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Abstract
In the dual LΦ

∗

of a ∆2-Orlicz space LΦ, we show that a proper (resp. finite) convex function is lower
semicontinuous (resp. continuous) for the Mackey topology τ(LΦ

∗

, LΦ) if and only if on each order
interval [−ζ, ζ] = {ξ : −ζ ≤ ξ ≤ ζ} (ζ ∈ LΦ

∗

), it is lower semicontinuous (resp. continuous) for
the topology of convergence in probability. For this purpose, we provide the following Komlós type
result: every norm bounded sequence (ξn)n in LΦ

∗

admits a sequence of forward convex combinations
ξ̄n ∈ conv(ξn, ξn+1, ...) such that supn |ξ̄n| ∈ LΦ

∗

and ξ̄n converges a.s.

Key Words: Orlicz spaces, Mackey topology, Komlós’s theorem, convex functions, order closed sets,
risk measures

1 Introduction

Notation. We use the usual probabilistic notation. (Ω,F ,P) is a probability space
and L0 := L0(Ω,F ,P) stands for the space of (classes modulo equality P-a.s. of)
finite measurable functions equipped with the complete metrisable vector topology
τL0 of convergence in P (in probability). As usual, we identify a measurable function
with the class it generates. We write E[ξ] :=

∫
Ω
ξdP whenever it makes sense, and

Lp := Lp(Ω,F ,P), p ∈ [1,∞], denote the standard Lebesgue spaces.
Problems in financial mathematics often involve convex functions on the dual E′ of

a Banach space E. Dealing with such f , the lower semicontinuity (lsc) and continuity
for the Mackey topology τ(E′, E) are basic; the former (⇔ σ(E′, E)-lsc) is necessary
and sufficient (by the Hahn-Banach theorem) for the dual representation

f (x′) = sup
x∈E

(〈x, x′〉 − f ∗(x)), x′ ∈ E′; where f ∗(x) = sup
x′∈E′

(〈x, x′〉 − f (x′))

Generally speaking, τ(E′, E) is not easy to deal with, but its restrictions to bounded
sets often have a nice description. The best known case is L∞ = (L1)′: on bounded
sets, τ(L∞, L1) coincides with the topology of L0, a fortiori metrisable (this result is
due to Grothendieck; see [11], pp.222-223). Hence by the Krein-Šmulian theorem,
we have
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Proposition 1.1. For proper convex functions f on L∞, the following are equivalent:

(1) f is σ(L∞, L1)-lsc, equivalently τ(L∞, L1)-lsc;
(2) f is sequentially τ(L∞, L1)-lsc;
(3) f is lsc on bounded sets for the topology of convergence in probability.

The following result for the τ(L∞, L1)-continuity is also known for convex risk
measures (e.g. [12, 6]), and it remains true for finite convex functions; but we could
not find a relevant reference, so we include a short proof in the Appendix.

Proposition 1.2. For any convex function f : L∞ → R, the following are equivalent:

(1) f is τ(L∞, L1)-continuous;
(2) f is sequentially τ(L∞, L1)-continuous;
(3) f is continuous for the topology of convergence in probability on bounded sets.

Let Φ : R→ R be a (finite coercive) Young function, i.e. an even convex function
with Φ(0) = 0 and limx→+∞

Φ(x)
x = +∞. Then the associated Orlicz space

LΦ := {ξ ∈ L0 : ∃λ > 0 with E[Φ(λ|ξ|)] < ∞} =
⋃

nnBΦ,

where BΦ := {ξ ∈ L0 : E[Φ(|ξ|)] ≤ 1}, endowed with ‖ξ‖Φ := inf{λ > 0 : ξ ∈ λBΦ}

is a Banach lattice with the closed unit ball BΦ and the a.s. pointwise order. The
conjugate Φ∗(y) := supx(xy − Φ(x)) is again a (finite coercive) Young function, so
the Orlicz space LΦ

∗

is similarly defined. A Young function Φ is said to satisfy the
∆2-condition, written Φ ∈ ∆2, if lim supx→∞Φ(2x)/Φ(x) < ∞, or equivalently

pΦ := inf
x≥0

pΦ(x) := inf
x≥0

(
sup
y>x

yΦ′(y)
Φ(y)

)
< ∞,(1.1)

where Φ′ is the left-derivative of Φ (see [19], Th. II.2.3). In this case, the norm
dual (LΦ)′ of LΦ is isometrically isomorphic to LΦ

∗

with bilinear form 〈ξ, η〉 = E[ξη]
and the norm ‖ξ‖(Φ∗) := supη∈BΦ E[ηξ] which is equivalent to ‖ · ‖Φ∗; more precisely
‖ξ‖Φ∗ ≤ ‖ξ‖(Φ∗) ≤ 2‖ξ‖Φ∗ , and E[ηξ] ≤ ‖η‖Φ‖ξ‖(Φ∗). In particular, if Φ∗ ∈ ∆2 as well,
LΦ is reflexive; the condition is also necessary if (Ω,F ,P) is atomless. In the sequel,
unless otherwise mentioned, we suppose Φ ∈ ∆2.

Our basic question is whether the τ(LΦ
∗

, LΦ)-lower semicontinuity and continuity
of convex functions are still characterised by sequential convergence in probability
on bounded sets. At this point, we note that there are two possible interpretations of
“bounded sets”; norm bounded sets, and order bounded sets, that is, those A ⊂ LΦ

∗

contained in an order interval [−ζ, ζ] := {ξ : −ζ ≤ ξ ≤ ζ}, ζ ∈ LΦ
∗

+ , i.e. dominated in
LΦ

∗

. Every order bounded set is norm bounded, and in L∞, the two notions of bound-
edness coincide. This paper is concerned with the latter; we ask if the Mackey lsc and
continuity of convex functions f on LΦ

∗

are characterised by sequential dominated
convergence in P, or explicitly if those are equivalent respectively to

ξn → ξ in P and ∃ζ ∈ LΦ
∗

+ with ∀n, |ξn| ≤ ζ ⇒ f (ξ) ≤ lim inf
n

f (ξn);(1.2)

ξn → ξ in P and ∃ζ ∈ LΦ
∗

+ with ∀n, |ξn| ≤ ζ ⇒ f (ξ) = lim
n

f (ξn).(1.3)
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The question of lower semicontinuity is equivalent to ask if the following is sufficient
for the σ(LΦ

∗

, LΦ)-closedness of convex sets C ⊂ LΦ
∗

(the necessity is clear):

∀ζ ∈ LΦ
∗

, C ∩ [−ζ, ζ] is closed in L0.(1.4)

Note that (1.2) (resp. (1.3)) is equivalent to the order lower semicontinuity (resp.
continuity) in the Riesz space LΦ

∗

, and (1.4) is the order closedness in LΦ
∗

; we can
replace the convergence in P by a.s. convergence, and since LΦ

∗

is super Dedekind
complete, the order lsc, continuity and closedness are the same as the sequential ones,
while the sequential order convergence is the dominated a.s. convergence. Also, LΦ

is isomorphic to the Riesz space of order continuous linear functionals on LΦ
∗

(order
continuous dual), so the question of lower semicontinuity is asking if every order lsc
proper convex function on LΦ

∗

is represented by order continuous linear functionals.
This question was first asked by [5] in the context of convex risk measures. They

argued that the weak* topology σ(LΦ
∗

, LΦ) has the following property:

ξα
σ(LΦ

∗
,LΦ)

−→ ξ ⇒

∃(αn)n, ∃ζn ∈ conv(ξαn , ξαn+1 , ...) s.t.

supn |ζn| ∈ LΦ
∗

and ζn → ξ a.s.,
(C)

and concluded that (1.4) implies the σ(LΦ
∗

, LΦ)-closedness. Unfortunately, this is not
correct; (C) holds (if and) only if LΦ is reflexive ([10]). For, (ζn)n in (C) converges
in σ(LΦ

∗

, LΦ), thus (C) would imply that every point in the weak* closure C̄∗ is a
sequential weak* limit of points of C, i.e. C̄∗ coincides with the sequential weak*
closure C(1) := {ξ : ξ = w∗- limn ξn with (ξn)n ⊂ C}. On the other hand, every non-
reflexive Banach space admits a convex set C in the dual with C̄∗ ) C(1) ([18, Th. 2],
see also [17] for the history of problem of sequential weak* closures which goes back
to Banach [4]).

Nevertheless, we shall show that convex sets C ⊂ LΦ
∗

satisfying (1.4) are indeed
σ(LΦ

∗

, LΦ)-closed. For this purpose, we give a Komlós type result with an extra prop-
erty that a resulting sequence of convex combinations is order bounded (Theorem 3.6
and its practical version Corollary 3.10), which serves as a substitute for (C), proving
the claim on closedness. Consequently, τ(LΦ

∗

, LΦ)-lsc of a proper convex function
on LΦ

∗

is indeed equivalent to (1.2). We also prove the equivalence of τ(LΦ
∗

, LΦ)-
continuity and (1.3).

2 Mackey Topology on Orlicz Spaces

The following criterion for σ(LΦ, LΦ
∗

)-compact sets is known (e.g. [19], Th. IV.5.1),
but we include a short proof in the Appendix. Here the ∆2-condition is not necessary.

Lemma 2.1. (Regardless of Φ ∈ ∆2,) a set A ⊂ LΦ is relatively σ(LΦ, LΦ
∗

)-compact
if and only if for each ξ ∈ LΦ

∗

, Aξ := {ηξ : η ∈ A} is uniformly integrable.

Lemma 2.2. τ(LΦ
∗

, LΦ) is finer than the restriction of τL0 to LΦ
∗

, and

(2.1) ∀ζ ∈ LΦ
∗

, τ(LΦ
∗

, LΦ)|[−ζ,ζ] = τL0 |[−ζ,ζ].

In particular, τ(LΦ
∗

, LΦ) is metrisable on order bounded sets. If Φ ∈ ∆2, we have

(2.2) σ(LΦ
∗

, LΦ)|BΦ∗ ⊂ τL0 |BΦ∗ ⊂ τ(LΦ
∗

, LΦ)|BΦ∗ .
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Proof. The (image in LΦ) of BL∞ is σ(LΦ, LΦ
∗

)-compact, which defines a Mackey
continuous seminorm ξ 7→ supη∈BL∞

|E[ξη]| = E[|ξ|] ≥ E[|ξ| ∧ 1], thus τ(LΦ
∗

, LΦ) is
finer than the restriction of τL0 . On the other hand, if a sequence (ξn)n is dominated
by ζ ∈ LΦ

∗

and null in P, then for any σ(LΦ, LΦ
∗

)-compact set A ⊂ LΦ, one has
supη∈A P(|η| ∨ |ζ | > N) ≤ 1

N (supη∈A ‖η‖Φ + ‖ζ‖Φ∗)→ 0, and

pA(ξn) := sup
η∈A
|E[ηξn]| ≤ sup

η∈A
E[|ηζ |1{|η|∨|ζ |>N}] + N2E[|ξn| ∧ 1], ∀N ∈ N.

Using a standard diagonalisation procedure, we have pA(ξn) → 0, and we see that
τ(LΦ

∗

, LΦ)|[−ζ,ζ] ⊂ τL0 |[−ζ,ζ] since τL0 is metrisable. Finally, if Φ ∈ ∆2, so LΦ
∗

= (LΦ)′,
BΦ∗ is σ(LΦ

∗

, LΦ)-compact, thus ηBΦ∗ , η ∈ LΦ, are uniformly integrable. Thus ξn ∈

BΦ∗ and ξn → ξ in P imply E[ηξn] → E[ηξ] (∀η ∈ LΦ), i.e. ξn → ξ in σ(LΦ
∗

, LΦ);
thus we have (2.2).

Remark 2.3. On BΦ∗ , τ(LΦ
∗

, LΦ) is not generally the same as the topology of L0. For
example, if An ∈ F are disjoint with P(An) > 0, ξn = P(An)−1/21An form a sequence in
BL2 , null in P, but ‖ξn‖2 ≡ 1, while τ(L2, L2) is the norm topology. �

Proposition 2.4. If Φ ∈ ∆2, the following are equivalent for all convex C ⊂ LΦ
∗

:

(1) C is σ(LΦ
∗

, LΦ)-closed;
(2) C is sequentially σ(LΦ

∗

, LΦ)-closed;
(3) for each λ > 0, C ∩ λBΦ∗ is closed in L0, or equivalently, ξn ∈ C (∀n), ξn → ξ in P

and supn ‖ξn‖Φ∗ < ∞ imply ξ ∈ C.

Proof. By the Krein-Šmulian theorem, (1)⇔ C∩λBΦ∗ , λ > 0, are σ(LΦ
∗

, LΦ)-closed,
and the three kinds of closedness are the same for C ∩ λBΦ∗ by (2.2).

3 Main Results

In the sequel, we suppose without mention that Φ ∈ ∆2 so that LΦ
∗

= (LΦ)′.

3.1 Komlós-Type Results

The classical Komlós theorem [13] asserts that any norm bounded sequence (ξn)n in
L1 admits a subsequence (ξnk)k as well as a ξ ∈ L1 such that for any further subse-
quence (ξnk(i))i, the sequence of Cesàro means 1

N

∑
i≤N ξnk(i) converges a.s. to ξ. Note

that any norm bounded sequence in LΦ
∗

is bounded in L1. The core of our analysis
consists of a few ramifications of Komlós’s theorem using the stronger boundedness
in LΦ

∗

.
We start with some preliminary observations. Recall thatΦ ∈ ∆2 if and only if pΦ =

infx≥0 pΦ(x) < ∞ where pΦ(x) = supy>x
yΦ′(y)
Φ(y) (see (1.1)). Let qΦ := limx→∞

pΦ(x)
pΦ(x)−1 =

pΦ
pΦ−1 > 1 with the convention 1/0 = ∞.
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Lemma 3.1. For any 1 ≤ q < qΦ, LΦ
∗

has an upper q-estimate, that is, there exists
a constant Cq,Φ∗ > 0 such that for any n ∈ N and disjointly supported ξ1, ..., ξn ∈ LΦ

∗

(i.e. ξk = ξk1Ak with Ak ∈ F pairwise disjoint),∥∥∥∥∥∥∑
k≤n

ξk

∥∥∥∥∥∥
(Φ∗)

≤ Cq,Φ∗

(∑
k≤n

‖ξk‖
q
(Φ∗)

)1/q

.(3.1)

Proof. The case q = 1 is trivial (we can take Cq,Φ∗ = 1), and note that 1 < q < pΦ
pΦ−1 if

and only if q =
p

p−1 for some p ∈ (pΦ(x0),∞) and x0 > 0. Fix such q, p and x0. Then

Ψ (x) := Φ(x0)
x0

x1[0,x0](x) + Φ(x)1(x0,∞)(x) is a ∆2-Young function with Ψ (x) = Φ(x) for
x ≥ x0, thus LΨ = LΦ with equivalent norms (since (Ω,F ,P) is a probability space,
see [19], Th. V.1.3); hence there exists a C > 0 such that

(3.2) C−1‖ · ‖(Ψ∗) ≤ ‖ · ‖(Φ∗) ≤ C‖ · ‖(Ψ∗).

Moreover, Ψ (x) > 0 for x > 0 and pΨ (0) = 1 ∨ pΦ(x0) = pΦ(x0) < p < ∞; in
particular, for any λ ≥ 1 and x > 0, log Ψ (λx)

Φ(x) =
∫ λ

1
txΨ ′(tx)
Ψ (tx)

dt
t ≤ p log λ, hence

(3.3) Ψ (λx) ≤ λpΨ (x) for x > 0, λ ≥ 1.

Therefore 1 = E[Ψ (η/‖η‖Ψ )] ≤ ‖η‖−p
Ψ E[Ψ (η)] for 0 < ‖η‖Ψ ≤ 1, where the first

equality is another consequence of Φ ∈ ∆2. Hence we have

(3.4) ‖η‖Ψ ≤ E[Ψ (η)]1/p for all η ∈ BΨ .

Now if ξk = ξk1Ak ∈ LΦ
∗

= LΨ
∗

with Ak ∈ F disjoint, then for any η ∈ BΨ ,

E
[(∑

k≤n

ξk

)
η

]
≤

∑
k≤n

‖ξk‖(Ψ∗)‖η1Ak‖Ψ
(3.4)
≤

∑
k≤n

‖ξk‖(Ψ∗)E[Ψ (η)1Ak]
1/p

≤

(∑
k≤n

‖ξk‖
q
(Ψ∗)

)1/q(∑
k≤n

E[Ψ (η)1Ak]

)1/p

≤

(∑
k≤n

‖ξk‖
q
(Ψ∗)

)1/q

,

since
∑

k≤n E[Ψ (η)1Ak] ≤ E[Ψ (η)] ≤ 1. Taking the supremum over η ∈ BΨ ,

1
C

∥∥∥∥∥∥∑
k≤n

ξk

∥∥∥∥∥∥
(Φ∗)

(3.2)
≤

∥∥∥∥∥∥∑
k≤n

ξk

∥∥∥∥∥∥
(Ψ∗)

≤

(∑
k≤n

‖ξk‖
q
(Ψ∗)

) 1
q (3.2)
≤ C

(∑
k≤n

‖ξk‖
q
(Φ∗)

) 1
q

.

Corollary 3.2. If (ξn)n is a norm bounded disjointly supported sequence in LΦ
∗

, then

sup
n

∣∣∣∣∣ξ1 + · · · + ξn

n

∣∣∣∣∣ ∈ LΦ
∗

and
∥∥∥∥∥ξ1 + · · · + ξn

n

∥∥∥∥∥
Φ∗
→ 0.

Proof. Let ξn = ξn1An with An ∈ F disjoint, a := supn ‖ξn‖(Φ∗) < ∞, 1 < q < qΦ,
and C = Cq,Φ∗ as in Lemma 3.1. Put ξ̄n := ξ1+···+ξn

n . Then ‖ξ̄n‖(Φ∗) ≤ aC (nn−q)1/q =

aCn
1
q−1
→ 0. Next, observe that

sup
n≤N
|ξ̄n| =

∑
k≤N

(
sup
n≤N
|ξ̄n|

)
1Ak =

∑
k≤N

(
sup

k≤n≤N

1
n
|ξk|

)
1Ak =

∑
k≤N

1
k
|ξk|,

while
∥∥∥∑k≤N

1
kξn

∥∥∥
(Φ∗)
≤ aC

(∑
k≤N

1
kq

)1/q
≤ aC

(∑∞
k=1

1
kq

)1/q
< ∞, hence ‖ supn |ξ̄n|‖(Φ∗) =

supN ‖ supn≤N |ξ̄n|‖(Φ∗) < ∞.
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A sequence (ξ̄n)n is called a sequence of forward convex combinations of (ξn)n if
ξ̄n ∈ conv(ξk; k ≥ n) for each n. Noting that ξ̄n =

ξn+1+···+ξ2n

n = 2 ξ1+···+ξ2n

2n −
ξ1+···+ξn

n ∈

conv(ξn, ξn+1, ...), we get:

Corollary 3.3. Any norm bounded disjoint sequence (ξn)n in LΦ
∗

has an order bounded
and norm null sequence of forward convex combinations ξ̄n ∈ conv(ξk; k ≥ n).

Since any subsequence of norm bounded disjoint sequence is again bounded and
disjoint, the same conclusion holds for any subsequence; thus

Corollary 3.4. Any norm bounded disjoint sequence in LΦ
∗

is σ(LΦ
∗

, (LΦ
∗

)′)-null.

Remark 3.5. The last two corollaries could be derived also from the fact that the
norm dual E′ of a Banach lattice E has order continuous norm iff every norm bounded
disjoint sequence in E is σ(E, E′)-null ([20, Th. 116.1] or [14, Th. 2.4.14]). In LΦ

∗

,
(ξn)n is disjoint in the lattice sense iff it is disjointly supported, while (LΦ

∗

)′ = LΦ ⊕
(LΦ

∗

)∼s , where (LΦ
∗

)∼s is the band of singular linear functionals. The projections of
(LΦ

∗

)′ onto LΦ and onto (LΦ
∗

)∼s are order continuous (e.g. [3]). But (LΦ
∗

)∼s is an AL
space, hence has order continuous norm (regardless of ∆2; e.g. [20, Th. 133.6]), thus
Φ ∈ ∆2 implies that ‖ · ‖(LΦ∗ )′ is order continuous (⇔ ‖ · ‖(LΦ∗ )′ |LΦ = ‖ · ‖(Φ) is order
continuous), so any bounded disjoint sequence is weakly null. �

We now come to the core of the paper. We first state the basic version of our
Komlós type result, then a few (practically more useful) consequences will follow.

Theorem 3.6. If (ξn)n is a norm bounded sequence in LΦ
∗

, converging in P to some
ξ ∈ LΦ

∗

, then there exists a subsequence (ξnk)k such that for any further subsequence
(ξnk(i))i, the Cesàro means 1

N

∑
k≤N ξnk(i) converge in order to ξ, i.e.

sup
N

∣∣∣∣∣∣ 1
N

∑
i≤N

ξnk(i)

∣∣∣∣∣∣ ∈ LΦ
∗

and
1
N

∑
i≤N

ξnk(i)

N
→ ξ a.s.(3.5)

Here the original bounded sequence (ξn)n is supposed to converge in P, which is
needed to ensure that the Cesàro means themselves of any subsequence converge in
order. Without this a priori assumption, we still have a slightly weaker conclusion.

Theorem 3.7. Any norm bounded sequence (ξn)n in LΦ
∗

admits a subsequence (ξnk)k

as well as ξ ∈ LΦ
∗

such that for any subsequence (ξnk(i))i, the sequence of Cesàro
means 1

N

∑
k≤N ξnk(i) has a subsequence order convergent to ξ, i.e. there is a sequence

(Nl)l with supl

∣∣∣∣ 1
Nl

∑
i≤Nl

ξnk(i)

∣∣∣∣ ∈ LΦ
∗

and 1
Nl

∑
i≤Nl

ξnk(i) → ξ a.s.

Lemma 3.8 (cf. [16]). If ξn → 0 in P and if (Φ∗(ξn))n is uniformly integrable, there
exists a subsequence (ξnk)k such that supk |ξnk | ∈ LΦ

∗

.

Proof. The assumption implies E[Φ∗(ξn)] → 0, so there is a subsequence (ξnk)k such
that

∑
k E[Φ∗(ξnk)] < ∞. Noting that Φ∗(|η| ∨ |η′|) = Φ∗(η)1{|η|>|η′ |} + Φ∗(η′)1{|η|≤|η′ |} ≤

Φ∗(η) +Φ∗(η′), a simple induction and the monotone convergence theorem show that

E
[
Φ∗

(
sup

k
|ξnk |

)]
≤ lim

m
E
[
Φ∗

(
sup
k≤m
|ξnk |

)]
≤ lim

m

∑
k≤m

E[Φ∗(ξnk)] ≤
∞∑

k=1

E[Φ∗(ξnk)] < ∞.

Hence supk |ξnk | ∈ LΦ
∗

.
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Proof of Theorems 3.6 and 3.7. Let (ξn)n be a norm bounded sequence in LΦ
∗

which
is also bounded in L1. In view of Komlós’s theorem, we can find a subsequence, still
denoted by (ξn)n, and a ξ ∈ L1 such that the Cesàro means of any further subsequence
converges a.s. to ξ; then ξ ∈ LΦ

∗

by Fatou’s lemma. We can normalise (ξn)n so that ξ =

0 and ‖ξn‖Φ∗ ≤ 1 (⇔ E[Φ∗(ξn)] ≤ 1). Then the Kadec–Pełczyński theorem (e.g. [1,
Lemma 5.2.8]) applied to the bounded sequence (Φ∗(ξn))n yields a subsequence (ζn)n

of (ξn) as well as a disjoint sequence (An)n in F such that (Φ∗(ζn1Ac
n
))n is uniformly

integrable. Let ζr
n := ζn1Ac

n
and ζ s

n := ζn1An so that ζn = ζr
n + ζ s

n.
Now if the original sequence (ξn)n converges in P (to 0 by the reduction above),

then (ζn)n ⊂ (ξn)n as well as (ζr)n are null in P. Since (Φ∗(ζr
n))n is uniformly integrable,

Lemma 3.8 yields a subsequence (nk)k of positive integers such that η′ := supk |ζ
r
nk
| ∈

LΦ
∗

. On the other hand, (ζ s
n)n (and any of its subsequence) is a norm bounded disjoint

sequence, hence Corollary 3.2 shows that for any subsequence (k(i))i,

sup
N

∣∣∣∣∣∣∣ 1
N

∑
i≤N

ζnk(i)

∣∣∣∣∣∣∣ ≤ sup
N

∣∣∣∣∣∣∣ 1
N

∑
i≤N

ζr
nk(i)

∣∣∣∣∣∣∣ + sup
N

∣∣∣∣∣∣∣ 1
N

∑
i≤N

ζ s
nk(i)

∣∣∣∣∣∣∣ ≤ η′ + sup
N

∣∣∣∣∣∣∣ 1
N

∑
i≤N

ζnk(i)

∣∣∣∣∣∣∣ ∈ LΦ
∗

.

Since 1
N

∑
i≤N ζnk(i) → 0 a.s. by construction, we have Theorem 3.6.

Next, if (ζn)n is not null in P, we can no longer hope for a “universal bound” for
the regular part (ζr

n)n. However, once a subsequence (nk)k is chosen we get

ζ̄N :=
1
N

∑
k≤N

ζnk =
1
N

∑
k≤N

ζr
nk

+
1
N

∑
k≤N

ζ s
nk

=: ζ̄r
N + ζ̄ s

N → 0 in P,

by the construction of (ζn)n. Again by Corollary 3.2, (ζ̄ s
N)N is order bounded and norm

null. In particular, ζ̄r
N = ζ̄N− ζ̄

s
N → 0 in P, and (Φ∗(ζ̄r

N))N is uniformly integrable since
Φ∗ is convex. Thus by Lemma 3.8, we find a subsequence (N(i))i such that (ζ̄r

N(i))i,
hence (ζ̄N(i))i = (ζ̄r

N(i) + ζ̄ s
N(i))i too, are order bounded.

Note that with the notation and reduction in the proof, any subsequence (ζ̄Nk)k of
(ζ̄N)N , not necessarily the one just constructed, inherits the property that ζ̄r

Nk
→ 0 in P

and (Φ∗(ζ̄r
Nk

))k is uniformly integrable; thus (ζ̄Nk)k contains a further subsequence that
converges in order, hence in τ(LΦ

∗

, LΦ) by (2.1). This yields:

Corollary 3.9. Any norm bounded sequence (ξn)n in LΦ
∗

admits a subsequence (ξnk)k

as well as ξ ∈ LΦ
∗

such that for any further subsequence (nk(i))i, 1
N

∑
i≤N ξnk(i) → ξ in

τ(LΦ
∗

, LΦ).

Note that convex combinations of convex combinations are convex combinations,
and any norm bounded sequence in LΦ

∗

admits a sequence of forward convex combi-
nations that converges a.s. to some ξ ∈ LΦ

∗

by Komlós’s theorem (cf. the first part of
the proof of Theorems 3.6 and 3.7). We thus deduce the following practically most
useful corollary of Theorem 3.6.

Corollary 3.10. Any norm bounded sequence (ξn)n in LΦ
∗

admits a sequence of for-
ward convex combinations ξ̄n ∈ conv(ξk; k ≥ n) as well as a ξ ∈ LΦ

∗

such that ξ̄n → ξ
in order, i.e. supn |ξ̄n| ∈ LΦ

∗

and ξ̄n → ξ a.s.
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On the other hand, Cesàro means of Cesàro means are not Cesàro means, of course.
At the moment, it is not clear if one can drop the a priori assumption of convergence
in P in Theorem 3.6, or equivalently whether the Cesàro means in Theorem 3.7 are
order bounded without passing to further subsequence. This question will be studied
in future work.

3.2 Closedness of Convex Sets

Now we deduce from Corollary 3.10 that

Theorem 3.11. A convex subset C ⊂ LΦ
∗

is σ(LΦ
∗

, LΦ)-closed if and only if for every
ζ ∈ LΦ

∗

, the intersection C ∩ [−ζ, ζ] is closed in L0 (i.e. order closed).

Proof. The necessity is clear since [−ζ, ζ] is closed in L0 and τ(LΦ
∗

, LΦ)|[−ζ,ζ] =

τL0 |[−ζ,ζ]. For the sufficiency, it suffices that for each λ > 0, C ∩ λBΦ∗ is closed in
L0 (Proposition 2.4). Take a sequence (ξn)n in C ∩ λBΦ∗ and suppose ξn → ξ in P.
Fatou’s lemma already implies that ξ ∈ λBΦ∗ . Corollary 3.10 provides us with a se-
quence ξ̄n ∈ conv(ξk; k ≥ n) with ζ := supn |ξ̄n| ∈ LΦ

∗

, and ξ̄n → ξ a.s. The new
sequence (ξ̄n)n lies in C ∩ [−ζ, ζ] by convexity. But C ∩ [−ζ, ζ] is τL0-closed, hence
ξ ∈ C ∩ [−ζ, ζ] ∩ λBΦ∗ .

To the best of our knowledge, this criterion for the weak*-closedness is only known
for solid sets (i.e. A ⊂ LΦ

∗

with ζ ∈ A and |ξ| ≤ |ζ | ⇒ ξ ∈ A); see [2, Th. 4.20].
But convex functions with solid lower level sets are symmetric, so exclude all non-
trivial monotone convex functions, especially convex risk measures. Also, since
σ(LΦ

∗

, LΦ)|[−ζ,ζ] ⊂ τL0 |[−ζ,ζ] = τ(LΦ
∗

, LΦ)|[−ζ,ζ], ζ ∈ LΦ
∗

(by (2.1) and (2.2)), the condi-
tion is also equivalent to: C ∩ [−ζ, ζ], ζ ∈ LΦ

∗

, are σ(LΦ
∗

, LΦ)-closed.

Remark 3.12. After our results were presented in Vienna Congress on Mathematical
Finance, 12–14 September 2016 (https://fam.tuwien.ac.at/events/vcmf2016/), and af-
ter a discussion with Niushan Gao, he and his collaborators [9] came up with their
own proof of Theorem 3.11. They used a different technique which in our opinion
will not yield a Komlós type theorem. The problem to get a Komlós type theorem
was suggested by Hans Föllmer during the aforementioned Vienna conference. �

While the Mackey and weak* closed convex sets in the dual of a Banach space are
the same, sequentially Mackey closed convex sets need not be (sequentially) weak*
closed. For instance, A = {(αn)n ∈ `

1 : α1 =
∑

n≥2 αn} is norm closed but not se-
quentially weak* closed in `1 = (c0)′ (see [4]), while τ(`1, c0) and norm convergences
are equivalent for sequences; thus A is sequentially Mackey closed. In our situation,
however, since τ(LΦ

∗

, LΦ)|[−ζ,ζ] = τL0 |[−ζ,ζ], ζ ∈ LΦ
∗

, are metrisable, Theorem 3.11
implies that

Corollary 3.13. Sequentially τ(LΦ
∗

, LΦ)-closed convex sets in LΦ
∗

are τ(LΦ
∗

, LΦ)-
closed.

Now the dual representation of proper convex functions on LΦ
∗

, or equivalently the
σ(LΦ

∗

, LΦ)-lsc (⇔ τ(LΦ
∗

, LΦ)-lsc), is characterised as follows.

https://fam.tuwien.ac.at/events/vcmf2016/
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Theorem 3.14. For a proper convex function f on LΦ
∗

, the following are equivalent:

(1) f is σ(LΦ
∗

, LΦ)-lsc, or equivalently f (ξ) = supη∈LΦ(E[ηξ] − f ∗(η)), ξ ∈ LΦ
∗

;
(2) f is sequentially τ(LΦ

∗

, LΦ)-lsc;
(3) f is τL0-lsc on every order interval [−ζ, ζ] (ζ ∈ LΦ

∗

), or equivalently order lsc:
f (ξ) ≤ lim infn f (ξn) whenever ξn → ξ a.s. and (ξn)n is order bounded in LΦ

∗

, i.e.
∃ζ ∈ LΦ

∗

+ with |ξn| ≤ ζ for all n.

For the τ(LΦ
∗

, LΦ)-continuity, we have

Theorem 3.15. For any convex function f : LΦ
∗

→ R, the following are equivalent:

(1) f is τ(LΦ
∗

, LΦ)-continuous on LΦ
∗

;
(2) f is sequentially τ(LΦ

∗

, LΦ)-continuous on LΦ
∗

;
(3) f is sequentially τ(LΦ

∗

, LΦ)-continuous on closed balls λBΦ∗ (λ > 0);
(4) f is sequentially τ(LΦ

∗

, LΦ)-continuous on order intervals;
(5) f is τL0-continuous on order intervals, or equivalently order continuous, i.e. f (ξ) =

limn f (ξn) whenever ξn → ξ a.s. and (ξn)n is order bounded in LΦ
∗

.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) are trivial; (4) ⇔ (5) since τ(LΦ
∗

, LΦ) coincides on
order bounded sets with τL0 . Suppose (5). Then, by Theorem 3.14, f = f ∗∗, so by
Moreau’s theorem [15], it suffices that each Λc := {η ∈ LΦ : f ∗(η) ≤ c}, c ∈ R, is
σ(LΦ, LΦ

∗

)-compact. By Young’s inequality, for any λ > 0, ξ ∈ LΦ
∗

and η ∈ Λc,

(3.6) |E[ηξ1A]| = E[ηξ1A] ∨ E[η(−ξ)1A] ≤
1
λ

( f (λξ1A) ∨ f (−λξ1A) + c)

which implies that Λcξ, ξ ∈ LΦ
∗

, are uniformly integrable, thus Λc is σ(LΦ, LΦ
∗

)-
compact. For if Λcξ were not uniformly integrable, there would be ε > 0, An ∈ F
and ηn ∈ Λc such that P(An) ≤ 2−n and |E[ηnξ1An]| ≥ ε; here note that E[|ζ |1A] ≥ 2ε
implies either |E[ζ1A∩{ζ>0}]| ≥ ε or |E[ζ1A∩{ζ<0}]| ≥ ε and P(A ∩ {ζ ≷ 0}) ≤ P(A). But
since |λξ1An | ≤ λ|ξ| and λξ1An → 0 in P for each λ > 0, (5) and (3.6) together with a
diagonal argument shows that |E[ηnξ1An]| → 0, a contradiction.

The property that f is (sequentially) τL0-continuous on every closed ball implies
(via (5)) the Mackey continuity of f . The converse implication holds for all finite
convex functions if and only if τ(LΦ

∗

, LΦ)|BΦ∗ = τL0 |BΦ∗ . Indeed, seminorms generat-
ing the Mackey topology are finite valued Mackey continuous convex functions. As
we saw in Remark 2.3, this is not the case if Φ(x) = x2; more generally, it fails when-
ever Φ∗ ∈ ∆2 (then LΦ is reflexive). Precisely when τ(LΦ

∗

, LΦ) coincide with τL0 on
BΦ∗ is a subtle question which is left for further investigation.

Remark 3.16. In the proof of (5) ⇒ (1), we only used the facts that f = f ∗∗ and
f |[−ζ,ζ] is τL0-continuous at 0, from which we derived that f is τ(LΦ

∗

, LΦ)-continuous
at 0. Thus if f is a priori supposed to be σ(LΦ

∗

, LΦ)-lsc on LΦ
∗

(or any of its equiv-
alent properties in Theorem 3.14), and f (ξ0) < ∞ (we can suppose ξ0 = 0 by trans-
lation), the following remain equivalent: (1′) f is τ(LΦ

∗

, LΦ)-continuous at ξ0, (2′) f
sequentially τ(LΦ

∗

, LΦ)-continuous at ξ0, (3′) f (ξ) = limn f (ξn) whenever ξn → ξ0 in
τ(LΦ

∗

, LΦ) and supn ‖ξn‖Φ∗ < ∞, (4′) the same but with |ξn| ≤ ζ for some ζ ∈ LΦ
∗

, (5′)
the same but with ξn → ξ0 in P and |ξn| ≤ ζ for some ζ ∈ LΦ

∗

+ . �



10 F. Delbaen and K. Owari

3.3 Application to Monetary Utility Functions

In utility theory, concave functions u : LΦ
∗

→ R ∪ {−∞} satisfying the following
properties are called monetary utility functions (see e.g. [7, 8]):

u(0) = 0; ξ ∈ LΦ
∗

, ξ ≥ 0 ⇒ u(ξ) ≥ 0;(3.7)

a ∈ R, ξ ∈ LΦ
∗

⇒ u(ξ + a) = u(ξ) + a.(3.8)

Since −u is a convex function, which is called a convex risk measure, Theorems 3.14
and 3.15 with obvious change of sign characterise the basic regularities of u for the
Mackey topology τ(LΦ

∗

, LΦ). (3.7) and (3.8) then give an even better description.

Theorem 3.17. A monetary utility function u : LΦ
∗

→ R ∪ {−∞} is σ(LΦ
∗

, LΦ)-upper
semicontinuous (or what is the same, τ(LΦ

∗

, LΦ)-upper semicontinuous) if and only if
it is continuous from above:

ξn ↓ ξ ⇒ u(ξ) = lim
n

u(ξn).(3.9)

In this case, the dual representation of u can be written as

(3.10) u(ξ) = inf{EQ[ξ] + c(Q) : c(Q) < ∞},

where Q runs through probabilities absolutely continuous w.r.t. P with dQ/dP ∈ LΦ,
c(Q) = (−u)∗(−dQ/dP) and EQ[ξ] = E[ξdQ/dP].

Proof. The necessity is clear from Theorem 3.14 since ξn ↓ ξ implies ξn → ξ in order.
For the sufficiency, we first show that (3.7)–(3.9) imply that u is monotone, i.e.

(3.11) ξ, η ∈ LΦ
∗

, ξ ≤ η ⇒ u(ξ) ≤ u(η)

We can suppose u(ξ) = 0 thanks to (3.8). For each ε ∈ (0, 1), let αε = (1−ε)/ε so that
ζε := η+εξ−+αε(η+εξ−−ξ) ≥ 0. Putting λε := αε/(1+αε) ∈ (0, 1), we have η+εξ− =

λεξ+ (1−λε)ζε, hence by the concavity, u(η+εξ−) ≥ λεu(ξ) + (1−λε)u(ζε) ≥ 0. Then
(3.9) shows that u(η) = limn u(η+n−1ξ−) ≥ 0 = u(ξ). Now by Theorem 3.14 applied to
the convex function −u, the σ(LΦ

∗

, LΦ)-upper semicontinuity of u is equivalent to the
property that u(ξ) ≥ lim supn u(ξn) whenever ξn → ξ a.s. and (ξn)n is order bounded
in LΦ

∗

; given the monotonicity (3.11) of u, this is equivalent to (3.9). That the dual
representation of f = −u together with (3.7) and (3.8) yields (3.10) is standard.

Note that if u is finite valued (R-valued), (3.7) and (3.8) still imply (3.11) without
assuming (3.9). For ε 7→ u(η + εξ−) is continuous as a finite valued convex function
on R. One can easily see also that any monetary utility function that is τ(LΦ

∗

, LΦ)-
continuous at 0 is finite valued. For such u, Theorem 3.15 yields that

Theorem 3.18. A monetary utility function u : LΦ
∗

→ R is τ(LΦ
∗

, LΦ)-continuous if
(and only if) it is continuous from below, i.e. ξn ↑ ξ⇒ u(ξ) = limn u(ξn).

Proof. Given that u is finite, monotone and convave, the continuity from below im-
plies the continuity from above. For if ξn ↓ ξ, then u(ξ) ≥ 1

2u(ξn) + 1
2u(2ξ − ξn) by the

concavity, so the continuity from below and the monotonicity imply 0 ≤ u(ξn)−u(ξ) ≤
u(ξ)− u(2ξ − ξn) ↓ 0 since 2ξ − ξn ↑ ξ. In particular, u is σ(LΦ

∗

, LΦ)-usc. On the other
hand, again by the monotonicity, the continuity of u from below is equivalent to the
property that u(ξ) = limn u(ξn) whenever ξn → ξ a.s. and (ξn)n is order bounded in
LΦ

∗

. The result now follows from Theorem 3.15.
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Appendix

Proof of Proposition 1.2. Only (3) ⇒ (1) deserves a proof. (3) implies, by Proposi-
tion 1.1, f = f ∗∗, and |E[η1A]| ≤ 1

n ( f (n1A) ∨ f (−n1A) + c) for A ∈ F and η ∈ L1

with f ∗(η) ≤ c by Young’s inequality; thus (3) implies that {η ∈ L1 : f ∗(η) ≤ c} is
uniformly integrable, hence σ(L1, L∞)-compact by the Dunford-Pettis theorem. Now
Moreau’s theorem [15] shows that f is τ(L∞, L1)-continuous.

Proof of Lemma 2.1. For each ξ ∈ LΦ
∗

, the mapping η 7→ ηξ, (LΦ, σ(LΦ, LΦ
∗

)) →
(L1, σ(L1, L∞)) is continuous since ξζ ∈ L1, ∀ζ ∈ L∞. Thus if A is relativelyσ(LΦ, LΦ

∗

)-
compact, its image Aξ is relatively weakly compact in L1, i.e. uniformly integrable.
For the converse, it suffices that the uniform integrability of Aξ (ξ ∈ LΦ

∗

) implies
that A is pointwise bounded in the algebraic dual (LΦ

∗

)# of LΦ
∗

(this is clear), and
its σ((LΦ

∗

)#, LΦ
∗

)-closure lies in LΦ. If (ηα)α is a net in A with the pointwise limit
f (ξ) = limα E[ηαξ], f |L∞ is the pointwise limit of ηα|L∞ ∈ L1. Since A is uniformly
integrable⇔ relatively weakly compact in L1, there is an η0 ∈ L1 with f (ξ) = E[η0ξ],
∀ξ ∈ L∞. For any ξ ∈ LΦ

∗

, ζ ∈ BL∞ and n ≥ 1,

E[η0ξζ1{|ξ|≤n}] = f (ξζ1{|ξ|≤n}) ≤ sup
α

E[ηαξζ1{|ξ|≤n}] ≤ sup
η∈A

E[|ηξ|] =: cξ < ∞,

so E[|η0ξ|] = supn≥1,ζ∈BL∞
E[η0ξζ1{|ξ|≤n}] ≤ cξ < ∞, hence η0 ∈ LΦ. Finally, for each

ξ ∈ LΦ
∗

, | f (ξ)− f (ξ1{|ξ|≤n})| ≤ supη∈A E[|ηξ|1{|ξ|>n}]→ 0 by the uniform integrability of
Aξ, hence f (ξ) = limn E[η0ξ1{|ξ|≤n}] = E[η0ξ] since ξ1{|ξ|≤n} → ξ in P and |ξ1{|ξ|≤n}| ≤

|ξ| ∈ LΦ
∗

.
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