α > 0, we have the following approximation for the

Laplace transform of the price of a discrete lookback put:

L̂Pm(α) =
S0

α + r

nu+1∑
k=1

dk(α + r, 0)e
−
(
ρσ
√

∆t
β̄(k),α+r

η̄

)
(βk,α+r)

βk,α+r − 1

(
S0

M

)βk,α+r−1

+
M

α + r
− S0

α
+ o

(
1/
√
m
)

as m→∞.

3.3. Special case: DEM

The purpose of the upcoming discussion is to explore the meaning behind the correction

scheme (20). We will do this by considering a special case of model (1) for ease of presenta-

tion. Specifically, we choose a DEM in which nu = nd = 1.3 Also, for brevity, throughout the

subsection we will use the following notational simplification: βi = βi,α, for i = 1, · · · , nu+1,

and γj = γj,α, for j = 1, · · · , nd + 1 in (4).

In a DEM, the cumulant function in (3) becomes G(θ) = σ2θ2/2 + µθ + λ
(
puη1

/
(η1 −

θ) + qdξ1

/
(ξ1 + θ)− 1

)
. A typical graph of G(·) can be found in Panel (a) of Figure 1. Now,

3Hence p1 = q1 = 1 automatically.
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it is easy to see G(θ) = α has four distinct roots for any α > 0. Actually, this time we have

−∞ < γ2 < −ξ1 < γ1 < 0 < β1 < η1 < β2 < +∞. (24)

Also, the approximation (20) becomes

E
[
e−α(τm∆t)+θXm,τm

]
= d1(α, θ) e

−(b+ρ σ
√

∆t
β2
η1

)(β1−θ) + d2(α, θ) e
−(b+ρ σ

√
∆t

β1
η1

)(β2−θ)

+ o
(
1/
√
m
)

(25)

for any α > 0 and θ < η1, where d1(α, θ) = η1−β1

η1−θ
β2−θ
β2−β1

and d2(α, θ) = 1− d1(α, θ).

Figure 1. G(θ) in (3) with µ = r− σ2/2− λδ and nu = nd = 1. Universal parameter

setting is r = 0.1, σ = 0.2, qd = 1− pu, and ξ1 = 100/3. The other parameters

are (a) λ = 3, pu = 0.5, η1 = 100/2; (b) λ = 3, pu = 0.0, η1 = 100/2; and (c)

λ = 0, pu = 0.5, η1 = 100/2.

In Figure 1, Panels (b) and (c) further depict G(·) when there is no overshooting even

monitored continuously. The former case stands for “no positive jumps” (pu = 0) while the

13



latter further considers “no jumps” (λ = 0). Clearly, in this two special cases, there is only

one positive root left, which is determined by the curve passing the origin. In view of the

graph in Panel (a), we thus tend to call this only positive root β1 as well. In other words,

the appearance of other βi, i 6= 1, is due to the existence of positive jumps.

On the other hand, as pu → 0 or λ→ 0, we could also deem β2 → η1; that is, the positive

root accompanied by positive jumps degenerates to η1. To see this, note that G(θ) = 0 under

DEM is equivalent to solving g(θ;α) = 0, where

g(θ;α) =
1

2
σ2 θ2 (η1 − θ)(ξ1 + θ) + µ θ (η1 − θ)(ξ1 + θ)− (λ+ α)(η1 − θ)(ξ1 + θ)

+λ pu η1 (ξ1 + θ) + λ qd ξ1 (η1 − θ)

is a polynomial of θ with degree 4. Then, g(·) will reduce to (η1 − θ) [1
2
σ2θ2(ξ1 + θ) +µθ(ξ1 +

θ)− (λ+α)(ξ1 + θ) + λξ1] if pu = 0, and to (η1 − θ) (ξ1 + θ) (1
2
σ2θ2 + µθ−α) if λ = 0. Both

suggests there is one positive root η1 in this two special cases. Since such degeneracy comes

from the fact that there is no positive jumps, we deem it as a degenerate β2.

Accordingly, as β2 → η1, we have d1(α, θ) → 1 and d2(α, θ) → 0; hence the correction

result (25) degenerates to

E
[
e−α(τm∆t)+θXm,τm

]
= e−(b+ρ σ

√
∆t)(β1−θ) + o

(
1/
√
m
)

(26)

when pu = 0 or λ = 0. Beware that this is exactly the correction form in a BSM, and the

shifted amount ∆B := ρ σ
√

∆t just measures the overshoot effect due to discretization. The

computation about ρ can be found in Chernoff (1965) or Siegmund (1985). Moreover, the

form (26) is still true when there is only downward jumping, which is also intuitively.

However, when upward jumping is possible, the correction amount in (25) is large than

∆B for β1-exponent term while it is smaller for β2-exponent term, thanks to (24). From all

the discussion above, we can deem that β1-exponent term captures the situation where there

is no jumping overshoot, while β1-exponent term does. With this aspect, the discordant way

to correct in (25) then is also intuitively convincing. Let d·e denote the ceiling function. Then,

as we mentioned in the introduction section, the probability P (Xm,dτ/∆te ≥ b|Xτ = b) is less

than P (Xm,dτ/∆te ≥ b|Xτ > b). As a result, the shift amount should be large in the previous

scenario (i.e., when there is no jumping overshoot observed continuously) to account for

further less probability of boundary-crossing monitored discretely. The relationship β2/η1 >

β1/η1 about multipliers related to ∆B just reflects this truth. This is also why we call the

result (20) a scenario-dependent correction.
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Finally note that we also have β2/η1 > 1 > β1/η1, which can be understood via the

following. First, conditional on Xτ > b (jump occurring), it is very likely there will be

no more jumps during time interval ((dτ/∆te − 1)∆t, (dτ/∆te)∆t); hence the underlying

process behaves like a pure diffusion process after time τ in a short future. Nevertheless, it

still has an advantage of higher initial value at Xτ > b, relatively to a real diffusion process

whose Xτ = b always. Accordingly, the occurrence of event {Xm,dτ/∆te ≥ b} is more likely

in the former situation than in the latter. This is one aspect why we see the correction

amount now is less than ∆B for the β2-exponent term. On the contrary, when Xτ = b

(i.e., no jumping recently), the jump-diffusion model possesses more uncertainty than a

pure diffusion model, especially that there is a possibility of downward jumping in a short

future. Thereby, we have to correct more for the β1-exponent term than that in a BSM.

These observations also help to explain why the new correction form we propose additionally

involves the jump parameters.

4. Numerical Analyses

All the examples in this section are set under a risk-neutral framework for option pricing;

that is, µ = r − σ2/2 − λδ. The baseline parameters are r = 0.1, σ = 0.2, pu = qd = 0.5,

nu = nd = 1, and η1 = 100/2, ξ1 = 100/3, where the setting about jumps is taken from

Kou and Wang (2003). Additionally, S0 = 90, K = 96, a = log(K/S0), and b = log(H/S0)

with varying barrier level H. Also, we will use the values obtained by Monte-Carlo (MC)

simulation as the benchmark of those expectations associated with discrete random variables.

The number of trials in each simulation is one million.

The main purpose of this section is to see the numerical performance of our scenario

dependent correction (20) (SDC) in each application. We will also compare the outcomes

with the method by Fuh et al. (2013), which indicates that the correction form is identical

in each exponent term of (25) and the common amount is just ∆B. We thus call their

method a scenario independent correction (SIC). We will also show what if one does not

consider continuity correction (NC) when applying (7). The basis of comparison is relative

error (R.E.) defined by (“X”−MC)/MC, where X can be NC, SDC, or SIC.
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4.1. MGF

This subsection presents the approximation performance of (20), or say, (25) indeed.

The outcomes are shown in Tables 1 to 3. Generally, we see the SDC method systematically

outperforms the SIC method in the cases we considered, except the cases with λ = 0.01 where

the two correction methods coincide with each other, thanks to (26). Most importantly, the

tables also demonstrate that the weak convergence (11) is really not sufficiently good, even

with daily monitoring (roughly corresponding to case ∆t = 1/250). This evidence again

shows the need of continuity correction.

TABLE 1.

Approximation Performance:

E
[
e−α(τm∆t)+θ Xm,τm

]
with H = 90.5

(1) (2) (3) (1) (2) (3)

λ ∆t MC S.E. NC SIC SDC R.E. R.E. R.E.

Panel A: α = 1, θ = 1.

0.01 1/10 0.7756503 0.03 % 0.976197 0.831681 0.831673 25.86 % 7.22 % 7.22 %

1/50 0.8655288 0.02 % 0.976197 0.908698 0.908695 12.79 % 4.99 % 4.99 %

1/250 0.9420316 0.03 % 0.976197 0.945412 0.945411 3.63 % 0.36 % 0.36 %

3 1/10 0.7751203 0.03 % 0.976369 0.834661 0.832386 25.96 % 7.68 % 7.39 %

1/50 0.8939539 0.02 % 0.976369 0.909939 0.909132 9.22 % 1.79 % 1.70 %

1/250 0.9423967 0.02 % 0.976369 0.945987 0.945706 3.60 % 0.38 % 0.35 %

6 1/10 0.7747749 0.03 % 0.976538 0.837492 0.833093 26.04 % 8.09 % 7.53 %

1/50 0.8940878 0.02 % 0.976538 0.91113 0.909564 9.22 % 1.91 % 1.73 %

1/250 0.9430291 0.02 % 0.976538 0.946543 0.945997 3.55 % 0.37 % 0.31 %

Panel B: α = 1, θ = 0.

0.01 1/10 0.7346433 0.03 % 0.970803 0.797164 0.797155 32.15 % 8.51 % 8.51 %

1/50 0.8418132 0.02 % 0.970803 0.888907 0.888904 15.32 % 5.59 % 5.59 %

1/250 0.929304 0.02 % 0.970803 0.933285 0.933283 4.47 % 0.43 % 0.43 %

3 1/10 0.7328537 0.03 % 0.970855 0.799645 0.796982 32.48 % 9.11 % 8.75 %

1/50 0.8710412 0.02 % 0.970855 0.889811 0.888844 11.46 % 2.15 % 2.04 %

1/250 0.9293613 0.02 % 0.970855 0.933623 0.933283 4.46 % 0.46 % 0.42 %

6 1/10 0.7312164 0.03 % 0.970907 0.802006 0.796832 32.78 % 9.68 % 8.97 %

1/50 0.8706003 0.02 % 0.970907 0.890682 0.888796 11.52 % 2.31 % 2.09 %

1/250 0.9297108 0.02 % 0.970907 0.933954 0.933288 4.43 % 0.46 % 0.38 %

Model parameters: r = 0.1, σ = 0.2, pu = 0.5, η1 = 100/2, ξ1 = 100/3, and b = log(90.5/90); MC serves as the

benchmark (true value) obtained by simulation with one million replications. We also report associated standard

errors (S.E.) in the fourth column.
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TABLE 2.

Approximation Performance:

E
[
e−α(τm∆t)+θ Xm,τm

]
with H = 92

(1) (2) (3) (1) (2) (3)

λ ∆t MC S.E. NC SIC SDC R.E. R.E. R.E.

Panel A: α = 1, θ = 1.

0.01 1/10 0.737 0.03 % 0.909 0.774 0.774 23.37 % 5.11 % 5.10 %

1/50 0.840 0.03 % 0.909 0.846 0.846 8.19 % 0.71 % 0.71 %

1/250 0.879 0.02 % 0.909 0.880 0.880 3.37 % 0.11 % 0.11 %

3 1/10 0.738 0.03 % 0.910 0.779 0.776 23.37 % 5.56 % 5.18 %

1/50 0.842 0.03 % 0.910 0.849 0.847 8.10 % 0.81 % 0.66 %

1/250 0.881 0.02 % 0.910 0.882 0.882 3.30 % 0.11 % 0.05 %

6 1/10 0.738 0.03 % 0.911 0.783 0.777 23.44 % 6.03 % 5.31 %

1/50 0.843 0.03 % 0.911 0.851 0.849 8.08 % 0.95 % 0.67 %

1/250 0.882 0.02 % 0.911 0.884 0.883 3.28 % 0.17 % 0.06 %

Panel B: α = 1, θ = 0.

0.01 1/10 0.689 0.03 % 0.889 0.730 0.730 28.99 % 5.92 % 5.92 %

1/50 0.808 0.03 % 0.889 0.814 0.814 10.10 % 0.81 % 0.81 %

1/250 0.854 0.02 % 0.889 0.855 0.855 4.14 % 0.12 % 0.12 %

3 1/10 0.689 0.03 % 0.890 0.734 0.731 29.17 % 6.51 % 6.04 %

1/50 0.809 0.03 % 0.890 0.816 0.815 10.05 % 0.93 % 0.76 %

1/250 0.855 0.02 % 0.890 0.856 0.856 4.08 % 0.13 % 0.05 %

6 1/10 0.688 0.03 % 0.891 0.737 0.731 29.42 % 7.12 % 6.22 %

1/50 0.809 0.03 % 0.891 0.818 0.816 10.07 % 1.11 % 0.76 %

1/250 0.856 0.02 % 0.891 0.858 0.856 4.08 % 0.19 % 0.05 %

Model parameters: r = 0.1, σ = 0.2, pu = 0.5, η1 = 100/2, ξ1 = 100/3, and b = log(92/90); MC serves as the

benchmark (true value) obtained by simulation with one million replications. We also report associated standard

errors (S.E.) in the fourth column.

4.2. Joint probability

This subsection presents the approximation performance of Corollary 1. However, before

directly applying the approximation formula, we need to make some adjustment first to meet

the required conditions about α and θ. To this end, we introduce a shifting factor x such

that

P (τm∆t ≤ T,XT ≤ a) = P (τm∆t ≤ T,XT − x ≤ ã)

where ã = a− x, and reconsider the Laplace transform as

L̃m(α, θ) =

∫ ∞
0

∫ ∞
−∞

e−αT−θãP (τm∆t ≤ T,XT − x ≤ ã) dã dT.
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TABLE 3.

Approximation Performance:

E
[
e−α(τm∆t)+θ Xm,τm

]
with H = 95

(1) (2) (3) (1) (2) (3)

λ ∆t MC S.E. NC SIC SDC R.E. R.E. R.E.

Panel A: α = 1, θ = 1.

0.01 1/10 0.655 0.03 % 0.790 0.673 0.673 20.71 % 2.84 % 2.84 %

1/50 0.733 0.03 % 0.790 0.736 0.736 7.91 % 0.45 % 0.45 %

1/250 0.765 0.03 % 0.790 0.766 0.766 3.38 % 0.12 % 0.12 %

3 1/10 0.658 0.03 % 0.794 0.680 0.677 20.71 % 3.34 % 2.91 %

1/50 0.737 0.03 % 0.794 0.741 0.740 7.82 % 0.58 % 0.40 %

1/250 0.769 0.03 % 0.794 0.770 0.770 3.32 % 0.16 % 0.08 %

6 1/10 0.662 0.03 % 0.798 0.686 0.681 20.66 % 3.76 % 2.95 %

1/50 0.741 0.03 % 0.798 0.746 0.744 7.71 % 0.68 % 0.33 %

1/250 0.773 0.03 % 0.798 0.774 0.773 3.24 % 0.17 % 0.02 %

Panel B: α = 1, θ = 0.

0.01 1/10 0.596 0.03 % 0.749 0.615 0.615 25.65 % 3.17 % 3.17 %

1/50 0.682 0.03 % 0.749 0.686 0.686 9.75 % 0.49 % 0.49 %

1/250 0.719 0.03 % 0.749 0.720 0.720 4.15 % 0.13 % 0.13 %

3 1/10 0.598 0.03 % 0.752 0.621 0.618 25.79 % 3.79 % 3.26 %

1/50 0.686 0.03 % 0.752 0.690 0.689 9.69 % 0.65 % 0.43 %

1/250 0.723 0.03 % 0.752 0.724 0.723 4.11 % 0.18 % 0.08 %

6 1/10 0.600 0.03 % 0.755 0.626 0.620 25.88 % 4.33 % 3.31 %

1/50 0.689 0.03 % 0.755 0.695 0.692 9.61 % 0.77 % 0.34 %

1/250 0.726 0.03 % 0.755 0.728 0.726 4.03 % 0.19 % 0.00 %

Model parameters: r = 0.1, σ = 0.2, pu = 0.5, η1 = 100/2, ξ1 = 100/3, and b = log(95/90); MC serves as the

benchmark (true value) obtained by simulation with one million replications. We also report associated standard

errors (S.E.) in the fourth column.

Then, we can get

L̃m(α, θ) =
eθx

θ (α−G(−θ))

nu+1∑
k=1

dk(α,−θ) e
−
(
b+ρσ

√
∆t

β̄(k),α
η̄

)
(βk,α+θ)

+ o
(
1/
√
m
)

for 0 < θ < ξ1 and α > max(0, G(−θ)), provided that µ̄ > 0.

The beauty here is that the parameter constraint is not affected by the introduction of

factor x, and hence we can arbitrarily choose it to meet our need. In our inversion algorithm,

we choose

x = a− 4
A2

2 cp
with cp = min

{
1

σ̄2

(
µ̄+

√
µ̄2 + 2σ̄2

(
A1

2T

))
, η2

}
,
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in which µ̄ & σ̄ are defined in (5); and A1 & A2 are inversion parameters in the algorithm

which we set both to be 20. The final outcomes are shown in Tables 4 and 5.

TABLE 4.

Approximation Performance:

P (τm∆t ≤ T,XT ≤ a) with T = 0.1

(1) (2) (3) (1) (2) (3)

λ m MC S.E. NC SIC SDC R.E. R.E. R.E.

Panel A: H = 90.5.

0.01 2 0.440949 0.05 % 0.754849 0.468371 0.468371 71.19 % 6.22 % 6.22 %

5 0.553458 0.05 % 0.754849 0.573481 0.573473 36.39 % 3.62 % 3.62 %

25 0.669234 0.05 % 0.754849 0.674253 0.67425 12.79 % 0.75 % 0.75 %

3 2 0.43366 0.05 % 0.747047 0.466501 0.462443 72.27 % 7.57 % 6.64 %

5 0.54663 0.05 % 0.747047 0.569135 0.566902 36.66 % 4.12 % 3.71 %

25 0.661645 0.05 % 0.747047 0.667772 0.667007 12.91 % 0.93 % 0.81 %

6 2 0.426403 0.05 % 0.739646 0.464711 0.456849 73.46 % 8.98 % 7.14 %

5 0.541266 0.05 % 0.739646 0.564998 0.560668 36.65 % 4.38 % 3.58 %

25 0.654239 0.05 % 0.739646 0.661617 0.660131 13.05 % 1.13 % 0.90 %

Panel B: H = 91.

0.01 2 0.400 0.05 % 0.694 0.413 0.413 73.52 % 3.23 % 3.23 %

5 0.506 0.05 % 0.694 0.514 0.514 37.03 % 1.43 % 1.42 %

25 0.613 0.05 % 0.694 0.613 0.613 13.14 % -0.08 % -0.08 %

3 2 0.393 0.05 % 0.687 0.412 0.408 74.90 % 4.92 % 3.79 %

5 0.500 0.05 % 0.687 0.511 0.508 37.32 % 2.06 % 1.53 %

25 0.607 0.05 % 0.687 0.608 0.607 13.21 % 0.12 % -0.06 %

6 2 0.388 0.05 % 0.681 0.412 0.403 75.63 % 6.21 % 3.98 %

5 0.495 0.05 % 0.681 0.508 0.503 37.54 % 2.62 % 1.58 %

25 0.602 0.05 % 0.681 0.603 0.601 13.10 % 0.16 % -0.18 %

Panel C: H = 92.

0.01 2 0.313 0.05 % 0.574 0.306 0.305 83.11 % -2.52 % -2.52 %

5 0.404 0.05 % 0.574 0.399 0.399 42.12 % -1.16 % -1.17 %

25 0.495 0.05 % 0.574 0.494 0.494 15.87 % -0.23 % -0.24 %

3 2 0.312 0.05 % 0.570 0.307 0.302 82.77 % -1.44 % -3.03 %

5 0.403 0.05 % 0.570 0.399 0.396 41.35 % -1.04 % -1.83 %

25 0.494 0.05 % 0.570 0.492 0.490 15.36 % -0.42 % -0.70 %

6 2 0.308 0.05 % 0.565 0.309 0.299 83.85 % 0.36 % -2.77 %

5 0.399 0.05 % 0.565 0.398 0.392 41.62 % -0.21 % -1.76 %

25 0.490 0.05 % 0.565 0.489 0.487 15.49 % -0.07 % -0.63 %

Model parameters: r = 0.1, σ = 0.2, pu = 0.5, η1 = 100/2, ξ1 = 100/3, a = log(96/90), b = log(H/90), and

∆t = T/m; MC serves as the benchmark (true value) obtained by simulation with one million replications. We

also report associated standard errors (S.E.) in the fourth column.
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As we transfer the concern of distributions from (τm∆t,Xm,τm) to (τm∆t,Xm,m),4 we

see from the tables that SDC method does not totally dominate any more. SIC method

is sufficiently of use especially when monitoring frequency is at least daily (m = 250) and

the boundary is far above from the initial process level (H = 92 for T = 0.1 & H = 95

for T = 1.). This is because the effect of asymptotic independence between τm and Xm,τ

significantly shows up, leading to numerical equivalence between SIC and SDC in these cases.

4.3. Option pricing

Finally let see the numerical performance of our approximation method in option pricing,

with the aid of (23) primarily. Here, we merely focus on pricing. Again, we have to make

some adjustment on the Laplace transform first. Still, introduce a scaling factor X such that

e−rTE
[(
K − S0e

XT
)+

1{τm∆t≤T}

]
= Xe−rTE

[(
ek̃ − S0

X
eXT
)+

1{τm∆t≤T}

]
:= ˜UIPm(k̃, T )

where k̃ = log(K/X), and consider

̂̃UIPm(α, θ) =

∫ ∞
0

∫ ∞
−∞

e−αT−θk̃ ˜UIPm(k̃, T ) dk̃ dT.

In this way, if µ̄ > 0, we can get

̂̃UIPm(α, θ) =
X (S0/X)1−θ

θ(θ − 1)
× 1

r + α−G(1− θ)

×
nu+1∑
k=1

dk(r + α, 1− θ) e−(b+ρσ
√

∆t
β̄(k),r+α

η̄
)(βk,r+α−1+θ) + o (

1√
m

).

for the same parameter constraint that 1 < θ < 1 + ξ1 and α > max (G(1− θ)− r, 0). Our

practice is to take

X =
K

exp(xp)
with xp =

A2

4

(
2 + cp
1 + cp

)
with same cp defined in the last subsection. Associated numerical results can be found in

Tables 6 to 7.

Overall, the approximation performance for UOP pricing here is similar to that in the

previous subsection. This is expected since the price of an UOP can be expressed as a linear

combination of two joint probabilities as considered in Corollary 1. The bad performance

of SIC method for small m and close H has been pointed out in Fuh et al. (2013). Here,

4That is, we narrow down the state space with additional concern about the behavior of terminal level.
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TABLE 5.

Approximation Performance:

P (τm∆t ≤ T,XT ≤ a) with T = 1

(1) (2) (3) (1) (2) (3)

λ m MC S.E. NC SIC SDC R.E. R.E. R.E.

Panel A: H = 90.5.

0.01 10 0.349316 0.05 % 0.456307 0.363872 0.363866 30.63 % 4.17 % 4.17 %

50 0.411467 0.05 % 0.456307 0.416337 0.416336 10.90 % 1.18 % 1.18 %

250 0.437809 0.05 % 0.456307 0.438726 0.438725 4.23 % 0.21 % 0.21 %

3 10 0.350461 0.05 % 0.459955 0.368168 0.366423 31.24 % 5.05 % 4.55 %

50 0.41383 0.05 % 0.459955 0.419962 0.419403 11.15 % 1.48 % 1.35 %

250 0.440867 0.05 % 0.459955 0.442282 0.442096 4.33 % 0.32 % 0.28 %

6 10 0.351632 0.05 % 0.46344 0.372292 0.368901 31.80 % 5.88 % 4.91 %

50 0.416573 0.05 % 0.46344 0.423447 0.422352 11.25 % 1.65 % 1.39 %

250 0.443922 0.05 % 0.46344 0.44569 0.445324 4.40 % 0.40 % 0.32 %

Panel B: H = 92.

0.01 10 0.313 0.05 % 0.416 0.320 0.320 32.90 % 2.07 % 2.06 %

50 0.373 0.05 % 0.416 0.374 0.374 11.54 % 0.27 % 0.27 %

250 0.397 0.05 % 0.416 0.398 0.398 4.78 % 0.11 % 0.11 %

3 10 0.316 0.05 % 0.420 0.325 0.323 32.81 % 2.75 % 2.03 %

50 0.378 0.05 % 0.420 0.378 0.378 11.23 % 0.22 % -0.02 %

250 0.402 0.05 % 0.420 0.402 0.401 4.46 % -0.12 % -0.21 %

6 10 0.317 0.05 % 0.424 0.330 0.325 33.51 % 4.00 % 2.60 %

50 0.380 0.05 % 0.424 0.382 0.381 11.33 % 0.52 % 0.06 %

250 0.405 0.05 % 0.424 0.405 0.405 4.55 % 0.05 % -0.13 %

Panel C: H = 95.

0.01 10 0.232 0.04 % 0.333 0.233 0.233 43.20 % 0.27 % 0.26 %

50 0.289 0.05 % 0.333 0.288 0.288 15.34 % -0.30 % -0.31 %

250 0.313 0.05 % 0.333 0.313 0.313 6.33 % -0.10 % -0.10 %

3 10 0.237 0.04 % 0.338 0.240 0.238 42.45 % 1.34 % 0.30 %

50 0.293 0.05 % 0.338 0.294 0.292 15.21 % 0.17 % -0.22 %

250 0.318 0.05 % 0.338 0.318 0.317 6.24 % 0.05 % -0.11 %

6 10 0.242 0.04 % 0.342 0.247 0.242 41.73 % 2.26 % 0.31 %

50 0.299 0.05 % 0.342 0.299 0.297 14.54 % 0.11 % -0.63 %

250 0.323 0.05 % 0.342 0.323 0.322 5.85 % -0.11 % -0.41 %

Model parameters: r = 0.1, σ = 0.2, pu = 0.5, η1 = 100/2, ξ1 = 100/3, a = log(96/90), b = log(H/90), and

∆t = T/m; MC serves as the benchmark (true value) obtained by simulation with one million replications. We

also report associated standard errors (S.E.) in the fourth column.

the SDC method still maintains good performance over those cases. Hence, we would like

to say that our endeavors here complement the existing literature on discrete option pricing

as considered in Fuh et al. (2013) or, more generally, Dia and Lamberton (2011).
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TABLE 6.

Approximation Performance:

UOPm(k,T) with T = 0.1

(1) (2) (3) (1) (2) (3)

λ m MC S.E. NC SIC SDC R.E. R.E. R.E.

Panel A: H = 90.5.

0.01 2 3.8289 0.53% 0.7169 3.4420 3.4421 -81.28% -10.10% -10.10%

5 2.8155 0.50% 0.7169 2.5767 2.5767 -74.54% -8.48% -8.48%

25 1.6633 0.42% 0.7169 1.6029 1.6029 -56.90% -3.64% -3.64%

3 2 3.8927 0.55% 0.7237 3.4526 3.4783 -81.41% -11.31% -10.65%

5 2.8453 0.51% 0.7237 2.5874 2.6046 -74.57% -9.06% -8.46%

25 1.6756 0.43% 0.7237 1.6132 1.6203 -56.81% -3.72% -3.30%

6 2 3.9573 0.56% 0.7304 3.4631 3.5142 -81.54% -12.49% -11.20%

5 2.8914 0.53% 0.7304 2.5980 2.6323 -74.74% -10.15% -8.96%

25 1.6953 0.44% 0.7304 1.6235 1.6376 -56.91% -4.24% -3.40%

Panel B: H = 91.

0.01 2 4.1279 0.53% 1.3871 3.8637 3.8638 -66.40% -6.40% -6.40%

5 3.2285 0.52% 1.3871 3.0950 3.0951 -57.04% -4.14% -4.13%

25 2.2210 0.47% 1.3871 2.2088 2.2089 -37.55% -0.55% -0.55%

3 2 4.1800 0.55% 1.3970 3.8750 3.9030 -66.58% -7.30% -6.63%

5 3.2569 0.53% 1.3970 3.1055 3.1259 -57.11% -4.65% -4.02%

25 2.2328 0.48% 1.3970 2.2196 2.2292 -37.44% -0.59% -0.16%

6 2 4.2361 0.56% 1.4067 3.8861 3.9418 -66.79% -8.26% -6.95%

5 3.2884 0.54% 1.4067 3.1159 3.1563 -57.22% -5.24% -4.02%

25 2.2423 0.48% 1.4067 2.2304 2.2493 -37.26% -0.53% 0.31%

Panel B: H = 92.

0.01 2 4.6244 0.52% 2.5727 4.5386 4.5387 -44.37% -1.86% -1.86%

5 3.9643 0.53% 2.5727 3.9588 3.9588 -35.10% -0.14% -0.14%

25 3.2418 0.51% 2.5727 3.2541 3.2541 -20.64% 0.38% 0.38%

3 2 4.6671 0.54% 2.5834 4.5538 4.5804 -44.65% -2.43% -1.86%

5 3.9874 0.54% 2.5834 3.9703 3.9916 -35.21% -0.43% 0.11%

25 3.2513 0.52% 2.5834 3.2645 3.2756 -20.54% 0.41% 0.75%

6 2 4.7255 0.55% 2.5941 4.5689 4.6218 -45.10% -3.31% -2.19%

5 4.0257 0.55% 2.5941 3.9818 4.0239 -35.56% -1.09% -0.04%

25 3.2696 0.54% 2.5941 3.2750 3.2971 -20.66% 0.16% 0.84%

Model parameters: r = 0.1, σ = 0.2, pu = 0.5, η1 = 100/2, ξ1 = 100/3, S0 = 90, k = log(96), b = log(H/90), and

∆t = T/m; MC serves as the benchmark (true value) obtained by simulation with one million replications. We

also report associated standard errors (S.E.) in the fourth column.

4.4. Discussion

All numerical outcomes so far suggest that SIC approximation seems to be a convenient

SDC substitute, for its comparable numerical performance especially with small ∆t. Here
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TABLE 7.

Approximation Performance:

UOPm(k,T) with T = 1

(1) (2) (3) (1) (2) (3)

λ m MC S.E. NC SIC SDC R.E. R.E. R.E.

Panel A: H = 90.5.

0.01 10 2.2147 0.66% 0.2663 1.9180 1.9181 -87.98% -13.40% -13.39%

50 1.1458 0.50% 0.2663 1.0339 1.0340 -76.76% -9.76% -9.76%

250 0.6436 0.38% 0.2663 0.6145 0.6145 -58.62% -4.52% -4.52%

3 10 2.3518 0.69% 0.2797 1.9884 2.0147 -88.11% -15.45% -14.34%

50 1.2049 0.52% 0.2797 1.0774 1.0872 -76.79% -10.58% -9.77%

250 0.6698 0.40% 0.2797 0.6428 0.6463 -58.24% -4.03% -3.51%

6 10 2.4773 0.72% 0.2925 2.0543 2.1075 -88.19% -17.07% -14.92%

50 1.2600 0.54% 0.2925 1.1184 1.1384 -76.79% -11.24% -9.65%

250 0.6976 0.41% 0.2925 0.6696 0.6768 -58.07% -4.01% -2.99%

Panel B: H = 92.

0.01 10 2.7206 0.71% 1.0321 2.5662 2.5663 -62.06% -5.68% -5.67%

50 1.7755 0.60% 1.0321 1.7539 1.7539 -41.87% -1.22% -1.22%

250 1.3638 0.54% 1.0321 1.3613 1.3613 -24.32% -0.19% -0.19%

3 10 2.8698 0.74% 1.0756 2.6553 2.6872 -62.52% -7.47% -6.36%

50 1.8548 0.62% 1.0756 1.8196 1.8344 -42.01% -1.90% -1.10%

250 1.4253 0.56% 1.0756 1.4153 1.4218 -24.54% -0.71% -0.25%

6 10 2.9995 0.77% 1.1165 2.7384 2.8029 -62.78% -8.70% -6.55%

50 1.9331 0.65% 1.1165 1.8811 1.9111 -42.24% -2.69% -1.14%

250 1.4776 0.58% 1.1165 1.4660 1.4792 -24.44% -0.79% 0.11%

Panel B: H = 95.

0.01 10 3.6584 0.77% 2.3852 3.6312 3.6313 -34.80% -0.75% -0.74%

50 2.9898 0.73% 2.3852 2.9873 2.9874 -20.22% -0.08% -0.08%

250 2.6689 0.70% 2.3852 2.6631 2.6631 -10.63% -0.22% -0.22%

3 10 3.8348 0.81% 2.4690 3.7565 3.7853 -35.62% -2.04% -1.29%

50 3.1142 0.76% 2.4690 3.0895 3.1046 -20.72% -0.79% -0.31%

250 2.7674 0.73% 2.4690 2.7551 2.7623 -10.78% -0.44% -0.19%

6 10 3.9788 0.84% 2.5472 3.8732 3.9317 -35.98% -2.65% -1.18%

50 3.2119 0.79% 2.5472 3.1846 3.2151 -20.69% -0.85% 0.10%

250 2.8583 0.76% 2.5472 2.8409 2.8553 -10.88% -0.61% -0.10%

Model parameters: r = 0.1, σ = 0.2, pu = 0.5, η1 = 100/2, ξ1 = 100/3, S0 = 90, k = log(96), b = log(H/90), and

∆t = T/m; MC serves as the benchmark (true value) obtained by simulation with one million replications. We

also report associated standard errors (S.E.) in the fourth column.

we further explore the difference between (21) and (22) to get a better understanding why

this is the case.

First, we take Taylor expansion respective to
√

∆t for both exponential terms in RHS of
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(21) and (22). In this way, we can easily get the leading term in the difference between (21)

and (22) has the form

A(α, θ)
(
e−b(β1,α−θ) − e−b(β2,α−θ)

)
ρσ
√

∆t, (27)

where

A(α, θ) =
η1 − β1,α

η1 − θ
β2,α − θ
β2,α − β1,α

(
β2,α

η1

− 1

)
(β1,α − θ)

Now, we will show you the numerical output with regard to (27) to see how small it is.

From Panels (d) and (e) of Figure 2, it is easy to see that the two correction terms about

MGF do differ little at the third digit after the decimal point, even taking out the rate of
√

∆t.

5. Conclusion

We study some quantities related to boundary problems from PIDE (partial integro-

differential equation) point of view. In particular, the distribution of a first passage time

can be analyzed through the idea of infinitesimal generators in continuous-time. In this pa-

per, for mixed-exponential jump diffusion models, we provide a new continuity correction to

approximate some related distributions under discretely modeling by its continuous counter-

part. Unlike the existing results as suggested in Dia and Lamberton (2011), the correction

term now depends not only the diffusion but also the jump parts, which leads to smaller

numerical errors especially when the discretized time interval is not small and the boundary

level is not far away. Such improvement can be observed in the pricing of discrete barrier

options as well.

The idea of continuity correction is not only useful to approximate some discrete quantity

by its continuous correspondent, but also vice versa. For example, continuity correction

suggests a way to improve Monte Carlo estimators for default probabilities in structural

credit models. Since now the adjustment in barrier level is no longer simple as solely shifting

a uniform amount, how we can carry out this idea of improved Monte Carlo estimators is an

interesting topic for future studies.

Another possible direction of future studies is to see if the current PIDE approach can be

extended to other processes such as Ornstein-Uhlenbeck processes. We would also like to see

if the current method works for other hitting times like two-boundary problems associated

with double-barrier options. To further demonstrate the practical value of our new result,
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Figure 2. G(θ) = α has two positive roots, β1(α), β2(α), with µ = r− σ2/2− λδ and

nu = nd = 1. Set βi(α) is a function of α. The parameter setting is r = 0.1,

σ = 0.2, λ = 2, qd = 1− pu, pu = 0.5, η1 = 100/2, and ξ1 = 100/3. And

b = 3/10. Panel (a): From top to bottom y = β2,α, y = η1, and y = β1,α, Panel

(b): y = e−b β1,α, Panel (c): y = e−b β2,α, Panel (d): y = A(α, 0)
(
e−b β1,α

)
ρσ, Panel

(e): y = −A(α, 0)
(
e−b β2,α

)
ρσ.

25



in the future we might also consider pricing contingent claims with endogenous default like

Chen and Kou (2009). In a such framework, default event is modeled as boundary crossing

and can be triggered only at, say, coupon payment dates. Typically, the coupons will not be

paid frequently so that the concern of moderate ∆t arises naturally. We want to see if the

current correction method can help a lot in the problems of such type.

Appendix A. Preliminary Results

We here independently introduce three lemmas which are highly of great help to establish

Theorem 1. The first one is related to the scaled random walk (10), the second one is relevant

to the result (16), and the last is the key to final correction form (20).

A.1. Moments of increments

We here estimate the the nth moment of Vm,1 in (10) first, which are crucial in the pursuit

of (16). We will handle this by analyze its cumulant function Gm(θ) = log (E[exp(θVm,1)]),

which is given by

Gm(θ) =
1

2
θ2 +

µ

σ

√
∆t θ + λ∆t

[
ΦΥ

(
−iθ

/
(σ
√

∆t)
)
− 1
]

for θ ∈ (−σ
√

∆t ξ1, σ
√

∆t η1) according to (3). The results are summarized in the next

lemma:

Lemma 1. For the incremental random variables in the process (10), we have

EVm,1 =

√
∆t

σ
[µ+ λ (EΥ1)] ;

EV 2
m,1 = 1 +

λ

σ2

(
EΥ2

1

)
+

∆t

σ2
[µ+ λ (EΥ1)]2 ;

EV 3
m,1 =

λ

σ3
√

∆t

(
EΥ3

1

)
+

3
√

∆t

σ
[µ+ λ (EΥ1)]

[
1 +

λ

σ2

(
EΥ2

1

)]
+

∆t
√

∆t

σ3
[µ+ λ (EΥ1)]3 ,

and for each n ≥ 4,

E
(√

∆t Vm,1

)n
= ∆t · λ

σn
(EΥn

1 ) +O
(
1/m2

)
.

The proof of Lemma 1 is somewhat straightforward but tedious. One only need to

carefully examine the moment relationship between Vm,1 and Υ by taking nth differentiation

on exp{Gm(·)} and ΦΥ(·) respectively. For the sake of space, we just skip the details here.
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A.2. Error estimation

We now start to deal with the no-correction approximation (16). First, let us define

v̄(t, x) =

 u(t, x), x < b;

f 0(t, x), x ≥ b.
(28)

Note that v̄ is C-infinity thanks to (15). Next, for t = k∆t with some integer k, consider

functions

em(t, x) =

Etv̄(t+ ∆t, x+ σ
√

∆t Vm,1)− v̄(t, x), x < b;

0, x ≥ b,
(29)

in which Et denotes the expectation conditional on Ft, and Vm,1 is the increment defined in

(10). Then, the definition (28) leads to

Ef 0(τm∆t,Xm,τm) = Ev̄(τm∆t,Xm,τm)

=v̄(0, 0) + E
τm−1∑
k=0

[
v̄
(

(k + 1) ∆t, σ
√

∆tWm,k+1

)
− ū

(
k∆t, σ

√
∆tWm,k

)]

=v̄(0, 0) + E
τm−1∑
k=0

em(k∆t, σ
√

∆tWm,k), (30)

where we have utilized the tower property of conditional expectations for each summand in

the last equality.

Therefore, to achieve (16), the decomposition (30) clearly indicates that we only need to

assess the impact of each em. Next lemma provides the desired result:

Lemma 2. For integer k with 0 ≤ k < τm,

em(k∆t, x) = O
(
1/m2

)
as m→∞,

uniformly for all x < b.

Proof of Lemma 2. The proof is adapted from Keener (2013, P. 141). The success of

extension from PDE to PIDE was due to different moment condition we have. Here, the

Vm,1 in (10) admits exponential moments so that we can get the Taylor expansions to the

infinite order. This is also why we can get more concise form as in the current lemma.
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To start with, take the infinite-order Taylor expansion of v̄ at x on {x+σ
√

∆t ·Vm,1 < b}

to get

u(t, x+ σ
√

∆t · Vm,1) =v̄(t, x) + σ
√

∆t · v̄x(t, x) · Vm,1

+ (σ
√

∆t)2 · v̄xx(t, x) ·
V 2
m,1

2

+ (σ
√

∆t)3 · v̄xxx(t, x) ·
V 3
m,1

6
+
∞∑
n=4

(σ
√

∆t)n · v̄(n)(t, x) ·
V n
m,1

n!
, (31)

where v̄(n)(t, x) := ∂n

∂xn
v̄(t, x). On the other hand, the expansion of v̄ on {x+σ

√
∆t·Vm,1 ≥ b}

is,

f 0(t, x+ σ
√

∆t · Vm,1) =v̄(t, x) + σ
√

∆t · v̄x(t, x) · Vm,1

+ (σ
√

∆t)2 · v̄xx(t, x) ·
V 2
m,1

2

+ (σ
√

∆t)3 · v̄xxx(t, x) ·
V 3
m,1

6
+
∞∑
n=4

(σ
√

∆t)n · v̄(n)(t, x) ·
V n
m,1

n!
.

(32)

Notice that both RHS of (33) and (32) are identical, and we thus can combine then to obtain

v̄(t, x+ σ
√

∆t · Vm,1) =u(t, x) + σ
√

∆t · ux(t, x) · Vm,1

+ (σ
√

∆t)2 · uxx(t, x) ·
V 2
m,1

2

+ (σ
√

∆t)3 · uxxx(t, x) ·
V 3
m,1

6
+
∞∑
n=4

(σ
√

∆t)n · u(n)(t, x) ·
V n
m,1

n!
(33)

for all x < b.

Then, plugging (33) into (29) to get

em (k∆t, x) = v̄ ((k + 1)∆t, x)− v̄ (k∆t, x)

+ σ
√

∆t · v̄x((k + 1)∆t, x) · EVm,1 + (σ
√

∆t)2 · v̄xx((k + 1)∆t, x) ·
EV 2

m,1

2

+ (σ
√

∆t)3 · v̄xxx((k + 1)∆t, x) ·
EV 3

m,1

6
+
∞∑
n=4

(σ
√

∆t)n · v̄(n)((k + 1)∆t, x) ·
EV n

m,1

n!
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= v̄ (∆t · (k + 1), x)− v̄ (∆t · k, x)

+ ∆t · µ · v̄x((k + 1)∆t, x) + ∆t · v̄x((k + 1)∆t, x) · λ(EΥ1)

+ ∆t · σ
2

2
· v̄xx((k + 1)∆t, x) + ∆t · v̄xx((k + 1)∆t, x) · λ(EΥ2

1)

2
+O(1/m2)

+ ∆t · v̄xxx((k + 1)∆t, x) · λ(EΥ3
1)

6
+O(1/m2)

+ ∆t ·
∞∑
n=4

v̄(n)((k + 1)∆t, x) · λ(EΥn
1 )

n!
+O(1/m2), (34)

where we have borrowed the moment estimation of EV n
m,1 from Lemma 1 for the second

equality.

Now, for the first two terms on the RHS of (34), we again apply the Taylor expansion of

ū but only to the first order at t = k∆t; and obtain

v̄((k + 1)∆t, x) = v̄(k∆t, x) + ∆t · v̄t(k∆t, x) +O(1/m2)

= v̄(k∆t, x)−∆t · (Lv̄)(k∆t, x) +O(1/m2)

= v̄(k∆t, x)−∆t · µ · v̄x(k∆t, x)−∆t · σ
2

2
· v̄xx(k∆t, x)

−∆t · λ
∫ ∞
−∞

(v̄(k∆t, x+ y)− v̄(k∆t, x)) fΥ(y)dy +O(1/m2), (35)

where we utilize (12) for the second equality and work out the definition of infinitesimal

generator L in the third equality. Then, combining (34) and (35), we thus achieve

em(k∆t, x) =−∆t · λ
∫ ∞
−∞

v̄(k∆t, x+ y)fΥ(y) dy + ∆t · λ v̄(k∆t, x)

+ ∆t · λ (EΥ1)v̄x(k∆t, x) + ∆t · λ
(
EΥ2

1

2!

)
v̄xx(k∆t, x)

+ ∆t · λ
(
EΥ3

1

3!

)
v̄xxx(k∆t, x)

+ ∆t ·
∞∑
n=4

λ

(
EΥn

1

n!

)
v̄(n)(k∆t, x) +O(1/m2). (36)

Finally, note that in the first term of (36)∫ ∞
−∞

v̄(k∆t, x+ y)fΥ1(y)dy = E [v̄(k∆t, x+ Υ1)] ;

so by the infinite-order Taylor expansion of ū at x again,

E [v̄(k∆t, x+ Υ1)] =v̄(k∆t, x) + v̄x(k∆t, x)EΥ1 +
v̄xx(k∆t, x)

2!
EΥ2

1

+
v̄xxx(k∆t, x)

3!
EΥ3

1 +
∞∑
n=4

v̄(n)(k∆t, x)

n!
EΥn

1
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which clearly shows that all ∆t terms in (36) are canceled out by each other. The result

thus follows. �

A.3. Two estimates

The incoming two lemmas here will be used to facilitate the estimation of Ef 1 in the

next coming subsection. Let W ′
m,k = Wm,k − k

√
∆t
σ

(µ + λEΥ1), and W ′
m,k has zero mean.

Define

Nd = Nd(m) = #{k < τm : W ′
m,k > b′m − d},

the number of times the walk is within distance d of the boundary before stopping.

The following lemma follows immediately from Lemma 2.2 of Keener (2013).

Lemma 3. There exists a finite constant K ≥ 0 such that

E[Nd] = K (1 + d2),

for all n ≥ 1 and d > 0.

Proof of Lemma 3. Without loss of generality, let d be a positive integer, σ = 1, and

T = 1. By central limit theorem,

P
[
W ′
m,m2 > m

]
≥ P

[
W ′
m,m2 > (

√
m(1 + λEΥ2

1)m
]
≥ γ, (37)

for all m sufficiently large, say m ≥ m0. Since the ∆t τm are uniformly integrable and

Nd ≤ τm, we can assume that m0d
2 ≤ m. Define

Nm′,d = #{k ≤ m′ : k < τm, W
′
m,k > b′m − d},

and let

νj,d = inf{m′ : Nm′,d = j},

so that jth time the walk is within d of the boundary happens on step νj,d. Note that Nd ≥

j+m0d
2 implies the walk is below the boundary at time νj,d+m0d

2, that is, W ′
m,νj,d+m0d2 < bm,

which, in turn, implies

W ′
m,νj,d+m0d2 −W ′

m,νj,d
< b′m − b′m + d <

√
m0 d.
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But W ′
m,νj,d+m0d2 −W ′

m,νj,d
is independent of {Nd ≥ k}. So using this bound and (37),

P [Nd ≥ j +m0d
2] ≤ P [Nd ≥ j](1− γ).

Iterating this,

P [Nd ≥ 1 + j m0d
2] = P [Nd ≥ 1 + (j − 1)m0d

2 +m0d
2]

≤ P [Nd ≥ 1 + (j − 1)m0d
2](1− γ)

≤ · · ·

≤ P [Nd ≥ 1](1− γ)j, j = 0, 1, . . . .

Hence

E[Nd] =

∫ ∞
0

P [Nd ≥ x]dx

≤ P [Nd ≥ 1]

[
1 +

∫ ∞
1

(1− γ)b(x−1)/(m0d2)cdx
]

= P [Nd ≥ 1]

[
1 +

m0d
2

γ

]
.

�

The following lemma follows immediately from Corollary 2.3 of Keener (2013).

Lemma 4. Let ck = ck,m, k ≥ 0, m ≥ 1 be constant. Define

Λ = sup
k,m

(b′m − ck),

and let g be a non-decreasing function. If Λ <∞, and g(x)→ 0 as x→ −∞,

E
τm−1∑
k=0

g(W ′
m,k − ck) ≤ K

[
g(Λ) + 2

∫ 0

−∞
|x| g(x+ Λ)dx

]
,

where K is the constant in Lemma 3.

Proof of Lemma 4. By Fubini’s theorem and Lemma 3,

E

τm−1∑
k=0

g(W ′
m,k − ck) ≤ E

τm−1∑
k=0

g(W ′
m,k − b′m + Λ)

≤
∫
E
∑
k≥0

1{x<W ′m,k−b′m+Λ, k<τm}dg(x)

=

∫
ENΛ−xdg(x)

≤ K

∫ Λ

−∞
[1 + (Λ− x)2]dg(x)

= K

[
g(Λ) + 2

∫ 0

∞
|x| g(x+ Λ)dx

]
.

�
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A.4. An approximation for Ef 1(τm∆t,Xm,τm)

We now consider the overshoot problem for discrete model (10). For any µ′, let Vm,j =

Zj + µ′ +
Mm,j

σ
√

∆t
, j = 1, 2, · · · , such that Vm,j

d→ Vj ≡ Zj + µ′. Define

fm(θ) = E[eiθVm,1 ] = exp

{
−1

2
θ2 + λ∆t

[
Φ

(
θ

σ
√

∆t
− 1

)
− 1

]
+ iµ′θ

}
and

g(θ) ≡ E[eiθV1 ] = exp

{
−1

2
θ2 + iµ′θ

}
for θ ∈ R as the associated characteristic function of Vm,1 and V1, respectively. Note that

fm(θ) = g(θ) +O

(
1

m

)
.

Next define the renewal measures νm and ν as νm(A) =
∑∞

n=0

{∑n
j=1 Vm,j ∈ A

}
and

ν(A) =
∑∞

n=0

{∑n
j=1 Vj ∈ A

}
for any A ∈ B(R); we thus get

Lemma 5.

νm(A) = ν(A) +O

(
1

m

)
as m→∞ for any A ∈ B(R).

Proof of Lemma 5. By using distribution theory and following the same argument as in

Carlsson (1983, P. 147), the proof is somehow straightforward. Here we only summarize the

basic idea. For all large enough m such that EVm,1 > 0, , by repeatedly using (B.1), we can

achieve

ν̂m(θ) ≡
∫ ∞
−∞

eiθxνm(dx) = lim
N→∞

N−1∑
n=0

[fm(θ)]n = lim
N→∞

1− [fm(θ)]N

1− fm(θ)

=
1

1− g(θ)
+
π

µ′
δ(θ) +O(1/m) = ν̂(θ) +O(1/m).

Here ν̂(θ) ≡
∫
eiθxν(dx) and δ(.) denotes the Dirac-delta function. Note that the function

form (1−fm(θ))−1 has a singularity point at θ = 0 since fm(0) = 1. This is where the Dirac-

delta function comes into the play to help us overcoming this difficulty. Then, according

to the uniform renewal theorem for a family of distributions in Theorem 1 of Blanchet and

Glynn (2007), we have the result.

Now, denote τ(0) = inf{n > 0 :
∑n

j=1 Vj > 0} and τm(b′) = inf{n > 0 :
∑n

j=1 Vm,j > b′}.

Using Lemma 5 along with Chapter VIII of Siegmund (1985), we can further get

P


τm(b′)∑
j=1

Vm,j − b′ > y

 =

E τ(0)∑
j=1

Vj

−1 ∫
[y,∞)

P


τ(0)∑
j=1

Vj > u

 du+O

(
1

m

)
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as b′ → ∞. This equation indicates that the limiting distribution of the overshoot of the

random walk
∑
Vm,j can be approximated by that of

∑
Vj. However, our final goal is to

obtain an uniform renewal theorem when both the drift µ′ goes to zero and the boundary

b′ goes to infinity simultaneously while µ′ b′ remains a constant. Specifically, we will take

µ′ = µ
√

∆t/σ and b′ = bm. Moreover,

E[Rm] = E

τ(0)∑
j=1

Vj

2/
2E

τ(0)∑
j=1

Vj + o(1/
√
m). (38)

We will denote by ρ as E
(∑τ(0)

j=1 Vj

)2
/

2E
∑τ(0)

j=1 Vj, which has been shown to be−ζ(1/2)/
√

2π ≈

0.5826; see Chernoff (1965). Here ζ(.) stands for the Riemann zeta function.

Because the convergence rate we adopt for Ef 0 is O
(

1
m

)
actually (see the form (45)), we

only examine the first Taylor term in f 1 here; specifically,

f 1(τm∆t,Xm,τm) = σ
√

∆tD(1)
b (τm∆t) (Rm) +O

(
1

m

) ∞∑
n=2

σn(
√

∆t)n−2 1

n!
D(n)
b (τm∆t) (Rm)n .

Lemma 6. As m→∞,

E[D(1)
b (τm∆t)Rm]→ E[D(1)

b (τ)] ρ,

where ρ is the limiting mean.

Proof of Lemma 6. Let W ′
m,k = Wm,k − k

√
∆t
σ

(µ+ λEΥ1), and W ′
m,k has zero mean. For

x < 0, define stopping times

Tx = inf{k ≥ 1 : x+W ′
m,k ≥ 0},

and define

H(x) =

 x− ρ, x ≥ 0;

E[W ′
m,Tx

+ x]− ρ, x < 0.

Conditioning on Vm,1, for x < 0

H(x) = EH(x+ Vm)−
√

∆t

σ
(µ+ λEΥ1).

On {Wm,k < bm},

E[H(Wm,k+1 − bm)|Fk])−
√

∆t

σ
(µ+ λEΥ1) = H(Wm,k − bm). (39)
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Now

RmD(1)
b (τm∆t) = ρD(1)

b (τm∆t) +D(1)
b (τm∆t)H(Wm,τm − bm),

and by a telescoping sum argument,

ED(1)
b (τm∆t)H(Wm,τm − bm)−D(1)

b (0)H(−bm)

=E
τm−1∑
k=0

[
D(1)
b ((k + 1)∆t)H(Wm,k+1 − bm)−D(1)

b (k∆t)H(Wm,k − bm)
]

=E
τm−1∑
k=0

[
D(1)
b ((k + 1)∆t)H(Wm,k+1 − bm)−D(1)

b (k∆t)H(Wm,k+1 − bm) +D(1)
b (k∆t)

√
∆t

σ
(µ+ λEΥ1)

]

with the last equality from (39), since {k < τm} ∈ Fk. The final expectation is decomposed

by the sum of

E
τm−1∑
k=0

[D(1)
b ((k + 1)∆t)−D(1)

b (k∆t)]H(Wm,k+1 − bm) (40)

and

E
τm−1∑
k=0

D(1)
b (k∆t)

√
∆t

σ
(µ+ λEΥ1). (41)

According to form (14) and Lemma 7, we have

D(1)
b (t) = −e−αt+θb · (β1,α − θ) · · · (βnu+1,α − θ)

(η1 − θ) · · · (ηnu − θ)
=: e−αt · constant.

The following proof is under this situation, fixed τm. We will utilize W ′
m,k to achieve

asymptotic properties about form (40). Moreover, we must adjust the boundary from bm to

b′m, where b′m = bm − τm
√

∆t
σ

(µ+ λEΥ1).

Eτm

τm−1∑
k=0

[D(1)
b ((k + 1)∆t)−D(1)

b (k∆t)]H(Wm,k+1 − bm)

=Eτm

τm−1∑
k=0

[D(1)
b ((k + 1)∆t)−D(1)

b (k∆t)]

[
H(W ′

m,k+1 − b′m)

− τm
√

∆t

σ
(µ+ λEΥ1) + k

√
∆t

σ
(µ+ λEΥ1)

]
The form (40) is bounded by the sum of

Eτm

τm−1∑
k=0

|D(1)
b ((k + 1)∆t)−D(1)

b (k∆t)|H(W ′
m,k+1 − b′m) = O

(
1

m

)
Eτm

τm−1∑
k=0

H(W ′
m,k+1 − b′m)

(42)
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and

(e−α∆t − 1) constantEτm

τm−1∑
k=0

e−αk∆t (k − τm)

√
∆t

σ
(µ+ λEΥ1) (43)

First of all, Using Lemma 4, it is easy to show that (42) tends to zero as m→∞.

And,

(e−α∆t − 1) constantEτm

τm−1∑
k=0

e−αk∆t (k − τm)

√
∆t

σ
(µ+ λEΥ1)

=(e−α∆t − 1) constant

√
∆t

σ
(µ+ λEΥ1)Eτm

τm−1∑
k=0

(k − τm) e−αk∆t

=(e−α∆t − 1) constant

√
∆t

σ
(µ+ λEΥ1)

×
(
e−α∆t(1− e−ατm∆t)

(1− e−α∆t)2
− (τm − 1) e−ατm∆t

1− e−α∆t
− τm (1− e−ατm∆t)

1− e−α∆t

)
=− constant

√
∆t e−α∆t

σ(1− e−α∆t)
(µ+ λEΥ1)

(
1− e−ατm∆t

)
+ constant

√
∆t

σ
(µ+ λEΥ1)

(
τm − e−ατm∆t

)
.

The next equation considers the form (41).

Eτm

τm−1∑
k=0

D(1)
b (k∆t)

√
∆t

σ
(µ+ λEΥ1)

=Eτm

τm−1∑
k=0

e−αk∆t · constant ·
√

∆t

σ
(µ+ λEΥ1)

=constant

√
∆t

σ
(µ+ λEΥ1) (1 + e−α∆t + · · ·+ e−α(τm−1)∆t)

=constant

√
∆t

σ(1− e−α∆t)
(µ+ λEΥ1)

(
1− e−ατm∆t

)
Finally,

D(1)
b (0)H(−bm) = constant

[
H(−b′m)− τm

√
∆t

σ
(µ+ λEΥ1)

]

= constant (E[W ′
m,Tx − b

′
m]− ρ)− constant (µ+ λEΥ1)

√
∆t

σ
τm.

From the above statement and take off the fixed τm , we can easy to see that E[D(1)
b (τm∆t)

·H(Wm,τm − bm)] tends to zero as m→∞, the results thus follows. �
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A.5. Identities

The last lemma introduces a family of mathematical identities:

Lemma 7. For each positive integer n, given arbitrary set of nonzero η1, η2, · · · , ηn and

distinct, nonzero β1, β2, · · · , βn+1, we have

θ −
n+1∑
i=1

βi di = −(β1 − θ) (β2 − θ) · · · (βn+1 − θ)
(η1 − θ) (η2 − θ) · · · (ηn − θ)

,

for any real θ 6∈ {η1, η2, · · · , ηn}. Here, similarly, di =
∏n

j=1

(
ηj−βi
ηj−θ

)
×
∏n+1

j=1,j 6=i

(
βj−θ
βj−βi

)
.

Proof of Lemma 7. We will first establish the identity for θ = 0 by mathematical in-

duction, and then extend the result to any other feasible θ.

First note that when θ = 0, the identity is equivalent to

n+1∑
i=1

(η1 − βi) (η2 − βi) · · · (ηn − βi)∏n+1
j=1,j 6=i (βj − βi)

= 1. (44)

Thus, if n = 1, it is easy to see

RHS of (44) =
η1 − β1

β2 − β1

+
η1 − β2

β1 − β2

=
η1 − β1 + β2 − η1

β2 − β1

=
β2 − β1

β2 − β1

= 1.

Namely, (44) holds for n = 1. Now, suppose (44) holds for n = k, and consider the function

g(x) =
k+2∑
i=1

(η′1 − β′i) · · · (η′k − β′i) (x− β′i)∏k+2
j=1,j 6=i

(
β′j − β′i

) − 1,

which is just linear in x. Then, we have

g(β′1) =
k+2∑
i=1

(η′1 − β′i) · · · (η′k − β′i) (β′1 − β′i)∏k+2
j=1,j 6=i

(
β′j − β′i

) − 1 =
k+2∑
i=2

(η′1 − β′i) · · · (η′k − β′i)∏k+2
j=2,j 6=i

(
β′j − β′i

) − 1

which is exactly zero by the presumption for n = k. Similarly, we also have g(β′2) = g(β′3) =

· · · = g(β′k+2) = 0. These observations imply that g(x) = 0 has more than 1 distinct root.

But g is merely a polynomial of degree 1; thus g(x) should be zero for all x. In particular,

g(η′k+1) = 0, which means (44) also holds for n = k + 1. Hence, by mathematical induction,

(44) is indeed an identity.

Next, let us turn back to the case with general θ. To start with, deem di as di(θ), a

function of θ, and consider

φ(θ) = θ − [β1d1(θ) + β2d2(θ) + · · ·+ βn+1(θ)] +
(β1 − θ) (β2 − θ) · · · (βn+1 − θ)

(η1 − θ) (η2 − θ) · · · (ηn − θ)
.
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Since di(βi) = 1 and di(βj) = 0 for any j 6= i and i = 1, 2, · · · , n+1, we have φ(βi) = 0 for all

i. Also, φ(0) = 0 by (44). Consequently, φ(θ) = 0 has at least n+ 2 distinct roots. However,

φ(θ) has the same roots as the polynomial function φ(θ)
∏n

j=1(ηj − θ) with degree at most

n+ 1. This implies φ(θ) ≡ 0 for any θ ∈ R \ {η1, . . . , ηn}. The proof is hence completed. �

Appendix B. Proofs

Proof of Theorem 1

First of all, it is clear from (13) that

E [f(τm∆t,Xm,τm)] = E
[
f 0(τm∆t,Xm,τm)

]
+ E

[
f 1(τm∆t,Xm,τm)

]
.

Then, for the f 0 part, from (30) one can get

E
[
f 0(τm∆t,Xm,τm)

]
= v̄(0, 0) +O

(
1/m2

)
E (τm) . (45)

according to Lemma 2. Note that v̄(0, 0) = u(0, 0), E(τm) < ∞ under our assumption

that µ̄ > 0; (16) thus follows. As for the f 1 part, it follows Appendix A.4. Therefore,

E[f 1(τm∆t,Xm,τm)] = E
[
D(1)
b (τm∆t)(σ

√
∆t Rm)

]
+O

(
1

m

)
= σ
√

∆t
{
E[D(1)

b (τ)]× ρ+ o (1)
}

+O

(
1

m

)
= E

[
D(1)
b (τ)

] (
ρ σ
√

∆t
)

+ o (1/
√
m ),

in which we also borrow the weak convergence between τm∆t and τ for the third equality.

Since u(0, 0) = E [f(τ,Xτ )], the result (19) hence follows.

We now go further under the choice f(t, x) = e−αt+θx. In this special case, we have

u(t, x) = e−αtν(x) with

ν(x) =

 eθx, x ≥ b;∑nu+1
k=1 dk(α, θ)e

θbe−βk,α(b−x), x < b,

according to Cai and Sun (2014, Eq. (3.16)). As a result,

∂

∂x
f(t, x)|x=b = θ e−αt+θb and

∂

∂x
u(t, x)|x=b− = e−αt+θb

(
nu+1∑
k=1

βk,α dk(α, θ)

)
.
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So, from (14) and Lemma 7,

D(1)
b (t) = e−αt+θb

(
θ −

nu+1∑
k=1

βk,α dk(α, θ)

)
= −e−αt+θb (β1,α − θ) · · · (βnu+1,α − θ)

(η1 − θ) · · · (ηnu − θ)
.

Now, note that E [e−ατ ] can be obtained via (7) with θ = 0, and by (8) we also have

dk(α, 0)
(β1,α − θ) · · · (βnu+1,α − θ)

(η1 − θ) · · · (ηnu − θ)
= dk(α, θ)×

β̄(k),α

η̄
(βk,α − θ) .

As a result, E
[
D(1)
b (τ)

]
= −

∑nu+1
k=1 dk(α, θ)e

−b (βk,α−θ) (β̄(k),α/η̄) (βk,α − θ). Accordingly, by

(19) and (7) again, we can achieve

E
[
e−α(τm∆t)+θ Xm,τm

]
=

nu+1∑
k=1

dk(α, θ)e
−b (βk,α−θ) ×

(
1− ρ σ

√
∆t

β̄(k),α

η̄
(βk,α − θ)

)
+ o

(
1/
√
m
)
.

Finally, adopting the approximation et = 1− t+O(t2) for each ρ-term in the last equation,

the result (20) thus follows. �

Proof of Corollary 1

Note that for θ > 0

Lm(α, θ) =

∫ ∞
0

∫ ∞
−∞

e−αT−θaE[1{τm∆t≤T,XT≤a}] da dT

=E

[∫ ∞
τm∆t

(∫ ∞
XT

e−αT−θada

)
dT

]

=
1

θ
E

[∫ ∞
τm∆t

e−αT−θa dT

]
=

1

θ
E

[
e−α(τm∆t)

∫ ∞
0

e−αt−θXt+τm∆t dt

]
On the other hand, the strong Markov property implies that for any −η1 < θ < ξ1 and

α > max (0, G(−θ)),

E

[
e−α(τm∆t)

∫ ∞
0

e−αt−θXt+τm∆t dt

∣∣∣∣Fτm∆t

]
= e−α(τm∆t)−θXτm∆tE

[∫ ∞
0

e−αt−θXt dt

]

= e−α(τm∆t)−θXτm∆t

∫ ∞
0

e(G(−θ)−α)t dt =
e−α(τm∆t)−θXm,τm

α−G(−θ)
.

Combining all the above together and applying (20), the result thus follows. �
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Proof of Corollary 2

Using the standard argument as in Kou et al. (2005), for the parameter space specified in

the Corollary, we have

ÛIPm(α, θ) = E

[∫ ∞
0

∫ ∞
−∞

e−(r+α)T−θk (ek − S0e
XT
)+

1{τm∆t≤T} dk dT

]

= E

[∫ ∞
0

e−(r+α)T 1{τm∆t≤T}

(∫ ∞
log(S0e

XT )

e−θk(ek − S0e
XT ) dk

)
dT

]

= E

[∫ ∞
0

e−(r+α)T1{τm∆t≤T}

(
1

θ − 1

(
S0e

XT
)1−θ − 1

θ

(
S0e

XT
)1−θ

)
dT

]
=

1

θ(θ − 1)
E

[∫ ∞
τm∆t

e−(r+α)T
(
S0e

XT
)−(θ−1)

dT

]

=
1

θ(θ − 1)
E

[
e−(r+α)τm∆t

∫ ∞
0

e−(r+α)t
(
S0e

Xt+τm∆t
)−(θ−1)

dt

]

=
1

θ(θ − 1)
E

[
e−(r+α)τm∆t

(
S0e

Xτm∆t
)1−θ

×
∫ ∞

0

e−(r+α)tE
[(
eXt+τm∆t−Xτm∆t

)−(θ−1)
∣∣∣Fτm∆t

]
dt

]

=
1

θ(θ − 1)
E

[
e−(r+α)τm∆t

(
S0e

Xm,τm
)1−θ

∫ ∞
0

e−(r+α−G(1−θ))t dt

]
=

1

θ(θ − 1)

1

r + α−G(1− θ)
E
[
e−(r+α)τm∆t

(
S0e

Xm,τm
)1−θ

]
=

S1−θ
0

θ(θ − 1)

1

r + α−G(1− θ)
E
[
e−(r+α)τm∆t+(1−θ)Xm,τm

]
.

Directly applying (20) to the last equality, the result for ÛIPm follows. Then, ∆̂UIPm can

be obtained by interchanging derivatives and integrals in the derivation above, similarly to

the argument in Cai and Kou (2011). The proof is hence completed. �
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Proof of Corollary 3

Using the standard argument as in Kou et al. (2005), for the parameter space specified in

the Corollary. Define MXm(t) := max0≤k∆t≤tXm,k,

Lm(S0,M, T ) :=E

[
e−rT max

{
M, max

0≤k∆t≤T
Sk∆t

}]
=E

[
e−rT max

{
M,S0e

MXm (T )
}]
,

and z := log(M/S0) ≥ 0. Then we have

Lm(S0,M, T ) =S0E
[
e−rT max

{
ez, eMXm (T )

}]
=S0e

−rTE
[
(eMXm (T ) − ez)1{MXm (T )≥z}

]
+ S0e

(z−r)T

=S0e
−rTE

[
(eMXm (T ) − ez)1{MXm (T )≥z}

]
+Me−rT .

On the other hand, we can obtain

E
[
(eMXm (T ) − ez)1{MXm (T )≥z}

]
=

∫ ∞
0

(ey − ez)1{y≥z}fMXm (T )(y)dy

=−
∫ ∞
z

(ey − ez)dP (MXm(T ) ≥ y)

=

∫ ∞
z

eyP (MXm(T ) ≥ y) dy,

where fMXm (T )(y) is the pdf of MXm(T ). Therefore

Lm(S0,M, T ) = S0e
−rT

∫ ∞
z

eyP (MXm(T ) ≥ y) dy +Me−rT .

For any α > 0, the Laplace transform of Lm(S0,M, T ) w.r.t. T is given by∫ ∞
0

e−αTLm(S0,M, T )dT (46)

= S0

∫ ∞
0

e−αT e−rT
∫ ∞
z

eyP (MXm(T ) ≥ y) dy dT +
M

α + r
(47)

= S0

∫ ∞
z

ey
[∫ ∞

0

e−(α+r)TP (MXm(T ) ≥ y) dT

]
dy +

M

α + r
. (48)

Note that for any y > z ≥ 0, integration by parts leads to∫ ∞
0

e−(α+r)TP (MXm(T ) ≥ y) dT

=
1

α + r

∫ ∞
0

e−(α+r)TdP (MXm(T ) ≥ y)

=
1

α + r

∫ ∞
0

e−(α+r)TdP (τm(y)∆t ≤ T ) =
1

α + r
E[e−(α+r)τm(y)∆t].
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Applying (20) with θ = 0, we have that, for sufficiently large α > 0,∫ ∞
0

e−(α+r)TP (MXm(T ) ≥ y) dT =
1

α + r

nu+1∑
k=1

dk(α + r, 0) e
−
(
y+ρσ

√
∆t

β̄(k),α+r
η̄

)
(βk,α+r)

+ o
(
1/
√
m
)

(49)

Plugging (49) into (48) yields∫ ∞
0

e−αTLm(S0,M, T )dT

= S0

∫ ∞
z

ey

[
1

α + r

nu+1∑
k=1

dk(α + r, 0) e
−
(
y+ρσ

√
∆t

β̄(k),α+r
η̄

)
(βk,α+r)

]
dy +

M

α + r
+ o

(
1/
√
m
)

=
S0

α + r

nu+1∑
k=1

dk(α + r, 0)e
−
(
ρσ
√

∆t
β̄(k),α+r

η̄

)
(βk,α+r)

∫ ∞
z

e−(βk,α+r−1)ydy +
M

α + r
+ o

(
1/
√
m
)
.

Note that β1,α+r > β1,r = 1 and βi,α+r > η1 > 1 for any i = 2, . . . , nu + 1. So we have that∫ ∞
0

e−αTLm(S0,M, T )dT

=
S0

α + r

nu+1∑
k=1

dk(α + r, 0)e
−
(
ρσ
√

∆t
β̄(k),α+r

η̄

)
(βk,α+r)

βk,α+r − 1
e−(βk,α+r−1)z +

M

α + r
+ o

(
1/
√
m
)

=
S0

α + r

nu+1∑
k=1

dk(α + r, 0)e
−
(
ρσ
√

∆t
β̄(k),α+r

η̄

)
(βk,α+r)

βk,α+r − 1

(
S0

M

)βk,α+r−1

+
M

α + r
+ o

(
1/
√
m
)
.
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