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1 Introduction

A large decline in pension plans’ funding ratio motivated the creation of mandatory contribution

rules and public insurance on defined benefit pension plans. For example, in the U.S. Employee

Retirement Income Security Act (ERISA) in 1974 created the minimum funding contribution

(MFC) and Pension Benefit Guaranty Corporation (PBGC).1 Despite of these government’s

interventions to save underfunded pension plans, unfortunately large number of defined benefit

pension plans are still underfunded.2 Thus, we believe that it is important to understand how

underfunded pension plans can end up with funded status through the optimal asset allocation

and contribution policy in the first place.

To this end, we revisit the question of a defined-benefit pension sponsor’s optimal asset al-

location in the presence of a downside constraint. It is well-known (Grossman and Vila (1989))

that when markets are complete a put-based strategy is optimal by combining the unconstrained

optimal portfolio and a put option on that unconstrained portfolio to hedge the downside. This

analysis ignores, however, the possibility for the pension sponsor to contribute money to the

pension plan over time. We analyze the joint problem of optimal investing and contribution de-

cisions, when there is disutility associated with contributions.3 Interestingly, we find that with

the possibility of costly contributions to the pension plan in bad states to satisfy the downside

constraint, the optimal portfolio decision often looks like a “risky gambling” strategy where the

pension sponsor increases the pension plan’s allocation to risky assets in bad states. This is

very different from the traditional prediction, where in economy downturns the pension sponsor

should fully switch to the risk-free portfolio that replicates the downside constraint.

Bad states of the economy affect the optimal portfolio weight in two different directions.

First, the pension sponsor starts to contribute contemporaneously and keeps doing so as long

as the economy is in bad states. Thus, the pension sponsor can invest more aggressively by

increasing the equity weight as if the pension plan’s asset is increased by the present value of

1 MFC requirements specify that sponsors of underfunded pension plans must contribute an amount equal to any

unfunded liabilities. PBGC has insurance obligations to pay defined benefits to employees when pension sponsors

fail to fulfill due to firms’ bankruptcy.
2 In 2013 the largest 100 corporate defined benefits pension plans in the U.S. reported 1.78 trillion USD of

liabilities guaranteed with only 1.48 trillion USD of asset, which represents underfunding of more than 15%. See

Milliman 2014 Corporate Pension Funding Study, www.milliman.com.
3 Rauh (2006) finds that mandatory contributions leads to a reduction in corporate investment. Thus, the disu-

tility from contributions is a reduced form of costs of foregone investment opportunities due to a use of internal

cash for contributions.
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contemporaneous and future contributions. In other words, increased risky allocations will be

hedged by contemporaneous and future contributions. Second, the pension sponsor decreases

the equity weight to hedge the downside risk. If the former effect dominates the latter one,

then a risky gambling behavior can be observed. However, note that this risk taking incentive is

induced not by a moral hazard problem, but by a commitment to contributions.

We propose a separation approach to solve the optimal contribution and portfolio policy. The

pension sponsor’s problem is cast in two separate shadow price problems. The first problem

solves for the shadow price of maximizing the utility over the terminal pension plan’s asset.

The second problem solves for the shadow price of minimizing the intermediate disutility from

contributions. We interpret the shadow price of the utility maximization problem as the marginal

benefit of increasing contributions. Similarly, the shadow price of the disutility minimization

problem is the marginal cost of doing so. We show that the shadow prices for two problems

are identical such that the marginal benefit and cost of increasing contributions are equal at the

optimal solution.

Our approach allows us to characterize the optimal contribution, portfolio policy, and the

value of put option in a simple way. Especially, the optimal contribution and the value of put

option shed light on the level of minimum mandatory contributions and the premium that PBGC

should charge to the pension sponsor. Also, by comparing with a case without a downside

constraint, we can predict morally hazardous reactions of the pension sponsor in the presence

of government insurance.

The investment behavior of pension plans has been studied by Sharpe (1976), Sundaresan

and Zapatero (1997), Boulier, Trussant, and Florens (1995), and Van Binsbergen and Brandt

(2007). Sharpe (1976) first recognized the value of implicit put option in pension plan’s asset

to insure shortfall at the maturity. Sundaresan and Zapatero (1997) consider the interaction of

pension sponsors and their employees. Given the marginal productivity of workers, the retire-

ment date is endogenously determined. Then, pension sponsors solve the investment problem

of maximizing the utility over excess assets in liabilities. Our focus is to derive the optimal con-

tribution and portfolio policy, we model the exogenous and deterministic benefits of the pension

plan.4

Our paper is closely related to Boulier, Trussant, and Florens (1995). In their problem,

the investment manager chooses his portfolio weights and contribution rates to minimize the

4 As long as the market is complete, our model can be extended to incorporate a stochastic feature of liabilities,

and the solution technique goes through.
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quadratic disutility from contributions with the downside constraint. However, from the per-

spective of the pension sponsor the surplus at the end of the pension plan also matters since

it is usually refunded to the pension sponsor and can be used to fund profitable projects. We

model this motive as the utility over the terminal pension plan’s asset. Van Binsbergen and

Brandt (2007) solve for the optimal asset allocation of the pension sponsor under regulatory

constraints. They assume time-varying investment opportunity sets, and explore the impact of

regulatory constraints on asset allocations. However, a contribution is not a control variable and

a downside constraint is not explicitly specified. Instead, we assume an absence of any gov-

ernment regulations and derive the optimal contribution and portfolio policy. By doing this, we

can have policy implications on how minimum contribution rules and premium paid to PBGC

should be decided.

Our methodology is based on Karatzas, Lehoczky, and Shreve (1987) and El Karoui, Jean-

blanc, and Lacoste (2005). Karatzas, Lehoczky, and Shreve (1987) solve a consumption and

portfolio choice problem. They find that the initial wealth can be allocated in two problems,

maximizing the utility over intermediate consumption and maximizing the utility over the ter-

minal wealth. The optimal allocation leads to the optimal solution to the original problem. In

our model, a contribution is a counterpart of consumption, but it generates the disutility and the

pension sponsor’s objective is to minimize this disutility. Thus, the problem can be cast in a

problem to decide how much to contribute to satisfy the downside constraint while minimiz-

ing the disutility. El Karoui, Jeanblanc, and Lacoste (2005) find a put option based solution to

maximize the utility over the terminal wealth with the downside constraint. However, their so-

lution can be applied to only initially overfunded pension plans. We allow initially underfunded

pension plans to contribute in order to guarantee the terminal benefits.

There are at least three important aspects that we do not address explicitly. First, we do not

incorporate time-varying investment opportunities. The expected returns of bonds and equities

are predicted by macro variables, such as short rates, yield slopes, and dividend yields. This

induces non-trivial hedging demands and liability risks, which drive a wedge between myopic

and dynamic investment. Second, we do not consider the taxation issues. Drawing contribu-

tions from firm’s internal resources is costly for sure, however there is also a benefit from tax

deductions. Third, our model do not include inflation. Depending on whether the pension spon-

sor’s preference is in real or nominal term, the allocation to real assets such as TIPS should be

considered.

The paper is organized as follows. Section 2 describes the pension plan’s benefits and asset
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return dynamics. Section 3 considers a constrained case in which there is the downside con-

straint, and the separation method for the optimal investment and contribution policy. Section 4

presents the pension sponsor’s problem without the downside constraint as a benchmark case.

Section 5 presents our results and Section 6 concludes.

2 Model

2.1 Liability

A defined benefit pension plan pays pre-defined benefits to employees on their retirement date.

Usually, the benefits depend on the last 5-year average of salary and the number of years of

employment. Let Lt be an index of the pension benefits, i.e. if employees retire right now, they

receive Lt. It follows:

dLt = gLtdt.

The pension benefits grow with the rate of g. This reflects an increase in years of employment

and growth of salary. The terminal date T is exogenously given. This can be thought as the

average duration of employment. We define the downside constraint as

K = LT = L0e
gT .

The pension sponsor should optimally manage the pension plan’s asset and contribute to the

pension plan’s asset such that the terminal value of the pension plan’s asset is greater than the

amount of the benefits promised to retiring employees.

2.2 Investment Sets

The pension sponsor has two available assets, a risky stock and a risk-free money market ac-

count. Let r be the risk-free rate. We assume that r is constant. The stock price follows

dSt = µStdt+ σStdZt,

where µ is the expected return of the stock, σ is the volatility parameter, and Z is a standard

Brownian motion. Hence, in our model there is only one shock and one risky asset, and the

market is complete. This implies that there exists a unique pricing kernel or stochastic discount

factor. We have following dynamics of the pricing kernel:

dMt

Mt

= −rdt− ηdZt,
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where η = µ−r
σ

is the market price of risk. Without loss of generality, we assume that the initial

value of the pricing kernel is normalized to one, M0 = 1. Now, the pension plan’s asset value

follows

dWt = [(r + πt(µ− r))Wt + Yt] dt+ πtσWtdZt,

where π is a fraction of the asset invested in the risky stock, and Yt is the pension sponsor’s

contribution to the pension plan’s asset.

2.3 Pension Sponsor’s Problem

The pension sponsor’s problem is

max
π,Y

E
[
e−βTu(WT )−

∫ T

0

e−βtφ (Yt) dt

]
(1)

s.t. WT ≥ K,

where u(x) = x1−γ

1−γ and φ(x) = k x
θ

θ
. The first term in equation (1) is a standard power utility

with a relative risk aversion of γ over the final pension plan’s asset. The utility over the final

pension plan’s asset can be justified since at the maturity the pension sponsor receives any

pension plan’s surplus, which is valuable when internal financing is scarce or external financing

is too costly.5

The second term in equation (1) represents the pension sponsor’s disutility from contributing

to the pension plan. The pension sponsor has limited internal resources for profitable projects

which might be foregone if the pension sponsor uses the internal cash to contribute to the pen-

sion plan. We capture the cost of foregone projects due to contributions as the separable disu-

tility function. A parameter θ will capture a desire to smooth contributions over time. To have

convex disutility, we assume that θ > 1. A parameter k captures the importance of the disu-

tility from contributing relative to the utility over the final pension plan’s asset. For example,

if the pension sponsor is financially healthy (sufficiently high internal resources), the impact of

contributing to the pension plan is relatively small and thus the disutility function have low k.

Finally, β is the subjective discount rate of the pension sponsor.

The disutility from contributions is a counterpart of adjustment costs in the investment lit-

erature.6 The key difference is that the disutility shows up as a separable objective while ad-

5 Petersen (1992) uses plan-level data to find evidence in support of the financing motives.
6 An investment can increase firm’s capital, but also incur adjustment costs. See Caballero (1999) for summaries

on this literature.
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justment costs decrease firm’s liquidity. This motivates us to decompose the pension sponsor’s

problem into two separate ones:

• Utility Maximization Problem

The pension sponsor cannot contribute over time. The pension sponsor manages the initial

endowment W u
0 to maximize the expected utility over the final pension plan’s asset given

the downside constraint:

max
πu

E
[
eβTu (W u

T )
]

(2)

s.t W u
0 ≥ EQ [e−rTW u

T

]
W u
T ≥ K,

where πu is a fraction of W u invested in the risky stock, EQ[·] is an expectation under the

risk-neutral measure Q.

• Disutility Minimization Problem

The pension sponsor minimizes the expected disutility from contributions while satisfying

that the present value of contributions is at least X0:

min
Y

E
[∫ T

0

e−βtφ (Yt) dt

]
(3)

s.t X0 ≤ EQ
[∫ T

0

e−rtYtdt

]
.

• Budget Constraint

The sum of the pension plan’s original initial asset value and the lower bound for the

present value of contributions should be equal to the initial endowment W u
0 for the utility

maximization problem:

W0 +X0 = W u
0 . (4)

Whenever K > 0, we consider the problem as a constrained case. When K = 0, there is no

downside constraint and it serves as a benchmark case. We will show that solving two problems

separately and satisfying the budget constraint (4) will lead us to the solution to the original

problem (1).
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3 Constrained Case

3.1 Utility Maximization Problem

First, we solve the utility maximization problem. The budget constraint (4) implies that the

initial endowment for the first problem W u
0 is greater than the original endowment, W0, and

that the difference W u
0 −W0 is the present value of the contribution stream. That is, the pension

sponsor expects the contribution stream in the future and thus, at time zero the pension sponsor

can behave as if the pension sponsor borrows the present value of the contribution stream.

The optimal amount of borrowing will be determined later by taking into account both the

utility over the final asset and the disutility from the contribution. If the initial endowment

for the first problem is less than the present value of the downside constraint, W u
0 ≤ Ke−rT ,

there is no solution that guarantees the benefits for sure at the maturity. This implies that the

present value of the contribution X0 = W u
0 − W0 should be greater than the (if any) deficit

max(Ke−rT − W0, 0). For example, if the pension plan is initially underfunded, the present

value of the contribution should be greater than the initial shortfall, Ke−rT −W0. The dynamic

budget constraint for the first problem is

dW u
t = (r + πut (µ− r))W u

t dt+ πutW
u
t σdZt. (5)

Note that there’s no contribution process since it’s already reflected in the increased initial

endowment W u
0 .

Put-based Strategy

It is well-known (Grossman and Vila (1989)) that when the market is complete the optimal

strategy of the first problem consists in investing a fraction of asset in the unconstrained optimal

portfolio and using the remaining fraction of asset to purchase a put option on that unconstrained

portfolio to hedge the downside. We call this strategy a pub-based strategy. To decide the

optimal fraction in the unconstrained optimal portfolio, we define the following functions for

any 0 < y <∞:

Wu(y) = EQ [e−rT Iu (yξT )]︸ ︷︷ ︸
Unconstraind optimal portfolio

+EQ [e−rT (K − Iu (yξT ))+]︸ ︷︷ ︸
Put option

,

where Iu (·) is the inverse function of marginal utility u′ (·), ξt =Mte
βt is (subjective) marginal

rate of substitution, and (x)+ = max(x, 0) is max operator. This function calculates the cost
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of constructing the put-based strategy when the terminal asset value is random variable Iu(yξT )

and the put option’s strike price is K. The terminal asset value is chosen such that the marginal

utility is proportional to the marginal rate of substitution of the economy at the terminal date. It

will be shown that the parameter y is a shadow price, i.e. a marginal increase in the utility when

the initial endowment W u
0 for the first problem is marginally increased or the present value of

the contribution stream is marginally increased. Proposition 1 explicitly computes this function.

Proposition 1. The functionWu(y) is given by

Wu(y) = y−
1
γ e−αuTN (δ1(y, T )) +Ke−rTN (−δ2(y, T )) , (6)

where αu = β
γ
+
(
1− 1

γ

)(
r + η2

2γ

)
. δ1 and δ2 can be found in Appendix ??. Also, the first

derivative ofWu(y) is given by

W ′u(y) = −
1

γ
y−

1
γ
−1e−αuTN (δ1(y, T )) < 0. (7)

Since the market is complete and the put-based strategy consists in the underlying asset and

the put option, the expression for Wu(y) looks like Black and Scholes (1973) option pricing

formula. The first part is the present value of the terminal unconstrained optimal portfolio

value multiplied by the probability that the downside constraint is met at the maturity under the

forward measure. Note that the final unconstrained optimal portfolio value is discounted with

a rate of αu which is a weighted average of the pension sponsor’s subjective discount rate and

subjective risk-adjusted expected return. Suppose that the pension sponsor is extremely risk

averse. Then, the pension sponsor will allocate all pension plan’s asset in the risk-free asset,

and thus the terminal unconstrained optimal portfolio value can be discounted with the risk-free

rate: limγ→∞ αu = r. The second part is the present value of the benefits multiplied by the

probability that the put option is in-the-money under the risk-neutral measure.

Since we have the concave utility function, a higher shadow price implies a lower cost of

constructing the put-based strategy. Thus, we can see thatWu(y) is decreasing in the shadow

price y, which implies thatWu(y) is invertible. Let Yu denote the inverse of this function. For a

fixed initial endowment for the first problem,W u
0 ≥ Ke−rT , we introduce the following random

variable

W u
T = Iu (Yu (W u

0 ) ξT ) + (K − Iu (Yu (W u
0 ) ξT ))

+ .

The following Theorem 2 states that the constructed terminal asset value is optimal for the

problem (2).
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Theorem 2. For any W u
0 ≥ Ke−rT , W u

T is optimal for the problem (2), and the optimal portfo-

lio weight is given by

πut =
η

γσ
(1− ϕt) , (8)

where ϕt = Ke−rτ

Wu
t
N (−δ2 (yt, τ)) < 1, τ = T − t, and yt = Yu(W u

0 )ξt.

Since the put-based strategy is constructed by combining the underlying unconstrained op-

timal portfolio and its put option, the downside constraint is always satisfied not only at the

terminal date, but also along the horizon. Now, the question is how much the pension spon-

sor should hold the underlying unconstrained optimal portfolio to achieve the maximum utility.

Theorem 2 states that the optimal shadow price should be Yu(W u
0 ) such that the cost of con-

structing the put-based strategy is exactly same as the initial endowment for the first problem,

W u
0 . Then, the optimal portfolio weight is a weighted average of the mean-variance efficient

portfolio and zero investment in the equity. The weight on the mean-variance efficient portfolio

is 1 − ϕt. The parameter ϕt measures how far away the current asset value is from the present

value of the benefits. The closer the asset is to the present value of the benefits, the less fraction

of the asset is invested in the equity.

Now, we compute the value function of the first problem and relate its first derivative to the

shadow price. Let J (W u
0 ) be the value function of the first problem and define the following

function G(y) for 0 < y <∞:

G(y) = E
[
e−βTu

(
Iu (yξT ) + (K − Iu (yξT ))+

)]
. (9)

This function computes the expected utility when the put-based strategy is used with the shadow

price of y. At the optimal solution, we choose the shadow price satisfying the budget constraint

with equality, y = Yu(W u
0 ), so that we can obtain the value function J(W u

0 ) by substituting y

in G(y) with Yu(W u
0 ). Proposition 3 states that the first derivative of the value function, i.e. the

shadow price is indeed Yu(W u
0 ).

Proposition 3. The function G(y) is given by

G(y) =
y1−

1
γ

1− γ
e−αuTN (δ1(y, T )) + e−βT

K1−γ

1− γ
N (−δ3(y, T )) , (10)

where δ3 can be found in Appendix ??. Also, G(y) satisfies

J (W u
0 ) = G (Yu (W u

0 )) (11)

J
′
(W u

0 ) = Yu (W u
0 ) .
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3.2 Disutility Minimization Problem

The second problem is to decide how to contribute along the horizon to minimize the expected

disutility while satisfying the minimum present value of the contribution. Alternatively, the

problem can also be stated that the pension sponsor has the initial endowment X0 in its internal

cash account to fund the future contribution stream and decides how to manage this internal

resource. The assumption is that the pension sponsor considers only self-financing strategies.

Let Xt be the time t value of this account. Then, the dynamic budget constraint of the second

problem is

dXt =
[(
r + πφt (µ− r)

)
Xt − Yt

]
dt+ πφt σXtdZt, (12)

where πφt is a fraction of this account invested in the equity and the rest of it is invested in the

risk-free asset. The contribution to the pension plan decreases the account balance.

Now, the problem becomes a standard portfolio choice problem with intermediate outflow

(contribution) and no bequest objective. However, there are two important differences. First,

contribution does not increase the pension sponsor’s utility, but increase the disutility. Second,

the static budget constraint states that the present value of the contribution should be greater

than the initial endowment. At the optimal solution, the static budget constraint is binding and

thus the terminal value of the internal cash account is zero, XT = 0.

We define the following function for any 0 < y <∞:

Wφ(y) = EQ
[∫ T

0

e−rtIφ (yξt) dt

]
,

where Iφ(·) be the inverse function of φ′(·). The functionWφ(y) computes the present value of

the contribution stream from time zero to the terminal date when an intermediate contribution is

set to be Iφ(yξt), i.e. the marginal disutility is proportional to the marginal rate of substitution

of the economy at each time. As the first problem, it will be shown that the parameter y is a

shadow price, i.e. a marginal increase in the disutility when the minimum present value of the

contribution X0 is marginally increased. Proposition 4 explicitly computes this function.

Proposition 4. The functionWφ(y) is given by

Wφ(y) =
(y
k

) 1
θ−1 1− e−αφT

αφ
, (13)

where αφ = θ
θ−1

(
r − η2

2(θ−1)

)
− β

θ−1 . Also, the first derivative ofWφ(y) is given by

W ′φ(y) =
1

y(θ − 1)
Wφ(y) > 0. (14)
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The present value of the contribution stream has a form of annuity with a rate of return αφ,

which is a weighted average of the pension sponsor’s subjective discount rate and the subjective

risk adjusted expected return. An incentive to smooth contributions over time (high θ) implies

that the contribution stream can be discounted with a rate r: limθ→∞ αφ = r. Since we have the

convex disutility function, the present value of the contribution would be higher if a marginal

disutility (shadow price) is higher. Thus, we can see that Wφ(y) is increasing, which implies

thatWφ(y) is invertible. Let us denote Yφ be the inverse of the functionWφ. For the minimum

contribution requirement X0 > 0, we introduce the contribution process

Yt = Iφ (Yφ (X0) ξt) .

Theorem 5 states that the above contribution policy is optimal for the problem (3).

Theorem 5. For any X0 > 0, Yt constructed above is optimal for the problem (3), and the

optimal hedging policy is

πφ = − η

(θ − 1)σ
.

By setting the marginal disutility of the contribution to be proportional to the marginal rate

of substitution of the economy at each time, the minimum disutility can be achieved. The

shadow price is determined such that the present value of the contribution stream is identical

with the minimum contribution requirement X0. The optimal hedging policy is to short the

equity, since the contribution is increasing in the marginal rate of substitution or decreasing in

the stock return. Whenever the stock price decreases, the pension sponsor should increase the

contribution which can be funded with profits from short positions in the equity. If the pension

sponsor has a strong desire to smooth the contribution (higher θ), the pension sponsor would

decrease short positions in the equity since the contribution stream is stable.

Finally, we compute the value function of the second problem. Let L (X0) be the value

function of the second problem and define the following function C(y) for 0 < y <∞:

C(y) = E
[∫ T

0

e−βtφ (Iφ (yξt)) dt

]
. (15)

This function computes the expected disutility when the contribution is set to be Iφ(yξt) as

a function of y. At the optimal solution, we choose y = Yφ(X0) so that we can obtain the

value function L(X0) by substituting y in C(y) with Yφ(X0). Proposition 6 states that the first

derivative of L(X0) (shadow price) is indeed Yφ(X0).
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Proposition 6. The function C(y) is given by

C(y) =
k

θ

(y
k

) θ
θ−1 1− e−αφT

αφ
,

and satisfies

L (X0) = C (Yφ (X0)) (16)

L
′
(X0) = Yφ (X0) .

3.3 Optimality of Separation

So far, we derive the solutions for the utility maximization problem and the disutility minimiza-

tion problem while taking the present value of the contribution as given. We now show that the

optimal choice of the present value of the contribution X0 leads that separately solved solutions

are indeed the solution for the original problem. The pension sponsor behaves as if taking a

leverage at time zero, W u
0 = W0 +X0. With W u

0 , the pension sponsor solves the utility maxi-

mization problem with the downside constraint. Then, the pension sponsor solves the disutility

minimization problem to pay back the borrowing X0 through the contributions. The next theo-

rem shows that how the initial borrowing amount X0 is decided to achieve the optimality of the

original problem.

Theorem 7. Consider an arbitrary portfolio and contribution policy pair (π̃, Ỹ ) satisfying the

downside constraint. Then, there exists a pair (π, Y ) dominating (π̃, Ỹ ). In particular, the value

function of the original problem V (W0) is

V (W0) = max
X0

J (W0 +X0)− L (X0) = max
Wu(yu)−Wφ(yφ)=W0

G (yu)− C (yφ) . (17)

For an arbitrary portfolio and contribution policy pair, we can take the present value of that

contribution stream, X0 = EQ
[∫ T

0
e−rtỸtdt

]
. Then, for X0, π̃ is a feasible strategy to the utility

maximization problem (2), and Ỹ is a feasible strategy to the disutility minimization problem

(3). We can find the optimal solutions to each problem and they will (weakly) dominate (π̃, Ỹ ).

Thus, finding the optimal solution to the original problem (1) can be translated into the problem

to find the optimal present value of the contribution X0 to maximize the difference between two

value functions of (2) and (3), J(W0 +X0)− L(X0).

Suppose that (17) has an interior solution. This implies that the FOC with respect to X0

equals zero:

J ′ (W0 +X0) = L′ (X0) .
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This condition states that at the optimal solution, the marginal increase in the value function

of the utility maximization problem should be identical with the marginal increase in the value

function of the disutility minimization problem. Thus, we can interpret LHS as the marginal

benefit of increasing the present value of the contribution, and RHS as the marginal cost of

increasing the present value of the contribution. Recall that the shadow prices of both problems

are satisfying the static budget constraints with equality. Hence, we have y = Yu(W0 +X0) =

Yφ(X0), which is determined by the budget constraint:

Wu (y)−Wφ (y) = W0. (18)

Define the following function for 0 < y <∞:

W(y) =Wu (y)−Wφ (y) .

This function computes the initial pension fund’s asset required to have the shadow price of y

for both problems. Proposition 8 shows that there exists a unique y solvingW(y) = W0, and

thus we obtain the optimal solution to the original problem.

Proposition 8. The functionW(y) is decreasing in y and limy→0W(y) =∞ and limy→∞W(y) =

−∞. Hence, there exists a unique y satisfyingW(y) = W0.

Suppose that we find y solving (18). Then, the time t pension plan’s asset can be expressed

as Wt = W u
t − Xt. This implies that the present value of the terminal pension plan’s asset

(WT = W u
T since XT = 0) is the sum of the current pension plan’s asset and the pension

sponsor’s the internal fund for hedging the contributions. Proposition 9 describes the optimal

portfolio weight and contribution policy to the original problem.

Proposition 9. The optimal portfolio weight is given by

πt = πut ρt + πφ (1− ρt) ,

and the optimal contribution rate is given by

Yt
Wt

= (ρt − 1)
αφ

1− e−αφ(T−t)
,

where ρt =
Wu
t

Wt
= 1 + Xt

Wt
.

The optimal portfolio weight is a weighted average of two weights, πut and πφ. The weight is

the ratio of the present value of the terminal pension plan’s asset over the current pension plan’s

13



asset. We call ρt the pension plan’s leverage ratio. Note that because a possibility of future

contributions, this ratio is generally not equal to one. When the state of the economy is good

and the expected contribution is small, then the weight ρ is close to one. Also, πut becomes the

mean-variance efficient portfolio ( η
γσ

) since it is more likely that the downside constraint is not

binding. Thus, the optimal portfolio weight, πt is close to the mean-variance efficient portfolio.

As the economy gets worse (the equity price drops), the pension plan’s asset gets close to

the downside constraint. There are two effects of bad states of the economy in the optimal

portfolio weight. First, the pension sponsor will hold large internal resources Xt to hedge

large contemporaneous and future contributions, which indicates an increase in ρt. Thus, the

pension sponsor will increases the equity weight, which is hedged by contemporaneous and

future contributions. Second, the optimal equity weight for the utility maximization problem

πut will decrease, since the present value of the terminal pension plan’s asset, W u
t approaches

to the present value of the benefits. If the latter effect dominates the former one, then a risk

management behavior can be observed, i.e. a decrease in the equity weight as the economy gets

worse. On the other hand, if the former effect dominates, we can see a risk taking behavior.

However, note that this risk taking incentive is induced not by a moral hazard problem, but by

a commitment to contributions in the future.

The optimal contribution policy as a fraction of the current pension plan’s asset also de-

pends on the pension plan’s leverage ratio ρt and time-to-maturity T − t. The pension sponsor

contributes more when the pension plan’s asset return is low so that the leverage ratio is high.

For the same pension plan’s leverage ratio ρt, the ratio of the contribution to the pension plan’s

asset is higher when time-to-maturity is short. Since the pension plan’s objective is to minimize

the expected disutility, the pension plan would defer a contribution as much as it can.

4 Benchmark Case

Now, we consider the benchmark case. There’s no downside constraint and the pension sponsor

contributes purely for maximizing the terminal pension plan’s asset while taking into account

the disutility from contributions. The pension sponsor’s problem becomes

max
π,Y

E
[
e−βTu(WT )−

∫ T

0

e−βtφ (Yt) dt

]
.

14



Everything we derive for the constrained case goes through, except for the first problem. Now,

letWBC
u (y) be the counterpart ofWu(y) in the constrained case:

WBC
u (y) = EQ [e−rT Iu (yξT )] .

Note that the pension plan holds just the unconstrained optimal portfolio since there’s no down-

side constraint. Similarly, we can consider YBCu (W u
0 ), J

BC(W u
0 ), and GBC(y) as the bench-

mark version of Yu(W u
0 ), J(W

u
0 ), and G(y). Proposition 10 summarizes the results for the first

problem in the benchmark case.

Proposition 10. The functionWBC
u (y) is given by

WBC
u (y) = y−

1
γ e−αuT . (19)

Also, the first derivative is given by

WBC
u (y)′ = −1

γ
y−

1
γ
−1e−αuT < 0. (20)

For a given y, we haveWBC
u (y) < Wu(y). For any W u

0 , W u
T = Iu

(
YBCu (W u

0 ) ξT
)

is optimal

for the utility maximization problem, and the optimal portfolio weight is given by πuBC = η
γσ

.

The function GBC(y) is given by

GBC(y) =
y1−

1
γ

1− γ
e−αuT ,

and satisfies

JBC (W u
0 ) = GBC

(
YBCu (W u

0 )
)

(21)

JBC (W u
0 )
′ = YBCu (W u

0 ) .

Without the downside constraint, the present value of the terminal pension plan’s asset is

smaller than the constrained case. To achieve the same level of marginal utility, the benchmark

case requires smaller initial asset since the put option doesn’t have to be purchased. As we

expect, the optimal portfolio weight is the mean-variance efficient portfolio. Now, Theorem

7, Proposition 8 and 9 can be stated for the benchmark case by substituting corresponding

counterparts with JBC(W u
0 ), G

BC(y),WBC
u (y), YBCu (W u

0 ), and πuBC .
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Table 1: Summary of key variables and parameters

Variable Symbol Parameters Symbol Value
Terminal benefits K Pension plan’s investment horizon T 10-year
Pension’s asset W Price of Risk η 0.4
Present value of the terminal asset Wu Risk-free rate r 2%
Pension sponsor’s internal resources X Pension sponsor’s subjective β 1%

for hedging contribution discount rate
Shadow price y Pension sponsor’s risk aversion γ 5
Pension sponsor’s marginal ξ Pension sponsor’s elasticity of θ 2

rate of substitution disutility
Portfolio weight of equity π Relative importance of disutility k 100
Contribution flow Y Initial funding ratio λ0 80%

(underfunded)
Initial funding ratio λ0 120%

(overfunded)

This table summarizes the symbols for the key variables used in the model and the parameter values in the
baseline case.

5 Quantitative Analysis

We now turn to quantitative analysis of the model. For a baseline case, we use 10-year for the

pension plan’s maturity T . According to Bureau of Labor Statistics, as of 2014 the median

years of tenure with current employer for workers with age over 65 years is 10.3-year. Also,

we use η = 0.4 for the market price of risk, σ = 20% for the volatility of the equity, r = 2%

for the risk-free rate, and β = 1% for the pension sponsor’s subjective discount rate. These

numbers are standard assumptions in the literature. The expected excess return of the equity

is µ − r = ση = 8%. We use γ = 5, which implies the equity weight of the mean-variance

efficient portfolio is η
γσ

= 40%. For the disutility function, we use k = 100 and θ = 2. The

quadratic disutility function is common in the investment literature, in which a firm is assumed

to be risk-neutral and faces quadratic costs of investment adjustment.7 Finally, we use two

values for the initial funding ratio, λ0 = W0

Ke−rT
= 80% or 120%. We will vary preference

parameters, (γ, k, θ), and the price of risk to see the impacts on the optimal present value of the

contribution, portfolio and contribution policy. Table 1 summarizes all the key variables and

parameters in the model.

7 See Gould (1968); more recently Bolton, Chen, and Wang (2011); among others.
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5.1 Present Value of Contribution

Figure 1 plots the determination of X0 by equating the shadow prices of the first and second

problem: Yu(W0+X0) = Yφ(X0). The initial pension plan’s asset is normalized to one W0 = 1

and thus the present value of the contribution can be interpreted as a fraction of the initial pen-

sion plan’s asset. Panel A is a case when the pension plan is initially underfunded, λ0 = 80%,

and Panel B is a case when overfunded, λ0 = 120%. We also plot the benchmark case. Since

we assume the quadratic disutility function, the shadow price of the disutility minimization

problem is linear in the present value of the contribution. The shadow price of the utility maxi-

mization problem is decreasing in the present value of the contribution, since the utility function

is concave. Also, the shadow price of the first problem for the constrained case is always above

that of the benchmark case since for the same shadow price, the pub-based strategy costs more.

We can see that the optimal present value of the contribution isX0 = 3.68% and the shadow

price is y = 0.18 for the benchmark case. This indicates that along the horizon the pension

sponsor contributes 3.68% even though there is no downside constraint. This is because the

marginal benefit of contributing is greater than the marginal cost of doing so when X0 < 3.68%

as we can see in Figure 1.

For the underfunded pension plan, the marginal benefit curve Yu(W0 + X0) has the left

asymptote line at X0 = Ke−rT −W0 = 25%, at which the solution for the utility maximiza-

tion problem is zero investment in the equity. The optimal present value of the contribution

is X0 = 25.10% and the shadow price is y = 1.22. Compared to the benchmark case, the

pension sponsor contributes more to make the pension plan overfunded at the maturity. For the

overfunded pension plan, the present value of the contribution is X0 = 4.15% and the shadow

price is y = 0.20. This implies that relative to the benchmark case the additional contributions

of 0.47% are required to guarantee the benefits for the initially overfunded pension plan.

Figure 2 plots the the cost of constructing the put-based strategy for the utility maximization

problem with the downside constraint. Again, Panel A is a case when the pension plan is initially

underfunded, and Panel B is a case when overfunded. We put a fraction of the initial endowment

W u
0 = W0 +X0 invested in the unconstrained optimal portfolio or the mean-variance efficient

portfolio on x-axis. The dashed line is a 45-degree line, i.e. the cost of the unconstrained

optimal portfolio in the put-based strategy and the solid line represents the total cost of the put-

based strategy. Thus, the difference between two lines represents the cost of purchasing the put

option.

We can see that for the initially underfunded pension plan, without contributions there’s no
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Figure 1: Determination of Present Value of Contribution
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This figure plots shadow prices of first and second problem as a function of present value of contribution.

Panel A is for an initially underfunded pension with 80% funding ratio, and Panel B is for an initially over-

funded pension with 120% funding ratio.
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feasible put-based strategy. That is, the cost of the put-based strategy is greater than W u
0 =

W0 = 100% when X0 = 0. However, with the optimal present value of the contribution X0 =

25.10%, the initial endowment of the first problem is increased to W u
0 = W0 +X0 = 125.10%

and thus there is the optimal put-based strategy which costs exactly W u
0 = 125.10%. At the

optimal put-based strategy, the effective allocation to the mean-variance efficient portfolio is

70.60%, and the rest 54.50% is used to replicate the put option on 70.70% of the mean-variance

efficient portfolio.

On the other hand, for the initially overfunded pension plan, even with zero contribution

there’s a feasible put-based strategy, which costs exactly W u
0 = W0 = 100% and consists in

the mean-variance efficient portfolio of 95.92% and the put option of 4.08% on that portfolio.

However, with contribution, the pension sponsor can be better off by allocating 101.21% to the

mean-variance efficient portfolio and 2.94% to the put option on that portfolio. The total cost

of this put-based strategy is W u
0 = 104.15% and the shortfall X0 = W u

0 −W0 = 4.15% will be

funded through contributions.

5.2 Portfolio Weight and Contribution Policy

Figure 3 plots the equity weight at time t = 5-year as a function of an annualized equity return

over the last five years. We fix the initial pension plan’s asset and vary the terminal benefits, K.

We set K = 153% for Panel A, and K = 102% for Panel B such that the initial funding ratios

are 80% and 120%, respectively. First, we can see that the equity weight of the benchmark

case is decreasing in the past equity return. The low equity return over time zero to 5-year

indicates that the state of economy is bad, i.e. the marginal rate of substitution is high. As

we will see in Figure 4, the optimal contribution rule is to increase contributions in a such

state. The pension sponsor expects that future contributions will be made, and thus can take

more risks by increasing the equity weight. Put differently, when the state of economy is bad,

future contributions can hedge positions in the equity, and thus the pension sponsor can take

more risks. When the past equity return is higher, the equity weight of the benchmark case is

approaching to the mean-variance efficient portfolio, which is η
γσ

= 40%. We can see that the

equity weight of the benchmark case is identical for the initially underfunded and overfunded

pension plans. This is obvious since how far away from the present value of the benefits doesn’t

matter for the pension sponsor without the downside constraint.

Next, the equity weight of the constrained case exhibits an U-shaped pattern. When the state

of economy gets worse, the pension sponsor defers contributions and employs the risk manage-
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Figure 2: Cost of Put-Based Strategy

Panel A: Initially Underfunded Pension
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Panel B: Initially Overfunded Pension
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This figure plots costs of put-based strategy as a function of fraction of allocation to the mean-variance

efficient portfolio. Panel A is for an initially underfunded pension with 80% funding ratio, and Panel B is for

an initially overfunded pension with 120% funding ratio.
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Figure 3: Equity Weight

Panel A: Initially Underfunded
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This figure plots equity weights at time t = 5-year as a function of annualized equity return over the last five

years. Panel A is for the initially underfunded pension with 80% funding ratio, and Panel B is for the initially

overfunded pension with 120% funding ratio. We fix the initial asset value at one and vary the terminal

downside constraint, K.
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ment policy, i.e. decreases the equity weight, since the pension sponsor wants to avoid costly

contributions as much as it can. On the other hand, when the economy downturn is significant,

the pension sponsor starts to contribute. Since contemporaneous and future contributions can

hedge high equity positions, the pension sponsor takes more risks. When the pension sponsor

switches from risk management to risk taking depends on the initial funding status. For the ini-

tially underfunded pension plan, risk taking incentives dominate risk management incentives.

The intuition is that for same negative shocks to the economy, the impact is greater for the ini-

tially underfunded pension plan so that the pension sponsor starts to contribute earlier, which

yields risk taking incentives.

By comparing the benchmark case and the constrained case, we can predict a situation in

which a government insurance exists. In the benchmark case, the pension sponsor has only risk

taking incentives, which are hedged by contributions. Even if the pension plan ends up with

underfunded, the government agency, such as PBGC will guarantee the benefits. Thus, as the

economy gets worse the pension sponsor would take more risks. On the other hand, the pension

sponsor without the government insurance would avoid large contributions as much as it can by

managing risks, i.e. decreasing the equity weight. However, when the pension plan’s asset is

severely deteriorated, the pension sponsor will take more risks than the benchmark case since to

save the pension plan the pension sponsor will contribute large amount, which can hedge high

exposure to the equity shocks.

Figure 4 plots the contribution rate, Yt/Wt as a function of an annualized equity return over

time zero to 5-year. We can see that contribution rates of the benchmark case are decreasing in

the state of economy and identical across initial funding status. The pension sponsor with the

downside constraint behaves differently depending on the initial funding status. The initially

underfunded pension sponsor contributes more than the benchmark case for the same state of

the economy. The effect of negative shocks to the economy is greater to the initially under-

funded pension plan, and thus to satisfy the downside constraint higher contributions should be

made. Next, consider the initially overfunded pension plan in Panel B. Since the disutility from

contributions is more important (k = 100) relative to the utility, the contributions are slightly

higher than the benchmark case, which can explain why risk management incentives domi-

nate risk taking incentives for the initially overfunded pension plan to guarantee the downside

constraint.
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Figure 4: Contribution Rate

Panel A: Initially Underfunded
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This figure plots contribution rates at time t = 5-year as a function of annualized equity return over the

last five years. Panel A is for the initially underfunded pension with 80% funding ratio, and Panel B is for

the initially overfunded pension with 120% funding ratio. We fix the initial asset value at one and vary the

terminal downside constraint, K.
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5.3 Effects of Relative Importance of Disutility

Figure 5 plots the optimal present value of the contribution and the put option value at time zero

for the initially underfunded (Panel A) and overfunded (Panel B) pension plan as we vary the

relative importance of the disutility, k. We also plot the optimal present value of the contribu-

tion for the benchmark case. Since drawing contributions from the pension sponsor’s internal

resources is more costly when k is large, we can see that the optimal present value of the contri-

bution decreases as k increases for both the benchmark and constrained cases. However, there

is a key difference between the initially underfunded and overfunded pension plans. As we

see in Figure 2, the initially overfunded pension plan has a put-based strategy even without a

contribution. Hence, when k is sufficiently large, the pension sponsor won’t contribute at all

and just use the put-based strategy without any contribution. However, the initially underfunded

pension plan can not construct a put-based strategy without a contribution. Thus, we can see

that even if k is sufficiently large, the underfunded pension plan takes the present value of the

contribution, which is equal to the time zero shortfall Ke−rT −W0 = 25%.

The put option value at time zero increases as k increases for both underfunded and over-

funded pension plans. When contributing is more costly, the pension sponsor decreases the

present value of the contribution and allocations in the unconstrained optimal portfolio, which

makes the overall pension plan’s asset less risky and increases the put option value. For low k,

contributing more than the put option value is optimal since contributing is less costly and the

pension sponsor can hold more unconstrained optimal portfolio. However, when k is high, the

opposite happens. A fraction of the put option is funded by the initial pension plan’s asset.

5.4 Effects of Elasticity of Disutility

The elasticity of the disutility, θ has impacts on the determination of the optimal present value

of the contribution. In Figure 6, we vary θ from 1.2 to 2 and see the optimal X0 for the initially

underfunded (Panel A), and overfunded (Panel B) pension plans. To focus on the shape of

the optimal present value of the contribution, we omit the benchmark case and the put option

value here. We can see that the present value of the contribution is U-shaped in θ for both

cases, but it is clearer for the underfunded pension plan. Since the elasticity of the disutility

only moves the marginal cost curveWφ(y) in Figure 1, given a contribution policy whether an

increase in θ raises the present value of the contribution is our interest. If the present value of the

contribution increases, the marginal cost curve moves downward and the optimal X0 increases,
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Figure 5: Effects of Relative Importance of Disutility
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This figure plots the present value of the contribution and the put option value for the initially underfunded

(Panel A) and overfunded (Panel B) pension plan as a function of the relative importance of the disutility (k).

The initially underfunded pension plan has 80% funding ratio, and the initially overfunded pension plan has

120% funding ratio.
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and vice verse.

The optimal contribution policy, Yt = Iφ(yξt) = (yξt
k
)

1
θ−1 is convex in ξt when 1 < θ < 2

and is concave in ξt when θ > 2. Given that y < k (this is the case for our parameter values), an

increase in θ always increases the present value of the contribution since contributions become

less convex when 1 < θ < 2 and more concave when θ > 2. This can be seen clearly through

the first derivative ofWφ(y) with respect to θ:

∂Wφ(y)

∂θ
= −Wφ(y)

[
log y

k

(θ − 1)2
+
∂αφ
∂θ

1− (1 + αφT )e
−αφT

αφ

]
.

If the insides of the bracket are negative, the marginal cost curve moves downward and the

optimal contribution increases, and vice verse. The first term in the bracket is negative since

with our parameter values y < k.

The second part is the effect of θ on the annuity term. We find that for low θ the second term

in the bracket is positive and dominates the first term, and thus the marginal cost curve moves

upward and the optimal contribution decreases. On the other hand, for high θ, the opposite

happens. The intuition is that to smooth contributions, the pension sponsor increases contribu-

tions in more likely states of the economy and decreases contributions in less likely states of the

economy when 1 < θ < 2. The former action increases the present value of the contribution,

while the latter decreases it. When θ is small, the latter effect is dominating.

5.5 Effects of Risk Aversion and Price of Risk

Now, we investigate effects of the risk aversion and the price of risk. First, we report the

optimal present value of the contribution and the put option value at time zero for the initially

underfunded (Panel A) and overfunded (Panel B) pension plan as we vary the relative risk

aversion, γ in Figure 6. We also plot the optimal present value of the contribution for the

benchmark case. When the risk aversion is high, the mean-variance efficient portfolio holds

less equity. The risk of the underlying asset is reduced, and thus the put option value decreases,

which implies that less contributions are required. For the initially overfunded pension plan,

when the risk aversion is very high, the put option value becomes worthless since the pension

sponsor holds zero equity position and the downside constraint is always satisfied (note that

it is initially overfunded). Some contributions are still optimal since the pension sponsor can

achieve higher utility even taking into account the disutility from contributions.

Next, we vary the price of risk while keeping the volatility of the equity returns at σ = 20%.

An increase in the price of risk moves both the marginal benefit curveWu(y) and the marginal
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Figure 6: Effects of Elasticity of Disutility
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This figure plots the optimal present value of the contribution for the initially underfunded (Panel A) and

overfunded (Panel B) pension plan as a function of the elasticity of the disutility (θ). The initially underfunded

pension plan has 80% funding ratio, and the initially overfunded pension plan has 120% funding ratio.
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Figure 7: Effects of Relative Risk Aversion
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This figure plots the present value of the contribution and the put option value for the initially underfunded

(Panel A) and overfunded (Panel B) pension plan as a function of the relative risk aversion (γ). The initially

underfunded pension plan has 80% funding ratio, and the initially overfunded pension plan has 120% funding

ratio.
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Figure 8: Effects of Price of Risk
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This figure plots the present value of the contribution and the put option value for the initially underfunded

(Panel A) and overfunded (Panel B) pension plan as a function of the price of risk (η). We fix the volatility

of the equity returns at σ = 20%. The initially underfunded pension plan has 80% funding ratio, and the

initially overfunded pension plan has 120% funding ratio.
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cost curveWφ(y) in Figure 1. If the marginal benefit curve moves upward and the marginal cost

curve moves downward as the price of risk increases, we will see that the optimal present value

of the contribution also increases. This is the case for the initially overfunded pension plan

(Panel B of Figure 8). Higher volatility of the mean-variance efficient portfolio ( η
γ

) increases

the put option value, and thus higher initial endowment is required to have the same level of

the marginal benefit, i.e. the marginal benefit curve moves upward. On the other hand, when

the price of risk is higher, for a given contribution policy, the present value of the contribution

is higher since a distribution of states of the economy are more positive skewed and it is more

likely to contribute, i.e. the marginal cost curve moves downward. The net effect is an increase

in the optimal present value of the contribution and the put option value.

For the initially underfunded pension plan, the movement of the marginal benefit curve is

opposite. The same level of the marginal benefit can be financed with lower initial asset using

higher expected equity return. However, if this downward movement of the marginal benefit

curve is dominated by the downward movement of the marginal cost curve, we will still see an

increase in the optimal present value of the contribution, but see a decrease in the put option

value, which is due to a decrease in allocations to the unconstrained optimal portfolio. This is

the case for the initially underfunded pension plan (Panel A of Figure 8).

6 Conclusion

We develop the separation approach to analyze the pension sponsor’s contribution and portfolio

policy in the presence of the downside constraint at the terminal date. The problem can be cast

in two separate shadow price problems, the utility maximization problem and the disutility mini-

mization problem. At the optimal solution, two shadow prices are identical. We show that while

guaranteeing the benefits, both risk management and risk taking behaviors can emerge. When

the pension plan’s asset decreases, the pension sponsor first decreases the equity weight and de-

fers contributions as much as it can to avoid costly contributions. Then, only when the pension

plan’s asset is significantly deteriorated, the pension sponsor starts to contribute and increases

the equity weight, which is hedged by large contemporaneous and future contributions. In our

model, the pension sponsor’s risk taking behavior is induced not by a moral hazard problem,

but by commitment to contributions. We hope to extend our analysis to include time-varying

expected returns, and stochastic benefits in future research.
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Appendix
Proof of Proposition 1. By Girsanov’s Theorem, there exists a unique equivalent measure Q in which all traded
assets earn the risk-free rate, and under Q measure the following stochastic process is a standard Brownian motion.

dZQ
t = dZt + ηdt.

To computeWu(y), we can derive the dynamics of ξt =Mte
βt under Q measure.

dξt
ξt

= (β − r)dt− ηdZt

= (β − r + η2)dt− ηdZQ
t .

The random variable Iu(yξT ) can be expressed as

Iu(yξT ) = y−
1
γ exp

(
−T
γ
(β − r + 1

2
η2) +

η

γ
(ZQ

T − Z
Q
0 )

)
,

given that ξ0 = 1. Let A be the event in which K > Iu(yξT ). The event A is equivalent to x < −δ2(y, T ), where
x is a standard normal random variable, and δ2(y, T ) is given by

δ2(y, T ) =
log y

− 1
γ

K + T
γ (r − β −

η2

2 )

η
√
T
γ

,

since ZQ
T − Z

Q
0 is normally distributed with zero mean and variance of T . Then,Wu(y) can be expressed as

Wu(y) = EQ [e−rT Iu(yξT )(1− 1(A))
]
+Ke−rTN(−δ2(y, T )),

where 1(A) is an indicator function of event A and N(·) is a cumulative distribution function of standard normal
random variable. The first part can be easily computed:

EQ [e−rT Iu(yξT )(1− 1(A))
]

= exp

(
−
(
r +

1

γ
(β − r + 1

2
η2)

)
T

)
y−

1
γ

∫ ∞
−δ2(y,T )

exp

(
η
√
T

γ
x

)
n(x)dx

= y−
1
γ e−αuT

∫ ∞
−δ2(y,T )

n

(
x− η

√
T

γ

)
dx

= y−
1
γ e−αuTN(δ1(y, T )),

where n(·) is a probability distribution function of a standard normal random variable, αu and δ1(y, T ) are given
by

αu =
β

γ
+

(
1− 1

γ

)(
r +

η2

2γ

)
δ1(y, T ) = δ2(y, T ) +

η
√
T

γ
.

Now, the first derivative ofWu(y) can be computed as

W ′u(y) = − 1

γ
y−

1
γ−1e−αuTN(δ1(y, T )) + y−

1
γ e−αuTn(δ1(y, T ))

∂δ1(y, T )

∂y

−Ke−rTn(−δ2(y, T ))
∂δ2(y, T )

∂y
.
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Note that ∂δ1(y,T )
∂y = ∂δ2(y,T )

∂y and

y−
1
γ e−αuTn(δ1(y, T )) = y−

1
γ e−αuTn

(
δ2(y, T ) +

η
√
T

γ

)

= y−
1
γ exp

(
−αuT −

η
√
T

γ
δ2(y, T )−

η2T

2γ2

)
n(δ2(y, T ))

= Ke−rTn(−δ2(y, T )).

Hence, last two terms cancel out.

Proof of Theorem 2. Consider any random variable W̃u
T ≥ K, which is feasible by a self financing trading strategy

and the initial endowment Wu
0 . This implies that

Wu
0 ≥ EQ

[
e−rT W̃u

T

]
.

Then, we want to show that
E
[
e−βTu (Wu

T )
]
≥ E

[
e−βTu

(
W̃u
T

)]
.

Since u is a concave utility, we have

u (Wu
T )− u

(
W̃u
T

)
≥ u′ (Wu

T )
(
Wu
T − W̃u

T

)
. (.1)

We can compute u′ (WT ):

u′ (Wu
T ) = u′ (max (Iu (Yu (Wu

0 ) ξT ) ,K))

= min (Yu (Wu
0 ) ξT , u

′ (K))

= Yu (Wu
0 ) ξT − (Yu (Wu

0 ) ξT − u′(K))
+
.

Substitute in (.1), we have

u (Wu
T )− u

(
W̃u
T

)
≥ Yu (Wu

0 ) ξT

(
Wu
T − W̃u

T

)
+ (Yu (Wu

0 ) ξT − u′(K))
+
(
W̃u
T −K

)
.

The second term is due to that Wu
T = K corresponds to Yu (Wu

0 ) ξT > u′(K). The second term is always greater
or equal to zero since W̃u

T ≥ K. Multiplying e−βT and taking expectation under the physical measure of the first
term of RHS yields

Yu (Wu
0 )E

[
e−βT ξT

(
Wu
T − W̃u

T

)]
= Yu (Wu

0 )EQ
[
e−rT

(
Wu
T − W̃u

T

)]
≥ Yu (Wu

0 )
(
Wu

0 − EQ
[
e−rT W̃u

T

])
≥ 0.

Hence, we obtain the desired inequality. Now, the optimal portfolio weight can be obtained by matching volatility
of (5) and Wu

t = EQ
t

[
e−r(T−t)Wu

T

]
. By Proposition 1, we can easily compute the latter:

Wu
t = y

− 1
γ

t e−αu(T−t)N (δ1(yt, T − t)) +Ke−r(T−t)N (−δ2(yt, T − t)) ,

where yt = Yu(Wu
0 )ξt. The diffusion part of the above is

diff (dWu
t ) =

η

γ
y
− 1
γ

t e−αu(T−t)N (δ1(yt, T − t)) .

This should be equal to the diffusion part of (5), πutW
u
t σ. Hence, we have

πut =
η

γσ
(1− ϕt) ,

where ϕt = Ke−r(T−t)

Wu
t

N (−δ2 (yt, T − t)) < 1.
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Proof of Proposition 3. We first compute G(y):

G(y) = E

[
e−βT

(yξT )
1− 1

γ

1− γ
(1− 1(A)) + e−βT

K1−γ

1− γ
1(A)

]

Note that the expectation is under the physical measure. The random variable Iu(yξT ) can be expressed as

Iu(yξT ) = y−
1
γ exp

(
−T
γ
(β − r − 1

2
η2) +

η

γ
(ZT − Z0)

)
.

The event A is equivalent to x < −δ3(y, T ), where x is a standard normal random variable, and δ3(y, T ) is given
by δ3(y, T ) = δ2(y, T ) + η

√
T , since ZT − Z0 is normally distributed with zero mean and variance of T . If we

follow similar steps as Proposition 1, we can obtain (10). (11) is the direct result of Theorem 2. Take the first
derivative of (9), then we have

G
′
(y) = E

[
e−βTu

′
(Iu (yξT )) I

′
u (yξT ) ξT (1− 1(A))

]
= E

[
e−βT yξ2T I

′
u (yξT ) (1− 1(A)))

]
= yEQ [e−rT I ′u (yξT ) ξT (1− 1(A))

]
= yW

′

u(y).

From (11), we have

J
′
(Wu

0 ) = G
′

u (Yu (Wu
0 ))Y

′

u (W
u
0 )

= Yu (Wu
0 )W

′

u (Yu (Wu
0 ))Y

′

u (W
u
0 )

= Yu (Wu
0 ) .

Proof of Proposition 4. We can interchange the integral and expectation:

Wφ(y) =

∫ T

0

e−rtEQ[Iφ(yξt)]dt,

where

Iφ(yξt) =
(y
k

) 1
θ−1

exp

(
t

θ − 1
(β − r + 1

2
η2)− η

θ − 1
(ZQ

t − Z
Q
0 )

)
.

The inner expectation is

EQ[Iφ(yξt)] =
(y
k

) 1
θ−1

exp

(
t

θ − 1

(
β − r + θη2

2(θ − 1)

))
.

Now, we can expressWφ(y) as

Wφ(y) =
(y
k

) 1
θ−1

∫ T

0

e−αφtdt

=
(y
k

) 1
θ−1 1− e−αφT

αφ
,

where αφ = θ
θ−1

(
r − η2

2(θ−1)

)
− β

θ−1 . The first derivative is straightforward.
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Proof of Theorem 5. Consider any random variable Ỹ , whose present value is greater than X0. This implies that

EQ

[∫ T

0

e−rtỸtdt

]
≥ X0.

Then, we want to show that

E

[∫ T

0

e−βtφ (Yt) dt

]
≤ E

[∫ T

0

e−βtφ
(
Ỹt

)
dt

]
.

Since φ is a convex disutility, we have

φ (Yt) ≤ φ
(
Ỹ
)
+ φ′ (Yt)

(
Yt − Ỹ

)
≤ φ

(
Ỹ
)
+ Yφ (X0) ξt

(
Yt − Ỹ

)
.

Multiplying e−βt and taking integral and expectation under the physical measure of the second term of RHS yields

Yφ (X0)E

[∫ T

0

e−βtξt

(
Yt − Ỹ

)
dt

]
= Yφ (X0)

(
EQ

[∫ T

0

e−rtYtdt

]
− EQ

[∫ T

0

e−rtỸ dt

])

= Yφ (X0)

(
X0 − EQ

[∫ T

0

e−rtỸ dt

])
≤ 0.

Hence, we obtain the desired inequality. Now, the optimal hedging of contributions can be obtained by matching
volatility of (12) and Xt = EQ

t

[∫ T
t
e−r(s−t)Ysds

]
. By Proposition 4, we can easily compute the latter:

Xt =
(yt
k

) 1
θ−1 1− e−αφ(T−t)

αφ
, (.2)

where yt = Yφ(X0)ξt. The diffusion part of Xt is

diff (dXt) = −
η

θ − 1
Xt.

This should be equal to the diffusion part of (12), πφt Xtσ. Hence, we have

πφt = − η

(θ − 1)σ
.

Proof of Proposition 6. We first compute C(y):

C(y) = E

[∫ T

0

e−βt
k

θ

(
yξt
k

) θ
θ−1

dt

]

=
k

θ

(y
k

) θ
θ−1

∫ T

0

e−βtE
[
ξ

θ
θ−1

t

]
dt

=
k

θ

(y
k

) θ
θ−1

∫ T

0

e−αφtdt

=
k

θ

(y
k

) θ
θ−1 1− e−αφT

αφ
.
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(16) is the direct result of Theorem 5. Take the first derivative of (15) is

C
′
(y) = E

[∫ T

0

e−βtφ
′
(Iφ (yξt)) I

′

φ (yξt) ξtdt

]

= yEQ

[∫ T

0

e−rtξtI
′

φ (yξt) dt

]
= yW

′

φ(y).

From (16), we have

L
′
(X0) = C

′
(Yφ (X0))Y

′

φ (X0)

= Yφ (X0) .

Proof of Theorem 7. We can compute the present value of arbitrary contribution policy. Let

X0 = EQ

[∫ T

0

e−rtỸtdt

]
Wu

0 = W0 +X0.

Then, (π̃, Ỹ ) satisfies the following static budget constraint:

Wu
0 ≥ EQ

[
e−rT W̃T

]
,

where W̃ is a corresponding wealth process to (π̃, Ỹ ). Hence, π̃ is a feasible trading strategy to the first problem
with the initial wealth Wu

0 , and Ỹ is a feasible contribution policy to the second problem with the present value
of contribution X0. Let πut and πφ be the optimal trading strategy to the first and the optimal hedging strategy to
the second problem, respectively. Also, let Wu

t and Xt be the optimal path of asset value to the first problem, and
the optimal path of internal resources for hedging contributions to the second problem, respectively. Finally, let Y
denote the optimal contribution policy to the second problem. Then, we can construct the following portfolio and
contribution policy, and path of the pension plna’s asset:

πt =
πutW

u
t − πφXt

Wu
t −Xt

(.3)

Yt = Yt (.4)
Wt = Wu

t −Xt. (.5)

We need to prove that these policies are feasible for the original problem. Consider the discounted pension plan’s
asset:

e−rtWt = e−rtWu
t − e−rtXt

= W0 +X0 +

∫ t

0

e−rsπus σW
u
s dZ

Q
s −X0 +

∫ t

0

e−rsYsds−
∫ t

0

e−rsπφσXsdZ
Q
s

= W0 +

∫ t

0

e−rsYsds+

∫ t

0

e−rsπsσWsdZ
Q
s

= EQ
t

[
e−rTWT

]
− EQ

t

[∫ T

t

e−rsYsds

]
,
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since WT = Wu
T − XT = Wu

T . Hence, (π, Y ) is a admissible portfolio and contribution policy to the original
problem. Then, we have

E
[
eβTu (WT )

]
≥ E

[
eβTu

(
W̃T

)]
E

[∫ T

0

e−βtφ (Yt) dt

]
≤ E

[∫ T

0

e−βtφ
(
Ỹt

)
dt

]
.

Hence, we have a desired inequality. Then, (17) is straightforward.

Proof of Proposition 8. From (6), we can easily see thatWu(y) is decreasing, limy→0Wu(y) =∞, and limy→∞
Wu(y) = Ke−rT . Also, from (13) we can see thatWφ(y) is increasing, limy→0Wφ(y) = 0, and limy→∞Wφ(y) =
∞.

Proof of Proposition 9. Suppose that we find y solving (18), i.e. the optimal present value of the contribution, X0.
Then, we can set the optimal portfolio and contribution policy, and the optimal path of the pension plan’s asset to
the original problem as (.3), (.4), (.5) using solutions to the first and second problems. Then, the optimal portfolio
weight is straightforward. Note that by (.2) the optimal path of the internal resources for hedging contributions is

Xt =

(
yξt
k

) 1
θ−1 1− e−αφ(T−t)

αφ
= Yt

1− e−αφ(T−t)

αφ
.

Hence, the optimal contribution rate is

Yt
Wt

=
Xt

Wt

αφ

1− e−αφ(T−t)
.

Proof of Proposition 10. The first part of (6) is the present value of the terminal pension plan’s asset, Iu(yξT )
if Iu(yξT ) > K, otherwise zero. Hence, WBC

u (y) can be easily computed from that. The first derivative is
straightforward. Now, we can expressWu(y) as

Wu(y) = y−
1
γ e−αuT +Ke−rTN(−δ2(y, T ))− y−

1
γ e−αuTN(−δ1(y, T )) >WBC

u (y).

The last two terms are the present value of (K − Iu(yξT ))+, and thus positive. The remaining part can be proved
following similar procedures as in Theorem 2 and Proposition 3.
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