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Abstract

We test whether bear market risk – time-variation in the probability of future
bear market states – is priced. Theoretically, short-term returns of an Arrow-Debreu
security that pays off in terminal bear market states (AD Bear) capture bear market
risk. Empirically, we construct AD Bear using traded S&P 500 index options and
find that stocks with high sensitivity to AD Bear returns (stocks that outperform
when bear market risk increases) earn average monthly returns 1% lower than stocks
with low sensitivity. Consistent with risk-based explanations, the negative relation is
persistent, robust, and remains strong among liquid and large stocks.
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1 Introduction

This paper examines the pricing implications of bear market risk. We define bear market

risk as time-variation in the ex-ante probability of future bear market states (i.e., states in

which the market portfolio suffers a large loss). Bear market risk is distinct from risk driven

by realized market losses as studied in Ang, Chen, and Xing (2006): regardless of whether

or not the market is currently in a bear market state, changes in the probability of future

bear market states impact asset prices. The importance of this distinction is highlighted

by Gabaix (2012) and Wachter (2013), who demonstrate theoretically that time-variation

in disaster risk, the consumption analog of bear market risk, explains many macroeconomic

asset pricing puzzles.

Our key innovation is to develop a measure of bear market risk. Motivated by Breeden

and Litzenberger (1978), we construct an Arrow (1964) and Debreu (1959) portfolio – AD

Bear – from traded S&P 500 index options. The AD Bear portfolio pays off $1 when the

market at expiration is in a bear state.1 Therefore, the price of the AD Bear portfolio is a

forward-looking measure of the (risk-neutral) probability of future bear market states and

the short-term AD Bear return reflects the change in this probability, i.e., bear market risk.2

Using Wachter (2013)’s model, we demonstrate that bear market risk is priced differently

than CAPM market risk and show that we can measure exposure to bear market risk by

augmenting the CAPM model with AD Bear returns.

Our main hypothesis is that bear market risk carries a negative price of risk. Intuitively,

an increase in bear market risk reduces investors’ utility and increases marginal utility.

Therefore, assets with high exposure to bear market risk (i.e. assets that outperform when

bear market risk increases) should earn low average returns because they pay off when

marginal utility is high. Consistent with this prediction, the AD Bear portfolio generates a

negative average excess return and negative alphas relative to the CAPM and other standard

factor models.

Our focal tests examine the cross-sectional relation between future stock returns and

bear beta (sensitivity to the AD Bear return). We find that the post-formation returns

of value-weighted decile portfolios sorted on bear beta exhibit a strong decreasing pattern

1In our main specification, we define bear states to be states in which the market excess return is more
than 1.5 standard deviations below zero and use VIX as the measure of standard deviation.

2The use of the short-term AD Bear portfolio return, instead of the hold-to-expiration return, is an
important aspect of our analysis. The short-term return captures the change in the ex ante probability of
future bear market states, whereas the hold-to-expiration return is completely determined by whether or not
the market is in a bear state on the option expiration date.
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across bear beta deciles. A zero-investment portfolio that goes long the top bear beta decile

portfolio and short the bottom decile portfolio generates an average return of about −1%

per month, three-factor alpha of about −1.25% per month, and five-factor alpha of about

−0.70% per month. This strong and robust negative cross-sectional relation between bear

beta and future stock returns is particularly striking in light of the well-documented inability

of other theoretically motivated factor sensitivity variables, such as CAPM beta, to predict

future stock returns.

For our results to be supportive of a rational risk pricing hypothesis, it is necessary that

our portfolios, which are sorted on historically-estimated pre-formation bear betas, have

strong variation in post-formation exposure to bear market risk. We therefore examine the

post-formation sensitivity of the bear beta-sorted portfolios to bear market risk. We find that

post-formation sensitivities show a pattern similar to that of the pre-formation sensitivities.

The spread in post-formation bear market risk exposure between the high- and low-bear

beta portfolios is both economically and statistically significant. To further distinguish

the risk-factor explanation from a potential mispricing story, we repeat our portfolio tests

using samples containing only liquid stocks and large cap stocks (approximately the 2000

most liquid stocks and the 1000 largest stocks, respectively), for which arbitrage costs are

minimal, and find similar, if not stronger, results. To our knowledge, bear beta is the first

sensitivity measure based on a non-stock-return factor that successfully generates significant

spreads in both post-formation returns and post-formation factor sensitivities.

We are careful to differentiate the negative cross-sectional relation between bear beta

and future returns from previously documented relations between risk and expected returns.

We use bivariate portfolio analysis to control for several known risk-based pricing effects.

Most importantly, we control for the downside beta in Ang, Chen, and Xing (2006). We also

control for measures of aggregate volatility and jump risk such as VIX beta (Ang, Hodrick,

Xing, and Zhang (2006)) and the jump and volatility betas used in Cremers et al. (2015).

To ensure that our results are not driven by exposure to aggregate skewness risk, we control

for coskewness (Harvey and Siddique (2000)) and aggregate skewness beta (Chang et al.

(2013)). Finally, we control for tail beta (Kelly and Jiang (2014)) and idiosyncratic volatility

(Ang, Hodrick, Xing, and Zhang (2006)). Our results demonstrate that none of these risk

measures explains the negative relation between bear beta and expected stock returns. We

then use Fama and MacBeth (1973, FM hereafter) regression analyses to simultaneously

control for these risk measures, as well as other known determinants of expected returns

such as market capitalization and the book-to-market ratio in Fama and French (1992),
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momentum in Jegadeesh and Titman (1993), illiquidity in Amihud (2002), and profitability

and investment in Fama and French (2015). The negative cross-sectional relation between

bear beta and expected stock returns is highly robust to controlling for these previously

documented effects in all three samples and the predictive power of bear beta persists for at

least six months into the future.

Our work builds on previous research on downside risk. Ang, Chen, and Xing (2006)’s

seminal paper shows that downside beta – the sensitivity of the stock’s return to the market

return when the market return is below its average – is positively related to the cross-section

of expected stock returns.3 We combine the insights in Ang, Chen, and Xing (2006) and

Breeden and Litzenberger (1978) and introduce a forward-looking measure of downside risk.

Ang, Chen, and Xing (2006)’s downside beta, originally proposed by Bawa and Lindenberg

(1977), is designed to capture the covariance between the stock return and the market return

when a bear state occurs. In contrast, bear beta is the covariance between the stock return

and the innovation in the probability of future bear states. To illustrate the difference,

consider bear market states caused by the outbreak of war. Downside beta measures how a

stock’s price reacts when a war actually occurs. In contrast, bear beta measures the effect

of changes in the probability of war, as international tensions increase or decrease, on the

stock’s price, even if a war does not actually materialize.

Empirically, since bear beta is a forward-looking measure that captures stock return

covariance with changes in the probability of future bear states, it does not rely on bear

state realizations. This offers two advantages. First, even though bear market states occur

infrequently, because the probability of future bear market states varies continuously, we are

able to use the full set of data to calculate bear beta. Second, bear beta is not subject to the

potential peso problem arising from the fact that, in periods of prosperity, even the lowest

returns may not represent bear states. These two advantages are shared by the tail beta in

Kelly and Jiang (2014). However, tail beta and bear beta are very different measures. Kelly

and Jiang (2014) measure tail risk by aggregating large daily losses on individual stocks.

Furthermore, tail beta is computed using regressions of excess stock returns on lagged tail

risk, whereas bear beta conforms to the traditional definition of risk exposure and measures

contemporaneous covariance between excess stock returns and excess AD Bear returns.

3Subsequent research follows this general theme. Bali et al. (2014) find that the left tail return covariance
between individual stocks predicts future stock returns. Lettau et al. (2014) show that market betas differ
depending on the market state and that betas in bad market states are a key determinant of expected returns
for many asset classes. Chabi-Yo et al. (2015) find that stocks that underperform during crashes generate
higher average returns.
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Our paper also adds to the research that uses the forward-looking information in option

prices to investigate relations between aggregate risk and the cross section of expected stock

returns.4 Ang, Hodrick, Xing, and Zhang (2006) and Cremers et al. (2015) find that aggre-

gate volatility risk is priced in the cross section of stock returns. Cremers et al. (2015) also

find that jump risk is priced. Finally, Chang et al. (2013) investigate whether innovations

in the risk-neutral skewness of the market return is a risk factor and find a negative price of

risk. Since AD Bear has positive vega and gamma exposures, it is not surprising that bear

beta has a positive cross-sectional relation with the VIX beta in Ang, Hodrick, Xing, and

Zhang (2006), as well as the volatility beta and jump beta used in Cremers et al. (2015).

Intuitively, bear beta is negatively correlated with Chang et al. (2013)’s skewness beta since,

all else equal, an increase in bear market risk decreases risk-neutral skewness. However, our

work differs from these previous studies in our focus on risk associated with future left-tail

market outcomes, whereas volatility, skewness, and jump beta capture exposure to the full

spectrum of the market return distribution. Empirically, we find that including jump beta,

volatility beta, VIX beta, and skewness beta as controls does not explain the bear beta effect.

The remainder of this paper proceeds as follows. In Section 2 we develop the theoretical

motivation for our main research question and for the implementation of our empirical ana-

lyses. Section 3 discusses how we create the AD Bear portfolio and examines it returns. In

Section 4 we show that stock-level sensitivity to the AD Bear portfolio return is priced in the

cross section of stocks. Section 5 demonstrates that our results are robust after controlling

for previously documented pricing effects. Section 6 concludes.

2 Theoretical Motivation for AD Bear

We begin by motivating AD Bear returns as a measure of bear market risk using Wachter

(2013)’s time-varying rare disaster model.5 The benefit of doing so is a clear exposition of

4Bollerslev and Todorov (2011) use options to empirically demonstrate that time-varying tail risk is an
important driver of the equity risk premium. There is a separate line of research that uses returns of option
portfolios to evaluate the non-linear risk exposure of hedge funds (Lo (2001), Mitchell and Pulvino (2001),
Agarwal and Naik (2004), Jurek and Stafford (2015), Agarwal et al. (2016)). Another distinct line of work
examines the ability of information embedded in single stock options (instead of sensitivities to the returns
of index options) to predict future returns (Bali and Hovakimian (2009), Cremers and Weinbaum (2010),
Xing et al. (2010), Bali and Murray (2013), An et al. (2014)).

5We choose to develop the economic interpretation of the AD Bear returns using Wachter (2013)’s time-
varying disaster model because the AD Bear price is the discounted risk-neutral probability that the market
is in a bear state at expiration and Wachter (2013) explicitly models the impact of time-variation in the
probability of negative jumps. However, AD Bear returns can be similarly interpreted from the perspectives
of other models that feature time-varying bear market risk.
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the relation between the pricing kernel, market risk, bear market risk, and AD Bear returns.6

In Wachter (2013)’s model, the endowment (aggregate consumption, Ct) follows a jump-

diffusion process

dCt = µCt−dt+ σCt−dBt + (eZt − 1)Ct−dNt, (1)

where Bt is a standard Brownian motion and Zt is a negative random variable with a time-

invariant distribution that captures jump realizations. Nt is a Poisson process with time-

varying intensity λt defined by

dλt = κ(λ̄− λt) + σλ
√
λtdBλ,t, (2)

where Bλ,t is a standard Brownian motion independent of both Bt and Zt. Three independent

sources of risk affect the endowment process: 1) Bt – a standard Brownian motion capturing

continuous consumption shocks, 2) Zt – the realized consumption jump at time t, and 3) λt –

the time-varying intensity of future jumps. Bear market risk in this model is the innovation

in the intensity of future jumps, or dBλ,t, since λt is the sole state variable that determines

time-variation in the probability of future bear market states.

Letting πt be the stochastic discount factor (SDF), Ft be the price of the market portfolio,

and Xt be the price of the AD Bear portfolio, Table 1 examines the exposures of the πt,

Ft, and Xt to the three sources of risk.7 The subsequent discussions focus on the first-order

effects of the three shocks. In our empirical analyses we are careful to control for potential

exposure to higher-order effects by controlling for jump risk, coskewness, and aggregate

skewness risk.

The sensitivity of the SDF to dBt (continuous consumption innovations) is the negative of

the coefficient of risk aversion (−γ). Intuitively, a positive consumption innovation decreases

marginal utility. The sensitivity of the SDF to negative jumps in consumption is −γZt.
Finally, the SDF’s sensitivity to bear market risk, captured by the innovations in the intensity

of jumps, dBλ,t, is bπ,λ which is greater than zero since an increase in the intensity of jumps

increases marginal utility.

We now examine the market portfolio return. An important observation from Table 1

is that while both the market return and the SDF are sensitive to all three sources of risk,

the SDF is not a linear function of the market return. Specifically, the sensitivities of the

market return to the continuous consumption innovations (dBt) and realized jumps (Zt) are

6Harvey et al. (2015) and Harvey (2017) emphasize the importance of having a well-motivated hypothesis
based on first principles.

7All derivations are shown in Appendix A.
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proportional to the corresponding SDF sensitivities, while the market return’s sensitivity to

innovations in jump intensity (dBλ,t) is not. This means that in the economy described by

Wachter (2013), the CAPM does not hold and, to correctly price assets, one must account

for the effect of bear market risk (i.e., innovations in jump intensity).

Most importantly, Table 1 shows that the sensitivities of the AD Bear portfolio’s return

to continuous consumption innovations (dBt) and realized jumps (Zt) are a simple multiple,

−∆, of the market portfolio return’s sensitivities to these risk factors. Therefore, a portfolio

that is long one dollar of the AD Bear portfolio and long ∆ dollars of the market portfolio

has zero exposure to continuous consumption innovations (dBt) and realized jumps (Zt).

The returns of this portfolio are exposed only to bear market risk (dBλ,t).

The economic insights from the above discussions are two-fold. First, in the presence of

bear market risk (captured in this model by time-variation in jump intensity), the market

risk factor is insufficient to price assets, i.e., the CAPM does not hold. Second, the AD

Bear portfolio is proportionally more sensitive than the market portfolio to bear market

risk. Therefore, we can measure exposure to bear market risk by augmenting the CAPM

model with the returns of the AD Bear portfolio.

3 AD Bear Portfolio

3.1 Data

We gather data for S&P 500 index options expiring on the third Friday of each month, S&P

500 index levels, S&P 500 index dividend yields, VIX index levels, and risk-free rates for the

period from January 4, 1996 through August 31, 2015 from OptionMetrics (OM hereafter).8

To ensure data quality, we remove options with bid prices of zero and options that violate

simple arbitrage conditions, as indicated by a missing implied volatility in OM. We define

the price of an option to be the average of the bid and offer prices and the dollar trading

volume to be the number of contracts traded times the option price. The S&P 500 index

forward price is taken to be F = S0e
(r−y)T where S0 is the closing level of the S&P 500

index, r is the continuously compounded risk-free rate, y is the dividend yield of the S&P

500 index, and T is the time to expiration.

8On 1/31/1997 and 11/26/1997, no VIX index level is available. We set the VIX index level on 1/31/1997
to 19.47, its closing value on 1/30/1997. Similarly, we set the VIX index level on 11/26/1997 to 28.95, its
closing value on 11/25/1997.
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3.2 Construction of AD Bear

Theoretically, the AD Bear portfolio generates a payoff of $1 when the S&P 500 index level at

expiration is in a bear state, defined as index levels below some value K2, and zero otherwise.

To approximate this payoff structure using traded options, we can take a long position in

a put option with strike price K1 > K2 and a short position in a put option with strike

price K2. Scaling both positions by K1 −K2, as shown in Figure 1, the resulting AD Bear

portfolio has a payoff at expiration of $1 when the index level is below K2 and zero when the

index level is above K1. The payoff linearly decreases from $1 to zero for expiration index

levels between K2 and K1.9 The price of the AD Bear portfolio, PAD Bear, is therefore

PAD Bear =
P (K1)− P (K2)

K1 −K2

(3)

where P (K) is the price of a put option with strike price K.

When implementing the AD Bear portfolio, we make several empirical choices that are

largely driven by features of the option data. First, motivated by liquidity considerations,

we create the AD Bear portfolio using one-month options, which are defined as options that

expire in the calendar month subsequent to the month in which the portfolio is created.10

Second, we target a strike of 1.5 standard deviations below the S&P 500 index forward

price for K2. Following Jurek and Stafford (2015), we take the standard deviation to be the

level of the VIX index divided by 100 multiplied by the square root of the time to expiration.

This is equivalent to defining bear market states to be states in which the market excess

return is more than 1.5 standard deviations below zero. We choose 1.5 standard deviations

based on a trade off between our objective of capturing the pricing effect of states with very

high marginal utility and the practical consideration that very far out-of-the-money (OTM)

put options are illiquid, making their pricing unreliable and frequently unavailable in the

data.11

9An alternative approach to measuring the price of the AD Bear portfolio would be to estimate the
cumulative risk-neutral density evaluated at K2 by using an interpolation technique to generate a continuum
of option prices (see Figlewski (2010)). This alternative approach requires making assumptions about the
functional form of the relation between strike prices and option prices. Our approach alleviates the need
to make such assumptions and has the added benefit that the AD Bear portfolio is easily constructed from
traded options. Carr and Wu (2011) construct portfolios similar to our AD Bear portfolio using single-stock
options to replicate credit insurance contracts.

10The use of one-month options is consistent with previous research (Chang et al. (2013), Cremers et al.
(2015), Jurek and Stafford (2015)). In unreported analyses, we find that in our data one-month options are
more liquid than options with longer times to expiration.

11Our bear region corresponds to approximately the worst 6.7% of market states under the assumption of
log-normally distributed returns.
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Third, since it is unlikely that a traded option with the exact targeted strike exists, we

take P (K2) to be the dollar trading volume-weighted average price of all puts with strikes

between 0.25 standard deviations below and above the target strike. Taking the volume-

weighted average put price over a range of strikes increases the informativeness of the AD

Bear portfolio price by putting more weight on liquid options whose prices are likely to be

more reflective of true option value and less subject to noise induced by the bid-ask spread.12

Specifically, we have:

P (K2) =
∑

K∈
[
Fe−1.75V IX100

√
T ,F e−1.25V IX100

√
T

]P (K)w(K) (4)

where the summation is taken over all traded puts with strikes in the indicated range and

w(K) is the dollar trading volume of the put with strike K scaled by the total dollar trading

volume of all puts in the summation.

Finally, we choose K1 to be half a standard deviation above K2 (i.e. one standard

deviation below the forward price). Theoretically, the payoff function of our traded option

portfolio converges to the theoretical AD Bear payoff function as K1 −K2 approaches zero.

Empirically, as K1 approaches K2, the difference between P (K2) and P (K1) approaches

zero, and the informational content of the price difference can be overwhelmed by bid-ask

spread-induced noise. Choosing K1−K2 to be half a standard deviation balances these two

considerations. We calculate P (K1) using equation (4) with the summation range adjusted

to be from −1.25 to −0.75 standard deviations below zero.

It is worth noting that by defining the bear region to be 1.5 standard deviations below

zero, the price of the AD Bear portfolio (i.e., the discounted risk-neutral probability of a

bear market outcome) is approximately constant at the time the portfolio is created. Thus,

while the AD Bear portfolio returns capture innovations in bear market risk, the price of the

AD Bear portfolio at the time of construction does not reflect the level of bear market risk.

3.3 AD Bear Portfolio Returns

Each trading day from January 4, 1996 through August 24, 2015, we create the AD Bear

portfolio. We calculate the buy-and hold return on this AD Bear portfolio over the next five-

trading days (one calendar week except when there is a holiday). The choice to use a five-day

12In Section II and Table A1 of the online appendix, we show that our results are highly robust, and in
many cases stronger, if we give each option an equal weight when constructing the AD Bear portfolio.
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return is based on a trade-off between theory and practical considerations. Our theoretical

motivation is based on instantaneous returns, which leads us to use a return period as short

as possible. However, bear betas computed using short-term returns may suffer from biases

introduced by nonsynchronous trading in the stock and option markets (Scholes and Williams

(1977), Dimson (1979)). Using five-day returns is a reasonable balance between these two

considerations.13 We subtract the five-day risk-free rate from the five-day buy-and-hold AD

Bear return to get the AD Bear portfolio excess return for the five day period ending on day

d, which we denote RAD Bear,d.
14 The result is a time-series of overlapping five-day AD Bear

portfolio excess returns for the period from January 11, 1996 through August 31, 2015.15

Table 2 presents summary statistics for the daily five-day overlapping excess returns of

the AD Bear portfolio. Since AD Bear pays off in high marginal utility states, we expect it

to earn negative average excess returns. The first row of the table presents results for the

unscaled AD Bear returns. Consistent with our prediction, AD Bear generates an average

excess return of −8.12% per five-day period, with a standard deviation of 74.72%. The large

magnitude of the AD Bear excess returns reflects the leverage embedded in options. To

facilitate comparison with other factors, for the remainder of this paper, we scale the AD

Bear excess returns by 28.87836 so that the standard deviation of the scaled AD Bear excess

returns is equal to that of the market excess returns. The row labeled “AD Bear” presents

summary statistics for the scaled AD Bear portfolio excess returns. The AD Bear portfolio

generates a scaled average excess return of −0.28% per five-day period with a standard

deviation of 2.59. The distribution of AD Bear excess returns exhibits large positive skewness

of 2.81.

The remainder of Table 2 presents, for comparison, summary statistics for the daily five-

day excess returns of the market (MKT) factor, the size (SMB) and value (HML) factors of

Fama and French (1993), the momentum (MOM) factor of Carhart (1997), the size (ME),

profitability (ROE), and investment (IA) factors from the Q-factor model of Hou et al.

(2015), and the size (SMB5), profitability (RMW), and investment (CMA) factors from the

five-factor model of Fama and French (2015).16 The mean five-day excess returns of the

13In untabulated results, we find that the results using four-day AD Bear returns are very similar to,
and often stronger than, the results using five-day AD Bear returns. Consistent with the notion that beta
measures based on very short returns are noisy due to nonsynchronous trading, the results get weaker as we
progress to using three-day, two-day, and one-day AD Bear returns.

14Daily risk-free security return data are gathered from Kenneth French’s data library.
15If insufficient data are available to calculate the AD Bear return (see Jurek and Stafford (2015)), we

consider the return for the given five-day period to be missing. There are 4910 valid returns out of 4944
days during the sample period.

16MKT, SMB, HML, MOM, SMB5, RMW, and CMA factor return data are gathered from Kenneth
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factors range from 0.04% for the SMB factor to 0.15% for the MKT factor.

3.4 Factor Analysis of AD Bear Returns

We begin the empirical investigation of our main hypothesis by examining whether the

average returns of the AD Bear portfolio can be explained by exposures to standard risk

factors. We measure the risk exposures by regressing five-day AD Bear excess returns,

RAD Bear,d, on contemporaneous risk factor returns, Fd. The regression specification is

RAD Bear,d = α + β
′
Fd + εd. (5)

The standard risk factors we use are returns of zero-investment portfolios. The average

returns of these portfolios capture the factor risk premia. Therefore, α in regression (5)

measures the average return of the AD Bear portfolio that is not compensation for exposure

to the risk factors considered. AD Bear has positive exposure to bear market risk and bear

market risk is predicted to carry a negative premium. If bear market risk is distinct from

previously identified factors, then our hypothesis predicts that AD Bear should generate

negative alpha relative to standard factor models.

Before proceeding to the factor model analyses, we first examine whether the average AD

Bear excess return is statistically distinguishable from zero. Table 3 shows that the average

AD Bear excess return of −0.28% per five-day period is highly significant with a Newey and

West (1987, NW hereafter)-adjusted t-statistic of −3.60.

Our first factor analysis in Table 3 examines whether the premium earned by the AD Bear

portfolio can be explained by exposure to CAPM market risk. Consistent with the prediction

from the model derived in Section 2, despite AD Bear’s strong negative exposure to the

market factor (βMKT = −0.81), the average AD Bear excess return cannot be fully explained

by market factor exposure. AD Bear’s alpha relative to the CAPM model is −0.15% per five

days, highly significant with a t-statistic of −3.83. This is our first indication of a negative

price of bear market risk.

While the CAPM regression demonstrates that the negative premium generated by AD

Bear is not completely explained by market risk, it is possible that some combination of

previously established factors captures bear market risk. We therefore test whether AD

Bear’s CAPM alpha can be explained by the risk factor models proposed by Fama and

French’s data library. We thank Lu Zhang for providing the ME, ROE, and IA factor returns. The five-day
excess factor returns are calculated as the daily factor gross return, compounded over the given five day
period, minus the five-day gross compounded return of the risk-free security.
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French (1993), Carhart (1997), Hou et al. (2015), and Fama and French (2015). Table

3 shows that these factor models cannot explain the AD Bear excess returns. AD Bear

produces alpha of −0.16% per five day period (t-statistic = −3.85) relative to the Fama and

French (1993) model (FF3) that includes MKT, SMB, and HML and alpha of −0.14% per

five day period (t-statistic of −3.23) relative to the four-factor model of Fama and French

(1993) and Carhart (1997) (FFC) that includes MKT, SMB, HML, and MOM. AD Bear’s

alpha relative to the Q-factor model of Hou et al. (2015) (Q) that includes MKT, ME, ROE,

and IA is −0.13% per five day period (t-statistic of −3.09). Finally, AD Bear generates alpha

of −0.13% (t-statistic = −2.97) per five-day period relative to the Fama and French (2015)

five-factor model (FF5), which includes MKT, SMB5, HML, RMW, and CMA. Augmenting

the CAPM with additional factors produces negligible changes in R2. Approximately 35%

of the total variation in AD Bear excess returns cannot be explained by these risk factors.

3.5 Hedged AD Bear Returns

The intercept plus the residual from the CAPM regression in Table 3 can be interpreted

as the excess return of the AD Bear portfolio hedged with respect to the market factor

(hedged AD Bear portfolio). In Section 2 we demonstrated theoretically that the hedged AD

Bear portfolio is highly responsive to bear market risk. Therefore, we expect large CAPM

residuals to coincide with economic events affecting investors’ forward-looking assessment

of future bear market states.17 In Figure 2, we plot the time-series of residuals from the

CAPM regression and indicate the five largest residuals with the numbers 1-5. The largest

residual of 34.62% occurs during the five-trading day period between the end of February

26, 2007 and the end of March 5, 2007. During this period, the Chinese stock market

crashed – the SSE Composite Index of the Shanghai Stock Exchange experienced a 9% drop

on Feb 27, 2007, the largest in 10 years. The second largest residual of 16.8% comes on

5/6/2010 (formation date 4/29/2010). This period coincides with the 2010 Flash Crash

and the opening of the criminal investigation of Goldman Sachs related to security fraud

in mortgage trading. The third largest residual occurs between 5/31/2011 and 6/7/2011, a

period characterized by a series of bad economics news. Moody’s cut Greece’s credit rating by

three notches to an extremely speculative level. Both the ISM manufacturing report and the

private sector employment report came in well below economists’ expectations. The fourth

largest residual (8/18/2015 through 8/25/2015) corresponds to the Chinese stock market’s

17Since we use the CAPM as the benchmark model, economic events that induce large negative market
returns would not be captured by our hedged AD Bear return, which is orthogonalized to the market factor.
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“Black Monday” when the Shanghai Composite Index tumbled 8.5%, the biggest loss since

February 2007. Finally, the fifth largest residual occurs between 12/29/2014 and 1/6/2015,

when the price of oil fell below $50 a barrel for the first time in nearly six years and Greece’s

Snap Election renewed political turmoil. Notably, market returns during these five periods

are only moderately negative. Therefore, the largest hedged AD Bear returns appear to

be associated with important negative economic events, but these events are different from

events that drive the largest negative market returns. This is consistent with the notion that

bear market risk can increase even in the absence of a realized bear market state.

In summary, Table 3 demonstrates that AD Bear returns have an orthogonal component

to the market risk factor (and other commonly used risk factors) that earns a negative

and highly statistically significant average premium. Figure 2 shows that large spikes in the

hedged AD Bear return correspond to news events that plausibly result in an increase in bear

market risk. We caution against relying too heavily on these results because trading the AD

Bear portfolio by buying at the ask price and selling at the bid price would incur substantial

transaction costs. We therefore interpret the AD Bear returns simply as a measure of bear

market risk and proceed to test our main hypothesis, that bear market risk has a negative

price of risk, by examining the cross-sectional relation between bear market risk exposure

and expected stock returns.

4 Bear Beta and Expected Stock Returns

If the negative alpha of the AD Bear portfolio is due to exposure to bear market risk, stock-

level sensitivity to the hedged AD Bear returns should exhibit a negative cross-sectional

relation with expected stock returns. In this section, we test this hypothesis.

4.1 Bear Beta

For each stock i at the end of each month t, we run a time-series regression of excess stock

returns on the excess market return (MKT) and the scaled excess return of the AD Bear

portfolio. The regression specification is

Ri,d = β0 + βMKT
i MKTd + βBEAR

i RAD Bear,d + εi,d (6)

where Ri,d is the excess return of stock i over the the five-trading-day period ending at

the close of day d, MKTd is the contemporaneous market excess return, and RAD Bear,d is
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the contemporaneous AD Bear excess return.18 The regression uses overlapping returns

for five-day periods ending in months t − 11 through t, inclusive. We require at least 180

valid observations to estimate the regression. To minimize the estimation errors associated

with the rolling-window regressions, we follow Fama and French (1997) and adjust the OLS

coefficient using a Bayes shrinkage method. We use the shrinkage-adjusted value, which we

denote βBEAR, in our empirical analyses. The details are provided in Appendix B.19

4.2 Samples

We use three different samples, which we term the All Stocks, Liquid, and Large Cap samples,

in our examination of the relation between bear beta and expected stock returns. Each

month t, the All Stocks sample consists of all U.S.-based common stocks in the CRSP

database that have a valid month t value of βBEAR. The Liquid sample is the subset of

the All Stocks sample with Amihud (2002) illiquidity (ILLIQ) values that are less than or

equal to the 80th percentile month t ILLIQ value among NYSE stocks.20 Finally, the Large

Cap sample is the subset of the All Stocks sample with market capitalization (MKTCAP)

values that are greater than or equal to the 50th percentile value of MKTCAP among NYSE

stocks.21 We use the Liquid and Large Cap samples to distinguish between risk pricing and

mispricing explanations for our results. Our samples cover the months t (one-month-ahead

return months t+ 1) from December 1996 (January 1997) through August 2015 (September

2015). This period is chosen because December 1996 and August 2015 are the first and

last months for which βBEAR can be estimated on a full year’s worth of data due to the

availability of the OM data.

Table 4 presents the time-series averages of monthly cross-sectional summary statistics

for βBEAR, MKTCAP, and ILLIQ. In the average month, All Stock sample values of βBEAR

range from −1.71 to 2.13, with mean (0.07) and median (0.05) values that are very close

to zero and a standard deviation of 0.41. The distribution of βBEAR has a small positive

skewness of 0.25. The mean (median) MKTCAP of stocks in the All Stocks sample is $3.2

18The AD Bear portfolio is formed at the close of trading day d− 5 and held until the close of day d. All
returns are calculated over this same period.

19In Section III and Table A2 of the online appendix, we present the results of tests using bear beta that
is not adjusted using the shrinkage methodology. The results remain very strong among large and liquid
stocks. When examining all stocks, the results are slightly weaker, consistent with unadjusted βBEAR being
a noisier measure of a stock’s true bear beta for illiquid and small stocks.

20ILLIQ is calculated following Amihud (2002) as the absolute daily return measured in percent divided
by the daily dollar trading volume in $millions, averaged over all days in months t− 11 through t, inclusive.

21MKTCAP is the number of shares outstanding times the stock price, recorded at the end of month t in
$millions.
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billion ($308 million), and the mean (median) value of ILLIQ is 197 (4.75). The All Stocks

sample has, on average, 4791 stocks per month. The distributions of βBEAR in the Liquid

and Large Cap samples are similar to that of the All Stocks sample. As expected, the Liquid

sample has larger and more liquid stocks than the All Stocks sample, and Large Cap sample

stocks are larger and more liquid than Liquid sample stocks. The Liquid (Large Cap) sample

has 2042 (1006) stocks in the average month.

4.3 βBEAR-Sorted Portfolios

4.3.1 Post-formation Portfolio Returns

We begin our examination of the relation between bear beta and expected stock returns with

a univariate portfolio analysis using βBEAR as the sort variable. At the end of each month t,

all stocks in the given sample are sorted into decile portfolios based on an ascending ordering

of βBEAR. We then calculate the value-weighted average month t+ 1 excess return for each

of the decile portfolios, as well as for the zero-investment portfolio that is long the βBEAR

decile 10 portfolio and short the βBEAR decile one portfolio (βBEAR 10− 1 portfolio).22

Panel A of Table 5 shows that for the All Stocks sample, average excess returns are nearly

monotonically decreasing across βBEAR deciles. The βBEAR decile one portfolio generates an

average excess return of 0.98% per month and the average excess return of the 10th decile

portfolio is −0.15% per month. The βBEAR 10 − 1 portfolio average return of −1.13% per

month is economically large and highly statistically significant with a NW t-statistic of−2.72.

To examine whether the pattern in the excess returns of the βBEAR-sorted portfolios is

a manifestation of exposure to previously identified risk factors, we calculate the abnormal

returns of the decile portfolios relative to the CAPM, FF3, FFC, Q and FF5 factor models.

The results demonstrate that standard risk factors do not explain the relation between βBEAR

and average returns since the alphas exhibit a similar monotonically decreasing pattern across

βBEAR deciles and the alpha of the βBEAR 10−1 portfolio relative to each of the factor models

is negative and statistically significant. The βBEAR 10− 1 portfolio generates monthly alpha

22The excess return in month t + 1 is defined as the delisting-adjusted (Shumway (1997)) stock return
minus the return of the one-month U.S. Treasury bill in month t + 1, recorded in percent. If the stock is
delisted in month t+1, if a delisting return is provided by CRSP, we take the month t+1 return of the stock
to be the delisting return. If no delisting return is available, then we determine the stock’s return based on
the delisting code in CRSP. If the delisting code is 500 (reason unavailable), 520 (went to OTC), 551-573
or 580 (various reasons), 574 (bankruptcy), or 584 (does not meet exchange financial guidelines), we take
the stock’s return during the delisting month to be −30%. If the delisting code has a value other than the
previously mentioned values and there is no delisting return, we take the stock’s return during the delisting
month to be −100%.
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of −1.48% per month (t-statistic = −3.83), −1.34% (t-statistic = −4.57), −1.25% (t-statistic

= −3.81), −0.82% (t-statistic = −2.74), and −0.71% (t-statistic = −2.49) relative to the

CAPM, FF3, FFC, Q, and FF5 factor models, respectively.

4.3.2 Post-formation Sensitivities to AD Bear

Theoretically, a factor model indicates contemporaneous relations between the true factor

loading and expected returns. Our empirical tests have used a pre-formation measure of

bear beta (βBEAR) calculated at the end of month t to predict returns in month t + 1 and

implicitly assumed that this pre-formation βBEAR is indicative of the month t + 1 stock-

level sensitivity to bear market risk. To interpret the results of our empirical analyses as

supportive of a risk-based explanation, it is necessary that our portfolios exhibit dispersion in

post-formation exposure to bear market risk. To test whether this is the case, we calculate

the post-formation sensitivities of the decile portfolio returns to the AD Bear returns by

regressing the entire time-series of post-formation five-day overlapping excess returns of the

βBEAR decile portfolios on the contemporaneous AD Bear excess return and MKT, as in

equation (6).23

For sake of comparison, Table 5 presents the value-weighted average value of (pre-

formation) βBEAR for each of the decile portfolios. By construction, the value-weighted

pre-formation values of βBEAR increase from −0.64 for the first βBEAR decile portfolio to

0.84 for βBEAR decile portfolio 10. In support of a risk factor-based interpretation of the

cross-sectional pattern in returns, the results in Table 5 indicate that the βBEAR 10−1 portfo-

lio has a strong positive post-formation AD Bear sensitivity of 0.21 (t-statistic = 2.90). While

pre-formation βBEAR is an imperfect measure of the true forward-looking factor loading, it

is sufficiently accurate to generate economically and statistically significant post-formation

exposure to AD Bear returns.24

4.3.3 Subsample Analysis

If the negative cross-sectional relation between βBEAR and future stock returns is truly in-

dicative of a risk pricing effect, we expect the effect to remain strong in liquid and large

23The portfolios are still rebalanced at the end of each month t .
24The significant dispersion in post-formation AD Bear sensitivity is noteworthy when compared to the lack

of post-formation dispersion exhibited by other non-stock return-based sensitivity measures. For example,
Table 1 of Ang, Hodrick, Xing, and Zhang (2006) shows that for quintile portfolios formed by sorting on VIX
beta, the average difference in pre-formation VIX betas between the fifth and first quintile is 4.27. However,
the average difference in post-formation VIX betas is only 0.051, a reduction of almost 99%. Cremers et al.
(2015) also find that their pre-formation jump betas are poor predictors of post-formation jump betas.
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stocks. On the other hand, if the negative relation between βBEAR and future stock returns

captures mispricing, we would expect the relation to be weak or non-existent among liquid

and large stocks where limits to arbitrage (Shleifer and Vishny (1997)) are unlikely to bind.

To distinguish between the risk pricing and mispricing explanations, we repeat the portfolio

tests using our Liquid and Large Cap samples.

Results for the Liquid sample, shown in Panel B of Table 5, are very similar to those of

the All Stocks sample. The Liquid sample average portfolio excess returns decrease strongly

across βBEAR deciles. The βBEAR 10 − 1 portfolio generates an economically large and

highly statistically significant average return of −1.08% per month (t-statistic = −2.36),

with alphas ranging from −1.49% per month (t-statistic = −3.51) using the CAPM model

to −0.71% per month (t-statistic = −2.85) using the FF5 model. The Liquid sample βBEAR

10 − 1 portfolio has a post-formation sensitivity of 0.21 (t-statistic = 2.71) to AD Bear

excess returns, indicating that the portfolio sort is effective at generating assets with strong

variation in post-formation exposure to bear market risk.

The Large Cap sample results in Table 5 Panel C are once again similar to those of

the other two samples. The portfolio excess returns and alphas exhibit a strong decreasing

pattern across βBEAR deciles. The βBEAR 10 − 1 portfolio generates economically large

and highly statistically significant negative alpha relative to all factor models, ranging from

−1.28% per month (t-statistic = −2.96) using the CAPM model to −0.50% per month (t-

statistic = −2.37) using the FF5 model. Once again, supportive of a risk-based explanation

for the pattern in returns, the βBEAR 10−1 portfolio exhibits a strong positive post-formation

sensitivity to the AD Bear excess returns.

5 Robustness

5.1 Bivariate Portfolio Analyses

Having demonstrated a strong negative cross-sectional relation between bear beta and ex-

pected stock returns that is not explained by standard risk factors, we proceed to investigate

the possibility that this relation can be explained by other risk variables.25 We use these

risk variables as controls and test the robustness of our univariate βBEAR portfolio results by

constructing bivariate portfolios that are neutral to a control variable while having variation

in βBEAR. Specifically, at the end of each month t, we sort all stocks into ascending control

25We describe each risk variable as we discuss the corresponding results. More detailed descriptions of the
control variables are provided in Section I of the online appendix.
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variable deciles. Within each control variable decile, we sort stocks into decile portfolios

based on an ascending ordering of βBEAR. We then calculate the value-weighted month t+ 1

excess return for each of the resulting portfolios. Next, we compute the average month t+ 1

excess return across the control variable decile portfolios within each βBEAR decile, and refer

to this as the bivariate βBEAR decile portfolio excess return. Finally, we calculate the diffe-

rence in month t+ 1 returns between the bivariate βBEAR decile 10 and decile one portfolios

(βBEAR 10−1 portfolio). Since the bivariate βBEAR decile portfolios have similar values of the

control variable, any return pattern across the bivariate βBEAR decile portfolios is unlikely to

be driven by the control variable. The results of the bivariate portfolio analyses are shown

in Table 7.

We first control for CAPM beta (βCAPM), measured as the the slope coefficient from a

one-year rolling window regression of daily excess stock returns on MKT. Table 6 shows that,

in all three samples, average βCAPM increases across the univariate βBEAR decile portfolios.

Frazzini and Pedersen (2014) show that high (low) CAPM beta stocks generate negative

(positive) alphas under standard risk factor models. We thus test whether our results can be

explained by the “betting-against-beta” effect. Table 7 shows that, controlling for βCAPM,

the CAPM alpha of the bivariate βBEAR 10−1 portfolio (−0.78% per month) is less negative

than that of the univariate βBEAR 10 − 1 portfolio (−1.48% per month) in the All Stocks

sample. Nevertheless, the CAPM alpha of the bivariate βBEAR 10− 1 portfolio is still large

and highly statistically significant (t-statistic = −3.95). Furthermore, we observe alphas

ranging from −0.53% to −0.77% per month with t-statistics between −2.18 and −2.97 for

the bivariate βBEAR 10 − 1 portfolio when we benchmark against FF3, FFC, Q, and FF5

models. Restricting the sample to liquid or large cap stocks yields even stronger results.

Therefore, controlling for CAPM beta does not explain the negative relation between bear

beta and expected returns.

We then investigate whether downside beta studied in Ang, Chen, and Xing (2006) can

explain the negative relation between bear beta and expected stock returns. Ang, Chen, and

Xing (2006) find a positive relation between average stock returns and downside beta (β−),

measured as the slope coefficient from a one-year rolling window regression of daily excess

stock returns on MKT using only below-average MKT days. As discussed in the introduction

and in Section 2, while both β− and βBEAR are measures of downside risks, they capture

economically different sources of risk: β− measures the covariance between the stock return

and the market return when a bear state occurs, whereas βBEAR measures the covariance

between the stock return and the innovation in the probability of future bear states. Since
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β− is strongly correlated with CAPM market beta, to control for market risk, Ang, Chen,

and Xing (2006) compute relative downside beta, β− − βCAPM, and show that this measure

is also positively related to expected stock returns.26 Our βBEAR is more comparable to

β− − βCAPM than β− because, by including the market factor in the time-series regression

used to compute βBEAR, we effectively control for exposure to market risk. Consistent with

this intuition, Table 6 indicates that the cross-sectional relation between βBEAR and β− is

similar to that between βBEAR and βCAPM, likely due to the strong correlation between β−

and βCAPM. Once we control for market risk by subtracting CAPM beta from downside beta,

we find a negative cross-sectional relation between βBEAR and β− − βCAPM, suggesting that

there is overlap between stocks that lose value when bear market risk increases and stocks

that comove more with the market when the market is down. It is therefore plausible that low

βBEAR stocks have higher average returns because they have, on average, higher β−−βCAPM.

However, Table 7 shows that controlling for either β− or β− − βCAPM cannot explain the

negative relation between βBEAR and future stock returns. Specifically, controlling for β−

yields βBEAR 10−1 return spreads between −0.75% and −0.48% per month across the three

samples, all of which are statistically significant at the 5% level. Controlling for β−−βCAPM

yields even more negative βBEAR 10 − 1 monthly return spreads of −0.94% (t-statistic =

−2.31), −0.94% (t-statistic = −2.36), and −0.79% (t-statistic = −1.86) in the All Stocks,

Liquid, and Large Cap samples, respectively. In all cases, the alphas relative to each of the

factor models remain negative, economically large, and statistically significant.27

Our next tests examine whether systematic volatility or jump risk can explain the negative

relation between bear beta and expected stock returns. Ang, Hodrick, Xing, and Zhang

(2006) find that expected stock returns are negatively related to VIX beta (β∆VIX), measured

as the slope coefficient on the change in the VIX index from a one-month rolling window

regression of daily excess stock returns on MKT and VIX changes. Cremers et al. (2015)

argue that changes in VIX capture a combination of changes in aggregate volatility risk

(VOL) and changes in aggregate jump risk (JUMP) and design option portfolios to capture

each of these risks. They find that stock-level sensitivities to both VOL (βVOL) and JUMP

(βJUMP), each of which is measured as the sum of the coefficients on contemporaneous and

lagged JUMP or VOL factor returns from a one-year rolling window regression of excess

stock returns, are both negatively related to expected stock returns.28 Since the AD Bear

26In unreported results, we confirm Ang, Chen, and Xing (2006)’s finding that the correlation between β−

and βCAPM is above 0.7.
27In untabulated results, we find similar results when we compute downside beta using the bottom 25%,

10%, or 5% of market return observations.
28We thank Martijn Cremers, Michael Halling, and David Weinbaum for providing us with daily JUMP
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portfolio has positive vega (volatility) and gamma (jump) exposure, we expect a positive

cross-sectional relation between βBEAR and each of β∆VIX, βVOL, and βJUMP. Table 6 shows

that this is indeed the case, making it plausible that β∆VIX, βVOL, or βJUMP explains the

negative relation between future stock returns and βBEAR. Nevertheless, Table 7 provides

little evidence that any of these risk measures fully captures the pricing effect of βBEAR, since

the average returns and alphas of the bivariate βBEAR 10− 1 portfolios in all three samples

are all greater in magnitude than −0.45% per month and statistically significant.

We then examine two measures of systematic skewness risk. While skewness does not

explicitly differentiate between upside and downside risk, it is possible that skewness risk is

mostly driven by the left tail of the distribution of the market return. The first measure is

coskewness (COSKEW), measured as the slope coefficient on MKT2 from a 60-month rolling

window regression of monthly excess stock returns on MKT and MKT2, which is shown by

Harvey and Siddique (2000) to be negatively related to expected stock returns. Table 6

documents a positive cross-sectional relation between COSKEW and βBEAR, suggesting that

COSKEW may potentially capture the βBEAR effect. However, the results of the bivariate

portfolio analysis show that controlling for COSKEW does not explain the negative average

excess return or alphas of the βBEAR 10− 1 portfolio.

The second measure is skewness beta (β∆SKEW) proposed in Chang et al. (2013), calcu-

lated as the slope coefficient on innovations in aggregate risk-neutral skewness innovations

from a regression of daily excess stock returns on daily values of MKT and innovations

in aggregate risk-neutral volatility, skewness, and kurtosis.29 Chang et al. (2013) show that

β∆SKEW is negatively related to expected stock returns. However, Table 6 shows that average

values of β∆SKEW tend to be lower for the high βBEAR deciles, suggesting that controlling

for β∆SKEW is unlikely to explain the negative cross-sectional relation between βBEAR and

future stock returns. Indeed, the results in Table 7 show that the average excess return and

alphas of the bivariate βBEAR 10− 1 portfolio constructed to be neutral to β∆SKEW remain

negative, large in magnitude, and statistically significant.

Finally, we control for two risk measures that are computed directly from individual stock

and VOL factor returns. The JUMP and VOL factor data end on March 31, 2012. Thus, analyses using
βJUMP or βVOL cover months t (return months t + 1) from December 1996 (January 1997) through March
2012 (April 2012).

29We thank Bo Young Chang, Peter Christoffersen, and Kris Jacobs for providing the risk-neutral moments
used to calculate moment innovations. The risk-neutral moment data end on December 31, 2007. Thus,
analyses using β∆SKEW cover months t (return months t+ 1) from December 1996 (January 1997) through
December 2007 (January 2008). We use skewness beta computed from a one-month multivariate regression
because it exhibits the strongest predictive power among the four skewness betas reported in Table 3 of
Chang et al. (2013).
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returns. First, Kelly and Jiang (2014) measure tail risk by aggregating large daily losses on

individual stocks and calculate tail beta (βTAIL) by regressing stock returns on lagged tail

risk. Table 6 shows that average values of βTAIL do not exhibit a strong pattern across the

deciles of βBEAR. The results of the bivariate portfolio analyses in Table 7 show that after

controlling for βTAIL, the βBEAR 10− 1 portfolio still generates economically large, negative,

and highly statistically significant average excess returns and alphas. Second, Ang, Hodrick,

Xing, and Zhang (2006) find that idiosyncratic volatility (IVOL), calculated as the standard

deviation of the residuals from a one-month rolling window regression of daily excess stock

returns on MKT, SMB, and HML, is negatively related to the cross-section of future stock

returns. Table 6 shows that average values of IVOL do not exhibit a strong cross-sectional

relation with βBEAR and, not surprisingly therefore, the bivariate portfolio analysis results in

Table 7 show that controlling for IVOL cannot explain the negative relation between βBEAR

and future stock returns.

5.2 Fama-MacBeth Regression Analyses

Bivariate portfolio analysis allows us to control for the effect of one variable at a time when

examining the relation between bear beta and expected stock returns. To control for multiple

potentially confounding effects simultaneously, we use FM regression analyses. Each month

t, we run the following cross-sectional regression:

Ri,t+1 = λ0,t + λ1,tβ
BEAR
i,t + ΛtXi,t + εi,t (7)

where Ri,t+1 is stock i’s month t+1 excess return, βBEAR
i,t is stock i’s month t value of βBEAR,

and Xi,t is a vector of control variables for stock i measured at the end of month t. All

independent variables are winsorized at the 0.5 and 99.5% levels on a monthly basis. Our

main hypothesis predicts that stocks with higher bear betas earn lower average returns and

thus the average regression coefficient on βBEAR should be negative.30 If the pricing effect of

bear beta is distinct from the phenomena captured by the control variables, the coefficient

on βBEAR should remain negative when controls are included in the regression specification.

Table 8 presents the time-series averages of the monthly cross-sectional regression coefficients

along with NW-adjusted t-statistics testing the null hypothesis that the time-series average

is equal to zero.

30Because βBEAR is an imperfect estimate of a stock’s exposure to bear market risk, the usual errors-
in-variables concern applies. This biases our coefficients towards zero and against us finding significant
results.
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We begin with two baseline specifications. Specification (1) has βBEAR as the only in-

dependent variable. The average coefficient on βBEAR is −0.45 (t-statistic = −2.40), −0.67

(t-statistic = −2.68), and −0.80 (t-statistic = −2.82) in the All Stocks, Liquid, and Large

Cap sample, respectively, each of which is negative and statistically significant. This is con-

sistent with the univariate portfolio results and indicates a strong negative relation between

bear beta and expected stock returns. We next control for exposure to CAPM market risk

by including βCAPM as the second independent variable (specification (2)). This specifica-

tion is comparable to the bivariate portfolio analysis that controls for βCAPM. Table 8 shows

that, although the average coefficient on βBEAR is slightly lower (compared to the univariate

specification) when controlling for βCAPM, it remains negative and highly statistically signi-

ficant in all three samples. As was the case when using bivariate portfolio analysis, the FM

regression analysis indicates that the negative cross-sectional relation between βBEAR and

future stock returns is not explained by exposure to market risk.

The remaining regression specifications augment specification (2) by including additio-

nal controls. We add β− in specification (3), β∆VIX in specification (4), βJUMP and βVOL

in specification (5), COSKEW in specification (6), β∆SKEW in specification (7), βTAIL in

specification (8), and IVOL in specification (9). In each of these specifications, the average

coefficient on βBEAR remains negative and statistically significant at the 5% level in all three

samples, with the only exception being specification (7) in the All Stocks sample, which

produces an average coefficient on βBEAR that is negative and significant at the 10% level.31

In all specifications other than specification (9) that includes IVOL, the coefficients on the

control variables are not statistically significant.

We next control simultaneously for all of the risk variables that are available for the entire

sample period (βCAPM, β−, β∆VIX, COSKEW, βTAIL, and IVOL) in specification (10). Table

8 shows that, with all risk variables included as controls, the average coefficient on βBEAR

remains negative and highly statistically significant in all three samples. Consistent with the

bivariate portfolio analyses, the FM regression results provide no evidence that other risk

variables explain the negative relation between βBEAR and future stock returns.

Finally, in specification (11), we also control for firm-level characteristics that have pre-

viously been shown to be related to expected stock returns. Specifically, we add SIZE (log

of MKTCAP), the log of the book-to-market ratio (BM), momentum (MOM), illiquidity

31The decreased statistical significance is likely because values of β∆SKEW are only available for the 133
months from December 1996 through December 2007, thus limiting the power of the test. In the Liquid
and Large Cap samples, the limited of power of the test is overcome by a more negative average coefficient,
resulting in larger t-statistics.
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(ILLIQ), profitability (Y), and investment (INV) as additional control variables.32 In our

portfolio analyses, we controlled for the impact of size, value, momentum, profitability, and

investment on expected stock returns by adjusting the portfolio returns for exposures to

corresponding factors.33 Our use of the Liquid and Large Cap samples in the portfolio ana-

lyses controls for the liquidity effect. It is therefore not surprising that adding the additional

characteristic controls to the regression specification does not explain the negative relation

between βBEAR and future stock returns. In specification (11), which includes the full set of

controls, the average coefficient on βBEAR is −0.29 (t-statistic = −2.84), −0.29 (t-statistic

= −2.28), and −0.41 (t-statistic = −2.30) in the All Stocks, Liquid, and Large Cap sample,

respectively, each of which remains highly significant.34

The main takeaway from the results in Table 8 is clear. There is a strong negative

cross-sectional relation between bear beta and expected stock returns. This relation is not

explained by other variables known to predict the cross-section of expected stock returns. As

a final robustness test, we examine the possibility that the negative cross-sectional relation

between βBEAR and future stock returns is driven by the financial crisis of 2007 through

2009 by excluding the return months from December 2007 through June 2009, a period

identified by the NBER as recessionary, and rerunning the FM regression analyses. The

results, presented in Section IV and Table A3 of the online appendix, demonstrate that the

negative relation between βBEAR and future stock returns remains strong when the crisis

period is excluded.

5.3 Predictive Power Beyond One Month

Our final set of tests examines whether βBEAR can predict stock returns beyond the one-

month horizon. If the negative relation between βBEAR and future stock returns does indeed

reflect a risk-based phenomenon, we expect the pricing effect to exist beyond the one-month

horizon used in our previous tests. Furthermore, the persistence of the cross-sectional re-

lation is important for large institutional investors who may require extended periods after

32BM is calculated following Fama and French (1992). MOM is the 11-month stock return in months t−11
through t− 1 inclusive (skipping month t). Y and INV are calculated following Fama and French (2015).

33In untabulated results, we add short-term reversal (Jegadeesh (1990)) and the maximum daily return
(Bali et al. (2011), Bali et al. (Forthcoming)) to specification (11) and show that our results are robust to
the inclusion of these additional controls.

34Consistent with previous research, our regressions detect a negative relation between future stock returns
and SIZE, a positive relation between future stock returns and Y, except in the Large Cap sample, and a
positive relation between future stock returns and ILLIQ in the All Stocks sample. The average coefficients
on BM, MOM, and INV are insignificant in our sample period.
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calculating bear beta to accumulate large stock positions. We therefore repeat the FM re-

gression analyses with the same 11 sets of independent variables that were used in Table 8,

this time using excess stock returns in month t + k, for k ∈ {2, 3, 4, 5, 6}, as the dependent

variable.

Table 9 presents the average coefficients on βBEAR from these regressions (to save space,

we do not report intercept or control variable coefficients). The univariate regressions (speci-

fication (1)) show that the relation between βBEAR and future stock returns remains negative

and statistically significant when using 2- to 6-month ahead excess returns across all three

samples. Adding control variables has little impact on the results. When all risk varia-

bles are included as independent variables in specification (10), the average coefficients on

βBEAR remain significant at the 5% level for all forecasting horizons across the three sam-

ples. When all risk variables and characteristics are included (specification (11)), we find

the average coefficients on βBEAR remain negative and significant at the 5% level in all cases

except when using month t + 4 or t + 5 excess returns in the Liquid sample (t-statistics of

−1.82 and −1.83, respectively) and month t + 4 excess returns in the Large Cap sample

(t-statistic = −1.81), which are significant at the 10% level. The results indicate that the

negative cross-sectional relation between βBEAR and future stock returns is strong for at least

six months into the future.

6 Conclusion

In summary, we examine the hypothesis that time-variation in the probability of future bear

market states, which we refer to as bear market risk, is a priced risk factor. We construct a

theoretically motivated option portfolio, AD Bear, that pays off $1 in bear market states and

$0 otherwise. The short-term returns of this portfolio capture bear market risk. The AD

Bear portfolio generates an economically and statistically significant negative alpha relative

to standard factor models. We test whether bear market risk is priced in the cross section

of stocks by examining the relation between bear beta – stock-level sensitivity to AD Bear

portfolio returns – and expected stock returns. Portfolio and regression analyses demonstrate

that high-bear beta stocks, i.e. stocks that outperform when bear market risk increases, earn

low average returns. This negative cross-sectional relation between bear beta and expected

stock returns remains strong after controlling for a battery of previously documented risk and

characteristic-based pricing effects. Supportive of a risk-based interpretation of our results,

portfolios sorted on bear beta exhibit strong cross-sectional variation in post-formation ex-
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posure to AD Bear returns, the negative relation between bear beta and future stock returns

remains strong even when the sample is restricted to liquid and large cap stocks, and the

return predictability persists for at least six months into the future. We conclude that bear

market risk is a priced source of risk distinct from previously identified factors.
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Appendix A AD Bear Portfolio Sensitivities

In this appendix, we derive the sensitivity of the AD Bear returns to continuous consumption

innovations (dBt), negative jumps in consumption (Zt), and innovations in jump intensity

(dBλ,t).

Assuming a recursive utility function and that the market portfolio is a levered claim to

aggregate consumption (i.e., dividend Dt = Cφ
t ), Wachter (2013) shows that the evolution

of the price of the market portfolio, Ft, is given by

dFt
Ft

= µF,tdt+ φσdBt + bF,λσλ
√
λtdBλ,t + (eφZt − 1)dNt, (A.1)

and the evolution of the state price density πt is defined by

dπt
πt−

= µπ,tdt− γσdBt + bπ,λσλ
√
λtdBλ,t + (e−γZt − 1)dNt (A.2)

where φ is the market portfolio’s leverage with respect to aggregate consumption, γ is the

risk aversion parameter, and bF,λ and bπ,λ are the sensitivities of the market return and

the stochastic discount factor, respectively, to dBλ,t. Because heightened jump intensity

increases marginal utility and depresses stock prices, bF,λ < 0 and bπ,λ > 0.

The AD Bear portfolio is defined to generate payoff XT of $1 at expiration date T if

the time T price of the market portfolio is below a threshold identified by K. Specifically,

XT = 1
{
FT
F0
≤ K

}
, where time 0 is the portfolio formation day and F0 is the T -year forward

price at time 0. At any point in time t < T , the price of the AD Bear portfolio is given by

Xt = EQ
t

(
e−

∫ T
t rτdτ1

{
FT
F0

≤ K

})
(A.3)

where EQ is the risk-neutral expectation function and rs is the time s instantaneous risk-free

rate.

While equation (A.3) can be solved using numerical methods, it does not have an analy-

tical solution. We make two approximations to arrive at an approximate analytical solution

that delivers transparent economic intuition.

Approximation 1: We assume the instantaneous risk-free rate over the time interval

from 0 to T is constant. In our empirical set-up, the time to maturity is about one month

and thus the approximation should be quite accurate. Under this assumption,
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dXt = Xt −X0

= EQ
t

(
1

{
FT
F0

≤ K

})
e−r(T−t) − EQ

0

(
1

{
FT
F0

≤ K

})
e−rT (A.4)

=

[
EQ
t

(
1

{
FT
F0

≤ K

})
− EQ

0

(
1

{
FT
F0

≤ K

})]
e−r(T−t)

+ EQ
0

(
1

{
FT
F0

≤ K

})(
e−r(T−t) − e−rT

)
=

[
EQ
t

(
1

{
FT
F0

≤ K

})
− EQ

0

(
1

{
FT
F0

≤ K

})]
e−r(T−t) +X0

(
ert − 1

)
(A.5)

Letting Pt = EQ
t

(
1
{
FT
F0
≤ K

})
gives

dXt = dPte
−r(T−t) +X0

(
ert − 1

)
. (A.6)

In the following analysis, we focus on the sensitivity of dPt to the fundamental risks,

which determines the sensitivity of dXt to the fundamental risks.

Under Wachter’s model, FT
F0

= exp
(
φlog

(
CT
C0

)
+ bF,λ (λT − λ0)

)
and thus

Pt = EQ
t (1 {φlog (CT ) + bF,λλT ≤ log (K) + φlog (C0) + bF,λλ0}) . (A.7)

Approximation 2: λT follows a CIR model and does not have a closed-form solution.

However, over the short interval T , λT can be approximated by a Vasicek model with constant

volatility and thus follows a normal distribution:

λT ∼ N

((
1− e−κ(T−t))λ+ λte

−κ(T−t),
σ2
λλt
2κ

(
1− e−2κ(T−t))) . (A.8)

Using these two approximations, we get an analytical solution.

log (CT ) follows a normal distribution with mean log (Ct)+
(
µ− 1

2
σ2
)

(T − t) and variance

σ2 (T − t) if there is no jump. We assume Zt is of constant size µZ < 0. Following Merton

(1976), we know that conditional on NT −Nt = n,

φlog (CT ) + bF,λλT ∼ N
(
µn, ν

2
)

(A.9)
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where

µn = µQ + φlog (Ct) + nφµZ + bF,λλte
−κ(T−t), (A.10)

ν2 = φ2σ2 (T − t) + b2
F,λ

σ2
λλt
2κ

(
1− e−2κ(T−t)) , (A.11)

and µQ captures the drift term under the Q measure that is unrelated to λt, log (Ct), or Zt .

Therefore,

Pt =
∞∑
n=0

e−λt(T−t) (λt (T − t))n

n!
N (dn) (A.12)

where

dn =
log (K) + φlog (C0) + bF,λλ0 − µn

ν
(A.13)

We now examine the log excess returns of the AD Bear portfolio resulting from different

types of shocks. Specifically,

∆Pt =
∂Pt
∂Bt

dBt +
∂Pt
∂Bλ,t

dBλ,t +
∂Pt
∂Jt

dJt

First, we solve for the effect of dBt on Pt. Because dBt only affects dn and we have
∂dn
∂Bt

= −φσ
ν

, we have

∂Pt
∂Bt

=
∞∑
n=0

e−λt(T−t) (λt (T − t))n

n!
N
′
(dn)×

(
−φσ
ν

)

= e−λt(T−t)

(
∞∑
n=0

δn

)
×
(
−φσ
ν

)
(A.14)

where

δn =
(λt (T − t))n

n!

1√
2π
exp

(
−1

2
d2
n

)
. (A.15)

Next , the first-order effect of Zt on Pt is

∂Pt
∂Jt

= e−λt(T−t)

(
∞∑
n=0

δn

)
×−φµZ

ν
+ o (Zt) (A.16)

where o (Z2
t ) is a second and higher order effect.
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Finally, we examine the effect of dBλ,t on Pt. Letting

∂dn
∂Bλ,t

=

[
−bF,λe

−κ(T−t)

ν
−
dnb

2
F,λ

σ2
λ

2κ

(
1− e−2κ(T−t))
ν

]
σλ
√
λt (A.17)

we have

∂Pt
∂Bλ,t

=
∞∑
n=0

∂e−λt(T−t) (λt (T − t))n

∂λt
N (dn)× σλ

√
λt + e−λt(T−t)

(
∞∑
n=0

δn

)
× ∂dn
∂Bλ,t

=
∞∑
n=0

(
(λt (T − t))n−1

(n− 1)!
− (λt (T − t))n

n!

)
N (dn)× σλ

√
λt × e−λt(T−t) (T − t)

+e−λt(T−t)

(
∞∑
n=0

δn

)
× ∂dn
∂Bλ,t

(A.18)

=
∞∑
n=1

(λt (T − t))n−1

(n− 1)!
[N (dn)−N (dn−1)]× σλ

√
λt × e−λt(T−t) (T − t) (A.19)

+e−λt(T−t)

(
∞∑
n=0

δn

)
× ∂dn
∂Bλ,t

. (A.20)

Again, ignoring the second and higher-order effects of Zt, we have N (dn) − N (dn−1) =

N
′
(dn−1) −φµZ

ν
and thus

∂Pt
∂Bλ,t

= e−λt(T−t) (T − t)

[
∞∑
n=0

δn
−φµZ
ν

]
× σλ

√
λt + e−λt(T−t)

(
∞∑
n=0

δn

)
× ∂dn
∂Bλ,t

= e−λt(T−t)

(
∞∑
n=0

δn

)
×

{
− (T − t)φµZ −

bF,λe
−κ(T−t)

ν
−
dnb

2
F,λ

σ2
λ

2κ

(
1− e−2κ(T−t))
ν

}
× σλ

√
λt.

(A.21)

Appendix B Bayes Shrinkage Method

We implement the Bayes shrinkage methodology as follows. First, for each stock i and month

t, we run the regression specified in equation (6) as deccribed in Section 4.1. We let βBEAR
OLS,i,t

be the estimated coefficient on RAD Bear,d and σ2
OLS,i,t be the variance of the OLS estimate

βBEAR
OLS,i,t. For each month t we take the prior mean, βBEAR

Prior,t , to be the average βBEAR
OLS,i,m across
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all stock-month observations in months m between December 1996 and month t, inclusive.

Similarly, we take the prior variance, σ2
Prior,t to be the sample variance of βBEAR

OLS,i,m over the

same period. That is,

βBEAR
Prior,t =

∑
m≤t,i β

BEAR
OLS,i,m

nt
(B.1)

and

σ2
Prior,t =

∑
m≤t,i

(
βBEAR

OLS,i,m − βBEAR
Prior,t

)2

nt − 1
(B.2)

where nt is the number of stock-month observations with valid values of βBEAR
OLS,i,m over all

months m between December 1996 and month t, inclusive. Finally, the Bayes-adjusted value

of bear beta that we use as our focal variable throughout the paper is the inverse-variance-

weighted average of the OLS estimate and the prior mean:

βBEAR
i,t =

(
σ2

OLS,i,t

)−1(
σ2

OLS,i,t

)−1
+
(
σ2

Prior,t

)−1β
BEAR
OLS,i,t +

(
σ2

Prior,t

)−1(
σ2

OLS,i,t

)−1
+
(
σ2

Prior,t

)−1β
BEAR
Prior,t . (B.3)

The following brief theoretical derivation clarifies the priors we use. We assume that the

error term in equation (6) follows a normal distribution: εi,d ∼ N (0, ν2
i ). We also assume

that the prior distribution of βBEAR
i is normal: βBEAR

i |ν2
i , β

MKT
i ∼ N (βPrior, σ

2
Prior). The

posterior distribution of βBEAR
i then follows a normal distribution βBEAR

i |σ2
i , β

MKT
i , {Ri,d} ∼

N
(
β̃BEAR
i , Σ̃BEAR

i

)
with the posterior mean

β̃BEAR
i = βPrior +

(
σ−2

Prior + σ−2
(
βBEAR

OLS,i

))−1
σ−2

(
βBEAR

OLS,i

) (
βBEAR

OLS,i − βPrior

)
=

(
σ2

OLS,i

)−1(
σ2

OLS,i

)−1
+ (σ2

Prior)
−1
βBEAR

OLS,i +
(σ2

Prior)
−1(

σ2
OLS,i

)−1
+ (σ2

Prior)
−1
βBEAR

Prior . (B.4)

Intuitively, β̃BEAR
i shrinks the OLS estimate βBEAR

OLS,i toward βPrior to account for sampling

errors. Higher (lower) OLS sampling errors, captured by σ2
OLS,i, result in more (less) weight

being placed on βPrior and less (more) weight being placed on βBEAR
OLS,i .
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Figure 1: Construction of AD Bear
The figure below illustrates the construction of the AD Bear portfolio. The solid black line
shows the payoff function of the AD Bear portfolio. The dashed red line shows the payoff
function of the long put position. The dotted green line shows the payoff function of the
short put position. The dash-dotted blue line shows the payoff function of the theoretical
AD Bear portfolio.
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Figure 2: AD Bear CAPM Residuals
The figure below shows the residuals from a regression of AD Bear excess returns on market
excess returns (MKT). The numbers 1 - 5 indicate the five largest residuals, in decreasing
order.
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Table 1: Sensitivities of Market Portfolio and AD Bear Returns to Three Sources
of Fundamental Risk

The table shows the sensitivities of the stochastic discount factor (SDF, dπt
πt−

), the market

portfolio return (dFt
Ft

), and the AD Bear portfolio return (dXt
Xt

) to each of the three
fundamental risks in Wachter (2013)’s model derived using a first-order Taylor expansion.
dBt is a standard Brownian motion capturing continuous consumption shocks. Zt is the
realized consumption jump at time t. dBλ,t is the shock to the time-varying intensity of
future jumps. ∆ = e−λtτ (

∑∞
n=0 δn) ν−1 is the ratio between the sensitivity of dXt

Xt
to dBt and

the sensitivity of dFt
Ft

to dBt. Refer to equations (1) and (2), and associated text, for more
parameter definitions. Hedged AD Bear Return is the return of a portfolio that invests in
one unit of the AD Bear portfolio and hedges the market exposure by investing ∆Xt in the
market portfolio where Xt is the price of the AD Bear portfolio. bF,λ is negative. γ, φ, bπ,λ
and bX,λ are positive.

Source SDF Market Return AD Bear Return Hedged AD Bear Return

of Risk
(
dπt

πt−

) (
dFt

Ft

) (
dXt

Xt

) (
dXt

Xt

)
+ ∆

(
dFt

Ft

)
dBt −γ φ −∆φ 0
Zt −γZt φZt −∆φZt 0

dBλ,t bπ,λ bF,λ − ∆ bF,λ + bX,λ bX,λ
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Table 2: Summary Statistics for AD Bear Portfolio and Factor Returns
The table below presents summary statistics for the five-day excess returns of the AD
Bear portfolio and standard risk factors. The unscaled AD Bear excess returns (AD Bear
(Unscaled)) are the actual excess returns generated by the AD Bear portfolio. The scaled
(AD Bear) excess returns are the unscaled excess returns divided by 28.87836. The scaling
factor 28.87836 is chosen so that the standard deviation of the scaled AD Bear excess
returns is equal to the standard deviation of the MKT factor returns. The five-day excess
returns of MKT, SMB, HML, MOM, SMB5, RMW, CMA, ME, IA, and ROE are calculated
by first compounding the daily gross returns of the factors over a five-day period and then
subtracting the contemporaneous five-day risk free rate. The table presents the mean
(Mean), standard deviation (SD), skewness (Skew), minimum value (Min), median value
(Median), 95th percentile value (95%), 99th percentile value (99%), and maximum value
(Max) for the daily five-day overlapping excess returns of the AD Bear portfolio and each
of the factors. The returns cover portfolio formation dates (return dates) from January 4,
1996 (January 11, 1996) through August 24, 2015 (August 31, 2015).

Factor Mean SD Skew Min Median 95% 99% MAX
AD Bear (Unscaled) −8.12 74.72 2.81 −98.31 −28.48 131.60 269.91 999.68
AD Bear −0.28 2.59 2.81 −3.40 −0.99 4.56 9.35 34.62
MKT 0.15 2.59 −0.49 −18.43 0.31 3.79 6.53 19.49
SMB 0.04 1.46 −0.48 −12.19 0.08 2.14 3.89 7.52
HML 0.05 1.52 0.54 −8.29 0.02 2.32 5.17 12.47
MOM 0.14 2.45 −0.93 −16.45 0.25 3.59 6.48 14.21
ME 0.07 1.46 −0.34 −11.12 0.10 2.19 3.93 7.79
ROE 0.11 1.27 0.10 −6.36 0.13 2.03 3.93 10.14
IA 0.06 1.03 0.65 −5.66 0.01 1.70 3.09 8.61
SMB5 0.05 1.41 −0.42 −11.81 0.09 2.09 3.70 7.36
RMW 0.09 1.21 0.75 −7.09 0.06 1.89 3.89 9.88
CMA 0.06 1.04 0.81 −5.15 −0.01 1.83 3.27 8.99
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Table 3: Factor Analysis of AD Bear Portfolio Returns
The table below presents the results of time-series regressions of AD Bear portfolio excess
returns on standard factors. The table shows the intercept coefficient (Excess Return or α),
slope coefficients (β), and adjusted R-squared (Adj. R2). t-statistics, adjusted following
Newey and West (1987) using 22 lags, testing the null hypothesis of a zero intercept or slope
coefficient, are shown in parentheses below the corresponding coefficient. The regressions
include the 4910 valid five-day AD Bear excess return observations during the period from
January 11, 1996 through August 31, 2015.

Value E
x
ce

ss
R

et
u
rn

C
A

P
M

F
F

3

F
F

C

Q F
F

5

Excess Return or α −0.28 −0.15 −0.16 −0.14 −0.13 −0.13
(−3.60) (−3.83) (−3.85) (−3.23) (−3.09) (−2.97)

βMKT −0.81 −0.81 −0.85 −0.85 −0.87
(−18.58) (−18.18) (−20.31) (−18.07) (−19.30)

βSMB 0.06 0.07
(1.89) (2.15)

βHML 0.05 −0.00 0.16
(1.00) (−0.09) (2.86)

βMOM −0.11
(−4.40)

βME 0.04
(1.20)

βROE −0.14
(−2.84)

βIA −0.06
(−1.18)

βSMB5 0.02
(0.63)

βRMW −0.16
(−3.41)

βCMA −0.25
(−3.97)

Adj. R2 0.00% 65.32% 65.47% 66.41% 65.88% 66.39%
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Table 4: Summary Statistics
The table below presents cross-sectional summary statistics for bear beta (βBEAR), market
capitalization (MKTCAP), and Amihud (2002) illiquidity (ILLIQ). The All Stocks sample
includes all U.S.-based stocks in the CRSP database with a valid value of βBEAR. The Liquid
sample is the subset of the All Stocks sample with values of ILLIQ lower than the 80th
percentile value of ILLIQ among NYSE stocks. The Large Cap sample is the subset of the
All Stocks sample with MKTCAP greater than the 50th percentile MKTCAP value among
NYSE stocks. This table shows the time-series averages of the monthly cross-sectional mean
(Mean), standard deviation (SD), skewness (Skew), minimum value (Min), 25th percentile
value (25%), median value (Median), 75th percentile value (75%), maximum value (Max),
and number of observations with valid values (n) for βBEAR, MKTCAP, and ILLIQ using
each sample. The summary statistics cover the 225 months t from December 1996 through
August 2015.

Sample Variable Mean SD Skew Min 25% Median 75% Max n
All Stocks βBEAR 0.07 0.41 0.25 −1.71 −0.19 0.05 0.31 2.13 4791

MKTCAP 3174 15158.20 13.67 1 75 308 1334 406290 4788
ILLIQ 197.47 1081.90 17.41 0.00 0.45 4.75 48.68 36793.83 4505

Liquid βBEAR 0.08 0.38 0.27 −1.42 −0.16 0.06 0.31 1.74 2042
MKTCAP 6993 22299.12 9.13 69 743 1600 4366 406290 2042
ILLIQ 0.69 0.78 1.26 0.00 0.09 0.34 1.06 3.01 2042

Large Cap βBEAR 0.05 0.34 0.32 −1.18 −0.17 0.02 0.24 1.51 1006
MKTCAP 13154 30299.99 6.61 1598 2472 4315 10653 406290 1006
ILLIQ 0.26 1.52 18.77 0.00 0.03 0.08 0.20 42.56 1006
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Table 5: βBEAR-Sorted Portfolios Returns
The table below presents the results of univariate portfolio analyses of the relation between
βBEAR and future stock returns. Each month t, all stocks in the sample are sorted into
decile portfolios based on an ascending sort of βBEAR. The columns labeled “βBEAR 1”
through “βBEAR 10” present results for the first through 10th βBEAR decile portfolios. The
column labeled “βBEAR 10−1” presents results for a portfolio that is long stocks in the 10th
βBEAR decile portfolio and short stocks in the first βBEAR decile portfolio. The table shows
the average month t + 1 value-weighted excess return (Excess Return), alphas (α) relative
to the CAPM, FF3, FFC, Q, and FF5 factor models, and factor sensitivities relative to
the FF5 factors. Newey and West (1987)-adjusted t-statistics using 12 lags are presented
in parentheses. The row labeled “Pre-Formation” shows the time-series average of the
monthly value-weighted average values of pre-formation βBEAR for each of the portfolios.
The row labeled “Post-Formation” presents the corresponding post-formation βBEAR,
calculated as the slope coefficient on AD Bear portfolio excess returns from a regression of
the daily five-day overlapping portfolio excess returns on the contemporaneous MKT and
AD Bear portfolio excess returns. t-statistics reported in parentheses for the post-formation
sensitivities are adjusted following Newey and West (1987) using 22 lags. Panels A, B, and
C present results for the All Stocks, Liquid, and Large Cap samples, respectively.

Panel A: All Stocks Sample

Model Value β
B

E
A

R
1

β
B

E
A

R
2

β
B

E
A

R
3

β
B

E
A

R
4

β
B

E
A

R
5

β
B

E
A

R
6

β
B

E
A

R
7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

β
B

E
A

R
10
−

1

Excess Return Excess Returns 0.98 0.82 0.66 0.47 0.62 0.41 0.48 0.39 0.32 −0.15 −1.13
(2.62) (2.76) (2.32) (1.58) (1.76) (1.02) (1.14) (0.77) (0.59) (−0.23) (−2.72)

CAPM α 0.47 0.36 0.22 0.01 0.10 −0.13 −0.09 −0.24 −0.42 −1.02 −1.48
(2.45) (2.12) (1.57) (0.08) (1.26) (−0.82) (−0.81) (−1.24) (−2.14) (−3.82) (−3.83)

FF3 α 0.39 0.31 0.20 −0.01 0.12 −0.08 −0.04 −0.23 −0.39 −0.95 −1.34
(2.48) (2.33) (1.82) (−0.07) (1.41) (−0.62) (−0.40) (−1.32) (−2.58) (−4.83) (−4.57)

FFC α 0.42 0.34 0.21 0.02 0.12 −0.09 −0.03 −0.17 −0.34 −0.83 −1.25
(2.41) (2.65) (1.80) (0.14) (1.19) (−0.70) (−0.34) (−0.99) (−1.97) (−3.99) (−3.81)

Q α 0.31 0.24 0.17 0.06 0.15 0.04 0.01 −0.07 −0.18 −0.51 −0.82
(1.78) (1.93) (1.37) (0.38) (1.12) (0.35) (0.06) (−0.44) (−1.13) (−2.48) (−2.74)

FF5 α 0.24 0.21 0.06 −0.02 0.12 −0.01 0.05 −0.04 −0.12 −0.47 −0.71
(1.34) (1.69) (0.78) (−0.19) (1.27) (−0.08) (0.48) (−0.31) (−1.03) (−2.35) (−2.49)

βMKT 1.10 1.01 0.94 0.91 0.99 0.97 1.02 1.07 1.20 1.25 0.15
(20.51) (17.40) (33.46) (16.64) (31.64) (26.34) (28.93) (21.58) (19.20) (16.07) (1.35)

βSMB5 0.02 −0.16 −0.05 0.01 −0.04 0.04 −0.00 0.13 0.24 0.40 0.37
(0.28) (−2.18) (−0.93) (0.12) (−1.00) (0.90) (−0.02) (2.45) (3.20) (3.85) (2.62)

βHML 0.10 0.08 −0.04 0.05 −0.04 −0.12 −0.14 0.04 0.05 −0.10 −0.20
(0.82) (0.77) (−0.80) (0.44) (−0.67) (−2.45) (−2.03) (0.42) (0.47) (−0.61) (−0.80)

βRMW 0.11 0.04 0.17 0.04 −0.01 −0.06 −0.15 −0.24 −0.31 −0.76 −0.87
(0.59) (0.25) (1.64) (0.64) (−0.27) (−0.85) (−2.19) (−1.83) (−2.41) (−5.70) (−2.93)

βCMA 0.39 0.36 0.26 −0.00 0.01 −0.17 −0.10 −0.31 −0.59 −0.62 −1.01
(1.59) (1.58) (3.16) (−0.02) (0.06) (−1.03) (−0.82) (−1.84) (−4.52) (−2.45) (−2.35)

Pre-Formation βBEAR −0.64 −0.33 −0.19 −0.09 0.01 0.10 0.19 0.31 0.47 0.84 1.48

Post-Formation βBEAR −0.05 −0.03 −0.03 −0.03 −0.01 −0.00 0.03 0.11 0.16 0.18 0.21
(−1.66) (−0.92) (−1.35) (−1.73) (−0.53) (−0.23) (1.29) (2.89) (3.64) (3.17) (2.90)
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Table 5: βBEAR-Sorted Portfolios Returns - continued

Panel B: Liquid Sample

Model Value β
B

E
A

R
1

β
B

E
A

R
2

β
B

E
A

R
3

β
B

E
A

R
4

β
B

E
A

R
5

β
B

E
A

R
6

β
B

E
A

R
7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

β
B

E
A

R
10
−

1

Excess Return Excess Returns 0.90 0.79 0.69 0.67 0.56 0.35 0.46 0.37 0.35 −0.18 −1.08
(2.60) (2.69) (2.41) (2.24) (1.54) (0.82) (1.14) (0.73) (0.70) (−0.27) (−2.36)

CAPM α 0.42 0.35 0.25 0.23 0.05 −0.22 −0.11 −0.27 −0.38 −1.07 −1.49
(2.49) (2.08) (1.64) (1.46) (0.55) (−1.38) (−0.76) (−1.45) (−1.86) (−3.51) (−3.51)

FF3 α 0.35 0.32 0.23 0.20 0.06 −0.15 −0.05 −0.23 −0.35 −0.98 −1.33
(2.81) (2.28) (1.70) (1.58) (0.66) (−1.30) (−0.50) (−1.58) (−2.47) (−4.79) (−5.01)

FFC α 0.38 0.35 0.21 0.19 0.08 −0.11 −0.04 −0.16 −0.26 −0.84 −1.23
(2.84) (2.45) (1.51) (1.44) (0.75) (−0.85) (−0.34) (−1.08) (−1.65) (−3.75) (−4.08)

Q α 0.30 0.25 0.13 0.12 0.08 −0.04 0.02 −0.08 −0.09 −0.55 −0.85
(2.09) (1.65) (1.04) (0.87) (0.61) (−0.38) (0.24) (−0.49) (−0.61) (−2.45) (−3.11)

FF5 α 0.22 0.21 0.06 0.10 0.06 −0.11 0.07 −0.03 −0.06 −0.49 −0.71
(1.36) (1.55) (0.58) (0.90) (0.59) (−0.94) (0.74) (−0.20) (−0.53) (−2.81) (−2.85)

βMKT 1.04 0.97 0.99 0.93 0.99 1.03 1.00 1.10 1.19 1.31 0.27
(19.97) (20.96) (19.98) (46.61) (25.52) (34.07) (30.45) (22.54) (18.90) (15.02) (2.39)

βSMB5 −0.04 −0.19 −0.14 −0.03 −0.04 −0.01 −0.03 0.05 0.21 0.29 0.33
(−0.48) (−2.61) (−2.46) (−0.44) (−0.98) (−0.20) (−0.57) (0.73) (2.35) (2.55) (2.13)

βHML 0.09 0.06 −0.02 0.02 0.06 −0.14 −0.11 0.04 0.06 −0.09 −0.18
(0.96) (0.56) (−0.24) (0.39) (0.92) (−2.78) (−1.73) (0.42) (0.54) (−0.53) (−0.78)

βRMW 0.11 0.06 0.21 0.14 0.09 0.02 −0.15 −0.25 −0.31 −0.72 −0.83
(0.58) (0.49) (2.78) (1.93) (1.45) (0.43) (−1.52) (−1.86) (−1.93) (−5.22) (−2.80)

βCMA 0.35 0.34 0.30 0.17 −0.15 −0.22 −0.22 −0.38 −0.61 −0.70 −1.05
(1.40) (2.02) (2.05) (2.86) (−1.05) (−1.36) (−1.72) (−2.26) (−4.06) (−2.79) (−2.41)

Pre-Formation βBEAR −0.56 −0.28 −0.16 −0.06 0.02 0.11 0.20 0.31 0.47 0.81 1.36

Post-Formation βBEAR −0.04 −0.04 −0.05 −0.01 −0.04 −0.00 0.02 0.10 0.16 0.18 0.21
(−1.38) (−1.33) (−2.03) (−0.76) (−2.21) (−0.04) (0.71) (2.04) (3.73) (3.10) (2.71)

Panel C: Large Cap Sample

Model Value β
B

E
A

R
1

β
B

E
A

R
2

β
B

E
A

R
3

β
B

E
A

R
4

β
B

E
A

R
5

β
B

E
A

R
6

β
B

E
A

R
7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

β
B

E
A

R
10
−

1

Excess Return Excess Returns 0.83 0.80 0.64 0.57 0.67 0.60 0.35 0.27 0.25 −0.07 −0.90
(2.46) (2.86) (2.26) (1.78) (2.20) (1.80) (0.81) (0.60) (0.47) (−0.11) (−2.06)

CAPM α 0.36 0.37 0.23 0.14 0.22 0.11 −0.20 −0.31 −0.43 −0.92 −1.28
(2.36) (2.78) (1.25) (0.91) (1.57) (1.23) (−1.41) (−1.72) (−1.82) (−2.82) (−2.96)

FF3 α 0.31 0.36 0.20 0.12 0.21 0.11 −0.14 −0.25 −0.36 −0.81 −1.12
(2.89) (2.76) (1.48) (0.92) (1.76) (1.27) (−1.07) (−1.96) (−2.10) (−3.89) (−4.46)

FFC α 0.33 0.35 0.17 0.10 0.17 0.09 −0.13 −0.23 −0.32 −0.70 −1.02
(2.95) (2.62) (1.16) (0.75) (1.47) (1.02) (−0.87) (−1.85) (−1.74) (−3.23) (−3.85)

Q α 0.25 0.24 0.08 0.00 0.09 0.08 −0.11 −0.12 −0.17 −0.41 −0.66
(2.04) (1.83) (0.61) (0.04) (0.80) (0.97) (−0.76) (−0.90) (−1.12) (−1.91) (−2.79)

FF5 α 0.18 0.22 0.06 −0.01 0.09 0.06 −0.09 −0.08 −0.12 −0.32 −0.50
(1.25) (1.78) (0.56) (−0.08) (0.91) (0.72) (−0.63) (−0.71) (−0.89) (−1.99) (−2.37)

βMKT 1.03 0.96 0.93 0.96 0.94 0.96 1.04 1.00 1.15 1.26 0.23
(21.84) (21.22) (40.38) (22.82) (39.64) (36.54) (23.24) (25.17) (20.03) (15.01) (2.09)

βSMB5 −0.11 −0.19 −0.16 −0.16 −0.03 0.05 −0.10 −0.02 0.00 0.13 0.24
(−1.35) (−3.33) (−4.09) (−3.35) (−0.59) (1.00) (−2.08) (−0.33) (0.04) (1.10) (1.35)

βHML 0.08 0.04 0.08 0.06 −0.03 −0.03 −0.11 −0.06 0.01 −0.10 −0.18
(0.76) (0.45) (0.95) (0.80) (−0.49) (−0.51) (−2.16) (−0.72) (0.07) (−0.58) (−0.76)

βRMW 0.11 0.15 0.21 0.18 0.19 0.13 −0.01 −0.24 −0.29 −0.73 −0.84
(0.61) (1.78) (3.50) (2.24) (3.30) (2.95) (−0.22) (−1.91) (−2.02) (−4.64) (−2.67)

βCMA 0.34 0.29 0.20 0.19 0.15 −0.05 −0.17 −0.24 −0.47 −0.66 −1.00
(1.48) (2.44) (2.08) (2.03) (2.15) (−0.74) (−1.26) (−1.37) (−3.08) (−3.03) (−2.54)

Pre-Formation βBEAR −0.52 −0.27 −0.17 −0.09 −0.01 0.06 0.14 0.24 0.38 0.69 1.21

Post-Formation βBEAR −0.03 −0.05 −0.05 −0.04 −0.03 −0.05 −0.00 0.01 0.16 0.19 0.21
(−1.10) (−2.18) (−2.11) (−1.64) (−1.44) (−3.93) (−0.04) (0.49) (3.10) (3.40) (2.73)
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Table 6: βBEAR-Sorted Portfolio Average Risk Variables
The table below presents average values of risk variables for stocks in each of the univariate
decile portfolios formed by sorting on βBEAR. Each month t, all stocks in the sample are
sorted into decile portfolios based on an ascending sort of βBEAR. The columns labeled
“βBEAR 1” through “βBEAR 10” present results for the first through 10th decile βBEAR

portfolios. The table shows the time-series average of the monthly equal-weighted month t
values for each risk variable in each portfolio. Results for βJUMP and βVOL cover the 184
months t from December 1996 through March 2012. Results for β∆SKEW cover the 133
months t from December 1996 through December 2007. All other results cover the 225
months t from December 1996 through August 2015. Panels A, B, and C present results for
the All Stocks, Liquid, and Large Cap samples, respectively.

Panel A: All Stocks Sample

Variable β
B

E
A

R
1

β
B

E
A

R
2

β
B

E
A

R
3

β
B

E
A

R
4

β
B

E
A

R
5

β
B

E
A

R
6

β
B

E
A

R
7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

βCAPM 0.77 0.76 0.75 0.75 0.77 0.81 0.86 0.93 1.01 1.14
β− 0.96 0.87 0.84 0.82 0.83 0.86 0.90 0.96 1.03 1.13
β− − βCAPM 0.19 0.12 0.09 0.07 0.06 0.05 0.04 0.03 0.02 −0.01
β∆VIX −0.04 −0.01 −0.01 0.01 0.01 0.02 0.03 0.05 0.07 0.11
βVOL −0.05 −0.02 −0.01 −0.00 0.00 0.02 0.02 0.03 0.04 0.08
βJUMP −0.05 −0.03 −0.02 −0.01 −0.01 −0.00 −0.00 0.00 0.01 0.03
COSKEW −1.89 −1.39 −1.17 −1.02 −0.82 −0.76 −0.69 −0.63 −0.46 −0.12
β∆SKEW 0.08 0.06 0.10 −0.08 −0.08 −0.15 −0.05 −0.10 −0.03 −0.35
βTAIL 0.31 0.27 0.25 0.23 0.23 0.23 0.23 0.24 0.25 0.25
IVOL 3.76 3.17 2.91 2.80 2.77 2.84 2.97 3.14 3.40 4.00

Panel B: Liquid Sample

Variable β
B

E
A

R
1

β
B

E
A

R
2

β
B

E
A

R
3

β
B

E
A

R
4

β
B

E
A

R
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β
B

E
A

R
6

β
B

E
A

R
7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

βCAPM 1.08 1.00 0.98 0.97 0.99 1.03 1.08 1.16 1.26 1.45
β− 1.18 1.05 1.02 1.00 1.01 1.04 1.08 1.16 1.25 1.40
β− − βCAPM 0.10 0.06 0.04 0.03 0.02 0.01 0.01 0.00 −0.01 −0.05
β∆VIX −0.02 −0.00 −0.00 0.00 0.01 0.02 0.03 0.05 0.08 0.13
βVOL −0.03 −0.01 −0.01 0.00 0.01 0.01 0.02 0.03 0.04 0.07
βJUMP −0.03 −0.02 −0.01 −0.01 −0.00 −0.00 0.00 0.01 0.01 0.03
COSKEW −0.67 −0.30 −0.28 −0.27 −0.09 −0.08 0.04 0.15 0.36 0.91
β∆SKEW 0.15 −0.09 −0.00 −0.08 −0.15 −0.10 −0.04 −0.11 −0.13 −0.15
βTAIL 0.15 0.14 0.13 0.14 0.13 0.14 0.14 0.15 0.15 0.14
IVOL 2.39 2.02 1.93 1.88 1.92 2.00 2.11 2.29 2.53 3.01
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Table 6: βBEAR-Sorted Portfolio Average Risk Variables - continued

Panel C: Large Cap Sample

Variable β
B

E
A

R
1

β
B

E
A

R
2

β
B

E
A

R
3

β
B

E
A

R
4

β
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R
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β
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A

R
6

β
B

E
A

R
7

β
B

E
A

R
8

β
B

E
A

R
9

β
B

E
A

R
10

βCAPM 1.02 0.93 0.91 0.91 0.93 0.95 0.99 1.06 1.18 1.39
β− 1.11 0.98 0.95 0.94 0.95 0.96 1.00 1.06 1.16 1.35
β− − βCAPM 0.09 0.04 0.03 0.03 0.02 0.01 0.00 −0.00 −0.01 −0.04
β∆VIX −0.03 −0.02 −0.01 −0.01 0.00 0.00 0.01 0.04 0.06 0.11
βVOL −0.03 −0.01 −0.01 −0.00 0.00 0.01 0.01 0.02 0.03 0.06
βJUMP −0.02 −0.01 −0.01 −0.00 −0.00 0.00 0.00 0.01 0.01 0.03
COSKEW −0.23 −0.03 −0.06 −0.04 0.01 0.24 0.35 0.46 0.63 1.32
β∆SKEW 0.01 −0.21 −0.22 −0.16 −0.18 −0.18 −0.13 −0.07 −0.10 −0.27
βTAIL 0.09 0.09 0.10 0.10 0.10 0.11 0.10 0.10 0.10 0.08
IVOL 1.96 1.66 1.59 1.56 1.59 1.62 1.71 1.83 2.05 2.48

Table 7: Bivariate βBEAR-Sorted Portfolios
The table below presents the results of bivariate portfolio analyses using a control variable
and βBEAR as the sort variables. The control variable is one of βCAPM, β−, β− − βCAPM,
β∆VIX, βVOL, βJUMP, COSKEW, β∆SKEW, βTAIL, or IVOL. Each month t, all stocks in the
sample are sorted into decile groups based on an ascending sort on the control variable.
Within each control variable group, the stocks are sorted into decile portfolios based on an
ascending sort on βBEAR. The monthly value-weighted excess returns for each of the resulting
100 portfolios are calculated. Within each βBEAR decile, we then calculate the equal-weighted
average of the portfolio excess returns across the deciles of the control variable, which we refer
to as the bivariate βBEAR decile portfolios. The βBEAR 10− 1 portfolio is a zero-investment
portfolio that is long the bivariate βBEAR decile 10 portfolio and short the bivariate βBEAR

decile one portfolio. The table presents the time-series averages of the month t + 1 excess
returns for the bivariate βBEAR decile portfolios. For the βBEAR 10− 1 portfolios, the table
shows the time-series averages of the month t + 1 excess returns, alphas (α) relative to the
CAPM, FF3, FFC, Q, and FF5 factor models, and factor sensitivities relative to the FF5
factors. t-statistics, adjusted following Newey and West (1987) using 12 lags are presented
in parentheses. The analyses that control for βJUMP or βVOL cover the cover the 184 months
t (return months t + 1) from December 1996 (January 1997) through March 2012 (April
2012). The analysis that controls for β∆SKEW covers the cover the 133 months t (return
months t+ 1) from December 1996 (January 1997) through December 2007 (January 2008).
All other analyses cover the 225 months t (return months t+1) from December 1996 (January
1997) through August 2015 (September 2015). Panels A, B, and C present results for the
All Stocks, Liquid, and Large Cap samples, respectively.
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Table 7: Bivariate βBEAR-Sorted Portfolios - continued

Panel A: All Stocks Sample

Model Value β
C

A
P

M
A

v
g.

β
−

A
v
g.

β
−
−
β

C
A

P
M

A
v
g.

β
∆

V
IX

A
v
g.

β
V

O
L

A
v
g.

β
J
U

M
P

A
v
g.

C
O

S
K

E
W

A
v
g.

β
∆

S
K

E
W

A
v
g.

β
T

A
IL

A
v
g.

IV
O

L
A

v
g.

βBEAR 1 Excess Return Excess Return 0.82 0.84 0.89 0.95 0.93 0.87 1.10 1.13 1.00 0.89
βBEAR 2 0.65 0.75 0.84 0.87 0.73 0.82 0.80 0.53 0.88 0.76
βBEAR 3 0.58 0.63 0.67 0.61 0.73 0.57 0.79 0.69 0.65 0.51
βBEAR 4 0.63 0.47 0.69 0.64 0.53 0.60 0.67 0.46 0.57 0.44
βBEAR 5 0.70 0.67 0.52 0.49 0.43 0.44 0.63 0.38 0.75 0.62
βBEAR 6 0.49 0.57 0.49 0.65 0.75 0.49 0.77 0.64 0.61 0.61
βBEAR 7 0.66 0.74 0.73 0.52 0.56 0.49 0.51 0.59 0.62 0.61
βBEAR 8 0.44 0.41 0.47 0.47 0.23 0.45 0.46 0.30 0.55 0.55
βBEAR 9 0.53 0.52 0.47 0.44 0.36 0.19 0.51 0.18 0.51 0.29
βBEAR 10 0.15 0.17 −0.05 −0.09 −0.25 −0.14 0.01 −0.50 0.17 −0.01
βBEAR 10− 1 Excess Return Excess Returns −0.67 −0.67 −0.94 −1.05 −1.18 −1.00 −1.08 −1.63 −0.83 −0.90

(−3.27) (−3.25) (−2.31) (−2.35) (−2.50) (−2.61) (−2.83) (−2.44) (−2.65) (−2.25)
CAPM α −0.78 −0.82 −1.24 −1.36 −1.44 −1.24 −1.36 −1.96 −1.10 −1.14

(−3.95) (−4.11) (−3.02) (−3.10) (−3.02) (−3.14) (−3.81) (−3.29) (−3.91) (−2.98)
FF3 α −0.73 −0.78 −1.10 −1.23 −1.29 −1.14 −1.24 −1.28 −1.02 −1.05

(−2.92) (−3.74) (−4.16) (−4.00) (−4.66) (−4.21) (−4.61) (−2.71) (−4.15) (−3.56)
FFC α −0.77 −0.75 −1.02 −1.19 −1.24 −1.13 −1.18 −1.38 −0.92 −0.99

(−2.97) (−3.11) (−3.43) (−3.49) (−4.27) (−3.90) (−3.82) (−2.56) (−3.52) (−3.00)
Q α −0.53 −0.54 −0.69 −0.78 −0.85 −0.69 −0.84 −1.15 −0.67 −0.73

(−2.18) (−2.35) (−2.79) (−2.42) (−3.08) (−2.44) (−2.92) (−2.27) (−2.81) (−2.54)
FF5 α −0.54 −0.57 −0.64 −0.69 −0.73 −0.57 −0.81 −0.87 −0.60 −0.67

(−2.29) (−2.53) (−2.77) (−2.86) (−3.09) (−1.87) (−3.14) (−2.27) (−2.49) (−2.63)
βMKT −0.05 0.04 0.17 0.15 0.19 0.11 0.13 −0.01 0.18 0.17

(−0.68) (0.60) (2.00) (1.40) (1.87) (1.04) (1.17) (−0.05) (2.06) (1.85)
βSMB5 0.48 0.47 0.29 0.32 0.25 0.44 0.39 0.27 0.32 0.16

(3.49) (5.00) (2.20) (2.21) (1.71) (3.21) (2.65) (1.59) (2.93) (1.35)
βHML −0.34 −0.21 −0.26 −0.20 −0.28 −0.24 −0.32 −0.65 −0.07 −0.06

(−1.92) (−1.19) (−1.10) (−0.84) (−1.03) (−0.92) (−1.23) (−2.68) (−0.27) (−0.28)
βRMW −0.32 −0.24 −0.64 −0.74 −0.64 −0.64 −0.57 −0.52 −0.49 −0.51

(−1.60) (−1.36) (−2.21) (−2.50) (−1.96) (−2.09) (−1.97) (−1.73) (−2.03) (−2.07)
βCMA −0.22 −0.44 −0.75 −0.86 −0.84 −0.88 −0.70 −0.89 −0.82 −0.66

(−0.92) (−1.61) (−2.22) (−2.21) (−2.34) (−2.27) (−1.68) (−1.75) (−2.52) (−2.14)
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Table 7: Bivariate βBEAR-Sorted Portfolios - continued

Panel B: Liquid Sample

Model Value β
C

A
P

M
A

v
g.

β
−

A
v
g.

β
−
−
β

C
A

P
M

A
v
g.

β
∆

V
IX

A
v
g.

β
V

O
L

A
v
g.

β
J
U

M
P

A
v
g.

C
O

S
K

E
W

A
v
g.

β
∆

S
K

E
W

A
v
g.

β
T

A
IL

A
v
g.

IV
O

L
A

v
g.

βBEAR 1 Excess Return Excess Return 0.80 0.82 0.89 0.89 0.85 0.88 0.94 1.00 0.96 0.91
βBEAR 2 0.60 0.54 0.86 0.87 0.69 0.72 0.86 0.80 0.87 0.80
βBEAR 3 0.63 0.59 0.69 0.57 0.77 0.67 0.81 0.56 0.52 0.70
βBEAR 4 0.66 0.46 0.60 0.55 0.63 0.44 0.67 0.44 0.70 0.58
βBEAR 5 0.58 0.64 0.53 0.76 0.48 0.51 0.80 0.67 0.66 0.51
βBEAR 6 0.55 0.61 0.63 0.50 0.64 0.53 0.63 0.79 0.61 0.56
βBEAR 7 0.43 0.58 0.62 0.56 0.57 0.47 0.45 0.36 0.67 0.64
βBEAR 8 0.42 0.55 0.39 0.34 0.19 0.30 0.52 0.17 0.61 0.43
βBEAR 9 0.51 0.58 0.40 0.48 0.20 0.23 0.41 0.07 0.44 0.37
βBEAR 10 0.12 0.07 −0.05 −0.21 −0.34 −0.14 0.01 −0.49 0.16 0.11
βBEAR 10− 1 Excess Return Excess Returns −0.68 −0.75 −0.94 −1.10 −1.18 −1.02 −0.93 −1.49 −0.80 −0.80

(−3.48) (−3.29) (−2.36) (−2.35) (−2.33) (−2.44) (−2.45) (−2.51) (−2.79) (−2.33)
CAPM α −0.78 −0.92 −1.28 −1.44 −1.47 −1.28 −1.25 −1.83 −1.08 −1.02

(−4.19) (−4.13) (−3.16) (−2.95) (−2.96) (−2.97) (−3.59) (−3.32) (−4.11) (−2.94)
FF3 α −0.76 −0.90 −1.16 −1.32 −1.31 −1.17 −1.15 −1.22 −1.00 −0.94

(−3.99) (−4.67) (−4.83) (−4.10) (−4.37) (−4.30) (−4.62) (−3.15) (−5.03) (−3.53)
FFC α −0.79 −0.90 −1.06 −1.22 −1.24 −1.16 −1.04 −1.27 −0.90 −0.92

(−3.65) (−3.94) (−3.92) (−3.37) (−3.85) (−4.01) (−3.63) (−2.91) (−3.82) (−3.01)
Q α −0.70 −0.81 −0.75 −0.88 −0.91 −0.75 −0.76 −1.12 −0.65 −0.70

(−3.21) (−3.52) (−3.40) (−2.87) (−3.44) (−2.96) (−2.97) (−2.50) (−2.98) (−2.66)
FF5 α −0.71 −0.79 −0.68 −0.82 −0.78 −0.60 −0.72 −0.86 −0.62 −0.64

(−3.45) (−4.20) (−3.36) (−3.64) (−3.24) (−2.28) (−3.24) (−2.38) (−2.83) (−2.78)
βMKT 0.06 0.15 0.25 0.23 0.27 0.15 0.25 0.10 0.25 0.17

(1.20) (1.92) (2.93) (2.36) (2.37) (1.69) (2.32) (0.59) (2.74) (2.62)
βSMB5 0.38 0.42 0.32 0.35 0.29 0.44 0.35 0.30 0.23 0.15

(4.51) (4.49) (2.46) (2.18) (1.62) (3.88) (2.61) (1.90) (2.16) (1.29)
βHML −0.29 −0.15 −0.15 −0.14 −0.24 −0.22 −0.15 −0.59 0.00 −0.12

(−2.01) (−0.82) (−0.73) (−0.72) (−0.96) (−1.05) (−0.62) (−2.81) (0.01) (−0.66)
βRMW −0.10 −0.05 −0.61 −0.58 −0.50 −0.62 −0.52 −0.41 −0.36 −0.44

(−0.70) (−0.26) (−2.10) (−1.91) (−1.60) (−2.13) (−1.91) (−1.41) (−1.73) (−1.92)
βCMA −0.03 −0.36 −0.87 −1.01 −1.01 −0.92 −0.81 −0.86 −0.89 −0.47

(−0.14) (−1.12) (−2.58) (−2.84) (−2.60) (−2.54) (−2.15) (−1.96) (−2.67) (−1.94)
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Table 7: Bivariate βBEAR-Sorted Portfolios - continued

Panel C: Large Cap Sample

Model Value β
C

A
P

M
A

v
g.

β
−

A
v
g.
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−
−
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g.

β
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A
v
g.

β
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β
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g.
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O
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β
∆
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K

E
W

A
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β
T

A
IL

A
v
g.

IV
O

L
A

v
g.

βBEAR 1 Excess Return Excess Return 0.73 0.75 0.88 0.79 0.82 0.80 0.86 0.84 0.87 0.86
βBEAR 2 0.68 0.59 0.80 0.88 0.70 0.69 0.86 0.86 0.85 0.93
βBEAR 3 0.61 0.60 0.69 0.75 0.63 0.54 0.73 0.54 0.62 0.68
βBEAR 4 0.58 0.58 0.73 0.63 0.66 0.51 0.68 0.56 0.64 0.52
βBEAR 5 0.59 0.64 0.46 0.60 0.65 0.52 0.68 0.64 0.67 0.65
βBEAR 6 0.51 0.63 0.64 0.58 0.53 0.59 0.64 0.77 0.63 0.50
βBEAR 7 0.59 0.62 0.61 0.48 0.54 0.45 0.61 0.53 0.73 0.69
βBEAR 8 0.45 0.48 0.35 0.43 0.18 0.22 0.42 0.24 0.41 0.41
βBEAR 9 0.51 0.52 0.42 0.35 0.17 0.23 0.42 0.18 0.38 0.30
βBEAR 10 0.25 0.26 0.09 −0.06 −0.30 −0.07 0.02 −0.43 0.21 0.30
βBEAR 10− 1 Excess Return Excess Returns −0.47 −0.48 −0.79 −0.85 −1.11 −0.87 −0.83 −1.27 −0.66 −0.56

(−2.42) (−2.43) (−1.86) (−2.17) (−2.29) (−2.07) (−2.46) (−2.06) (−2.17) (−1.84)
CAPM α −0.59 −0.64 −1.09 −1.15 −1.38 −1.11 −1.15 −1.61 −0.93 −0.77

(−3.21) (−3.43) (−2.48) (−2.83) (−2.80) (−2.45) (−3.49) (−2.69) (−2.97) (−2.46)
FF3 α −0.56 −0.61 −0.98 −1.03 −1.21 −0.99 −1.04 −0.99 −0.82 −0.69

(−3.09) (−3.87) (−3.61) (−4.06) (−3.96) (−3.29) (−4.67) (−2.54) (−4.41) (−2.95)
FFC α −0.57 −0.55 −0.89 −0.95 −1.15 −1.00 −0.94 −1.11 −0.70 −0.68

(−2.90) (−3.28) (−2.92) (−3.45) (−3.83) (−3.26) (−4.08) (−2.63) (−3.46) (−2.57)
Q α −0.50 −0.44 −0.55 −0.65 −0.85 −0.62 −0.70 −0.98 −0.48 −0.44

(−2.48) (−2.61) (−2.28) (−2.78) (−3.43) (−2.43) (−3.57) (−2.04) (−2.73) (−1.94)
FF5 α −0.52 −0.46 −0.48 −0.57 −0.72 −0.45 −0.66 −0.62 −0.45 −0.39

(−2.64) (−2.87) (−2.26) (−3.08) (−2.80) (−1.87) (−3.28) (−1.77) (−2.70) (−1.84)
βMKT 0.12 0.15 0.20 0.20 0.26 0.15 0.28 0.09 0.22 0.17

(2.40) (2.92) (2.63) (2.30) (2.90) (1.80) (2.81) (0.54) (2.70) (3.20)
βSMB5 0.23 0.22 0.20 0.26 0.17 0.30 0.26 0.22 0.16 0.12

(3.48) (2.45) (1.32) (1.76) (1.08) (2.36) (1.96) (1.13) (1.18) (1.18)
βHML −0.25 −0.07 −0.10 −0.14 −0.27 −0.21 −0.15 −0.59 −0.04 −0.15

(−2.08) (−0.48) (−0.54) (−0.76) (−1.18) (−1.08) (−0.77) (−2.57) (−0.22) (−0.98)
βRMW −0.12 −0.16 −0.70 −0.57 −0.54 −0.62 −0.44 −0.49 −0.33 −0.43

(−0.89) (−1.13) (−2.47) (−2.05) (−1.81) (−2.16) (−1.74) (−1.46) (−1.57) (−2.04)
βCMA 0.04 −0.34 −0.77 −0.84 −0.80 −0.81 −0.76 −0.79 −0.91 −0.44

(0.25) (−1.64) (−2.71) (−2.49) (−2.60) (−2.63) (−2.40) (−1.71) (−2.77) (−2.00)
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Table 8: Fama and MacBeth Regression Analyses
The table below presents the results of Fama and MacBeth (1973) regressions of month
t + 1 excess stock returns on month t βBEAR and control variables. The table presents
the time-series averages of the monthly cross-sectional regression coefficients. t-statistics,
adjusted following Newey and West (1987) using 12 lags, are presented in parentheses.
Also reported are the average adjusted R-squared (Adj. R2) and the average number of
observations (n). All independent variables are winsorized at the 0.5% and 99.5% level on
a monthly basis. Each column presents results for a different regression specification. The
specification that includes βJUMP and βVOL covers the 184 months t (return months t + 1)
from December 1996 (January 1997) through March 2012 (April 2012). The specification
that includes β∆SKEW covers the 133 months t (return months t + 1) from December 1996
(January 1997) through December 2007 (January 2008). All other specifications cover the
225 months t (return months t + 1) from December 1996 (January 1997) through August
2015 (September 2015). Panels A, B, and C present results for the All Stocks, Liquid, and
Large Cap samples, respectively.

Panel A: All Stocks Sample
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

βBEAR −0.45 −0.35 −0.36 −0.36 −0.43 −0.41 −0.35 −0.40 −0.33 −0.38 −0.29
(−2.40) (−2.36) (−2.52) (−2.46) (−2.70) (−2.93) (−1.75) (−3.06) (−2.69) (−3.62) (−2.84)

βCAPM −0.15 −0.09 −0.15 −0.09 −0.14 −0.24 −0.12 −0.13 −0.05 0.31
(−0.57) (−0.39) (−0.58) (−0.27) (−0.55) (−0.58) (−0.46) (−0.53) (−0.20) (1.28)

β− −0.08 −0.06 −0.09
(−0.46) (−0.58) (−0.93)

β∆VIX −0.02 −0.06 −0.04
(−0.36) (−1.98) (−1.16)

βJUMP 0.50
(0.83)

βVOL 0.32
(1.46)

COSKEW −0.01 −0.01 −0.00
(−1.00) (−0.80) (−0.01)

β∆SKEW −0.00
(−0.28)

βTAIL 0.11 0.19 0.17
(0.77) (1.56) (1.70)

IVOL −0.14 −0.12 −0.08
(−1.93) (−1.76) (−1.75)

SIZE −0.18
(−2.94)

BM 0.08
(0.85)

MOM −0.00
(−0.31)

ILLIQ 0.00
(5.51)

Y 0.31
(2.49)

INV 0.29
(1.35)

Intercept 0.85 0.97 0.99 0.97 0.88 1.03 1.04 0.99 1.25 1.21 1.79
(1.94) (2.35) (2.44) (2.36) (1.81) (2.50) (2.12) (2.44) (3.45) (3.31) (3.13)

Adj. R2 0.60% 2.23% 2.45% 2.36% 2.72% 2.33% 2.70% 2.54% 3.68% 4.25% 6.16%
n 4779 4779 4779 4778 5053 4363 5459 4074 4778 4065 3095
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Table 8: Fama and MacBeth Regression Analyses - continued

Panel B: Liquid Sample
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

βBEAR −0.67 −0.50 −0.49 −0.50 −0.50 −0.53 −0.58 −0.46 −0.46 −0.40 −0.29
(−2.68) (−3.11) (−3.06) (−3.24) (−3.13) (−3.23) (−3.00) (−3.14) (−3.04) (−2.78) (−2.28)

βCAPM 0.07 0.18 0.09 0.20 0.10 0.08 0.05 0.17 0.20 0.08
(0.16) (0.46) (0.22) (0.42) (0.26) (0.13) (0.14) (0.48) (0.57) (0.26)

β− −0.16 −0.11 −0.13
(−0.71) (−0.56) (−0.72)

β∆VIX −0.10 −0.12 −0.05
(−1.38) (−1.85) (−0.81)

βJUMP 0.13
(0.11)

βVOL 0.14
(0.54)

COSKEW −0.00 0.00 0.00
(−0.36) (0.06) (0.60)

β∆SKEW 0.01
(0.66)

βTAIL 0.11 0.10 0.19
(0.90) (0.92) (1.83)

IVOL −0.16 −0.13 −0.05
(−2.11) (−1.71) (−0.81)

SIZE −0.13
(−1.93)

BM 0.01
(0.11)

MOM −0.00
(−0.02)

ILLIQ 0.21
(1.22)

Y 0.34
(2.35)

INV 0.05
(0.28)

Intercept 0.72 0.70 0.75 0.69 0.53 0.72 0.63 0.75 0.86 0.91 1.59
(1.93) (2.05) (2.32) (2.08) (1.38) (2.24) (1.38) (2.33) (2.28) (2.66) (2.32)

Adj. R2 1.37% 4.94% 5.43% 5.30% 6.14% 5.19% 6.05% 5.33% 5.93% 7.19% 10.15%
n 2040 2040 2040 2040 2107 1917 2234 1824 2040 1823 1527
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Table 8: Fama and MacBeth Regression Analyses - continued

Panel C: Large Cap Sample
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

βBEAR −0.80 −0.63 −0.64 −0.61 −0.65 −0.64 −0.87 −0.53 −0.56 −0.48 −0.41
(−2.82) (−3.03) (−3.11) (−3.09) (−3.84) (−2.86) (−3.46) (−2.65) (−2.81) (−2.37) (−2.30)

βCAPM 0.11 0.32 0.13 0.26 0.12 0.27 0.08 0.16 0.25 0.35
(0.25) (0.74) (0.31) (0.53) (0.28) (0.45) (0.19) (0.43) (0.66) (0.95)

β− −0.25 −0.16 −0.33
(−1.13) (−0.69) (−1.26)

β∆VIX −0.07 −0.09 −0.06
(−0.71) (−0.89) (−0.54)

βJUMP −0.34
(−0.20)

βVOL 0.28
(0.89)

COSKEW −0.01 −0.01 −0.01
(−0.94) (−0.95) (−0.60)

β∆SKEW 0.01
(0.76)

βTAIL 0.10 0.10 0.15
(0.61) (0.66) (1.25)

IVOL −0.09 −0.05 −0.07
(−1.15) (−0.77) (−1.35)

SIZE −0.13
(−2.08)

BM 0.02
(0.23)

MOM 0.00
(0.42)

ILLIQ 0.01
(0.12)

Y 0.38
(1.38)

INV 0.05
(0.28)

Intercept 0.68 0.62 0.67 0.61 0.39 0.64 0.39 0.68 0.73 0.73 1.66
(1.91) (1.90) (2.13) (1.85) (1.09) (2.05) (0.86) (2.23) (2.01) (2.23) (2.83)

Adj. R2 2.12% 7.14% 7.84% 7.66% 9.00% 7.38% 8.93% 7.56% 8.01% 9.68% 13.51%
n 1005 1005 1005 1005 1023 963 1073 932 1005 932 767
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Table 9: Fama and MacBeth Regression Analyses - k-Month-Ahead Returns
The table below presents the results of Fama and MacBeth (1973) regression analyses
of the relation between future excess stock returns and βBEAR and control variables.
Each month t we run a cross-sectional regression of month t + k excess stock returns on
βBEAR and combinations of the control variables, for k ∈ 2, 3, 4, 5, 6. The table presents
the time-series averages of the monthly cross-sectional regression coefficients on βBEAR.
t-statistics, adjusted following Newey and West (1987) using 12 lags, testing the null
hypothesis that the average coefficient is equal to zero, are presented in parentheses. Each
column presents results for a different regression specification. The specifications used in
columns (1)-(11) correspond to the specifications used in the corresponding columns of
Table 8. All independent variables are winsorized at the 0.5% and 99.5% level on a monthly
basis. The row labeled Rt+k presents results using the k-month-ahead excess stock return
as the dependent variable. The specification that includes βJUMP and βVOL covers the
184 months t from December 1996 through March 2012. The specification that includes
β∆SKEW covers the 133 months t from December 1996 through December 2007. All other
specifications cover the 225 months t from December 1996 through August 2015. Panels A,
B, and C present results for the All Stocks, Liquid, and Large Cap samples, respectively.

Panel A: All Stocks Sample
Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Rt+2 −0.54 −0.46 −0.48 −0.47 −0.61 −0.57 −0.50 −0.53 −0.40 −0.47 −0.35

(−2.94) (−3.13) (−3.34) (−3.15) (−3.67) (−3.96) (−2.90) (−4.08) (−3.28) (−4.32) (−3.64)

Rt+3 −0.59 −0.52 −0.53 −0.51 −0.68 −0.63 −0.61 −0.61 −0.45 −0.55 −0.39
(−3.23) (−3.75) (−3.92) (−3.76) (−4.27) (−4.71) (−3.88) (−4.84) (−4.04) (−5.14) (−4.57)

Rt+4 −0.62 −0.53 −0.54 −0.53 −0.62 −0.62 −0.57 −0.62 −0.46 −0.54 −0.38
(−3.26) (−3.65) (−3.75) (−3.66) (−3.48) (−4.36) (−3.36) (−4.42) (−3.94) (−4.46) (−3.42)

Rt+5 −0.58 −0.50 −0.52 −0.50 −0.59 −0.58 −0.52 −0.58 −0.44 −0.53 −0.38
(−3.05) (−3.17) (−3.29) (−3.14) (−2.92) (−3.74) (−2.97) (−3.83) (−3.51) (−4.22) (−3.42)

Rt+6 −0.58 −0.51 −0.52 −0.51 −0.61 −0.56 −0.66 −0.56 −0.45 −0.50 −0.36
(−2.79) (−2.95) (−3.15) (−3.00) (−2.71) (−3.54) (−3.16) (−3.48) (−3.29) (−4.08) (−3.47)

Panel B: Liquid Sample
Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Rt+2 −0.75 −0.58 −0.61 −0.58 −0.68 −0.63 −0.68 −0.56 −0.52 −0.54 −0.41

(−2.93) (−3.37) (−3.40) (−3.38) (−3.59) (−3.56) (−3.78) (−3.43) (−3.27) (−3.31) (−2.95)

Rt+3 −0.73 −0.54 −0.57 −0.53 −0.69 −0.58 −0.69 −0.52 −0.45 −0.50 −0.42
(−2.68) (−3.50) (−3.42) (−3.43) (−3.67) (−3.69) (−4.55) (−3.44) (−3.20) (−2.93) (−3.00)

Rt+4 −0.73 −0.54 −0.55 −0.53 −0.62 −0.55 −0.63 −0.50 −0.48 −0.46 −0.28
(−2.65) (−3.15) (−3.04) (−3.17) (−3.15) (−3.22) (−3.65) (−3.01) (−3.08) (−2.64) (−1.82)

Rt+5 −0.64 −0.45 −0.46 −0.45 −0.50 −0.46 −0.54 −0.41 −0.39 −0.38 −0.25
(−2.46) (−2.71) (−2.78) (−2.79) (−2.36) (−2.90) (−3.04) (−2.65) (−2.64) (−2.53) (−1.83)

Rt+6 −0.67 −0.47 −0.48 −0.47 −0.55 −0.45 −0.71 −0.39 −0.43 −0.39 −0.27
(−2.40) (−2.63) (−2.84) (−2.84) (−2.22) (−2.71) (−2.74) (−2.32) (−2.63) (−2.74) (−2.08)

Panel C: Large Cap Sample
Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Rt+2 −0.88 −0.72 −0.72 −0.70 −0.82 −0.74 −0.81 −0.68 −0.63 −0.61 −0.48

(−2.86) (−3.12) (−3.10) (−3.15) (−4.06) (−3.08) (−3.18) (−2.93) (−2.86) (−2.73) (−2.78)

Rt+3 −0.74 −0.59 −0.64 −0.57 −0.73 −0.61 −0.74 −0.59 −0.53 −0.57 −0.47
(−2.51) (−3.51) (−3.49) (−3.40) (−4.59) (−3.50) (−4.23) (−3.34) (−3.21) (−2.96) (−3.12)

Rt+4 −0.65 −0.48 −0.50 −0.46 −0.61 −0.47 −0.64 −0.48 −0.44 −0.43 −0.26
(−2.41) (−3.08) (−2.94) (−3.02) (−3.58) (−2.84) (−3.51) (−2.94) (−2.81) (−2.38) (−1.81)

Rt+5 −0.64 −0.49 −0.52 −0.49 −0.61 −0.47 −0.62 −0.45 −0.46 −0.46 −0.32
(−2.25) (−2.84) (−2.76) (−2.96) (−3.17) (−2.88) (−3.25) (−2.67) (−2.77) (−2.57) (−2.24)

Rt+6 −0.73 −0.56 −0.55 −0.53 −0.73 −0.48 −0.72 −0.49 −0.50 −0.45 −0.42
(−2.20) (−2.73) (−2.60) (−2.98) (−2.68) (−2.44) (−2.68) (−2.29) (−2.58) (−2.42) (−2.52)
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