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Information in (and not in) Treasury Options

Abstract

This paper studies the impact of variance risk in the Treasury market on both
term premia and the shape of the yield curve. Under minimal assumptions
shared by standard structural and reduced-form asset pricing models, I show
that an observable proxy of variance risk in the Treasury market can be con-
structed via a portfolio of Treasury options. The observable variance risk has
the ability to explain the time variation in term premia, but is largely unre-
lated to the shape of the yield curve. Using the observable variance risk, I also
propose a new representation of no-arbitrage term structure models. All the
pricing factors in the model are observable, tradable, and hence economically
interpretable. The representation can also accommodate both unspanned macro
risks and unspanned stochastic volatility in the term structure literature.



1 Introduction

What is the role of variance risk in the Treasury market? How big is its impact on the

risk-return trade-off? How does it affect the shape of the yield curve? What kind of

macroeconomic uncertainty drives it? The first step to addressing these questions is to

identify the variance risk in the Treasury market. In this paper, I suggest a novel approach

to identifying variance risk, by utilizing information in Treasury bond options to answer the

above questions.

I first show that variance risk can be proxied by implied variance measures from bond

option markets and that this is true under a set of mild assumptions which are shared by

many well-known structural and reduced form asset pricing models. Specifically, I prove

that a bond VIX2 (a portfolio of Treasury options constructed akin to the VIX2 in the

equity market1) represents the variance risk in the Treasury market under the assumptions

that (i) the short-term interest rate is a linear function of the state variables and (ii) the

state follows an affine diffusion process under the risk-neutral measure. In other words, the

bond VIX2s span time-varying variances in Treasury yields under the two assumptions. As

a consequence, the impact of variance risk on both term premia and the shape of the yield

curve is directly measurable via the observable variance risk: the bond VIX2s. Using this

theoretical framework, I obtain the following three novel results.

First, I propose a novel return-forecasting factor that jointly exploits the bond VIX2s

and the implication of leading macro-finance asset pricing models. The bond VIX2s identify

economic fundamentals that determine the conditional variances of bond yields in many

well-known consumption-based asset pricing models: for example, the time-varying variance

of consumption growth in Bansal and Yaron (2004), the probability of a rare disaster in

Wachter (2013), and the external habit in Le, Singleton, and Dai (2010). Interestingly,

the unobservable fundamentals are both the drivers of the variances of Treasury yields and

the sole sources of time variation in term premia under these frameworks (see e.g. Le and

Singleton (2013)). Hence, one common implication of the models is that excess returns

on bonds should be completely explained by the bond VIX2s. In particular, in the long-

1The VIX is a measure of volatility, and hence the VIX2 is a measure of variance.
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run risk framework of Bansal and Yaron (2004), the risk premium is time-varying solely

due to the time variation in the quantity of risk. Moreover, changes in the variance of

yields are the manifestation of time-varying macroeconomic uncertainties in the long-run

risk framework. Because the short-term interest rate is postulated to be linear in affine

diffusion states in the economy, the bond VIX2s span the time-varying variance in yields.

Hence, the time variation in expected excess returns should be captured by the bond VIX2s.

The same implication can also be obtained from the rare disaster framework of Wachter

(2013). Time-varying probability of a rare disaster is assumed to follow an affine diffusion

process in the framework, and it is also a sole driver of time variation in both risk premia

and interest rate variance. Hence, the bond VIX2s are the manifestation of time-varying

disaster probabilities, and should have the ability to predict future excess returns. The

affineQ habit model in Le, Singleton, and Dai (2010) is another class of models in which the

bond VIX2s should be driven by the factor underlying the time variation in risk premia. In

this framework, the external habit of the representative agent - the source of time-varying

price of risks - is the only factor driving both the time variation in the variance of yields

and the time-varying risk premia. Moreover, the drift in the pricing kernel is assumed to

be linear in the state variables following an affine-diffusion process under the risk-neutral

measure, and hence the bond VIX2s reflect the time-varying price of risk. In sum, the

space of time-varying risk premia and the space of the bond VIX2s are identical under the

standard macro-finance asset pricing models, the long-run risk, rare disaster, and affineQ

habit formation frameworks.

In the above three frameworks, the noise in realized excess returns on bonds can be

completely removed by projecting realized excess returns onto the bond VIX2s space. Hence,

using implied variance measures from options on Treasury futures with different tenors, I

apply a projection in line with Cochrane and Piazzesi (2005) to obtain a single return-

forecasting factor. Similar to their regressions where they project bond excess returns of

different maturity onto forward rates, I find that the linear combination of bond VIX2s

also produces a tent-shape factor forecasting excess returns. Interestingly, the predictive

ability of this return-forecasting factor mainly stems from the excess returns of relatively

short-term bonds, while the linear combination of forward rates in Cochrane and Piazzesi

2



(2005) is superior in predicting excess returns on long-term bonds. Moreover, the single

factor from the bond VIX2s and the Cochrane-Piazzesi factor are complementary, and the

predictability for bond returns increases significantly in joint regressions.

Second, I analyze the observable variance risk’s impact on the shape of the yield curve.

Its marginal impact is assessed by projecting yields onto the bond VIX2s as well as the

first three yield principal components: level, slope and curvature. After controlling for

these factors, I find that variance risk is largely unrelated to the shape of the yield curve.

This result corroborates earlier evidence of unspanned stochastic volatility (USV) whereby

yield variance can only be very weakly identified from the cross-section of yields (see e.g.,

Collin-Dufresne and Goldstein (2002) among many others). However, the strict condition

for the USV effect is rejected by a newly devised statistical test exploiting the observational

variance risk. In sum, it is hard to identify the volatility of interest rates from the yield

curve movements, but the knife-edge conditions for the USV effect do not seem to hold in

the data.

Third, to assess the variance risk’s impact on term premia and the cross-section of yields

within a fully-fledged framework, I suggest a new representation of affine no-arbitrage term

structure models that incorporate the observable variance risk. The representation follows in

the spirit of Joslin, Singleton, and Zhu (2011), and extends their work to affine models with

stochastic volatility. The risk factors are represented as a portfolio of yields and options.

Hence, all the pricing factors are observable, tradable, and economically interpretable. In

addition, due to the observable variance risk, the factor dynamics under the physical measure

can easily be estimated by generalized least squares. Furthermore, the observable proxy of

variance incorporates information in volatility-sensitive instruments, namely the Treasury

options. As a result, the variance risk in interest rates is well identified, in contrast to the

conventional latent factor approaches. Finally, the model can be easily extended to reflect

the unspanned macro risks in Joslin, Priebsch, and Singleton (2014) (henceforth JPS). Given

that the observable variance factor can be unspanned by yields, the model can accommodate

the two distinct types of unspanned risks in the term structure literature: unspanned macro

risk factor (hidden factor) and unspanned stochastic volatility. The estimates of the model

indicate that both unspanned macro risk and stochastic volatility drive expected returns.
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The stochastic volatility factor in the estimated model is not literally unspanned by yields,

but its impact on the shape of the yield curve is noticeably small and can be effectively

treated as an unspanned factor.

This paper also contributes to the recent discussion on unspanned macro risks in the

macro-finance term structure literature. The unspanned macro risks are macroeconomic

factors that are informative about macroeconomic fluctuations and term premia, but largely

unrelated to the term structure movements. One open question with this strand of studies2

is, among the hundreds of macroeconomic variables, which one should or could be treated as

an unspanned macro risk? For example, Bauer and Rudebusch (2016) show that estimates of

risk premia can differ significantly depending on whether a measure of the level or the growth

in economic activity is used as unspanned risk. I show that the LPY (“linear projection

of yields”) criteria in Dai and Singleton (2002) provide informative guidance on this issue.

The LPY criteria are descriptive statistics that measure whether a term structure model can

match the pattern of violation of the expectations hypothesis as in Fama and Bliss (1987)

or Cambpell and Shiller (1991). For the issue of choosing level or growth indicators of

economic activity as an unspanned macro risk, the LPY criteria indicate that level variable

is more relevant measure of economic activity in term structure modeling perspective. In

other words, the models with level of economic activity as an unspanned macro risk are

better at re-producing the pattern for the failure of expectations hypothesis in the data

than the models with growth indicator as unspanned macro risk. Furthermore, in the LPY

dimension, the stochastic volatility models with/without unspanned macro risks outperform

the corresponding Gaussian models. This shows that the observational variance risk is (i)

properly identified and (ii) beneficial in explaining the time variation in risk premia.

This paper is related to several different strands of the literature. First, the construction

of an observable proxy of variance risk in interest rates is based on the methodology of Mele

and Obayashi (2013) and Choi, Mueller, and Vedolin (2016). However, while these papers

utilize bond VIX2s to study the price of variance risk or variance risk premium in a model-

free manner, this paper (i) initially identifies the classes of asset pricing models under which

the bond VIX2 is equivalent to the interest rate variance risk of the models, (ii) and then

2See e.g., Duffee (2011b), Chernov and Mueller (2012) and Joslin, Priebsch, and Singleton (2014).
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jointly utilizes both the bond VIX2s and the implication of the asset pricing models for a

better understanding of expected excess returns on long-term bonds (rather than variance

trading). In other words, given an asset pricing model within the class characterized by (i)

affine short rate and (ii) affine state under the risk-neutral measure, variance risk takes the

form of bond VIX2, and this observable portfolio of options inherits all the properties and

implications of the variance risk in the model. In this paper, the bond VIX2s are utilized as

instruments to identify such variance risks within the models. For structural asset pricing

models with the two assumptions, the bond VIX2s identify economic fundamentals that

drive variance risks in the Treasury market. Hence, the bond VIX2s should inherit all the

asset pricing implications of the fundamentals.

This idea implies that within the long-run risk, rare disaster, and affineQ habit formation

frameworks, the bond VIX2s should predict excess returns on bonds because the set of risk

factors underlying variation in risk premia is the sole source of time-varying variances in

bond yields. Hence, the return-forecasting factor in this paper is based on the theoretical

prediction of those specific models, contrary to the return-forecasting factors from the yield

curve as in Fama and Bliss (1987), Cambpell and Shiller (1991), and Cochrane and Piazzesi

(2005). Furthermore, the bond VIX2s can be measured in real time and contain forward-

looking information, in contrast with infrequently-updated macro data as in Bansal and

Shaliastovich (2013) or Ludvigson and Ng (2009).

The benefit of observable variance is also highlighted in the connection of the bond VIX2

to the no-arbitrage affine dynamic term structure models (henceforth, ADTSM). Under the

assumption of ADTSM, the bond VIX2 directly identifies variance risk in ADTSM, which

has been considered one of the most challenging tasks in the term structure literature.

While previous term structure models also incorporate information from volatility-sensitive

instruments into their estimation procedure for better identification of variance risk3, the

approach of this paper circumvents their computational difficulties. Specifically, previous

studies match individual derivative prices from the models to actual derivative prices in

their estimation procedures, but the calculations of the derivative prices are extremely cum-

3See e.g. Jagannathan, Kaplin, and Sun (2003), Bibkov and Chernov (2009), Trolle and Schwartz (2009),
Bibkov and Chernov (2011), Almeida, Graveline, and Joslin (2011) and Joslin (2014) among many others.
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bersome computationally. By formulating a specific option portfolio that directly reflects

the changes in the underlying variance factor, the approach I propose simplifies the incor-

poration of information in volatility-sensitive instruments into ADTSM.

Furthermore, the observable variance risk enables ADTSM to be represented by observ-

able and tradable factors, contrary to all the previous dynamic term structure models with

stochastic volatility. Hence, the new representation of ADTSM that I posit here is based

on the observable variance risk, and extends the representation for both spanned Gaus-

sian ADTSM in Joslin, Singleton, and Zhu (2011) and Gaussian ADTSM with unspanned

macro risk in Joslin, Priebsch, and Singleton (2014) into more general setting. Joslin and Le

(2014) also utilize a parameterization scheme for ADTSM with stochastic volatility, in which

the time-varying variance factor is approximated by observable portfolio of yields. Their

volatility instrument can only be identified after the estimation of the model, while the

bond VIX2 identifies variance risk even before the estimation of ADTSM. Furthermore, the

approach of this paper is robust to unspanned stochastic volatility (USV), because option

prices are utilized to detect variance risk. On the other hand, yields do not span variance

risk in the presence of USV, and hence one cannot construct a yield portfolio that captures

time-varying variance as in Joslin and Le (2014).

Finally, while all the other USV models in the literature should be estimated with hard-

wired constraints to generate USV effects4, the approach here does not impose a priori

constraints for the USV effect and lets the data speak about the presence of USV. With

the bond VIX2 at hand, the estimation of ADTSM reveals the relative importance of the

already-identified variance factor in determining the shape of the yield curve. Once the

bond VIX2 turns out to play little role in explaining the cross-section of yields, then one

can effectively treat it as an unspanned stochastic volatility factor.

The paper proceeds as follows. Section 2 theoretically shows how one can construct an

observable proxy of the variance risk in the Treasury market by utilizing information in

option markets. Section 3 argues why the observable measure of variance could capture

the time-variation in risk premia, and investigates its predictive ability for excess returns.

4See e.g. Bibkov and Chernov (2009), Collin-Dufresne, Goldstein, and Jones (2009), Trolle and Schwartz
(2009), Joslin (2015) and Creal and Wu (2015) among many others.
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Section 4 analyzes the relation between the variance risk and the shape of the yield curves.

Section 5 introduces a new representation for no-arbitrage term structure models in which

the variance risk is identified as a portfolio of Treasury options. The representation is

extended to accommodate unspanned macro risks in Section 6. In Section 7, the models in

Section 6 but with different types of unspanned macro risks are evaluated based on the LPY

criteria. Section 8 explores the properties of risk premia in more depth. Finally, Section 9

concludes. All proofs are deferred to the Appendices.

2 Observable Volatility

To start, let us assume the state variable Zt = (X ′
t, V

′
t )

′ ∈ RN−m × Rm
+ follows the Ito

diffusion under the risk-neutral measure Q

d

⎡

⎣
Xt

Vt

⎤

⎦ = µZ,tdt+ ΣZ,tdB
Q
t (1)

where

µZ,t =

⎡

⎣
µX,t

µV,t

⎤

⎦ =

⎡

⎣
K0X

K0V

⎤

⎦+

⎡

⎣
K1X K1XV

K1V X K1V

⎤

⎦

⎡

⎣
Xt

Vt

⎤

⎦ , and ΣZ,tΣ
′
Z,t = ΣZ0+

m
∑

i=1

ΣZiVit

with a set of restrictions on the parameters to ensure the non-negativity of the volatility

factor Vt as in Duffie, Filipović, and Schachermayer (2003). BQ
t is aN -dimensional Brownian

motion under Q. The short rate (the negative of the drift in a pricing kernel) is assumed to

be linear in the state Zt

rt = δ0 + δ1Zt (2)

In addition, denote the following portfolios of options as Vt which is a measure of model-

free implied variance akin to the Chicago Board Options Exchange (CBOE) VIX2 in equity

markets:

Vt (T,T) =
2

Pt,T

[
∫ Ft(T,T)

0

Putt (K, T,T)

K2
dK +

∫ ∞

Ft(T,T)

Callt (K, T,T)

K2
dK

]

(3)

where Pt,T is the price of a zero-coupons bond expiring at T , and Ft (T,T) is the forward

price at t, for delivery at T , of the bond maturing at T. Putt (K, T,T) and Callt (K, T,T)
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are European options with strike price K and tenor T written on Pt,T. It is well-known in

the equity literature that cross-sectional information from options enables us to recover the

risk-neutral probability density of underlying asset (Breeden and Litzenberger (1978)). The

CBOE VIX is a specific application of this theory, to proxy the forward-looking risk-neutral

volatility of the one-month return on S&P 500 index. Similarly, with T being equal to one-

month,
√

Vt (T,T) can be considered as a forward-looking measure of one-month volatility

in Pt,T under the risk-neutral measure.

Under the two assumptions that the state is an affine process as in (1) and that the

short rate is affine in the state Zt as like (2), it can be shown that Ft (T,T) follows a

diffusion process of which instantaneous variance is a linear function of the latent factor Vt.

When Ft (T,T) follows a diffusion process, it is well-known that equation (3) represents the

expected quadratic variation of the forward under QT measure of which numéraire is the

bond Pt,T (see, e.g., Carr and Madan (1998)). Furthermore, the change of measure between

the forward measure QT and the risk-neutral measure Q is determined by the volatility of

Ft (T,T) in a linear fashion: see for example Björk (2009). As a consequence, Vt can be

expressed as a linear function of Vt, which means that one can observe the latent variance

factor up to its linear transformation and its shocks via the option portfolio Vt.

Proposition 1. Suppose that the short rate is an affine function of the Q affine process in
(1). Then,

Vt (T,T) = α
(

ΘQ; t, T,T
)

+ β
(

ΘQ; t, T,T
)

· Vt (4)

where ΘQ is the set of parameters for (1) and (2).

Proof: See Appendix A.

One of the key features of Proposition 1 is that it does not require any specification of

the market price of risk (or the dynamics of Zt under P) to completely characterize a pricing

kernel. In other words, the proposition can be utilized even though Zt follows a non-linear

process under P. In sum, for large classes of asset pricing models, one can capture the

innovations in variance factor through the portfolio of options, Vt.

As can be seen from equation (3), the option portfolio
√
Vt is a Treasury market version

of the CBOE VIX in the equity market. While the VIX has been intensively studied
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and utilized in the literature,5 studies about its analogue for US Treasuries (henceforth, the

bond VIX) started relatively recently. Mele and Obayashi (2013) develop theories on pricing

Treasury volatility (i.e. expected value of Treasury volatility under a forward measure), and

suggest a practical way of representing the price as a portfolio of Treasury futures options.

Based on their methodology, CBOE launched the 10-year U.S. Treasury Note Volatility

Index (TYVIX) in May 2013. Choi, Mueller, and Vedolin (2016) show how investors can

make use of the bond VIX to get pure exposure to variance risk in the fixed income market

and document the empirical properties of the trading strategy. They construct the bond

VIX named as Treasury Implied Volatility index (TIV) for a 10-year T-note, plus TIV for

a 5-year Treasury bill and a 30-year Treasury bond.

This paper utilizes their TIVs since the three measures of volatility with different un-

derlying bonds enable us to identify multiple latent volatility factors via Proposition 1. For

a detailed description of how to construct TIV, I refer the reader to Choi, Mueller, and

Vedolin (2016). Figure 1 provides a plot of the CBOE VIX, the CBOE TYVIX, and the

10-year TIV; following the custom in practice, they are the square root of the annualized

variances expressed in percent. The 10-year TIV is virtually identical to the TYVIX, and

they are largely correlated with the VIX. The bond VIXs are driven by the variance factor

in the discount rates (or the pricing kernel), while the VIX reflect the variance factor in

both the discount rates and cash flow dynamics. The figure shows that the impact of the

variance factor in the cash flow dynamics became less important from late 90s.

[Insert Figure 1 here.]

To summarize, Proposition 1 gives the implication of the model-free measure of im-

plied volatility in the Treasury market, the bond VIX, once it is combined with additional

structures embedded in many economic models. Once the information in bond VIX is in-

corporated with an economic model in which the short rate is linear in Q affine diffusion

state variables, the bond VIXs can completely identify the volatility factors. This result

5See, e.g., Carr and Wu (2009), Drechsler and Yaron (2011), Bollerslev, Tauchen, and Zhou (2009), Ang,
Hodrick, Xing, and Zhang (2006), Adrian and Shin (2010), Nagel (2012), Brunnermeier, Nagel, and Pedersen
(2009), Bao, Pan, and Wang (2011), Amengual and Xiu (2014),Bekaert, Hoerova, and Duca (2013), Kelly,
Pástor, and Veronesi (2016) among many others.
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also implies that some economic fundamentals in macro-finance asset pricing models can be

identified via the bond VIX2s if the fundamentals determine the conditional variances of

bond yields.

3 Predictability

The assumptions for Proposition 1 are that (i) the drift of a pricing kernel is affine in the

state variable and (ii) the state variable follows affine diffusion under Q. Three classes

of well-known consumption-based asset pricing models incorporate this feature. They are

the long-run risk framework of Bansal and Yaron (2004), the rare disasters framework of

Wachter (2013), and the affineQ habit formation model of Le, Singleton, and Dai (2010).

Importantly, in all of these models, the source of time variation in risk premia is entirely

spanned by volatilities in yields only (see Le and Singleton (2013) for detailed explanations).

Once this salient feature of those models is incorporated with Proposition 1, it means that

the bond VIX2s should predict future excess returns and they are the sole source of time

variation in risk premia.

Specifically, the assumptions in Proposition 1 are canonical in most long-run risks models

without jumps (or rare disasters) - see e.g. Bansal and Yaron (2004), Bollerslev, Tauchen,

and Zhou (2009), Bansal and Shaliastovich (2013), Zhou and Zhu (2015). For example,

in Bansal and Shaliastovich (2013), (i) the drift of the pricing kernel is a linear function

of the subset of affine diffusion state variables - expected consumption growth, expected

inflation and their variance factors, and (ii) the P affine state variable, in conjunction with

their market price of risk, imply Q affine state variable. The time-varying volatilities in

expected consumption growth and expected inflation are the two economic fundamentals

that induce time variation in volatilities in yields. In this economy, Proposition 1 implies that

the bond VIX2s should be the manifestation of uncertainty about the two macroeconomic

fundamentals: expected consumption growth and expected inflation (see Appendix B for

a formal derivation). Note that in long-run risk economies, the time-varying quantity of

macroeconomic risk is the only source of time variation in risk premia - the price of risk is

pinned down by Epstein-Zin preference. As a consequence, the bond VIX2s should capture

the entire innovations in risk premia though the channel of time-varying quantity of risk.
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The rare disaster framework with time-varying disaster probabilities is another example

that fits the assumptions of Proposition 1 - see e.g. Wachter (2013), and Tsai (2016). In this

framework, the short rate is linearly dependant on time-varying risk of disasters (intensity

of a disaster more precisely). The intensity process follows affine diffusion under both the

physical and the risk-neutral measures, and it also determines volatilities in yields. Then,

the bond VIX2s disclose the time-varying probability of a disaster because of Proposition 1.

Moreover, in this economy, time variation in risk premia solely stems from the time-varying

probability of a disaster. Hence, the bond VIX2s should have the ability to predict future

excess returns.

The habit formation model in Le, Singleton, and Dai (2010), henceforth LSD, is another

class of asset pricing models in which the bond VIX2s should explain the entire time variation

in risk premia. The model, based on Campbell and Cochrane (1999) and Wachter (2006),

uses the two assumptions in Proposition 1 to obtain affine pricing. By doing so, they specify

the market price of risk as a non-linear function of the states as in Duarte (2004) and, as a

result, the state variable follows a non-linear process under P. LSD shows that their model

approximately nests Wachter’s model and closely resembles its prominent features. In this

type of affineQ habit formation models with external habit level Ht, the consumption surplus

ratio st = log [(Ct −Ht) /Ct] is the sole source of time-varying risk premia since the shocks

on consumption growth (that drives the quantity of risk in the economy) are assumed to be

homoscedastic. Furthermore, the volatilities in yields are driven by the non-negative process

ϕt = smax − st where smax is the upper bound of st.6 Hence, the bond VIX2 is linear in

ϕt, the inverse consumption surplus ratio, and contains the full information on risk premia

through the reflection of the time-varying price of risk.

Motivated by the implication of Proposition 1 for the three classes of asset pricing

models, I examine whether the bond VIX2s explain time variation in expected bond excess

returns. To assess their predictive ability, I initially apply MA2 filters for the one-month

bond VIX2s (with 5yr, 10yr and 30yr bonds as underlying assets) constructed in Choi,

Mueller, and Vedolin (2016) with the aim of removing transitory shocks potentially due

to measurement errors and institutional effects (see, for example, Kim (2007)). Then, I

6Note that st is always negative.
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regress one-year holding period excess returns of bonds with different maturities onto the

space of the three (filtered) one-month bond VIX2, henceforth denoted as TIV2s following

Choi, Mueller, and Vedolin (2016). The projections indicate that, across all maturities,

the excess returns’ loadings on the TIV2s exhibit tent-shape pattern akin to the pattern

in Cochrane and Piazzesi (2005). Hence, in the spirit of Cochrane and Piazzesi (2005), I

construct a single factor by projecting the average (across maturity) excess returns onto the

three TIV2s:

rxt+12 = γ0 + γ1TIV
2
t,5yr + γ2TIV

2
t,10yr + γ3TIV

2
t,30yr + et

The time-series of the fitted values (henceforth, CIV) is the return-forecasting factor, and

is utilized to predict realized excess returns on each bond with maturity of n.

rx(n)
t+12 = b(n)0 + b(n)1

(

γ̂0 + γ̂1TIV
2
t,5yr + γ̂2TIV

2
t,10yr + γ̂3TIV

2
t,30yr

)

+ e(n)t

For comparison purposes, the Cochrane-Piazzesi return-forecasting factor (henceforth, CP)

is constructed by regressing mean excess returns onto the spreads of five Fama-Bliss forward

rates with maturities of 1 through 5 years as in Cochrane and Piazzesi (2008). Excess returns

from the Gürkaynak, Sack, and Wright (GSW) data set (with maturities of one through 10

years) are also utilized to assess excess returns on long-term bonds since the longest time-

to-maturity of yields in the Fama-Bliss (FB) data set is five years.

[Insert Table 1 and Figure 2 here.]

Table 1 present adjusted R2s and coefficients from predictive regressions of twelve-month

bond excess returns on CP, CIV, and both CP and CIV jointly. Panel B shows that, for

both sets (FB and GSW) of excess returns, each estimated coefficient on CIV is statistically

significant during the sample period, and the variation in CIV explains more than 20% of the

variation in realized mean excess returns. Once CIV and CP are jointly utilized, R2s increase

more than 10 percentage points in addition to the statistical significance of both coefficients.

Panel A reports adjusted R2 from regressing each excess return on the predictors, and it

reveals that the predictability of the CIV stems mainly from excess returns of bonds with

short-term maturities while the predictability of the CP comes from relatively long-term

maturities. As a result, the adjusted R2s are improved significantly once CIV and CP are
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utilized jointly to predict excess returns. Their joint significance can also be observed in

Figure 2 where the time-series of CIV, CP and the mean realized excess returns from the

GSW data set are plotted together. Between 1998 and 2002, for example, CIV and CP

exhibit heterogeneous movements and can assist each other to explain the time variation in

the excess returns.

4 Variance Risk and the Shape of the Yield Curve

How does volatility risk affect the shape of the yield curve? Do yields strongly/weakly load

on volatility risk? Can we extract a reliable measure of interest rate volatility from the

cross-section of bonds? The first step to addressing these questions is to identify volatility

risk in a framework where volatility has a systematic impact on the yields across different

maturities.

The class of affine dynamic term structure models (henceforth, ADTSM) is a typical ex-

ample of such a framework, and has also served as the workhorse in the literature to assess

the impact of volatility risk on the cross-section of bond yields; ADTSMs are fully character-

ized by (i) the two assumptions in Proposition 1, (ii) the specification of the market price of

risk, and (iii) a set of parametric restrictions needed to identify the model. It is well estab-

lished that the affine models successfully capture the cross-sectional properties of yields; see

for example Dai and Singleton (2000). However, the ADTSMs’ ability to capture variation

in the volatility of interest rates is questionable and controversial, especially once volatility-

sensitive derivatives are not incorporated into the estimation procedure of the model. For

instance, using U.S. swap data only, Collin-Dufresne, Goldstein, and Jones (2009) show that

the model implied volatilities from affine models seem unrelated to their non-parametric or

semi-parametric counterparts (i.e. realized volatility estimates and GARCH estimates).

Because ADTSMs are built up on the two assumptions in Proposition 1, the bond VIX2s

directly represent variance risk in the model. In other words, the variance risk in ADTSM is

readily identifiable via the bond VIX2s as a consequence of Proposition 1. This identification

strategy is beneficial in several ways. First, it is based directly on option prices that tend to

be more sensitive to the changes in volatility than nominal bond prices. This is in line with
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previous studies pointing out that the introduction of volatility-sensitive instruments into the

estimation procedure can significantly mitigate the difficulty in identifying volatility risk of

affine models; see, for example, Bibkov and Chernov (2009), Almeida, Graveline, and Joslin

(2011), Jagannathan, Kaplin, and Sun (2003), and Joslin (2014). In addition, the approach

doesn’t require us to estimate a specific model, and allows variance risk to be measured in

real time. Furthermore, since the variance measure is constructed in a model-free manner,

the approach can be easily incorporated into the class of Gaussian quadratic term structure

models, as in Ahn, Dittmar, and Gallant (2002). In this case, Vt is a quadratic function of

the Gaussian state factors in the model 7 (See Appendix C for a detailed explanation).

Before estimating a fully-fledged model to analyze the impact of variance risk on the

cross-section of yields, I conduct two simple regression-based tests on the relationship be-

tween variance risk and the cross-section of yield. First, I examine the marginal impact

of the variance risk on the shape of the yield curve beyond the traditional term structure

factors: level, slope and curvature of the yield curve. The results suggest that variance risk

is largely unrelated to the shape of the yield curve and that at least three non-volatility

factors are required to adequately explain the cross-section of yields. The second test investi-

gates whether variance risk can be identified from the cross-section of yields: the unspanned

stochastic volatility (USV) effect in Collin-Dufresne and Goldstein (2002). The USV effect

can be or cannot be rejected, depending on the number of variance factors. The empiri-

cal evidence will be utilized as guidance for designing highly parameterized term structure

models in later sections.

4.1 The Shape of the Yield Curve and Vt

Provided that (i) the state follows affine diffusion and (ii) the short rate is an affine function

of the state, the yield on a zero-coupon bond of maturity n is affine in the state variable Zt:

yn,t = An

(

ΘQ
)

+ Bn

(

ΘQ
)

Zt (5)

7For Gaussian quadratic term structure models, the short rate equation is a quadratic function of Gaus-
sian state vector. The conditional variance of yields is linear in the square of a subset of the state.
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where An and Bn are obtained from standard recursions as in Duffie and Kan (1996). The

linear relationship between yields and factors in equation (5) implies that yields can be

treated as state variables; given a set of maturities equal in number to the number of latent

factors, one can rotate the underlying factor into the yields (see for example Pearson and Sun

(1994), Chen and Scott (1993) and Duffie and Kan (1996) among many others). One can

further rotate the risk factors into portfolios of yields, especially the principal component of

yields, Pt, as in Joslin, Singleton, and Zhu (2011) for example. As will be shown thoroughly

in Section 5, Proposition 1 enables us to rotate the latent risk factors into portfolio of yields

Pt and portfolio of options Vt

yot = A+ BZZt = A+ BPPt + BVVt + et, et ∼ N
(

0, σ2
eI
)

(6)

where yot denotes a vector of stacked observed yields and et represents measurement error

assumed to be an independent and homoscedastic Gaussian random variable (as commonly

assumed in the literature). Because all the variables in equation (5) can be observable, the

yields’ loading on the factors A, BP and BV can be estimated by linear regressions. The

estimated model, then, can be treated as a standard linear factor model nesting the no-

arbitrage affine models since A, BP and BV are non-linear functions of ΘQ under the affine

bond pricing models: see for example, Duffee (2011a), Hamilton and Wu (2012), Joslin and

Le (2014) and Joslin, Le, and Singleton (2013).

The marginal impact of the variance risk beyond traditional yield factors like level, slope

and curvature factors can be examined by comparing the likelihood of (6) with the following

restricted version of it:

yot = A∗ + B∗
PPt + e∗t , e∗t ∼ N

(

0, σ2
e∗I
)

(7)

Table 2 reports the test statistics of the likelihood ratio test for the hypothesis of the

zero coefficients on the additional variable in the unrestricted version. The first column

presents the right hand side variables in the restricted models where PC1-PC3 denotes

the first, second and third principal components of yields on U.S. Treasury nominal zero-
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coupon bonds with maturities of six months and 1 through 10 years8. The remaining columns

present an additional variable in each version of the unrestricted model and its corresponding

LR statistics. VPC1 and VPC2 denotes the first and second principal components of the

MA2 filtered 5, 10 and 30-year TIV2s as in Section 3. Each of VPC1 and VPC2 capture

respectively 94% and 5.6% of the variation in the three TIV2s. The last column shows the

5% critical value of the test statistics which follows χ2 (11) distribution. The table indicates

that for each version of the restricted model, its likelihood ratio is greatest when a yield

factor (PC3 or PC4) is the additional variable in the unrestricted model. In other words,

adding a PC factor to the restricted models is the best extension for the purpose of a better

cross-sectional fit. Moreover, for the unrestricted models with the variance factors as the

additional variables, the null can be rejected or not, but the magnitude of test statistics is

not very large, regardless of their statistical significance. Similar results are obtained once

two or three representative yields, instead of the yield PCs, are utilized as the right hand

side variables of the restricted models (the results are omitted in the paper for the sake of

brevity). In sum, the exercise indicates that the marginal benefit of adding variance factors

is fairly limited and it is hard to identify variance risk from the cross-section of yields.

[Insert Table 2 here.]

The exercise also implies that it is empirically difficult to extend the estimation ap-

proach of Hamilton and Wu (2012) into affine bond pricing models with stochastic volatil-

ities. They propose a minimum-chi-square estimation procedure of Gaussian ADTSM in

which the risk-neutral parameters of the model are inferred by minimizing the differences

between the ordinary least square (OLS) estimates of the cross-sectional equation (7) and

the corresponding yields’ loadings from Gaussian ADTSM. In theory, their approach can be

applied to equation (6) for the estimation of ADTSM with stochastic volatilities. However,

the limited impact of the variance risk on the shape of the yield curve causes difficulties in

its empirical implementation. The OLS estimates of BV in equation (6) are not informative

enough to precisely pin down the risk-neutral parameters related to the volatility factors.

8The yields with maturities of two to ten years are from Gürkaynak, Sack, and Wright (2007). The six-
month and one-year yields are bootstrapped from observed bond prices using the Fama-Bliss methodology.
My thanks to Anh Le for allowing me to use this data set.
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4.2 Unspanned Stochastic Volatility Effect

The difficulty of identifying volatility risk under ADTSM stems from the multiple roles of

volatility risk in the class of affine models. The volatility risk affects (i) the second moments

of yields, (ii) the expectation of future interest rates under both physical and risk-neutral

measures, and (iii) the so-called convexity effect introduced by the non-linear relationship

between bond prices and the latent factors. The various roles of volatility enables us to infer

it through multiple channels, but this feature causes tension rather than a complimentary

effect in identifying it (see Joslin and Le (2014) for a detailed explanation).

One potential resolution for the issue is to impose a set of model-based restrictions to

remove the dependence of the cross-section of yields on volatility, a set of restrictions coined

as an “unspanned stochastic volatility” (USV) restriction by Collin-Dufresne and Goldstein

(2002). More broadly, the USV effects mean that the yields curve itself fails to span the

volatilities in the changes in yields. In their seminar paper, Collin-Dufresne and Goldstein

(2002) define the USV effect as the existence of a set of parameters {φ1, ...,φN} that are not

all zero such that
N
∑

i=1

φiBn,i = 0 ∀n > 0 (8)

where N is the number of pricing factors and Bn,i the i-th element of Bn in equation (5).

The authors further show that, under the existence of such a set of parameters with N ≥ 3,

one can find a rotation such that the variance factor Vt has no effect on the price of bonds.

As a consequence, the variance factor cannot be extracted from the cross-section of observed

yields (see Collin-Dufresne and Goldstein (2002), and Joslin (2015) for further details).

The following studies, however, have accumulated conflicting evidence on the USV effect.

Decoupling the dual role of volatility through the USV restrictions helps the model to

produce more realistic model-implied volatility, even though the model’s cross-sectional fit

is slightly impeded (see for example Creal and Wu (2015) and Collin-Dufresne, Goldstein,

and Jones (2009) among others). Andersen and Benzoni (2010) also show that their measure

of intraday volatility in yields is largely unexplained by term structure factors, which is in

line with the USV effect. On the other hand, the USV effect is rejected once the model-

specific restrictions are directly tested by the likelihood-ratio or the Wald test (Bibkov and
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Chernov (2009), Joslin (2015)). Utilizing the observable volatility proxy, I devise a new test

for the USV effects, which can shed new light on the debate.

The condition for the USV effect in equation (8) can be translated into the statement

that the matrix BZ ≡ [BP ,BV ] in equation (6) is not full rank, regardless the maturities of

the yields on the left hand side of the equation (see Appendix E for a formal derivation).

As a result, a statistical test for the rank of the estimated matrix B̂Z is a test of the USV

effect. The null hypothesis is

H0 : rank (BZ) ≤ N − 1 (9)

where N is the total number of factors. I use the Kleibergen-Paap rank test, among many

other rank tests. The test statistic follows χ2 distribution: for details, see Kleibergen and

Paap (2006).

The approach has several benefits not shared by other tests for the USV effect in the

literature. First, it is a formal statistical test - many of others in the literature are not formal

statistical tests as pointed out by Bibkov and Chernov (2009). Second, while Bibkov and

Chernov (2009) and Joslin (2015) conduct formal tests for the set of restrictions generating

the USV effect, the USV restrictions are not unique as pointed out by Joslin (2015). For

example, two different sets of restriction on the A1(4) specification can induce the USV

effect while the two models fit volatilities in significantly different manners; see for example

Creal and Wu (2015). The rank test that I posit here is free from this issue. Finally, the test

can be implemented even in the presence of hidden factors as in Duffee (2011b) or Joslin,

Priebsch, and Singleton (2014) - a detailed explanation of the hidden factors can also be

found in Section 6. The test only exploits the cross-sectional relationship between the yields

and variance factors, so the test results should be identical even after taking into account

hidden factors.

[Insert Table 3 here.]

Table 3 reports the test statistics for specifications with one through two volatility factors

in conjunction with two through three additional non-volatility factors. Following Dai and

Singleton (2000), Am (N) denotes an N factor model with m factor driving volatility. The
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data set is the same as the one in Section 4.1, and the first m PCs of the MA2 filtered

TIV2s are used as the variance factors for Am (N) models. Specifications with up to two

volatility factors are considered for the exercise because the first two PCs of TIV2s explain

99% variation of the three TIV2s as pointed out in Section 4.1. The table shows that, for all

the specifications, the null (the presence of USV effects) is rejected at the 10% significance

level. Hence, the conditions for the affine models to generate USV effect do not hold in the

data.

In sum, it is true that variance risks are hard to identify from the cross-section of yields

as shown in Section 4.1, however, the knife-edge conditions for the USV effect are rejected

in the data. In other words, the variance risk is effectively unspanned by yields not because

of the USV restrictions but because of its limited impact on the shape of the yield curve,

and it can be hardly identified without help of option prices.

5 A New Representation of ADTSM

In this section, I suggest a new representation of ADTSM in which all factors are repre-

sented as portfolios of bonds and options. The representation inherits the spirit of Joslin,

Singleton, and Zhu (2011), and the advantages of their representation. Since all the term

structure factors (including volatility) are observable, the estimation procedure becomes

greatly simplified and economic interpretation of the model is more straightforward com-

pared to conventional latent factor approaches.

For econometric identification, I initially assume that the risk-neutral dynamics of the

latent factor in equation (1) is drift normalized as in Joslin (2015) or Creal and Wu (2015).

The yield on a zero-coupon bond of maturity n is affine in the states Zt:

yn,t = An

(

ΘQ
)

+ Bn

(

ΘQ
)

Zt

where An and Bn are obtained from standard recursions as in Duffie and Kan (1996). I let

(n1, n2, ..., nJ) be the set of maturities of the bonds used in estimation and yt be the (J × 1)

vector of corresponding yields. For any full-rank matrix W ∈ R(N−m)×J , Wyt represents

the associated (N −m)-dimensional set of portfolios of J (≥ N) yields. Following Joslin,
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Singleton, and Zhu (2011), I let Pt denote the first (N −m) principal components (PCs) of

J yields with W being the weighting matrix of the PCs:

Pt = Wyt = AW

(

ΘQ
)

+BW

(

ΘQ
)

Zt = AW

(

ΘQ
)

+BW,X

(

ΘQ
)

Xt +BW,V

(

ΘQ
)

Vt

Invoking Proposition 1, then, we can define the N observable pricing factors Zt such that

Zt ≡ (P ′
t,V ′

t)
′ =
(

(Wyt)
′ ,V ′

t

)′
= U0 + U1 (X

′
t, V

′
t )

′ (10)

where

U0 =

⎡

⎣
AW

α

⎤

⎦ , U1 =

⎡

⎣
BW,X BW,V

0m×(N−m) β

⎤

⎦

with α and β defined in Proposition 1. The dynamic of Zt can be represented as a function

of the observable factor Zt after applying the invariant rotation of Dai and Singleton (2002)

to the latent factor Zt. Provided that the mapping between Zt and Zt is bijective (i.e.

one-to-one mapping), the model with observable Zt is observationally equivalent to the

representation with the latent Zt. The sufficient condition for the mapping to be bijective is

a full rank matrix β. Once the Gaussian factor Xt is drift normalized, Joslin (2015) shows

that the matrix BW,X should be full rank. Hence, the first (N −m) columns of U1 are

linearly independent. With non-zero β, the last m columns of U1 are not spanned by the

first (N −m) columns of U1, which implies that a full rank matrix β guarantees U1 to be

not rank deficient.

The new representation of ADTSM with the observable factors Zt in equation (10)

follows the idea of Joslin, Singleton, and Zhu (2011), henceforth JSZ, and can be considered

an extension of their work into general affine models. JSZ suggests a new representation of

Gaussian ADTSM in which all the Gaussian pricing factors are observable as portfolios of

yields, i.e. Pt in equation (10). Through their representation, the estimation of the Gaussian

term structure model is extremely simplified, and becomes more reliable in terms of finding

a global optimum in maximum likelihood estimation. In particular, simple ordinary least

square estimation (OLS) can be utilized to estimate the P conditional mean parameters of

the pricing factors which had been treated as one of the most challenging parts in estimating

term structure models due to the high degree of persistence in yields.
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In my representation, all pricing factors (including the variance risk), are observable. As

a consequence, one can make use of generalized least square estimation (GLS) to pin down

the drift of the pricing factor under P. Since variance is directly observational up to its

linear transformation via Vt, it is also easy to estimate the parameters governing the time-

series dynamics of Vt. In addition, when volatility risk is identified from the cross-section

of yields, one should solve a numerically unstable equation AX = b where A is often nearly

singular, with the possibility that the solution leads to negative values for volatility: see

for example Piazzesi (2010) and Joslin (2014). Instead, the representation I posit here is

unaffected by this issue. In sum, the representation helps us find the global optimum of

maximum likelihood estimation by simplifying the two hardest parts of the ADTSM with

stochastic volatility estimation, namely, the identification of volatility, as well as the drift

of the state under P.

The parameterization scheme using portfolios of yields as pricing factors for Am(N)

model is also explored in Joslin and Le (2014), where the variance factor in Am(N) is ap-

proximated by portfolios of yields. The model I posit here utilize portfolios of options rather

than portfolios of yields, and the variance factor is known before the model estimation while

their variance factors can only be identified after the model estimation. In addition, the

approach here is robust even in the presence of unspanned stochastic volatility factors as

in Section 4.2, while their approach only works for spanned stochastic volatility. Further-

more, as discussed extensively in their paper, extracting the variance factor from yields only

(without options) results in undesirable properties in the factor dynamics under P - this

issue is discussed further in Section 7.2.

6 Unspanned Macro Risk and the Likelihood Function

More recently, a large literature has been studying so-called hidden factors or unspanned

macro factors, see e.g., Duffee (2011b), Chernov and Mueller (2012) and Joslin, Priebsch,

and Singleton (2014), henceforth JPS. A factor is described as hidden if it plays an important

role in determining investors’ expectations for future yields, yet is not priced in the fixed

income market. Hence, the hidden factor cannot be recovered from the cross-section of any
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fixed income assets. This section explains how to take into account the hidden factor inside

the model described in the previous section.

Since all priced factors are observable due to the representation in the previous section,

the same argument as in JPS can be applied in order to add hidden factors in the framework.

Once both hidden and non-hidden factors are projected onto the space of fixed income asset

returns as in JPS, we get the following factor dynamics under the physical measure P and

the risk-neutral measure Q. First, the factors are composed of (i) the priced risks in the

fixed income market Zt = (P ′
t,Vt)

′ and (ii) a non-priced (hidden) factor Mt. In discrete

time setting, the dynamics of the non-variance factors, (P ′
t,Mt), can be represented as

⎡

⎣
Pt+1

Mt+1

⎤

⎦=

⎡

⎣
KP

0P

KP
0M

⎤

⎦+

⎡

⎣
KP

PP KP
PM

KP
MP KP

MM

⎤

⎦

⎡

⎣
Pt

Mt

⎤

⎦+

⎡

⎣
KP

PV

KP
MV

⎤

⎦Vt+

⎡

⎣
ΣPV

ΣMV

⎤

⎦ϵPV ,t+1+

⎡

⎣
ϵP,t+1

ϵM,t+1

⎤

⎦

(11)

with

(

ϵ′P,t+1, ϵ
′
M,t+1

)′ ∼ N (0,Σt)

Σt = Σ0 + Σ1 (Vt − α) (12)

ϵPV ,t+1 = Vt+1 −Et (Vt+1)

The variance factor Vt+1 follows a compound autoregressive gamma process

Vt+1|Vt ∼ CAR
(

ρP, cP, νP,α
)

where cP is a scale parameter, νP is a shape parameter, and ρP determines the autocorrelation

of Vt. The lower bound of Vt is set α, contrary to the standard lower bound of zero for a

variance process. Indeed, the lower bound of the latent variance factor Vt should be set to

zero for econometric identification. Then, the linear relationship between the observable Vt

and the latent Vt, Vt = α+βVt with α
(

ΘQ
)

defined in Proposition 1, implies that Vt should

be greater than α. Furthermore, α should be positive since both α
(

ΘQ
)

and β
(

ΘQ
)

capture

the convexity components of yields - see equation (A-8) and Appendix D.2 for details. The

non-zero lower bound of Vt also leads Σt in equation (12) to be Σ0+Σ1 (Vt − α) rather than

Σ0+Σ1Vt. For a detailed explanation of compound autoregressive processes, see Gourieroux

and Jasiak (2006), Le, Singleton, and Dai (2010) and Creal and Wu (2015).
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Under the pricing measure Q, the dynamics of Zt are assumed to be

Pt+1 = KQ
0P +KQ

PPPt +KQ
PVVt + ΣPVϵ

Q
V ,t+1 + ϵP,t+1 (13)

Vt+1|Vt ∼ CAR
(

ρQ, cQ, νQ,α
)

Hence, the specification of the price of risks follows that in Cheridito, Filipović, and Kimmel

(2007), and yields can be represented as a linear function of (P ′
t,Vt)

′ where yields’ loadings

on the pricing factors are determined by ΘQ (see Appendix D.1).

Furthermore, in order to maintain (i) the diffusion invariance property of the variance

process Vt and (ii) non-exploding market price of risk in the continuous time limit (see Ap-

pendix B.4 in Joslin and Le (2014) for explanations), I impose the following two restrictions

on parameters for Vt:

cP = cQ, νP = νQ

For the fitting of the cross-section, I assume that higher-order PCs, denoted by Pe,t, are

observed with i.i.d. uncorrelated Gaussian measurement errors with a common variance:

Po
e,t = Pe,t + et and et ∼ N

(

0, Iσ2
e

)

In sum, the likelihood function of the observed data, L, is

L =
∑

t

f (Pt+1,Mt+1|Vt+1, It) + f (Vt+1|Vt, It) + f (Pe,t+1|Pt+1,Vt+1)

where f denotes the log conditional density. The first two terms capture the density of the

time-series dynamics, and the last term is the density of the cross-sectional fit on which the

unspanned macro factors Mt have no impact. Particularly, the P-feedback matrix of Pt and

Mt can be concentrated out by running GLS of the following system:
⎡

⎣
Pt+1 − ΣPVϵPV ,t+1

Mt+1 − ΣMVϵPV ,t+1

⎤

⎦ =

⎡

⎣
KP

0P

KP
0M

⎤

⎦+

⎡

⎣
KP

PP KP
PM

KP
MP KP

MM

⎤

⎦

⎡

⎣
Pt

Mt

⎤

⎦+

⎡

⎣
KP

PV

KP
MV

⎤

⎦Vt+

⎡

⎣
ϵP,t+1

ϵM,t+1

⎤

⎦

The observable variance Vt can be either spanned by yields or unspanned (i.e. of the

unspanned stochastic volatility type as in Section 4.2). However, this does not affect the

estimation procedure, since the volatility factor is identified not via yields but via options,
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even before the estimation procedure. In contrast, without the observable volatility factor,

one should choose a specific set of restrictions on the Q parameters (among many possible

set of restrictions), in order to estimate a model with unspanned stochastic volatilities.

Otherwise, the identification of the volatility factor is infeasible, because it has no effect on

the price of bonds.

In the term structure literature, both the unspanned stochastic volatility and hidden

factors have been considered important components driving the time variation in risk premia,

although their mechanisms are totally different. The effect of hidden factors on changes in

risk premia exactly cancels out its effect on expectations of future short rate while USV

implies a cancelation of the convexity bias. The USV factor can be identified from interest

rate derivatives while hidden factors cannot be identified from any financial instrument in the

market. To the best of my knowledge, my model is the first one capable of accommodating

both types of unspanned risks: the unspanned stochastic volatility factors as well as the

hidden factors.

7 Model Comparison

7.1 Model Specifications and Data

The discussion in Section 4 indicates that the variance risks’ explanatory power for the

cross-section of yield is fairly limited when it is compared to the explanatory power of the

three term structure factors, level, slope and curvature. Under the representation in Section

5, this implies that at least three Gaussian factors are required to adequately explain the

shape of the yield curve. Hence, I study a model with three yield factors and one stochastic

volatility, which I denote by A1 (4) as in Section 4.2. Its corresponding specification with

two unspanned macro risks, denoted as UMA2
1 (6), is also investigated; UMAR

m (N) stands

for the family of ADTSMs in Section 6, with (P ′
t,M

′
t,V ′

t)
′ of dimension N , Mt of dimension

R, and Vt of dimension m. Following JPS, I use measures of economic activity and inflation

as the two unspanned macro risks. In particular, the three-month moving average of the

Chicago Fed’s National Activity Index (CFNAI), henceforth denoted as GRO, is used as

the measure of the growth in real economic activity as in JPS. However, I use year-over-

year growth in Consumer Price Index excluding food prices and energy prices (henceforth,
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CPI) for the measure of inflation, contrary to JPS in which the measure of inflation is the

expected rate of inflation from Blue Chip Financial Forecasts (henceforth, INF ).

Moreover, the same UMA2
1 (6) specification but with a different measure of economic ac-

tivity - the unemployment gap - is also studied. The unemployment gap (henceforth UGAP )

is the difference between the actual unemployment rate and the estimate of the natural rate

of unemployment from the Congressional Budget Office (CBO). Hence, it gauges the level of

economic activity rather than the growth of activity. Bauer and Rudebusch (2016), hence-

forth BR, argue that level indicators of activity such like UGAP are largely related to the

movement of the yield curves (i.e. weakly unspanned by yields) because these variables are

relevant for setting the short-term policy rates; the authors also point out that the em-

pirical monetary policy rules literature has identified level rather than growth variables as

those which are most important for determining monetary policy (e.g. Taylor (1993), Taylor

(1999), Orphanides (2003), Bean (2005) and Rudebusch (2006) among others). On the other

hand, measures of growth in economic activity such as GRO are largely uncorrelated with

the level of activity; see for example UGAP and GRO in Figure 3. Furthermore, BR show

that growth variables accompany low R2s when (i) they are projected onto term structure

factors or (ii) fed fund rates are regressed on them. Hence, they are strongly unspanned

by yields. The different spanning properties of UGAP and GRO induce significantly dif-

ferent estimates of risk premia for the UMA2
0 (5) models in BR. BR qualitatively assess

the relevance of two different estimates of risk premia and claim that UGAP is a better

measure of economic activity. I access four unspanned models UMA2
0 (5) and UMA2

1 (6)

and evaluate their relevance based on whether they can match the pattern for violation of

the expectations hypothesis.

[Insert Figure 3 here.]

The yield data set is the same as that in Section 4, but I only use yields with maturities

of six months, 1 through 3 years, 5, 7, 9 and 10 years. As a measure of observable volatility,

I make use of the 30-year TIV.
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7.2 The Campbell and Shiller Regression

The most well-known stylized fact in the fixed income market is the failure of the expecta-

tions hypothesis (see, for example, Fama and Bliss (1987) or Cambpell and Shiller (1991)

among many others). As pointed out by Dai and Singleton (2002), this prominent pat-

tern of return predictability can serve as a measure to access the goodness-of-fit of term

structure models - one can investigate whether a model implied data-generating-process can

re-produce the observed pattern in the data. In this section, I assess the ability of each

model posited in Section 7.1 by comparing the extent to which each of them can match the

important stylized fact of bond yields. The investigation reveals that the identification of

a variance factor through the portfolio of options Vt strikingly enhances the models’ ability

to reproduce important patterns in the data. Furthermore, it is shown that the usage of

different unspanned macro risks also determines the models’ ability to generate the stylized

fact. Hence, this property of models can serve as a useful guidance in selecting unspanned

macro risks.

The expectation hypothesis implies that the changes in yields are solely attributed to

the revision of future expected interest rates. As a result, high yield spreads should proceed

increases in long rates, and changes in risk premia play no role in determining the shape of

yield curves. One way of testing the expectations hypothesis is to regress realized changes

in yields onto yield spreads

yn−h,t+h − yn,t = φ(n)
0 + φ(n)

1

(
h

n− h
(yn,t − yh,t)

)

(14)

as in Cambpell and Shiller (1991). While φ(n)
1 should be one for n > h under the null, the

estimated φ(n)
1 ’s are typically negative and their magnitudes are increasing with n, i.e. for

longer yields maturities. Dai and Singleton (2002) named this property of linear projections

of yields as LPY, and suggested treating the projections as descriptive statistics that any

empirically desirable term structure model should replicate. They find that the population

coefficients φ(n)
1 implied by estimated Gaussian models closely match their data counterparts.

In contrast, the affine models with stochastic volatilities are not capable of generating this

pattern, and counter-factually imply that the expectations hypothesis nearly holds: φ(n)
1 ’s
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typically stay close to one across all maturities. In other words, the affine models with

stochastic volatilities fail to match the key empirical relationship between expected returns

and the slope of the yields curve. However, Almeida, Graveline, and Joslin (2011) document

that the stochastic volatility models can be as good as Gaussian models in generating the

LPY property, once options data are incorporated into the estimation procedure.

[Insert Table 4 here.]

Table 4 reports the LPY property of each model. The stochastic volatility models with

or without unspanned macro risks outperform the corresponding Gaussian models - this is

in line with the findings in Almeida, Graveline, and Joslin (2011). The result first implies

that the observational variance risk is beneficial in explaining the time variation in risk

premia. Second, it indicates that the bond VIX is a properly identified measure of volatility

risk in the Treasury market. As pointed out in Joslin and Le (2014), φ(n)
1 in equation (14)

is mainly determined by the physical feedback matrix of factors. The population value of

φ(n)
1 is

φ(n)
1 =

(n− h)

h

(

Bn−h

(

KP
1Z

)h −Bn

)

Σ (Bn −Bh)
′

(Bn − Bh)Σ (Bn −Bh)
′ (15)

where Σ denote the unconditional covariance matrix of the time-series innovations and Bn is

the yield’s loadings on the observational factors Z = (P ′
t,M

′
t ,V ′

t)
′. The loadings are almost

identical across all the models - the variance factor’s marginal impact on the cross-section is

minimal as shown in Section 4, and the yield’s loadings on unspanned macro risks are zero

by construction. Since the covariance matrix Σ is in both the numerator and denominator of

equation (15), its impact cancels out. Hence, KP
1Z is the key that causes the variation in the

LPY property of each model. In the case of Gaussian models, the physical feedback matrix

of (P ′
t,M

′
t)

′ is estimated by OLS. Hence, the estimates should be biased if the conditional

volatility of Pt is time varying (which is strongly evident in the data). In the presence

of Vt, the bias of OLS estimates can be corrected because the physical feedback matrix of

(P ′
t,M

′
t)

′ is estimated by GLS. However, the correction works only if the the instrument of

conditional volatility can truly resemble the data generating process. The outperformance

provides evidence that the bond VIX is a well-identified measure of volatility risk in the

Treasury market.
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[Insert Figure 4 and Figure 5 here.]

Figure 4 plots the φ(n)
1 s from A0 (3) and A1 (4) models where six-month changes in yields

are the dependent variables in the Campbell-Shiller regression. The φ(n)
1 s from corresponding

unspanned models, with GRO and CPI as the macro risks, are also displayed. They are

notably worse than the three factor Gaussian model, A0 (3). Figure 5 plots the same but

with UGAP as a measure of economic activity. Contrary to Figure 4, the unspanned models’

performances are much improved, and it becomes even better than A0 (3) model once the

unspanned model incorporates the variance risk. Hence, the unemployment gap, a policy

factor, can be considered a more relevant measure of real economic activity than GRO for a

macro-finance term structure modeling. It also indicates that the impact of unspanned risk

might not be as prominent as asserted by JPS in which CFNAI is utilized as a measure of

output growth.

8 Risk Premia Accounting

This section studies the risk premia implied by UMA4
1 (6) with UGAP and CPI as un-

spanned macro risks9. The risk premia on the risk factor Pt are the difference between

the conditional expectation of Pt+1 from the physical dynamics of equation (11) and the

risk-neutral dynamics of equation (13). They are determined by the full set of the state

Z∗
t ≡ (P ′

t,M
′
t ,Vt)

′ rather than solely by pricing factors (P ′
t,Vt)

′:

EP
t (Pt+1)− EQ

t (Pt+1) =
[

KP
0P −KQ

0P

]

+
[
(

KP
1PP −KQ

1PP

)

KP
1PM

(

KP
1PV −KQ

1PV

)
]

Z∗
t

Furthermore, the risk premia on Pt are, to a first-order approximation, the scaled excess

returns on the yield portfolios whose value change locally one-to-one with changes in Pt. In

other words, the first row of EP
t (Pt+1)−EQ

t (Pt+1) is the scaled excess return on the factor

mimicking portfolio of PC1 while its value is unresponsive to changes in PC2, PC3, and

V (see Appendix F for a detailed explanation - it extends the similar analysis of JPS for

Gaussian unspanned models into affine models with stochastic volatilities.)

9Since both UGAP and CPI are weakly unspanned, the model also can be treated as a shortcut of a
spanned macro-finance term structure model as pointed out by Bauer and Rudebusch (2016).
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Denoting these PC-mimicking portfolios as xPC = Λ0 + Λ1Z∗
t , I impose a set of zero

restrictions on Λ0 and Λ1 due to the concerns about over-parameterization caused by the

large number of parameters of the model (see, for example, Duffee (2010)). Furthermore,

the constraint is economically interpretable since all the factors are tradable portfolios and

macro variables. As pointed out by JPS (for their Gaussian models), no such model-free

interpretation is feasible with a latent factor model. To figure out an adequate set of zero

restrictions, I initially estimate the fully flexible version of a model in which no element of Λ0

and Λ1 is constrained to be zero. Then, the elements of the first estimates without statistical

significance at 5% level are set as zero for the next step of estimation10. This procedure

is repeated until I find that every non-constrained element of Λ0 and Λ1 is statistically

significant. Table 5 displays the resulting estimates of Λ0 and Λ1. It indicates that exposure

to both level and slope risks is priced, while exposure to curvature risk is not. Increase in

the level of uncertainty, Vt, induces higher expected return on the level mimicking portfolio

even though Vt’s impact on the cross-section of bonds is noticeably small as expected from

the exercises in Section 4: see Appendix G for a detailed description of the risk-neutral

parameters and cross-sectional fit of the model. Also, positive shocks on the measure of

inflation (CPI) raise the risk premia on both level and slope risks. On the other hand,

the level measure of economic activity, UGAP , does not contribute to the evolution of risk

premia at all. Its unspanned component provides no relevant information for the time-

variation in risk premia, because UGAP is largely spanned by yield curve components as

documented in Bauer and Rudebusch (2016).

[Insert Table 5 and Figure 6 here.]

Figure 6 plots the estimates of one-year simple expected excess returns from the model

with constraints on Λ0 and Λ1 as in Table 5. Henceforth, this model is denoted as MC

. For comparison purposes, I also estimate the preferred model in JPS (henceforth, MJ).

Based on information criteria, they conduct model selection searches over Λ0 and Λ1 of

UMA2
0 (5) with GRO and Blue Chip inflation forecasts as unspanned macro risks. One-

year expected excess returns on 2-year and 10-year bonds from MC and MJ are plotted

10Asymptotic standard errors are computed by numerical approximation to the Hessian and using the
delta method.
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in Figure 7. The term premia from MC peak early in the recovery or near the end of

the recession, and they are more volatile than the term premia from MJ , especially for

long-term bonds. For example, expected excess returns on a 10-year bond implied by MJ ,

Et

(

RX(10yr)
t→t+12|MJ

)

, is much less time-varying than the expected excess return from MC ,

Et

(

RX(10yr)
t→t+12|MC

)

. Table 6 reports R2s from projecting one-year realized excess returns

of n-year bonds onto their corresponding model implied expected excess returns from MC

and MJ . Expected excess returns from MC explain, across all maturities, about 30% of

time variation in realized excess returns. On the other hand, MJ is particularly good at

capturing excess returns on short-term bonds, but its explanatory power diminishes along

long-term bonds.

[Insert Table 6 and Figure 7 here.]

The estimates of expected returns from June 2004 to June 2006 are of particular interest.

During this period, the Federal Open Market Committee raised the policy rates 25 basis

points for 17 consecutive meetings while the long-end of the yield curve remained relatively

constant. The puzzling behaviour of long-rates has been labeled as a “conundrum” by the

former Chairman Greenspan, and subsequent studies have attributed the phenomenon to

declining risk premia. A comparison of the top and bottom panels in Figure 7 indicates

that incorporating time-varying variance induces more a prominent reduction in risk premia

during the conundrum period. Moreover, Figure 6 and Figure 7 show that negative one-year

expected returns are associated with the conundrum period. The negative expected bond

return, especially implied by MC , has an interesting implication for the design of structural

asset pricing models. As shown in Martin (2016), any expected gross return RT can be

decomposed into

EP
t (RT − Rf,t) =

1

Rf,t
varQt (RT )− covt (MTRT , RT )

where MT is the pricing kernel that prices time T payoffs from the perspective of time

t. Hence, if Rsp
T is the return on the S&P 500 index and the second component of the

decomposition, covt (MTR
sp
T , Rsp

T ), is negative, then the risk-neutral variance of return,

1
Rf,t

varQt (Rsp
T ), gives the lower bound on the equity premium. Martin (2016) also argues
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that covt (MTR
sp
T , Rsp

T ) of the equity index is negative in most of macro-finance asset pricing

models and estimates of covariance cov(MTR
sp
T , Rsp

T ) are negative across various sample

periods. As a consequence, the measure of the risk-neutral variance constructed from S&P

500 index options can serve as the lower bound on the equity premium. On the other hand,

the negative expected bond returns from MC imply that covt
(

MC,TR
(n)
T , R(n)

T

)

for n-year

bond return R(n)
T can take a positive value even after explicitly incorporating varQt (RT )

into the stochastic discount factor. Hence, in a desirable equilibrium asset pricing model,

covt (MTRT , RT ) for bonds should be able to switch its sign while covt (MTRT , RT ) for the

equity market remains negative. Given a preference of representative agent, for example,

this condition gives a clue for the factor structure of the state. Alternatively, it can be

utilized to restrict the parameter space of an equilibrium model.

9 Conclusion

This paper studies the impact of variance risk in the Treasury market on both term premia

and the shape of the yield curve. Variance risk in the Treasury market can be observed via

a portfolio of options given the assumptions that (i) the state of the economy is determined

by a state variable following an affine diffusion process under the risk-neutral measure and

(ii) the drift of a pricing kernel is affine in the state variable. This unique approach for

the identification of variance risk in interest rates enables me to treat the bond VIX2 as a

measure of fixed income variance risk.

Using the observable proxy of variance risk, labeled bond VIX2, this paper first proposes

a novel return-forecasting factor. The return-forecasting factor is motivated by leading

consumption-based asset pricing models, the long-run risk, rare disaster, and affineQ habit

formation models. In these frameworks, the set of risk factors underlying variation in risk

premia is the sole source of time-varying variances in bond yields and should be captured

by the bond VIX2s. Projection of realized excess bond returns onto the space of VIX2s

gives a single return-forecasting factor that describes time-variation in the expected bond

returns. The return-forecasting factor predicts excess returns of relatively short-term bonds

well, and complements the Cochrane-Piazzesi factor.
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Second, the observable measure of variance risk can be utilized to analyze the relationship

between variance risk and the shape of the yield curve in a simple and parsimonious way.

Its marginal impact on the cross-section of bonds is limited once I control for standard

term structure factors. Furthermore, the hypothesis of unspanned stochastic volatility can

be directly assessed by testing the spanning conditions of affine models, and I find the

hypothesis is rejected. In sum, though the knife-edge conditions for USV effects do not hold

in the data, it is true that identifying variance risk from the yield curve movements is very

hard, and the variance risk can be effectively considered as unspanned risk.

Third, I propose a new representation of affine dynamic term structure models with time-

varying variance risks in yields. Due to the observable proxy of variance risk, affine bond

pricing models can be represented by observable and tradable factors. This simplifies the

estimation procedure significantly while the information in volatility-sensitive instruments

is readily incorporated. The estimated risk premia show that it is important to take into

account both types of unspanned risk: the unspanned stochastic volatility factor and the

hidden non-volatility factor.
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Table 1

Predictive Regressions

Panel A reports adjusted R2 from regressing twelve-month excess returns rx(n) of bonds with
n years to maturity on CP factor, CIV, and both. Panel B presents estimated coefficients
from predictive regressions from the mean of excess returns in Panel A onto CP factor or
(and) CIV. Standard errors are in parentheses and adjusted according to Newey and West
(1987). Data is monthly and runs from October 1990 to December 2007.

Panel A: Predictive Regressions and Adjusted R2s

Excess returns from Fama-Bliss data Excess returns from GSW data

CP CIV CIV&CP CP CIV CIV&CP
rx(2) 0.20 0.27 0.36 rx(2) 0.15 0.26 0.31
rx(3) 0.22 0.28 0.38 rx(4) 0.21 0.28 0.36
rx(4) 0.24 0.28 0.40 rx(6) 0.25 0.27 0.38
rx(5) 0.22 0.28 0.38 rx(8) 0.27 0.26 0.39

rx(10) 0.28 0.23 0.38

Panel B: Predictive Regression Coefficients

CIV CP adj R2

mean(FB rx) 0.53 0.28
(0.10)

mean(FB rx) 0.35 0.43 0.39
(0.10) (0.12)

mean(GSW rx) 0.52 0.27
(0.11)

mean(GSW rx) 0.38 0.39 0.39
(0.11) (0.12)
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Table 2

Marginal Impact of Variance Risks onto the Shape of the Yield Curve

This table reports the test statistics of the likelihood ratio test. The first column presents
the right hand side variables in the restricted models: equation (7). The remaining columns
present an additional variable in each version of the unrestricted model and its corresponding
LR statistics. The last column shows the 5% critical value of the test statistics, which follows
χ2 (11) distribution. Data is monthly and runs from October 1990 to December 2007.

Restricted Model
Additional Variable in Unrestricted model
VPC1 VPC2 PC3 PC4 C.V.(5%)

PC1, PC2 4.2 14.2 5882.9 19.7
PC1, PC2, PC3 45.0 18.6 3678.7 19.7
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Table 3

Tests for the USV effect

This table reports the test statistics of Kleibergen and Paap (2006) for the rank of the
matrix BZ in equation (6). The null of the test is equation (9). Data is monthly and runs
from October 1990 to December 2007.

Specification Stat. d.f. C.V.(5%) p-val

A1 (3) 20.82 9 16.92 0.01
A1 (4) 20.72 8 15.51 0.01
A2 (4) 14.90 8 15.51 0.06
A2 (5) 14.89 7 14.07 0.04
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Table 4

Campbell-Shiller Regressions

Panel A reports the coefficients φ(n)
1 from the Campbell-Shiller regression in equation (14) with three month changes in yields as

regressands. GRO and CPI are used to estimate UMAR
m (N) models. Panel B reports the coefficients φ(n)

1 from the Campbell-
Shiller regression with six month changes in yields as regressands. UGAP and CPI are used to estimate UMAR

m (N) models.
Data is monthly and runs from October 1990 to December 2007.

Panel A: Campbell-Shiller Regression with Three-month Changes in Yields

Specification Macro
Maturities

MSE
1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr

Data 0.40 -0.25 -0.67 -0.90 -1.03 -1.10 -1.15 -1.18 -1.20 -1.23 0.00
A0(3) 0.40 0.01 -0.23 -0.37 -0.46 -0.53 -0.59 -0.64 -0.69 -0.74 2.31
A1(4) 0.26 -0.29 -0.64 -0.84 -0.96 -1.07 -1.16 -1.25 -1.33 -1.41 0.09

UMA2
0(5) GRO,CPI 0.96 0.64 0.38 0.21 0.09 0.00 -0.06 -0.12 -0.17 -0.21 10.28

UMA2
1(6) GRO,CPI 0.96 0.60 0.27 0.04 -0.13 -0.25 -0.35 -0.43 -0.50 -0.57 6.45

UMA2
0(5) UGAP,CPI 0.56 0.16 -0.09 -0.25 -0.35 -0.42 -0.48 -0.54 -0.59 -0.64 3.44

UMA2
1(6) UGAP,CPI 0.33 -0.11 -0.40 -0.56 -0.67 -0.75 -0.83 -0.89 -0.96 -1.02 0.74

Panel B: Campbell-Shiller Regression with Six-month Changes in Yields

Specification Macro
Maturities

MSE
1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr

Data 0.34 -0.39 -0.78 -0.98 -1.10 -1.17 -1.23 -1.27 -1.31 -1.34 0.00
A0(3) 0.30 -0.03 -0.21 -0.30 -0.36 -0.41 -0.46 -0.50 -0.54 -0.59 4.36
A1(4) 0.13 -0.37 -0.64 -0.78 -0.87 -0.96 -1.03 -1.11 -1.19 -1.26 0.29

UMA2
0(5) GRO,CPI 1.11 0.84 0.62 0.47 0.36 0.27 0.21 0.15 0.10 0.06 18.41

UMA2
1(6) GRO,CPI 1.06 0.76 0.46 0.25 0.10 -0.01 -0.11 -0.18 -0.25 -0.31 12.29

UMA2
0(5) UGAP,CPI 0.48 0.13 -0.07 -0.18 -0.24 -0.28 -0.33 -0.36 -0.40 -0.43 6.25

UMA2
1(6) UGAP,CPI 0.23 -0.18 -0.40 -0.51 -0.58 -0.64 -0.69 -0.75 -0.80 -0.85 2.04
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Table 5

Risk Premia Parameters

This table presents the maximum likelihood estimation of the parameters Λ0 and Λ1 gov-
erning expected excess returns on the PC-mimicking portfolios. Standard errors are given
in parentheses.

P const PC1 PC2 PC3 UGAP CPI TIV 2
30yr

PC1 0 -0.636 -1.305 0 0 1.647 1.509
(0.213) (0.326) (0.650) (0.683)

PC2 -0.018 0 0 0 0 0.699 0
(0.007) (0.265)

PC3 0 0 0 0 0 0 0

Table 6

Predictive Regressions

This table reports adjusted R2 from regressing twelve-month excess returns xr(n) of bonds
with n years to maturity on corresponding model implied expected excess returns.

Model Specification Macro
R2

1 year 5 year 7 year 10 year

MC UMA2
1(6) UGAP,CPI 0.26 0.28 0.29 0.30

MJ UMA2
0(5) GRO,CPI 0.38 0.22 0.18 0.14
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Figure 1. TIV,TYVIX and VIX

This figure plots the CBOE VIX, the CBOE TYVIX and the 10-year TIV from ?. Volatilities
are the square root from variances as constructed using option prices via equation (3).
Numbers are annualized and expressed in percent. Gray bars indicate NBER recessions.
The data is monthly and runs from July 1990 to June 2015; The 10-year TIV data ends in
August 2012, and the TYVIX data starts from January 2003.
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Corr(CIV,CP) =   0.34
AutoCorr(CP) =  0.82 
AutoCorr(CIV) = 0.82 
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Figure 2. Excess Returns, CP and CIV

This figure plots the Cochrane-Piazzesi factor (CP ), CIV , and the average of twelve-month
excess returns on bonds with maturities of 1 through 10 years. Gray bars indicate NBER
recessions, and blue bars represent financial crisis periods. The data is monthly and runs
from October 1990 to December 2007.
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Figure 3. UGAP, GRO and CPI

This figure plots the unemployment gap (UGAP ), the three-month moving average of the
Chicago Fed’s National Activity Index (GRO) and the year-over-year growth in Consumer
Price Index, excluding food prices and energy prices (CPI). Gray bars indicate NBER
recessions. The data is monthly and runs from October 1990 to December 2007.
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Figure 4. Campbell-Shiller Regression

This figure plots the coefficients φ(n)
1 from the Campbell-Shiller regression in equation (14)

where the left-hand side variable is changes in yields over six months. The models Am (N)
are models with N − m Gaussian factors and m factors driving volatility. The models
UMAR

m (N) are models with GRO and CPI as unspanned macro risks. Data is monthly
and runs from October 1990 to December 2007.
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Figure 5. Campbell-Shiller Regression

This figure plots the coefficients φ(n)
1 from the Campbell-Shiller regression in equation (14)

where the left-hand side variable is changes in yields over six months. The models Am (N)
are models with N − m Gaussian factors and m factors driving volatility. The models
UMAR

m (N) are models with UGAP and CPI as unspanned macro risks. Data is monthly
and runs from October 1990 to December 2007.
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One-year expected excess returns from MC
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Figure 6. One-year Expected Excess Returns from MC

This figure plots the estimates of one-year simple expected excess returns from MC . The
constraints on risk premia dynamics in Section 8 are imposed. The data is monthly and
runs from October 1990 to December 2007.
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Expected excess return on two−year bond
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Figure 7. One-year Expected Excess Returns from MC and MJ

This figure plots the estimates of one-year simple expected excess returns from MC and
MJ . The constraints on risk premia dynamics in Section 8 are imposed to estimate each
specification. The data is monthly and runs from October 1990 to December 2007.
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Appendix A Proof of Proposition 1

Lemma 1. Suppose that Ft (T,T) is a diffusion process

dFt (T,T)

Ft (T,T)
= v′tdB

QT
t

Then,

EQT
t

[∫ T

t
vsv

′
sds

]

=
2

Pt,T

[
∫ Ft(T,T)

0

Putt (K,T,T)

K2
dK +

∫ ∞

Ft(T,T)

Callt (K,T,T)

K2
dK

]

Proof. See for example Choi, Mueller, and Vedolin (2016).

Lemma 2. Suppose that the numeraire of QT forward measure, Pt,T , has the following dynamics

under Q

dPt,T = Pt,T

(

rtdt+ σ′t,TdB
Q
t

)

(A-1)

Then,

dBQT
t = −σt,Tdt+ dBQ

t

Proof. See for example Björk (2009).

Proof of Proposition 1. Under the two assumptions that (i) the state follows affine diffusion and
(ii) the short rate is an affine function of the state, Duffie and Kan (1996) show that Pt,T is
exponentially affine in the state.

Pt,T = exp

[

Ā
(

ΘQ, t, T
)

+ B̄
(

ΘQ, t, T
)′

Zt

]

(A-2)

Since no-arbitrage condition implies Ft = Pt,T/Pt,T , the forward price is also exponentially affine
in the state

Ft (T,T) = Pt,T/Pt,T = exp
[

ψ0 + ψ′
1Zt
]

where ψ0 and ψ1 are functions of
{

ΘQ, T,T
}

. Applying Ito’s lemma to Ft under QT , we have the
following diffusion process

dFt (T,T)

Ft (T,T)
≡ v′tdB

QT
t = ψ′

1ΣZ,tdB
QT
t

The expected quadratic variation of the forward up to time T is

EQT
t

[∫ T

t
v′svsds

]

=

∫ T

t
ψ′
1ΣZ0ψ1ds+

m
∑

i=1

∫ T

t
ψ′
1ΣZiψ1E

QT
t [Vis] ds (A-3)

The proof is completed by Lemma 1 once the right-hand side of equation (A-3) is an affine function
of Vt only. Intuitively, the Gaussian factor Xt cannot affect E

QT
t [Vis], otherwise the expected value

of Vs under QT could have a negative value. As a last step, apply Ito’s lemma to equation (A-2).
Then, the diffusion term of it, the σt,T term in case of equation (A-1), is given by

σt,T = ΣZ,tB̄
(

ΘQ, t, T
)
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As a consequence of Lemma 2, the dynamics of the state under QT can be written as

dZt = d
(

X ′
t, V

′
t

)′
=

[
(

µQ′
X,t, µ

Q′
V,t

)′
+ ΣZ,tΣ

′
Z,tB̄

(

ΘQ, t, T
)
]

dt+ ΣZ,tdB
QT

Since µQ
V,t is assumed to be affine in Vt only (i.e. as in Duffie, Filipović, and Schachermayer (2003),

K1V X in equation (1) is set to be zero for admissibility) and ΣZ,tΣ′
Z,tB̄

(

ΘQ, t, T
)

is a linear function

of Vt solely, µ
QT
V,t is also an affine function of Vt.

Appendix B The bond VIX2s in a long-run risk framework

I initially solve the model of Bansal and Shaliastovich (2013) in the continuous-time framework,
and then demonstrate the linear mapping between the bond VIXs and the two macroeconomic
uncertainties in the model. The dynamics of consumption Ct, inflation πt ,and their long-run risks
as well as quantity of risk are specified as

dCt

Ct
= (µc +Xct) dt+ σcdZ1t

dπt
πt

= (µπ +Xπt) dt+ σπdZ2t

dXct = (−ρcXct − ρcπXπt) dt+
√

VctdW1t

dXπt = −ρπXπtdt+
√

VπtdW2t

Vct = κc
(

V̄c − Vct
)

dt+ wc

√

VctdB1t

Vπt = κπ
(

V̄π − Vπt
)

dt+ wπ
√

VπtdB2t

where Z1t, Z2t,W1t,W2t, B1t and B2t are independent Brownian motions. Following Duffie and
Epstein (1992), the representative agent’s objective is

Jt = max
{Cs}

Et

[∫ T

t
f (Cs, Js) ds

]

where the normalized aggregator f (C, J) is given by

f (C, J) = β

(
1− γ

1− 1/ψ

)

J

⎡

⎣

(

C

((1− γ) J)1/(1−γ)

)1−1/ψ

− 1

⎤

⎦ (A-4)

with β the rate of time preference, γ the relative risk version, and ψ the elasticity of intertemporal
substitution. Conjecture J as

J (Wt, Zt) = exp (a0 + a1Xct + a2Xπt + a3Vct + a4Vπt)
W 1−γ

t

1− γ
. (A-5)

Since the envelop condition, fC = JW , can be written as

C = J−ψ
W [(1− γ) J ]

1−γψ
1−γ

βψ, (A-6)
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substituting equation (A-5) into equation (A-6) enables us to express the log consumption-wealth
ratio in terms of the state variables:

log

(
Ct

Wt

)

= ψ log β +
1− ψ

1− γ
(a0 + a1Xct + a2Xπt + a3Vct + a4Vπt)

In addition, substituting equation (A-6) into equation (A-4) gives

f =

(
1− γ

1− 1/ψ

)(
Ct

Wt
− β

)

J

Applying log-linear approximation from Campbell (1993) to the consumption-wealth ratio

Ct

Wt
≈ g1 + g1 log g1 + g1 log

(
Ct

Wt

)

(A-7)

where g1 is the long-term mean of the consumption-wealth ratio. Then

f ≈
(

1− γ

1− 1/ψ

)[

g1 + g1 log g1 + g1 log

(
Ct

Wt

)

− β

]

J

=

(
1− γ

1− 1/ψ

)[

ξ +
g1 (1− ψ)

1− γ
(a0 + a1Xct + a2Xπt + a3Vct + a4Vπt)

]

J

where ξ = g1 + g1 log g1 + g1ψ log β − β. As shown in Duffie and Epstein (1992), the state price

process is identified as ζt = exp
[
∫ t
0 fJ (Cs, Js) ds

]

fC (Ct, Jt) and the corresponding nominal pricing

kernel is defined as ζ̃t =
ζt
πt
. Applying Ito’s lemma for the nominal pricing kernel results in

dζ̃t

ζ̃t
= − (r0 + r1Xct + r2Xπt + r3Vct + r4Vπt) dt

−λ1tdZ1t − λ2tdZ2t − λ3tdW1t − λ4tdW2t − λ5tdB1t − λ6tdB2t

where

λ1t = γσc, λ2t = σπ

λ3t = −
1− γψ

1− γ
a1
√

Vct, λ4t = −
1− γψ

1− γ
a2
√

Vπt

λ5t = −
1− γψ

1− γ
a3wc

√

Vct, λ6t = −
1− γψ

1− γ
a4wπ

√

Vπt
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and

r0 = −ξ1 −
1− ψ

1− γ

(

a1µπ + a3κcV̄c + a4κπV̄π
)

+ γµc −
1

2
γ (γ − 1) σ2c + µπ − σ2π

r1 = γ + a1 (ρc + g1)
1− γψ

1− γ

r2 = 1 + (a1ρcπ + a2 (ρπ + g1))
1− γψ

1− γ

r3 = a3 (κc + g1)
1− γψ

1− γ
−

1

2

(

a21 + a23w
2
c

)
(
1− γψ

1− γ

)2

r4 = a4 (κπ + g1)
1− γψ

1− γ
−

1

2

(

a22 + a24w
2
π

)
(
1− γψ

1− γ

)2

Because of the Girsanov theorem, the price of risk dynamics implies that the state variable also
follows affine diffusion under Q, and the short rate is affine in the state as can be seen.

Appendix C The bond VIX2s and Gaussian quadratic term structure models

In Gaussian quadratic term structure models, the state variable Xt is assumed to follow the
Ornstein-Uhlenbeck process under the risk-neutral measure Q:

dXt =
[

KQ
0X +KQ

1XXt

]

dt+
√
ΩdBQ

t

where
√
Ω represents the Cholesky decomposition of a positive definite matrix Ω. The short rate

is a quadratic function of the Gaussian affine-diffusion state

rt = Ψ0 +Ψ1Xt +X ′
tΨ2Xt

Then, bond prices are represented as

Pt,T = exp
[

Ã
(

ΘQ, t, T
)

+X ′
tB̃
(

ΘQ, t, T
)

+X ′
tC̃
(

ΘQ, t, T
)

Xt

]

with a symmetric matrix C̃ (see for example Ahn, Dittmar, and Gallant (2002)). Applying Ito’s
lemma, the dynamics of the forward are

dFt (T,T)

Ft (T,T)
≡ v′tdB

QT
t = [ξ0 + 2ξ1Xt]

′
√
ΩdBQT

t

where

ξ0 = B̃
(

ΘQ, t,T
)

− B̃
(

ΘQ, t, T
)

ξ1 = C̃
(

ΘQ, t,T
)

− C̃
(

ΘQ, t, T
)

Then, the expected quadratic variation can be written as

EQT
t

[∫ T

t
v′svsds

]

= EQT
t

[∫ T

t
(ξ0 + 2ξ1Xs)

′ Ω (ξ0 + 2ξ1Xs) ds

]
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Suppose that the i-th element of Xt has no impact on the volatilities in yields. This implies that
i-th row and column of C̃

(

ΘQ, t, T
)

is zero for all T > 0. Since the instantaneous volatility of Pt,T

is
σt,T =

√
Ω
′
[

B̃
(

ΘQ, t, T
)

+ 2C̃
(

ΘQ, t, T
)

Xt

]

,

the dynamics of the state under QT is

dXt =
[

KQT
0X +KQT

1XXt

]

dt+
√
ΩdBQT

t

where

KQT
0X = KQ

0X + ΩB̃
(

ΘQ, t, T
)

KQT
1X = KQ

1X + 2ΩC̃
(

ΘQ, t, T
)

Appendix D Discrete-time term structure model with stochastic volatility

Appendix D.1 Zero-coupon bonds’ loading on pricing factors

Denote the price of zero-coupon bond with maturity of n as P (n)
t . Then, we can show that

lnP (n)
t = −Ān − B̄V,nVt − B̄X,nXt with loadings given by

Ān = δ0 + Ān−1 +KQ′
0XB̄X,n + cQνQ′B̄V,n−1 −

1

2
αn−1

B̄V,n = δV +KQ′
1XV B̄X,n−1 + ρQ′B̄V,n−1 −

1

2
βn−1 (A-8)

B̄X,n = δX +KQ′
1XB̄X,n−1

where

αn = B̄′
X,nΣ0XΣ′

0XB̄X,n − 2vQ′
V

[

logJn − cQ′
V B̄XV,n

]

(A-9)

βn = −2Gn+
(

B̄′
X,nΣ1XΣ′

1XB̄X,n, · · ·, B̄′
X,nΣmXΣ′

mXB̄X,n
)′

(A-10)

and

Gn−1 = ρQ′cQ−1′
(

[diag (Jn−1)]
−1 − Im

)

cQ′B̄XV,n−1

Jn−1 = ιm + cQ′B̄XV,n−1

B̄XV,n−1 = Σ′
XV B̄X,n−1 + B̄V,n−1

The initial condition of the difference equation is Ā0 = B̄V,0 = B̄X,n ≡ 0.

In addition, denoting the yield on a zero-coupon bond of maturity n as yn,t, then, we have

yn,t = An +BnZt

where An = 1
nĀn, BV,n = 1

nB̄V,n and BV,n = 1
nB̄X,n. Stacked yields, yt, can be represented as

yt = A+BV Vt +BXXt
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where A, BV and BX are corresponding stacked An, BV,n and BX,n. Furthermore it can be written
as a function of the observable factor Zt as in Section 5. With W ∈ R(N−m)×J being the weighting
matrix to construct Pt,

yt = A+BV Vt +BXXt = A+ BPPt + BVVt

where

BP = BX (WBX)−1

BV = (I − BPW )BV β
−1 (A-11)

A = (I − BPW )A− BVα

Appendix D.2 Vt’s loading on the latent variance factor

As shown in Choi, Mueller, and Vedolin (2016),

Vt ≡
2

Pt,T

[
∫ Ft(T,T)

0

Putt (K,T,T)

K2
dK +

∫ ∞

Ft(T,T)

Callt (K,T,T)

K2
dK

]

= 2
[

lnEQT
t (FT (T,T))− EQT

t (lnFT (T,T))
]

In the case of one-month TIVs or TYVIX, T is equal to t + 1. Hence, the calculation for α and
β should be taken under Qt+1 forward measure (i.e. the risk neutral measure). I use the notation
Q instead of Qt+1 according to the convention in the literature, and denote the time to maturity
of the underlying bond on the expiration date of the forward as n = T − (t+ 1) for notational
simplicity. Then,

lnEQ
t [Ft+1 (t+ 1,T)] = lnFt (t+ 1,T) = lnP (n+1)

t − lnP (1)
t = − (An+1 −A1)−

(

B′
n+1 −B′

1

)

Zt

EQ
t [lnFt+1 (t+ 1,T)] = EQ

t

(

lnP (n)
t+1

)

= −An −B′
nE

Q
t (Zt+1)

= −An −B′
X,n

(

KQ
0X +KQ

1XXt +KQ
1XV Vt

)

−B′
V,n

(

cQνQ + ρQVt

)

Using the difference equations in (A-8), we have

V(n)
t = 2 lnEQ

t [Ft+1 (t+ 1,T)]− 2EQ
t [lnFt+1 (t+ 1,T)]

= αn + β′nVt

where αn and βn are given in equations (A-9) and (A-10).

Appendix E Test for the USV effect

Denote R as the number of priced factors. For J ≥ R, a (J × 1) vector of yields can be written as

yt = A+BXXt +BV Vt = A+ BPPt + BVVt

where Pt (≡ Wyt) is the first (R−m) principal components of yt, Vt is the observable measure of
variance risk, and

BV =
(

I −BX (WBX)−1W
)

BV β
−1
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as in equation (A-11). Suppose that, without loss of generality, the first volatility factor V1t is an
unspanned volatility. Then, there exists Φ such that BV1

= BXΦ (see, for example, Lemma 2 in
Joslin (2015)), which implies

BV =
(

I −BX (WBX)−1 W
)
[

BXΦ, BV2:m

]

β−1

=
[

0,
(

I −BX (WBX)−1 W
)

BV2:m

]

β−1

Hence, BZ ≡
[

BP , BV
]

cannot be a full rank matrix in the presence of USV.

Appendix F Returns on generalized mimicking portfolios

As in Joslin, Priebsch, and Singleton (2014), we have

EP
t

[

P (n−1)
t+1 /P (n)

t

]

= exp
[

kPt (Zt+1;−Bn−1)− kQt (Zt+1;−Bn−1) + rt
]

where kt (Ztt+1;u) denotes the conditional cumulant generating function of Zt+1 at time t, and Bn

is the corresponding factor loading. In addition, the Laplace transform of the mixture of Gaussian
and multivariate non-central gamma distribution is given by

E
[

exp
(

u′Zt+1
)]

= exp

(

u′P (K0P +K1PPt +K1PVVt −ΣPV [µ+ cν + ρ (Vt − µ)]) +
1

2
u′PΣP,tΣ

′
P,tuP

)

× exp

(

u′PVµ−
m
∑

i=1

vi log
(

1− e′ic
′uPV

)

+
m
∑

i=1

e′ic
′uPV

1− e′ic
′uPV

e′ic
−1ρ (Vt − µ)

)

where uPV = Σ′
PVuP + uV and ei is a zero vector except its i-th element is 1. µ denotes the lower

bound of Vt, and is equal to αn in Appendix D.2 when the lower bound on latent Vt is set to be
zero. Under the normalization scheme of cP = cQ and ΣP

XV = ΣQ
XV , we have

kPt (Zt+1;−Bn−1)− kQt (Zt+1;−Bn−1)

= B′
P,n−1

[(

KQ
0P −KP

0P

)

+
(

KQ
1P −KP

1P

)

Pt +
(

KQ
1PV −KP

1PV

)

Vt

]

−B′
P,n−1ΣPV

[

c
(

νQ − νP
)

+
(

ρQ − ρP
)

(Vt − µ)
]

+
m
∑

i=1

(

vQi − vPi

)

log (1 +Ai) +
m
∑

i=1

Ai

1 +Ai
e′ic

−1
(

ρQ − ρP
)

(Vt − µ)

where the constant Ai is given by

Ai = e′ic
′
(

Σ′
PVBP,n−1 +BV ,n−1

)
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Since 1
1+x ≈ x and log (1 + x) ≈ x for small x, the above can be approximated by

B′
P,n−1

[(

KQ
0P −KP

0P

)

+
(

KQ
1P −KP

1P

)

Pt

]

+B′
P,n−1

(

KQ
1PV −KP

1PV

)

Vt

+

[

B′
P,n−1ΣPV −

m
∑

i=1

Aie
′
ic

−1

]
(

ρP − ρQ
)

(Vt − µ)

+B′
P,n−1ΣPVc

(

νP − νQ
)

−
m
∑

i=1

Ai

(

vPi − vQi

)

When m = 1 and νQi = νPi , this can be further simplified as

B′
P,n−1

[(

KQ
0P −KP

0P

)

+
(

KQ
1P −KP

1P

)

Pt +
(

KQ
1PV −KP

1PV

)

Vt

]

+BV ,n−1

(

ρQ − ρP
)

(Vt − µ)

Now consider a linear combination of yields yat =
∑N

i=1 aiy
ni
t where ni denotes the maturity of the

i-th yield. To construct a mimicking portfolio of it, we need to find {wi}Ni=1 such that

dPw
t

dyat
=

N
∑

i=1

dPw
t

dyni
t

dyni
t

dyat
= −

N
∑

i=1

winiP
ni
t

1

ai
= 1

which will hold for weights

wi = −
ai

NniP
ni
t

Consider the one-period excess return on portfolio Pw
t :

∑

iwi

(

Pni−1
t+1 − ertPni

t

)

|
∑

iwiP
ni
t |

=
−
∑

i ai/ni

(

Pni−1
t+1 /Pni

t − ert
)

|
∑

i wiP
ni
t |

Using ex ≈ 1 + x, we have

EP
t

[

Pni−1
t+1 /Pni

t

]

= exp
[

kPt (Zt+1;−Bn−1)− kQt (Zt+1;−Bn−1) + rt
]

≈ 1 + kPt (Zt+1;−Bn−1)− kQt (Zt+1;−Bn−1) + rt

which implies that

−
∑

i ai/niEP
t

[

Pni−1
t+1 /Pni

t − ert
]

|
∑

iwiP
ni
t |

=
−
∑

i ai/ni

[

kPt (Zt+1;−Bn−1)− kQt (Zt+1;−Bn−1)
]

|
∑

iwiP
ni
t |

Hence, the expected excess return on portfolio Pw
t , to a first-order approximation, is given by

∑

i ai/niBni−1 [Λ0 + Λ1Zt]

|
∑

i ai/ni|
(A-12)

57



where

Λ0 =

[

KP
0P −KQ

0P
−
(

ρP − ρQ
)

µ

]

Λ1 =

[ (

KP
1PP −KQ

1PP

)

KP
1PM

(

KP
1PV −KQ

1PV

)

0 0 ρP − ρQ

]

and
Bni−1 =

(

B′
P,n−1, B

′
V ,n−1

)′

Since the first (N −m) elements of Zt correspond to the first (N −m) principal components of
yields

PCjt =
N
∑

i=1

lji y
ni
t =

N
∑

i=1

lji (Ani/ni +Bni/niZt)

it follows that
∑N

i=1 l
j
iBni/ni is the selection vector for the j-th element (e.g. (1, 0, 0) for j = 1 )

for j ≤ N −m. Replacing ai of equation (A-12) with lji and approximating Bni−1 with Bni , we
have

∑

i l
j
iBni−1/ni [Λ0 + Λ1Zt]

∣
∣
∣

∑

i l
j
i /ni

∣
∣
∣

=

selction vector
︷ ︸︸ ︷
∑

i

ljiBni/ni [Λ0 + Λ1Zt]

∣
∣
∣

∑

i l
j
i /ni

∣
∣
∣

which implies that xPCj is given by the j-th row of Λ0+Λ1Zt scaled by
∣
∣
∣

∑

i l
j
i /ni

∣
∣
∣ for j ≤ N−m.

Appendix G Estimates of MC

Under the risk-neutral measure Q, the latent state variable is drift-normalized as in Joslin (2015)
or Creal and Wu (2015), for econometric identification. Then, the short rate equation for MC is11

rt = rQ∞ + ι′Xt + δV Vt (A-13)

where ι denotes a vector of ones. δV can take ±1 or 0, and each possible value induces different
local maxima: see for example Creal and Wu (2015). The conditional mean of the normalized
state Zt ≡ (X ′

t, Vt)
′ is

[

EQ
t (Xt+1)

EQ
t (Vt+1)

]

=

[
0

KQ
0V

]

+

[

diag
(

λQ
)

0
0 ρQ

] [

Xt

Vt

]

(A-14)

where KQ
0V is the product of the scale and shape parameters of Vt.

Table A-1 presents the estimates of the Q parameters for MC and MJ . The persistency of
Gaussian factors, measured by λQ, is similar across the two models. For MJ , δV in equation (A-13)
should be zero and Vt does not affect the conditional variance of Xt. Then, rQ∞ can be interpreted
as the long-run Q mean of the short rate, since the long-run mean of Xt is set to zero under Q

11For ease of explanation, KQ
1X

is assumed to have real distinct eigenvalues - this is overidentifying. For
details, see Joslin, Singleton, and Zhu (2011).
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as in equation (A-14). For MC , the long-run Q mean of the short rate is rQ∞ + δV K
Q
0V /

(

1− ρQ
)

rather than rQ∞, which induces the difference between the rQ∞s of MC and MJ . In addition, the
likelihood of MC is maximized with δV = 1 among the three possible values of δV . This is in line
with rQ∞ of MC being slightly less than rQ∞ of MJ for the two models to have similar levels in the
long-run Q mean of the short rate.

For each maturity n, Table A-2 reports the fraction var(Bnιiι′iZt) /var(BnZt) where ιi denotes
a vector of zero with i-th element being one. The table thus represents the relative contribution of
each latent factor toward the yields curve movement. Note that the exercises in Section 4 analyze
the marginal impact of Vt after controlling the yield curve factors. Because the yield curve factors
themselves, Pt, are linear functions of latent factors Xt and Vt, the sole impact of Vt on the shape
of the yield cannot be assessed in this setting. Within a fully-fledged ADTSM, the impact of
Vt on the cross-section of yields can be completely isolated from the impact of latent Gaussian
factor Xt. The table performs this exercise, and shows that the shape of the yields curve is largely
unexplained by Vt or Vt. Note that the interpretations of Vt and Vt are freely interchangeable in
the context, since one is an invariant transformation of the other: one can freely scale up or down
Vt, then yield loadings on Vt are adjusted accordingly so that its impact on the yield curve still
remains the same.

Table A-1

Persistence Parameters

This table reports the estimates of persistence parameters for the each model MC and MJ .
Standard errors are given in parentheses.

Model rQ∞ λQ1 λQ2 λQ3 ρQ

MC 0.098 0.996 0.963 0.903 0.949
(0.012) (0.000) (0.003) (0.010) (0.036)

MJ 0.108 0.996 0.963 0.906
(0.003) (0.000) (0.002) (0.008)

Table A-2

Yield Curve Decomposition

This table reports the fraction var(Bnιiι′iZt) /var(BnZt) where ιi denotes a vector of zero with i-th
element being one.

ι′iZt
n

6 mon 1 yr 2 yr 3 yr 5 yr 7 yr 10 yr

X1 (≡ ι′1Zt) 1.20 1.22 1.28 1.37 1.47 1.49 1.45
X2 (≡ ι′2Zt) 3.60 3.02 2.24 1.73 1.07 0.69 0.40
X3 (≡ ι′3Zt) 0.64 0.39 0.18 0.10 0.05 0.03 0.01
V (≡ ι′4Zt) 0.03 0.03 0.02 0.01 0.01 0.00 0.00
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