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Trading via dynamic order-splitting algorithms is a pervasive fact in today’s fi-

nancial markets.2 Informed investors use dynamic order-splitting to increase trading

profits by slowing the public revelation of their private information. Order-splitting is

not, however, limited to informed investors. Less informed investors — index mutual

funds, and comparatively more passive pensions and insurance companies — rely on

order-splitting to minimize trading costs for hedging and portfolio rebalancing. As

described in O’Hara (2015), portfolio managers transmit parent orders — specifying

the total amount of a security to be bought or sold over a fixed trading horizon — to

brokers who use computer algorithms to break parent orders into sequences of smaller

child orders.3 While dynamic informed trading has been modeled extensively (see,

e.g., Kyle 1985), order-splitting for portfolio rebalancing is less understood.

Our paper is the first to model a market equilibrium with dynamic trading with

both long-lived private information and portfolio rebalancing. We specifically con-

sider a multi-period Kyle (1985) market in which there are two strategic investors

with di↵erent trading motives who each follow optimal but di↵erent dynamic trading

strategies. One investor is a standard Kyle strategic informed investor with long-lived

private information. The other investor is a strategic portfolio rebalancer who trades

over multiple rounds to minimize the cost of hitting a random terminal trading target.

We use our model to investigate the economic motivations for and equilibrium

e↵ects of dynamic order-splitting for portfolio rebalancing. Dynamic rebalancing af-

fects the market in three ways: First, there is additional trading noise. However,

order-splitting due to a trading constraint leads to autocorrelated rebalancer’s orders

that are di↵erent from the unpredictable informed investor orders and the indepen-

dently and identically distributed noise trader orders. Second, autocorrelation in the

rebalancer orders leads to a type of sunshine trading since predictable orders have no

price impact. In particular, market makers in our model try to forecast the remaining

2
Pension & Investments (2007) reported that in a survey of leading institutional investors 72%

said they used order execution algorithms. Anecdotal evidence suggests that the use of order execu-
tion algorithms has grown further in subsequent years. Optimal execution algorithms are di↵erent
from computer-based market making, latency arbitrage, and other high frequency trading strategies.

3Keim and Madhavan (1995) is the first empirical study of dynamic order-splitting by institutional
investors. Recently, van Kervel and Menkveld (2016) estimate an average of 139 child trades per
parent order for four large institutions trading on Nasdaq OMX. Korajczyk and Murphy (2016)
estimate an average of between 327 and 604 child orders per large parent order depending on whether
the parent order is nonstressful (lower three quartiles of large trades) or stressful (top quartile) for
Canadian equities. See Johnson (2010) for more on specific dynamic trading algorithms. The SEC
(2010) report also discusses the role of trading algorithms in the current market landscape.
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future latent trading demand of the rebalancer. Third, there is additional informa-

tion trading because of endogenous learning by the strategic rebalancer through the

trading process. This is because the rebalancer can filter the aggregate order flow

better than the market makers by incorporating his knowledge about his own order

submissions. In equilibrium, the additional trading noise and the endogenous learning

by the rebalancer a↵ect the trading strategy of the informed investor. The resulting

changes in aggregate order flow dynamics then a↵ect the equilibrium dynamics of

price discovery and liquidity.4

Numerical experiments with our model identify a number of testable implications

of stochastic dynamic rebalancing:

• Dynamic rebalancing induces intraday U -shaped patterns in expected trading

volume, price volatility, and order-flow autocorrelation. In addition, the price

impact of the order flow is S-shaped with higher initial price impacts and lower

later price impacts relative to those in Kyle (1985). The overall level of aggregate

order-flow autocorrelation and the magnitude of the various intraday patterns

are all increasing in the volatility of rebalancing target randomness.

• The rebalancer’s and insider’s orders tend to become negatively correlated over

time. Unlike the negative order correlation in Foster and Vishwanathan (1996),

the negative correlation in our model arises from the informed investor trading

against noise in prices due to the rebalancer’s orders. Both investors benefit by

providing liquidity to each other symbiotically.

• The rebalancer’s orders are driven primarily by a quantitatively large order-

splitting component that depends deterministically on the rebalancing target.

Components due to speculative trading on endogenous learning and to sunshine

trading are much smaller.

Our analysis integrates two literatures on pricing and trading. The first literature

is about price discovery. Kyle (1985) described equilibrium pricing and dynamic

trading in a market with noise traders and a single investor who has long-lived private

information. Subsequent work by Holden and Subrahmanyam (1992), Foster and

Viswanathan (1994, 1996), Back (1992), and Back, Cao, and Willard (2000) extends

4Uninformed trading noise plays a critical role in markets subject to adverse selection (see Akerlof
1970, Grossman and Stiglitz 1980, Kyle 1985, and Glosten and Milgrom 1985).
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the model to allow for multiple informed investors with long-lived information. Our

model builds most closely on Foster and Viswanathan (1996), who were the first to

model a dynamic equilibrium with multiple investors with di↵erent information and

to solve the “forecasting the forecasts of others” problem. Given our interest in the

fundamental information content and daily dynamics of order flow, the Kyle set-up

lets us abstract from the arms race for speed (Ho↵mann 2014 and Biais, Foucault, and

Moinas 2015), intermediation chains linking multiple market makers (Weller 2013),

limit order cancelation and flickering quotes (Hasbrouck and Saar 2007 and Baruch

and Glosten 2013), market fragmentation and latency (Menkveld, Yueshen, and Zhu

2014), and other microsecond-level high-frequency trading (HFT) phenomena.

A second literature studies optimal dynamic order execution for uninformed in-

vestors with trading targets. This work includes Bertsimas and Lo (1998), Almgren

and Chriss (1999, 2000), Gatheral and Scheid (2011), Engel, Ferstenberg, and Rus-

sell (2012), Predoiu, Shaikhet, and Shreve (2011), and Boulatov, Bernhardt, and

Larionov (2016) as well as Bunnermeier and Pedersen (2005) and Carlin, Lobo, and

Viswanathan (2007) on predatory trading in response to predictable uninformed trad-

ing. This research takes the price impact function for orders as an exogenously spec-

ified model input. In contrast, we model optimal order execution in an equilibrium

setting that endogenizes the e↵ect of strategic rebalancing on pricing.5 In addition,

our rebalancer’s trading demand is not known ex ante to the market (as in models

of predatory trading), but is random and private information. This is arguably the

usual situation on normal trading days, as opposed to special days involving futures

roles and index reconstitutions.

Models combining both informed trading and optimized uninformed rebalancing

have largely been restricted to static settings or to multi-period settings with short-

lived information and/or exogenous restrictions on the rebalancer’s trading strate-

gies. Admati and Pfleider (1988) study a multi-period market consisting of a series

of repeating one-period trading rounds with short-lived information and uninformed

discretionary liquidity traders who only trade once but decide when to time their

trading. An exception is Seppi (1990) who models an informed investor and a strate-

gic uninformed investor with a trading target in a market in which both can trade

dynamically. He solves for separating and partial pooling equilibria with upstairs

5In our model, order flow has a price impact due to adverse selection. Alternatively, price impacts
can be due to inventory costs and imperfect competition in liquidity provision.
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block trading, but only for a restricted set of particular model parameterizations.

Our paper is related to Degryse, de Jong, and van Kervel (DJK 2014). Both papers

model dynamic order-splitting by an uninformed investor. Consequently, both models

have autocorrelated (predictable) order flows. Order flow autocorrelation is empiri-

cally significant but absent in previous Kyle models.6 However, there are two notable

di↵erences between our model and DJK (2014). First, the informed investors in DJK

(2014) have short-lived private information; they only have one chance to trade on in-

traday signals before they become public. In contrast, our informed investor trades on

long-lived information over multiple intraday time periods. Consequently, it is harder

to distinguish cumulative order imbalances due to rebalancing from imbalances due to

information trading. This reduces the gains from sunshine trading for the rebalancer

in our model. Second, our rebalancer’s orders depend adaptively on the realized path

of the aggregate order flow as well as on his rebalancing target, whereas the DJK

(2014) rebalancer trades deterministically over time to reach his target. In partic-

ular, our rebalancer learns endogenously about the informed investor’s information,

because he can filter the aggregate order flow better than the market makers. Our

analysis is possible because we use the approach of Foster and Vishwanathan (1996)

to circumvent the large state-space problem mentioned in DJK (2014).

Our analysis is related to the literature on sunshine trading. One form of sun-

shine trading exploits dynamic fluctuation in the price impacts of orders as the sup-

ply of liquidity is temporarily depleted and then replenished over time (see Predoiu,

Shaikhet, and Shreve 2011). Another form of sunshine trading exploits predictable

intraday variation in liquidity due to the timing of uninformed trading (see Admati

and Pfleiderer 1988). Sunshine trading in our model and DJK (2014) occurs be-

cause predictable orders have no incremental information content and thus, absent

frictions in the supply of liquidity, no price impact. In addition, symbiotic liquidity

provision by informed investors and rebalancers to each other further lowers their

trading costs. Looking at optimal rebalancing in a partial equilibrium misses these

equilibrium interactions.

6For early empirical evidence on order flow autocorrelation in equity markets, see Hasbrouck
(1991a,b). More recently, Brogaard, Hendershott, and Riordan (2016) find autocorrelation in orders
from non-HFT investors (which is our focus) as well as in HFT orders.
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1 Model

We model a multi-period discrete-time market for a risky stock. A trading day is

normalized to the interval [0, 1] during which there are N 2 N time points at which

trade can occur where � := 1
N > 0 is the time step. As in Kyle (1985), the stock’s

final value ṽ becomes publicly known at time N +1 after the market closes at the end

of the day. The value ṽ is normally distributed with mean zero and variance �

2
ṽ > 0.

Additionally, there is a money market account that pays a zero interest rate.

Four types of investors trade in our model:

• An informed investor (who we call a hedge fund portfolio manager) knows the

final stock value ṽ at the beginning of trading and has zero initial positions

in the stock and the money market account. The hedge fund manager is risk-

neutral and maximizes the expected value of the fund’s final wealth. The hedge

fund’s order for the stock at time n, n = 1, ..., N , is denoted by �✓

I
n where ✓

I
n

is its accumulated total stock position at time n with ✓

I
0 := 0.

• A constrained investor (who we call the rebalancer) needs to rebalance his port-

folio by buying or selling stock to reach a terminal trading target constraint ã

on his ending stock position ✓

R
N by the end of the trading day. For example, he

might be a portfolio manager for a large index fund or a passive pension plan

or an insurance company who needs to rebalance his portfolio or to respond

to fund inflows/outflows. The target is private knowledge of the rebalancer.

In practice, such investors trade dynamically using optimal order execution al-

gorithms to minimize their trading costs. He starts the day with zero initial

positions in the stock (✓R0 := 0) and his money market account.7 The target ã

is jointly normally distributed with the stock value ṽ and has a mean of zero,

a variance �

2
ã > 0, and a correlation ⇢ 2 [0, 1] with ṽ. When ⇢ is 0, the re-

balancer is initially uninformed. If ⇢ > 0, we think of the rebalancer as being

initially informed about ṽ but subject to random binding non-public risk lim-

its.8 Importantly, our rebalancer rationally understands the extent to which

7Both the hedge fund and the rebalancer finance their stock trading by borrowing/lending. This
assumption simplifies the notation for their objective functions but is without loss of generality.

8The fact that the terminal value ṽ is measured in dollars while the trading target ã is measured
in shares is not problematic for ṽ and ã being correlated random variables.
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he is uninformed.9 The rebalancer is risk-neutral and maximizes the expected

value of his final wealth subject to the terminal stock position constraint. The

rebalancer’s order for the stock at time n, n = 1, ..., N , is denoted by �✓

R
n , and

the terminal constraint requires �✓

R
N = ã� ✓

R
N�1 at time N .

• Noise traders (who we think of as small non-strategic retail investors) submit net

stock orders at times n, n = 1, ..., N , that are exogenously given by Brownian

motion increments �wn. These increments are normally distributed with zero-

means and variances �2
w� for a constant �w > 0 and are independent of ṽ and

ã.

• Competitive risk-neutral market makers observe the aggregate net order flow

yn at times n, n = 1, ..., N , where

yn := �✓

I
n +�✓

R
n +�wn, y0 := 0. (1.1)

Given competition and risk-neutrality, market makers clear the market (i.e.,

trade �yn) at the stock price pn set to be

pn = E[ṽ|�(y1, ..., yn)], n = 1, 2, ..., N, p0 := 0, (1.2)

where �(y1, ..., yn) is the sigma-algebra generated by the order flow history.

In the past, market makers were dealers on the floor of an exchange. Today,

market making is performed by high frequency firms running algorithms on

servers colocated near an exchange’s market crossing engine. These market-

making algos process order-flow information in real-time when setting prices.

The presence of the rebalancer with a trading constraint is the main di↵erence

between our setting and Kyle (1985) as well as the multi-agent settings in Holden

and Subrahmanyam (1992) and Foster and Viswanathan (1994, 1996). In particular,

at each time n, the rebalancer has latent demand to trade the remaining ã � ✓

R
n�1

shares over the rest of the day. Previous microstructure theory says very little about

9Alternatively, if some investors trade under the mistaken belief that they are informed, but the
signals they condition on are just noise, then their orders should have the same functional form as
actual informed investor orders (see Kyle and Obizhaeva 2016). In our model, informed investors
and rebalancers trade di↵erently because their trading motives are di↵erent.
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markets with daily latent trading demand. As we shall see, this latent trading demand

produces new stylized features in the market such as autocorrelated order flow.

Because all initial positions are zero (i.e., ✓I0 = ✓

R
0 = 0), the informed hedge fund

chooses orders �✓

I
n 2 �(ṽ, y1, ..., yn�1) at times n, n = 1, 2, ..., N, to maximize

E
h
✓

I
N(ṽ � pN) + ✓

I
N�1�pN + ...+ ✓

I
1�p2

����(ṽ)
i
= E

"
NX

n=1

(ṽ � pn)�✓

I
n

����(ṽ)
#
. (1.3)

On the other hand, the rebalancer faces the terminal constraint ✓RN = ã. Therefore,

he submits orders �✓

R
n 2 �(ã, y1, ..., yn�1) at times n, n = 1, 2, ..., N � 1, to maximize

E
h
ã(ṽ � pN) + ✓

R
N�1�pN + ...+ ✓

R
1 �p2

����(ã)
i
=

⇢�ṽ

�ã
ã

2 � E
"

NX

n=1

(ã� ✓

R
n�1)�pn

����(ã)
#
,

(1.4)

given the trading constraint ✓

R
N = ã. The equality in (1.4) follows from pN =

PN
n=1 �pn, p0 = 0, and E[ṽ|�(ã)] = ⇢�ṽ

�ã
ã. We prove in Appendix A that the hedge

fund’s problem (1.3) and the rebalancer’s problem (1.4) are both quadratic. The

hedge fund’s, rebalancer’s, and the market makers’ information sets are not nested.

Definition 1.1. A Baysian Nash equilibrium is a collection of functions (✓In, ✓
R
n , pn)

such that:

(i) Given the functions (✓Rn , pn), the strategy ✓

I
n maximizes the hedge fund’s objec-

tive (1.3).

(ii) Given the functions (✓In, pn), the strategy ✓

R
n maximizes the rebalancer’s objec-

tive (1.4).

(iii) Given the functions (✓In, ✓
R
n ), the pricing rule pn satisfies (1.2).10

We construct a linear Bayesian Nash equilibrium with the following structure:

10To clarify this definition we recall the Doob-Dynkin lemma: For any random variable B and
any �(B)-measurable random variable A, there is a deterministic function f such that A = f(B).
Therefore, we can write ✓Rn = fR

n (ã, y1, . . . , yn�1), ✓In = f I
n(ṽ, y1, . . . , yn�1), and pn = fp

n(y1, . . . , yn)
for three deterministic functions fR

n , f I
n, and fp

n. The functions fR
n , f I

n, and fp
n are fixed whereas

the realization of the aggregate order flow variables y1, ..., yn vary with the controls ✓I and ✓R.
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First, the forms of the hedge fund’s and rebalancer’s optimal trading strategies are11

�✓

R
n = �

R
n

⇣
ã� ✓

R
n�1

⌘
+ ↵

R
n qn�1, ✓

R
0 := 0, (1.5)

�✓

I
n = �

I
n

⇣
ṽ � pn�1

⌘
, ✓

I
0 := 0, (1.6)

where (�R
n , �

I
n,↵

R
n )

N
n=1 are constants with �

R
N = 1 and ↵

R
N = 0. The rebalancer and

hedge fund are not restricted to use linear strategies, but they optimally choose such

strategies in the equilibrium we construct.

Second, the qn process in (1.5) is a structural consequence of the rebalancing

constraint in our equilibrium. It denotes the market makers’ expectation E[ã �
✓

R
n |�(y1, ..., yn)], given the history of aggregate order flows up through time n, of

how much the rebalancer still needs to trade to reach his target. In other words,

much like pn gives the market-maker beliefs about the stock valuation, qn gives the

market-maker beliefs about the rebalancer’s latent trading demand ã�✓

R
n for the rest

of the day. In our linear equilibrium, qn has dynamics:

�qn = rnyn + snqn�1, q0 := 0, (1.7)

for constants (rn, sn)Nn=1. The presence of qn in (1.5) means that the rebalancer’s

orders are not limited to be a deterministic function of his target ã. Rather, they can

also depend on the prior order flow history, which is in contrast to the deterministic

rebalancer orders in DJK (2014). It also follows from (1.5) that the market makers’

expectation of the rebalancer’s order at time n is

E[�✓

R
n |�(y1, ..., yn�1)] = (↵R

n + �

R
n )qn�1. (1.8)

Consequently, the aggregate order flow is autocorrelated in this market12

E[yn|�(y1, ..., yn�1)] = E[�✓

I
n +�✓

R
n +�wn|�(y1, ..., yn�1)]

= (↵R
n + �

R
n ) qn�1.

(1.9)

11If an additional term ↵I
nqn�1 is included in the hedge fund’s strategy in (1.6), we find that ↵I

n

is zero in equilibrium. Contact the authors for a proof of this result.
12The second equality in (1.9) follows from (i) the independence between ṽ� pn�1 and past order

flows, (ii) the assumption that the noise trader orders are zero–mean and i.i.d. over time, and (iii)
the expression for expected rebalancer orders in (1.8).
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Third, the pricing rule in our linear equilibrium has dynamics:

�pn = �n

�
yn � E[yn|�(y1, ..., yn�1)]

�

= �n

�
yn � (↵R

n + �

R
n )qn�1

�
,

(1.10)

for n = 1, ..., N where (�n)Nn=1 are constants.13 In a linear equilibrium of this form,

the price at time n is not a↵ected by orders at date n that are predictable given past

orders. Thus, the (↵R
n + �

R
n )qn�1 term in (1.10) represents sunshine trading.

Optimal trading for portfolio rebalancing reflects a number of considerations:

First, the rebalancer needs to reach his trading target ã at time N . Second, he wants

to reach this target at the lowest cost possible. Cost minimization occurs through

several channels:

• The rebalancer splits up his orders to spread their price impact over time taking

into account intraday patterns of the price impact coe�cients �n.

• The rebalancer takes advantage of sunshine trading. Early orders signal pre-

dictable future orders at later dates, which, from (1.10), have no price impact.

• The rebalancer trades on information about the asset value ṽ to reduce his costs

and even, sometimes, to earn a trading profit. If ⇢ > 0, the rebalancer starts out

with stock valuation information. However, even if the rebalancer is initially

uninformed about ṽ (i.e., ⇢ = 0), he still learns information endogenously over

time through the trading process (see 1.12 below).

• The rebalancer understands that price pressure from his trades creates incen-

tives for the hedge fund to trade, which can be beneficial for the rebalancer. If

early uninformed rebalancer orders raise prices, then, in expectation, the hedge

fund should buy less/sell more in the future, thereby putting downward pres-

sure on later prices which, in turn, reduces the expected cost of subsequent

rebalancer buying.

Despite the complexity of the multiple drivers of rebalancing trading, we show

that the rebalancer’s orders take the simple linear form in (1.5). To gain intuition,

13The first equality (1.10) follows because conditional expectations are linear projections given
the jointly Gaussian structure of the linear equilibrium. The second equality follows from (1.9).

9



we rearrange the rebalancer’s order at time n from (1.5) as follows:

�✓

R
n = (↵R

n + �

R
n )qn�1 + �

R
n (ã� ✓

R
n�1 � qn�1). (1.11)

The first component, (↵R
n + �

R
n )qn�1, as noted in (1.8), is the market makers’ ex-

pectation of the rebalancer’s order at time n. From the sunshine trading result in

(1.10), this amount is traded at time n with no price impact. The second component,

�

R
n (ã� ✓

R
n�1� qn�1), in (1.11) reflects two e↵ects: First, the di↵erence ã� ✓

R
n�1� qn�1

is the additional amount the rebalancer still needs to trade beyond the market mak-

ers’ expectation of his remaining latent trading demand. Second, it summarizes the

private information the rebalancer has about stock price misvaluation in the market:14

E[ṽ � pn�1|�(ã, y1, ..., yn�1)] = E[ṽ � pn�1|�(ã� ✓

R
n�1 � qn�1, y1, ..., yn�1)]

= E[ṽ � pn�1|�(ã� ✓

R
n�1 � qn�1)].

(1.12)

Thus, ã�✓

R
n�1�qn�1 is, in general, informative about ṽ beyond the information already

reflected in pn�1. In particular, it is informative about market pricing errors ṽ�pn at

times n � 2, even if ⇢ = 0 (i.e., ã and ṽ are ex ante independent), because knowledge

about his own past orders lets the rebalancer filter the prior order flow history to

learn about ṽ better than the market makers. This dynamic learning is absent from

deterministic rebalancing as in DJK (2014). Intuitively, we expect �R
n to be positive

because trading in the direction of ã � ✓

R
n�1 � qn�1 moves the rebalancer’s holdings

towards his target and also because it exploits his private valuation information. In

addition, we expect 0  ↵

R
n + �

R
n  �

R
n (i.e., ��

R
n  ↵

R
n  0) because trading in

the direction of qn also moves the rebalancer’s stock holdings in the direction of his

target, but without the additional speculative benefit.

Turning to the informed investor, the term ṽ � pn�1 in (1.6) plays two roles in

the hedge fund’s strategy: It is private information about the stock value and also,

in equilibrium, information about the remaining latent trading demand ã� ✓

R
n�1 for

14The first equality in (1.12) follows from qn�1, ✓Rn�1 2 �(ã, y1, ..., yn�1). The second follows from
independence between ṽ � pn�1 and y1, ..., yn�1 and between ã� ✓Rn�1 � qn�1 and y1, ..., yn�1.
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the rebalancer:15

E[ã� ✓

R
n�1|�(ṽ, y1, ..., yn�1)]

= qn�1 + E[ã� ✓

R
n�1 � qn�1|�(ṽ � pn�1, y1, ..., yn�1)]

= qn�1 + E[ã� ✓

R
n�1 � qn�1|�(ṽ � pn�1)].

(1.13)

2 Equilibrium

In this section we give su�cient conditions for a linear Bayesian Nash equilibrium as

in (1.5) through (1.7). Our analysis uses the logic of Foster and Viswanathan (1996),

which we extend to allow for a trading constraint. Their approach solves the “fore-

casting the forecasts of others” problem when showing deviations from equilibrium

strategies are suboptimal. Appendix A presents the analysis in greater detail.

To begin, consider a set of possible candidate values for the equilibrium constants

�n, µn, rn, sn, �
R
n ,↵

R
n , �

I
n, n = 1, . . . , N,

(2.1)

with

�

R
N = 1, ↵

R
N = 0. (2.2)

The restrictions in (2.2) at date N follow because the rebalancer must achieve his

target ã after his last round of trade. Given a set of candidate constants (2.1)-(2.2),

we define a system of “hat” price and order flow processes

�✓̂

I
n := �

I
n(ṽ � p̂n�1) ✓̂

I
0 := 0, (2.3)

�✓̂

R
n := �

R
n (ã� ✓̂

R
n�1) + ↵

R
n q̂n�1, ✓̂

R
0 := 0, (2.4)

ŷn := �✓̂

I
n +�✓̂

R
n +�wn, ŷ0 := 0, (2.5)

�p̂n := �nŷn + µnq̂n�1, p̂0 := 0, (2.6)

�q̂n := rnŷn + snq̂n�1, q̂0 := 0, (2.7)

which denote the processes that agents conjecture that other agents believe describe

the equilibrium. In equilibrium, conjectured beliefs must, of course, be correct in that

15The first equality in (1.13) follows from qn�1, pn�1 2 �(y1, ..., yn�1). The second equality follows
from independence between ṽ� pn�1 and y1, ..., yn�1 and between ã� ✓Rn�1 � qn�1 and y1, ..., yn�1.
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pn = p̂n (the price process is the conjectured price process), ✓Rn = ✓̂

R
n (the rebalancer’s

orders follow the conjectured strategy), etc. The conjectured processes (2.3)-(2.7)

make problems (1.3) and (1.4) analytically tractable in that both the hedge fund’s

problem and the rebalancer’s problem can be described by low dimensional state

processes (see 2.22 and 2.29 below).

The conjectured system (�✓̂

I
n,�✓̂

R
n , ŷn,�p̂n,�q̂n) is fully specified (autonomous)

by the coe�cients (2.1). Given the zero-mean and joint normality of ṽ, ã, and w, the

conjectured system (2.3)-(2.7) is zero-mean and jointly normal. The variances and

covariance for the conjectured dynamics are denoted16

⌃(1)
n := V

⇥
ã� ✓̂

R
n � q̂n

⇤
, (2.8)

⌃(2)
n := V[ṽ � p̂n

⇤
, (2.9)

⌃(3)
n := E

⇥�
ã� ✓̂

R
n � q̂n

�
(ṽ � p̂n)

⇤
. (2.10)

These moments are “post-trade” at time n in that they reflect trading up-through

and including the time n order flow yn. In other words, they are inputs for trading

decisions and pricing in round n + 1. The initial variances and covariance at n = 0

are exogenously given by

⌃(1)
0 = �

2
ã, ⌃(2)

0 = �

2
ṽ , ⌃(3)

0 = ⇢�ã�ṽ. (2.11)

In equilibrium, the constants (2.1) must satisfy certain consistency restrictions

which we explain in two steps:

Step 1: The first set of restrictions on the coe�cients (�n, µn, sn, rn)Nn=1 is that in

equilibrium p̂n and q̂n must be consistent with Bayesian updating. In particular,

for the conjectured prices p̂n to be conditional expectations E[ṽ|�(ŷ1, . . . , ŷn)] for the
conjectured system, the same logic as for the equilibrium prices pn in (1.10), implies

�p̂n = �n

�
ŷn � E[ŷn|�(ŷ1, ..., ŷn�1)]

�

= �n

�
ŷn � (↵R

n + �

R
n )q̂n�1

�
,

(2.12)

16We note that ⌃(2)
n must be non-increasing over time (as in Kyle 1985) but ⌃(1)

n might not be.
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for n = 1, ..., N where �n equals the projection coe�cient

Cov(ṽ � p̂n�1, ŷn � E[ŷn|�(ŷ1, ..., ŷn�1)])

V(yn � E[ŷn|�(ŷ1, ..., ŷn�1)])
. (2.13)

This imposes restrictions on the coe�cients of the price process in terms of the hedge

fund and rebalancer strategy coe�cients. A similar logic gives restrictions for the q̂n

process to equal the conditional expectation E[ã � ✓̂

R
n |�(ŷ1, . . . , ŷn)]. These calcula-

tions lead to four restrictions on the state variable and strategy constants in a linear

Bayesian Nash equilibrium for n = 1, ..., N (see the proof of Lemma A.1 in Appendix

A.1):

�n =
�

I
n⌃

(2)
n�1 + �

R
n⌃

(3)
n�1

(�I
n)

2⌃(2)
n�1 + (�R

n )
2⌃(1)

n�1 + 2�I
n�

R
n⌃

(3)
n�1 + �

2
w�

, (2.14)

rn =
(1� �

R
n )

�
�

I
n⌃

(3)
n�1 + �

R
n⌃

(1)
n�1

�

(�I
n)

2⌃(2)
n�1 + (�R

n )
2⌃(1)

n�1 + 2�I
n�

R
n⌃

(3)
n�1 + �

2
w�

, (2.15)

µn = ��n(↵
R
n + �

R
n ), (2.16)

sn = �(1 + rn)(↵
R
n + �

R
n ). (2.17)

The conditional variances and covariance in (2.8)-(2.10) are computed recursively as

⌃(1)
n = (1� �

R
n )

�
(1� �

R
n � rn�

R
n )⌃

(1)
n�1 � rn�

I
n⌃

(3)
n�1

�
, (2.18)

⌃(2)
n = (1� �n�

I
n)⌃

(2)
n�1 � �n�

R
n⌃

(3)
n�1, (2.19)

⌃(3)
n = (1� �

R
n )

�
(1� �n�

I
n)⌃

(3)
n�1 � �n�

R
n⌃

(1)
n�1

�
. (2.20)

Note the “block” structure here: The values of the updating coe�cients �n and rn just

depend on the strategy coe�cients �R
n and �

I
n at date n and the incoming variances

and covariance from time n�1 (along with the exogenous noise trading variance �2
w).

The post-trade variances and covariance ⌃(1)
n , ⌃(2)

n , and ⌃(3)
n at time n just depend

on the updating coe�cients �n and rn at time n, the strategy coe�cients at time n,

and the prior variances and covariance from time n� 1. Lastly, µn and sn depend on

�n and µn and the rebalancer’s strategy coe�cients (�R
n ,↵

R
n ).

Step 2: The second set of restrictions on the price and order flow coe�cients is

that (�n, µn, sn, rn)Nn=1 must be consistent with optimal trading strategies for the

13



rebalancer and the hedge fund.

Consider first the hedge fund at a generic time n. For a conjectured strategy ✓̂

I

to be the hedge fund’s equilibrium strategy, deviations from ✓̂

I cannot be profitable.

Proving this requires allowing for the e↵ects of possible past suboptimal play. As

in Foster and Viswanathan (1996), the hedge fund not only knows the final stock

value ṽ, but also the extent to which the actual prices, quantity expectations, and

rebalancer’s positions (i.e., pn, qn, and ✓

R
n in 1.10, 1.7, and 1.5 given its actual orders

�✓

I
1, . . . ,�✓

I
n) deviate from their conjectured values (i.e., p̂n, q̂n, and ✓̂

R
n from 2.6,

2.7, and 2.4 given the conjectured orders �✓̂

I
1, . . . ,�✓̂

I
n in 2.3). Hence, the “un-

hatted” processes depend on actual orders whereas the conjectured “hat” processes

only depend on conjectured orders. When the rebalancer’s strategy is fixed by (1.5),

it is characterized by the two sequences of coe�cients �

R
1 , . . . , �

R
N and ↵

R
1 , . . . ,↵

R
N .

However, even though the rebalancer’s strategy is fixed, its realizations are subject to

the hedge fund’s choice of ✓I because the aggregate order flow a↵ects the rebalancer’s

orders. Similar statements apply to the prices pn and the latent trading demand

expectations qn.

A natural set of possible state variables to consider for the hedge fund’s problem

in (1.3) are:

ṽ � p̂n, q̂n, ✓̂

I
n � ✓

I
n, ✓̂

R
n � ✓

R
n , q̂n � qn, p̂n � pn. (2.21)

The first two quantities in (2.21) describe market pricing errors (given the hedge

fund’s private valuation information) and the predicted future latent rebalancer trad-

ing demand (given market information) in the conjectured equilibrium. The next

four quantities describe the hedge fund’s private information about its own past or-

der submissions and the extent to which they induced deviations in the rebalancer’s

holdings, the market expectations about future latent trading demand, and prices in

the conjectured equilibrium. However, the state space for the hedge fund can be sim-

plified, because some of these state variables only matter in combination for the hedge

fund’s optimization problem. Appendix A shows that the following two composite

state variables are su�cient for the hedge fund’s value function:

X

(1)
n := ṽ � pn, X

(2)
n := (✓̂Rn � ✓

R
n ) + (q̂n � qn) +

⌃
(3)
n

⌃
(2)
n

�
ṽ � p̂n

�
, n = 0, ..., N. (2.22)

From a technical point of view, this is a substantial reduction from the six state
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variables in (2.21). Two seems likely to be the minimum number of state variables

necessary for the hedge fund’s problem. Lemma A.2 in Appendix A ensures that

the X

(1)
n and X

(2)
n processes are observable for the hedge fund. In equilibrium, with

pn = p̂n, qn = q̂n, and ✓

R
n = ✓̂

R
n , it follows from (2.22) that

X

(2)
n = ⌃

(3)
n

⌃
(2)
n
X

(1)
n , n = 0, 1..., N. (2.23)

Thus, on the equilibrium path, the hedge fund’s state space reduces to just ṽ � pn,

which is consistent with the form of its equilibrium order in (1.6).

Lemma A.2 in Appendix A shows that the hedge fund’s value function for n =

0, 1, ..., N has the quadratic form

max
�✓I

k
2�(ṽ,y1,...,yk�1)

n+1kN

E
h NX

k=n+1

(ṽ � pk)�✓

I
k

����(ṽ, y1, ..., yn)
i

= I

(0)
n + I

(1,1)
n (X(1)

n )2 + I

(1,2)
n X

(1)
n X

(2)
n + I

(2,2)
n (X(2)

n )2,

(2.24)

where I(0)n , I

(1,1)
n , I

(1,2)
n , and I

(2,2)
n are constants. Lemma A.2 also shows that the hedge

fund’s problem (2.24) is quadratic in its orders �✓

I
n. The first-order-condition for

(2.24) gives the hedge fund’s optimal orders:

�✓

I
n = �

(1)
n X

(1)
n�1 + �

(2)
n X

(2)
n�1, n = 1, ..., N,

(2.25)

where �(1)
n and �

(2)
n are functions of the hedge fund value function coe�cients, and the

parameters of the conjectured price, latent trading demand and rebalancer strategy

processes given in (A.10) and (A.11) in Appendix A. The associated second-order

condition for the hedge fund’s optimal strategy is

I

(2,2)
n r

2
n + I

(1,2)
n rn�n + I

(1,1)
n �

2
n < �n, n = 1..., N. (2.26)

By inserting the hedge fund’s candidate strategy (2.25) and (A.10)-(A.11) into the

expectation in (2.24), we can determine the hedge fund’s value function coe�cients re-

cursively. Appendix A computes the expectation in equation (A.8), and the resulting

recursions are in equations (A.22)-(A.24).

By equating the coe�cients in (2.25) with (1.6) and using the equilibrium condi-
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tion (2.23), we get the following restriction on the hedge fund’s strategy coe�cient

�

I
n = �

(1)
n + �

(2)
n

⌃
(3)
n�1

⌃
(2)
n�1

, n = 1..., N. (2.27)

For fixed ⌃(1)
n ,⌃(2)

n , and ⌃(3)
n , we can use the linear equations (2.18)-(2.20) to express

⌃(1)
n�1,⌃

(2)
n�1, and ⌃(3)

n�1 in terms of rn,�n, �
I
n, �

R
n . Equations (A.10)-(A.11) and (2.14)-

(2.15) can then be used to see that (2.27) is a fifth–degree polynomial in (�R
n , �

I
n)

whenever ⌃(i)
n , i = 1, 2, 3, and I

(i,j)
n , i = 1, 2 and i  j  2, are fixed.

We next turn to the rebalancer’s problem. Again, it would be natural to consider

six possible state variables for the rebalancer’s problem in (1.4) :

ã� ✓̂

R
n , q̂n, ✓̂

R
n � ✓

R
n , ✓̂

I
n � ✓

I
n, q̂n � qn, p̂n � pn. (2.28)

The first two quantities in (2.28) describe the rebalancer’s latent trading demand

(give his private information about his target and past orders) and the market maker

prediction of his future latent trading demand (given public order flow information) in

a conjectured equilibrium. The next four quantities describe the rebalancer’s private

information about its own past orders and how they caused the hedge fund’s hold-

ings, the market’s latent trading demand predication, and prices to deviate from the

conjectured equilibrium. However, the rebalancer’s state space can also be simplified.

Just three composite state variable are su�cient for the rebalancer’s value function:

Y

(1)
n := ã� ✓

R
n , Y

(2)
n := (p̂n � pn) +

⌃
(3)
n

⌃
(1)
n
(ã� ✓̂

R
n � q̂n), Y

(3)
n := qn, n = 0, 1, ..., N.

(2.29)

Lemma A.4 in Appendix A ensures that these processes are observable for the rebal-

ancer. In equilibrium, with pn = p̂n, qn = q̂n, and ✓

I
n = ✓̂

I
n, it follows from (2.29)

that

Y

(2)
n = ⌃

(3)
n

⌃
(1)
n
(Y (1)

n � Y

(3)
n ), n = 1, ..., N. (2.30)

Thus, on the equilibrium path, the state space for the rebalancer at time n reduces

to just two state variables, ã � ✓

R
n and qn, which is consistent with (1.5). When the

hedge fund’s strategy is fixed as in (1.6), Lemma A.4 in Appendix A shows that the
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rebalancer’s value function is quadratic in the rebalancer state variables

max
�✓R

k
2�(ã,y1,...,yk�1)

n+1kN�1

� E
h NX

k=n+1

(ã� ✓

R
k�1)�pk

����(ã, y1, ..., yn)
i

= L

(0)
n +

X

1ij3

L

(i,j)
n Y

(i)
n Y

(j)
n ,

(2.31)

where L

(0)
n , ..., L

(3,3)
n are constants. Lemma A.4 also ensures that the rebalancer’s

problem (2.31) is quadratic in his orders�✓

R
n . The corresponding first-order-condition

gives the rebalancer’s optimal orders:

�✓

R
n = �

(1)
n Y

(1)
n�1 + �

(2)
n Y

(2)
n�1 + �

(3)
n Y

(3)
n�1, n = 1, ..., N,

(2.32)

where �

(1)
n , �(2)n , and �

(3)
n are functions of the rebalancer’s value function coe�cients,

and the parameters of the conjectured price, latent trading demand and hedge fund’s

strategy processes given in (A.19)–(A.21) in Appendix A. The associated second-

order condition for the rebalancer’s optimal strategy is

L

(1,1)
n + L

(3,3)
n r

2
n + L

(1,2)
n �n + L

(2,2)
n �

2
n < L

(1,3)
n rn + L

(2,3)
n rn�n, n = 1, ..., N. (2.33)

Similar to the hedge fund’s problem, by inserting the rebalancer’s candidate strategy

(2.32) and (A.19)-(A.21) into the expectation in (2.31), we can find the rebalancer’s

value function coe�cients recursively (see equations (A.25)-(A.31) in Appendix A.5).

By equating the coe�cients in (2.32) with (1.5) and using the equilibrium condi-

tion (2.30), we get two restrictions:

�

R
n = �

(1)
n + �

(2)
n

⌃
(3)
n�1

⌃
(1)
n�1

, ↵

R
n = �

(3)
n � �

(2)
n

⌃
(3)
n�1

⌃
(1)
n�1

, n = 1, ..., N. (2.34)

Similarly to (2.27), the first equation in (2.34) is a fifth–degree polynomial in (�R
n , �

I
n)

whenever ⌃(i)
n , i = 1, 2, 3, and L

(i,j)
n , i = 1, 2, 3 and i  j  3, are fixed. The second

equation in (2.34) is a linear equation in ↵

R
n once all of the other parameters are

determined.

Our main theoretical result is the following:

Theorem 2.1. Consider constants (2.1) satisfying (2.2). Given the initial variances

and covariance in (2.11), these constants describe a linear Bayesian Nash equilibrium

17



in the form (1.5)-(1.7), and (1.10) if, for all n, the following restrictions hold: (i)

The pricing and latent trading prediction coe�cient relations in (2.14)-(2.17) hold

where ⌃(1)
n�1,⌃

(2)
n�1, and ⌃(3)

n�1 are computed recursively using (2.18)-(2.20). (ii) The

equilibrium conditions (2.27) and (2.34) are satisfied with the second-order-conditions

(2.26) and (2.33) holding where the value function coe�cients are computed as follows:

First define the constants

I

(1,1)
N := ... := I

(2,2)
N := L

(1,1)
N := ... := L

(3,3)
N := 0,

and then define the value function coe�cients

(I(i,j)n )1ij2, (L
(i,j)
n )1ij3, n = 1, ..., N � 1, (2.35)

via the recursions (A.22)-(A.24) and (A.25)-(A.31). In this case we have

rN = 0, µN = ��N , sN = �1, �

I
N =

� 1

2�N
�

⌃(3)
N�1

2⌃(2)
N�1

�
, �N > 0. (2.36)

Theorem 2.1 establishes su�cient conditions for a linear equilibrium. It extends

Proposition 1 in Foster and Viswanathan (1996) to allow for an investor with a trading

constraint. As in most discrete-time Kyle models, including Foster and Viswanathan

(1996), we do not have analytic expressions for the equilibrium. Actual equilibria

must be computed numerically. Appendix A.6 describes our numerical algorithm.

3 Numerical results

Our analysis in this section investigates two quantitative questions: What do dynamic

rebalancing trading strategies look like in our market? And what are the equilibrium

e↵ects of the rebalancing constraint? To answer these questions, we conduct a variety

of numerical experiments. Our baseline specification has N = 10 rounds of trading,

the variance of the terminal stock value ṽ is normalized to �

2
ṽ = 1, the total variance

of the Brownian motion noise trading order flow over the N periods is fixed at �

2
w

= 4, the variance of the trading target ã is �

2
ã = 1, and the correlation between

the trading target ã and the terminal stock value ṽ is ⇢ = 0 (i.e., ṽ and ã are ex

ante independent). Given the prevalence of order-splitting in real-world markets,
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we investigate dynamic rebalancing in markets in which rebalancing is large: A one

standard deviation rebalancer target in our baseline calibration is one half of the

standard deviation of the cumulative daily noise trader order imbalance. In our

analysis, we vary the rebalancing target variance �

2
ã and the informativeness of the

target ⇢.

We assess the impact of strategic rebalancing by comparing our model with two

alternative models. For ⇢ = 0, we compare our equilibrium with Kyle (1985). For

⇢ > 0, we compare our model with a variant of the Foster and Viswanathan (1994)

model which we call the modified FV model. In the modified FV model, one investor

has superior information in that she knows the terminal security value ṽ, while a

less-informed investor receives a noisy signal ã which has a correlation ⇢ > 0 with

ṽ.17 The variable ã in the modified FV model is a noisy signal about the stock’s

terminal value ṽ with the same distribution as the target ã in our rebalancing model.

In other words, ã in the modified FV model is just payo↵ information (and not a

rebalancing constraint). The only di↵erence between the modified FV model and the

original Foster and Viswanathan (1994) model is that the better-informed investor

in the modified FV does not know the less-informed investor’s information (i.e., in

Foster and Viswanathan 1994 the better-informed investor knows both ṽ and ã).

Hence, our strategic rebalancing model and the modified FV model have identical

information structures. Comparing the equilibria in our model and the modified FV

model identifies the e↵ect of the rebalancing constraint when ⇢ > 0. The modified

FV model is described in more detail in Appendix B and in the Internet Appendix.

3.1 Dynamic rebalancing

The rebalancer’s orders are described by the strategy coe�cients �R
n and ↵

R
n . Figure 1

shows trajectories for these strategy coe�cients. We use the decomposition in (1.11)

to interpret them. The fact that �R
n is positive means that the rebalancer trades in the

direction of his private information ã�✓

R
n�1�qn�1. One reason for this is mechanical:

The larger ã is relative to ✓

R
n�1 (given qn�1), the more the rebalancer must trade

to achieve his target compared to the market makers’ expectation of his remaining

trading demand. The second reason is informational: The smaller ✓

R
n�1 is relative

to qn�1 (given ã), the less the rebalancer has actually bought relative to the market

17The modified FV model reduces to the Kyle (1985) model when ⇢ = 0 since then the less-
informed investor has no private information and, thus, in equilibrium does not trade.
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makers’ expectation, which, in turn, implies that, given the prior observed aggregate

order flows, the hedge fund has bought more, in expectation, than the market makers’

realize, which is informative about the pricing error ṽ � pn. Given this information,

the rebalancer buys more/sells less stock at times n < N . Next, consider the sunshine

trading component (↵R
n +�

R
n )qn�1 of his order. The sum ↵

R
n +�

R
n is positive but small

for most of the day, which means that the rebalancer only trades a relatively small

fraction of his expected latent trading gap qn�1 over time until close to time N .

Figure 1: Plots of the rebalancer’s strategy coe�cients (↵R
n )

N
n=1 (below the x-axis)

and (�R
n )

N
n=1 (above the x-axis) for n = 1, 2, ..., 10. The parameters are �

2
ṽ := 1,

�

2
w := 4, N := 10, �2

ã := 1 (right only), and ⇢ := 0 (left only).
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A: �2
ã = 0.48 (��), �2

ã = 1 (� ·�), B: ⇢ = 0 (��), ⇢ = 0.25 (� ·�),
�

2
ã = 3.7 (� · ·�). ⇢ = 0.47 (� · ·�).

Since market maker expectation qn of the remaining latent rebalancing demand

in (1.11) is an endogenous process, we further decompose the rebalancer’s orders as

linear functions of the underlying exogenous random variables — the rebalancing

target ã, the terminal stock payo↵ ṽ, and noise trader orders �wj— in the market:

�✓

R
n = A

R
n ã+B

R
n ṽ +

X

j=1,...n�1

c

R
n,j�wj. (3.1)

This decomposition follows from the joint linearity of prices, orders, and the qn pro-

cesses. The dependence on ṽ and the noise trader orders �wj comes through the

qn process and its dependence on lagged aggregate orders. The dependence on the

target ã is both direct and indirect through the lagged ✓

R
n�1 and qn�1 terms in (1.11).

This linear decomposition implies that part of the rebalancer’s orders depends deter-
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ministically on the target ã, but that — because of endogenous learning and sunshine

trading — a portion is random, after controlling for ã, due to the impact of ṽ and

the noise trader orders on the aggregate orders and, thus, on the qn process.

Figure 2A shows the linear decomposition coe�cients for the rebalancer orders

over time for our baseline parametrization. One factor a↵ecting these intertempo-

ral patterns is the terminal rebalancing constraint (✓RN = ã), which, by construc-

tion, requires
P

n=1,...N A

R
n = 1,

P
n=1,...N B

R
n = 0, and

P
n=j+1,...N c

R
n,j = 0 for

j = 1, . . . , N � 1. Quantitatively, the target ã is clearly the dominant driver of

the rebalancer’s orders. Perhaps surprisingly, the rebalancer decomposition coe�-

cient on ṽ is initially negative at time 2. The intuition can be explained using (1.11).

Holding everything else fixed, larger values of ṽ (which are not directly observed by

the rebalancer) imply larger informed trader orders at time 1, which increases the

aggregate order flow y1 (which is observable but which the rebalancer cannot distin-

guish from increased buying by the noise traders). This increases q1 (i.e., increased

buying at time 1 makes market makers predict more buying by the rebalancer over

the rest of the day). This makes the ã � ✓

R
1 � q1 term smaller in (1.11). In words,

when ṽ is bigger, the rebalancer knows that higher future rebalancer buying predicted

by market makers in this case is, on average, inflated and, thus, that prices will tend

to fall when subsequent aggregate order flows are less than expected. This leads the

rebalancer to buy less at time 2, as indicated by the positive coe�cient �R
2 (see Figure

1) and the minus sign in front of qn�1 in the second (informational) term in (1.11).

A complication here is that higher values of ṽ have a positive impact on the sunshine

trading term (↵R
2 + �

R
2 )q1 given that ↵R

2 + �

R
2 > 0. However, the net e↵ect of ṽ via

q1 on the rebalancer’s order can be negative, as shown by this example, given that

↵

R
2 < 0 (see Figure 1 again). Later in the day, the sign of the coe�cient on ṽ switches

since at some point the rebalancer must start unwinding speculative positions given

the terminal rebalancing constraint.

As discussed in Section 1 the rebalancer’s trading strategy coe�cients ↵

R
n and

�

R
n reflect the combined e↵ects of a variety of economic considerations. Our goal in

the rest of this section is to disentangle these various economic considerations and

to assess their relative quantitative importance for trading by the rebalancer. In this

discussion, we distinguish between the deterministic component of the rebalancer’s

orders that depends on the target ã and an adaptive component that depends on

fluctuations in the realized aggregate order flow history over the trading day.

21



Figure 2: Plots of coe�cients in the linear decompositions for the rebalancer orders
in (3.1) and the informed trader orders in (3.4). The top figures show the coe�cients
for ã (—) and ṽ (- -), and the lower figures show the coe�cients for �w1 (—), �w3

(- -), �w5 (� ·�), and �w7 (� · ·�). The parameters are N := 10, �2
w := 4, �2

ṽ := 1,
�

2
ã = 1, and ⇢ := 0.

A: Coe�cients in �✓

R
n ’s decomposition. B: Coe�cients in �✓

I
n’s decomposition.

Figure 3 shows the ratio of the rebalancer’s ex ante expected orders relative to his

target ã 6= 0 over the day

E[�✓

R
n |�(ã)]
ã

= A

R
n +B

R
n

E[ṽ|�(ã)]
ã

= A

R
n +B

R
n ⇢

�ṽ

�ã
. (3.2)

In (3.2) the expectations are taken over the terminal stock price ṽ and the noise

trader orders �w. This ratio does not depend on the realized target ã. The second

term in (3.2) is zero if ⇢ = 0. Figure 3A shows that — ignoring adaptive responses

in the rebalancer’s orders to realtime fluctuations in the aggregate order flows over

the day — the trading target ã induces a U–shaped pattern in rebalancing trading
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volume over the day when ⇢ = 0. DJK (2014) obtain a similar result in their model

with short–lived information for the informed investor and deterministic trading for

the rebalancer. Thus, our results show that the U -shaped pattern of rebalancing

trading does not depend on short-lived information.18 Figure 3B shows that the

U -shape skews toward more trading earlier in the day when ⇢ > 0 because of the

incentive to trade on the valuation information in ã before it is impounded in prices

later in the day. Figure 3B also shows the intraday patterns of expected trades for

the less-informed investor in the modified FV model for two ⇢ values (the solid blue

and dashed yellow lines). Comparing the two models, the intraday pattern for our

rebalancer is very di↵erent from the less-informed investor in the modified FV model.

Because of the rebalancing constraint, the rebalancer orders are larger, and they have

a big upturn at the end of the day.

Figure 3: Plots of the ratio E[�✓

R
n |�(ã)]/ã of expected rebalancer orders relative to

his target conditional on a target ã 6= 0 for n = 1, 2, ..., 10. The parameters are
�

2
ṽ := 1, �2

w := 4, N := 10, �2
ã := 1 (right only), and ⇢ := 0 (left only).

A: �2
ã = 0.48 (—–), �2

ã = 1 (��), B: ⇢ = 0.25 (—)[FV], ⇢ = 0.47 (��)[FV],
�

2
ã = 3.7 (� ·�). ⇢ = 0.25 (� ·�), ⇢ = 0.47 (� · ·�).

The deterministic component in the rebalancer’s orders given the target ã includes

predictable sunshine trading. Figure 4A shows the ratio of the rebalancer’s expected

18The literature on optimal order execution includes many models that also produce U -shaped op-
timal strategies, see, e.g., Predoiu, Shaikhet, and Shreve (2011) and the references therein. However,
sunshine trading in that literature stems from exogenously specified liquidity resilience and replen-
ishment dynamics. In contrast, liquidity is endogenously determined in our equilibrium model.
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sunshine trading orders relative to his expected total orders over time given ã 6= 0

E[E[�✓

R
n |�(y1, . . . , yn�1)]|�(ã)]
E[�✓

R
n |�(ã)]

=
(↵R

n + �

R
n )E[qn�1|�(ã)]

E[�✓

R
n |�(ã)]

. (3.3)

A sunshine component is present but is not large (less than 5% for �2
ã = 1) in Figure

4A. Thus, quantitatively, only a small part of the rebalancer’s orders benefit from

the zero-price-impact of sunshine trading orders when ⇢ = 0.19 Thus, in our baseline

case, most of the deterministic part of the reblancer’s orders appears to be due to

intertemporal smoothing. However, sunshine trading is more important when ⇢ > 0,

as shown in Figure 4B.

Figure 4: Plots of the ratio of the expected sunshine trading portion of the rebalancer’s
orders relative to his expected orders from (3.3) given a target ã 6= 0. The parameters
are �

2
ṽ := 1, �2

w := 4, N := 10, �2
ã := 1 (right only), and ⇢ := 0 (left only).
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A: �2
ã = 0.48 (� ·�), �2

ã = 1 (��), B: ⇢ = 0.25 (—–), ⇢ = 0.47 (��).
�

2
ã = 3.7 (—–).

The rebalancer orders also have a component that responds adaptively to realtime

fluctuations in the aggregate order flow over the trading day. This randomness in the

rebalancer’s orders, after controlling for the target ã, occurs because of the qn term in

(1.11), which leads, in turn, to the two terms involving the terminal payo↵ ṽ and the

history of lagged noise orders �wj in (3.1). This randomness is due to speculative

trading by the rebalancer (given his endogenous learning through trading over time)

and as an adaptive sunshine trading response to fluctuations in the market maker’s

expectations qn. Figures 5A-B show that the standard deviation of rebalancer orders,

19In the modified FV model, with no trading constraint, there is no sunshine trading at all.
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after conditioning on the target ã, also has a U -shaped intraday pattern. Figure 5C

shows 10 simulated paths of the rebalancer’s order flows over time. In this example,

the realized stock value ṽ is 1, and the realized trading target ã is 0, but the noise

trader order paths are random. Along these paths, the rebalancer buys/sells more

than his trading target ã at early times (n > 1) and then unwinds his position later to

achieve his trading target. This is not manipulation. Rather, the rebalancer’s orders

reflect a combination of informed trading motives (about ṽ) and the trading constraint

ã. The rebalancer does not trade at time 1 because, given ã = 0, he does not need

to rebalance, and because, initially, he does not have any stock valuation information

given ⇢ = 0. However, at time 2 the rebalancer trades based on whether — given the

stock valuation information he gleans from filtering the order flow y1 better than the

market makers – he infers the stock is over– or under–valued. Eventually, however,

he must unwind these earlier positions in order to achieve his realized trading target

✓

R
N = ã = 0 at the end of the day.20 The dispersion in the paths is consistent with the

trajectory of the rebalancer order flow standard deviation. Paths for non-zero targets

ã involve shifting the means of these paths from zero to the appropriate deterministic

order component path given ã.21 This is illustrated in Figure 5D.

One further factor that reduces the rebalancer’s trading costs is the fact that his

orders tend to become negatively correlated with the hedge fund’s orders over time.

Figure 6A shows that, if ⇢ = 0, then the correlation between the hedge fund’s orders

and the rebalancer’s orders is negative at times n > 1. This negative correlation is

mutually beneficial for both the rebalancer and the hedge fund. By trading in opposite

directions (in expectation), they symbiotically provide liquidity to each other with a

reduced price impact. In contrast, Figure 6B shows that the correlation of the better-

informed and less-informed investors orders is always non-negative in the modified

FV model.22

The correlation between the rebalancer’s and the informed hedge fund’s orders

20This is another example of a situation in which di↵erent traders acquire information at di↵erent
times and/or have to unwind positions in advance of definitive public announcements. See also
Foucault, Hombert, and Rosu (2016).

21When the realized target ã is large, the rebalancer’s orders will all tend to be in the same direction
over time (e.g., a large positive target ã will be associated with a series of buy orders). Randomness
in his orders due to the qn process (connected with sunshine trading and the rebalancer’s endogenous
learning about the stock’s value) just causes the rebalancer to speed up or slow down his trading
relative to his expected orders given his target.

22This is because the better and less-informed trader orders both load positively on the common
information reflected in the less-informed signal in the modified FV model.
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Figure 5: Plots A and B show the conditional standard deviation of the rebalancer’s
orders �✓

R
n given a target ã. Plots C and D show 10 sample paths of �✓

R
n for two

di↵erent target realizations. The parameters are �2
ṽ := 1, �2

w := 4, and N := 10, with
�

2
ã := 1 (B, C, and D only), and ⇢ := 0 (A, C, and D only).

A: �2
ã = 0.48 (—–), �2

ã = 1 (��), B: ⇢ = 0.25 (—)[FV], ⇢ = 0.47 (��)[FV],
�

2
ã = 3.7 (� ·�). ⇢ = 0.25 (� ·�), ⇢ = 0.47 (� · ·�).

2 4 6 8 10
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-0.01
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C: 10 sample paths of �✓

R
n D: 10 sample paths of �✓

R
n

for the realizations ã = 0 and ṽ = 1. for the realizations ã = 1 and ṽ = 1.

can be understood using the linear order decompositions. In particular, Figure 2B

shows the linear decomposition coe�cients for the informed hedge fund23

�✓

I
n = A

I
nã+B

I
nṽ +

X

j=1,...n�1

c

I
n,j�wj. (3.4)

As expected, the hedge fund orders load positively on ṽ and negatively on ã and the

23We discuss the hedge fund’s trading strategy in more detail later in this section.
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Figure 6: Plots of corr(�✓

I
n,�✓

R
n ) for n = 1, 2, ..., 10 (unconditional) and correlation

decomposition components. The parameters are �

2
ṽ := 1, �2

w := 4, N := 10, �2
ã := 1

(B and C only), and ⇢ := 0 (A and C only).

A: �2
ã = 0.48 (� ·�), �2

ã = 1 (��), B: ⇢ = 0.25 (—–) [FV], ⇢ = 0.47 (��)[FV],
�

2
ã = 3.7 (—–). ⇢ = 0.25 (� ·�), ⇢ = 0.47 (� · ·�).

C: Correlation components from
ã (—), ṽ (��), noise orders (� ·�).

noise trader orders (since buying by the rebalancer and noise traders both inflate the

stock price). Using the rebalancer and hedge fund linear order decompositions, we can

decompose their order correlations into components due to the two investors’ loadings

on ṽ, ã, and the noise trader orders. Figure 6C shows that a large negative correlation

component due to the target ã accounts for a large part of the negative correlation

between the rebalancer’s and the hedge fund’s orders in Figure 6A in our baseline

calibration. The rebalancer trades in the direction of his target ã while the hedge fund

trades opposite this noise. This mechanism for negative order correlation is di↵erent

from the Bayesian signal correlation mechanism in Foster and Vishwanathan (1996)
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when investors have di↵erent but equally informative noisy signals.

Next, we consider a somewhat di↵erent approach to shed light on the economic

considerations that drive the rebalancer’s orders. This approach takes the equilibrium

pricing rule pn and informed investor trading strategy ✓

I
n as given, and then computes

a number of constrained trading strategies for the rebalancer that ignore various

combinations of the di↵erent economic considerations that determine the rebalancer’s

optimal equilibrium strategy. Specifically, we consider constrained trading strategies

in which the rebalancer

1. Trades just once at time 1 to reach his full target ã.

2. Trades just once to reach his full target ã but optimizes his choice of the time

in which he trades so as to minimize his expected trading cost.

3. Trades determinstically to reach his target ã by splitting his orders equally over

time (i.e., trading the same amount ã/N at each date n).

4. Trades deterministically to reach his target ã but optimizes his orders to mini-

mize his expected trading cost given the time pattern of the equilibrium price

impact coe�cients �n. However, in doing so, he ignores the impact of the

sunshine trading adjustment �(↵R
n + �

R
n )qn�1 in prices in (1.10).

5. Trades deterministically to reach his target ã but optimizes his orders to mini-

mize his expected trading cost taking into account both the time pattern of the

equilibrium price impact coe�cients and the sunshine trading adjustment.

These constrained strategies are o↵-equilibrium deviations that incorporate di↵erent

combinations of the considerations a↵ecting the rebalancer’s equilibrium orders. Any

adaptive trading in response to the realized order flow paths is excluded. Conve-

niently, each of the constrained strategies is linear in the target ã. The orders for

constrained strategies j = 1, . . . , 5 at time n are denoted by x

j
n.

Table 1 measures the distance between the di↵erent constrained strategies and

the equilibrium rebalancer strategy using mean squared errors (MSEs). We average

the squared errors (�✓

R
n � x

j
n)

2 at each date n given a target level ã across di↵erent

simulated values of ṽ and noise trader orders and then sum them across all N dates.

Not surprisingly, the MSEs are large for the single-date constrained strategies, but

they are quite small for the multiperiod constrained strategies. This indicates that
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the rebalancer’s orders in equilibrium are primarily driven by the trading target real-

ization ã and less so by dynamic sunshine trading and endogenous learning about the

asset’s payo↵. Table 2 in the Internet Appendix (Appendix C) reinforces this point

by showing that the expected profit for the rebalancer for constrained strategy 5 is

very close to the equilibrium strategy.

Table 1: MSE for constrained strategies (listed in the paper) relative to the equilib-
rium rebalancer strategy. The parameters are N := 10, �2

w := 4, �2
ṽ := 1, ⇢ := 0 (top

part only), and �

2
ã := 1 (lower part only).

Strategy �

2
ã := 0.48 �

2
ã := 1 �

2
ã := 3.7

1 0.0002 + 0.8972 ã2 0.0005 + 0.9009 ã2 0.0028 + 0.8949 ã2

2 0.0002 + 0.6283 ã2 0.0005 + 0.6203 ã2 0.0028 + 0.6110 ã2

3 0.0002 + 0.0308 ã2 0.0005 + 0.0327 ã2 0.0028 + 0.0369 ã2

4 0.0002 + 0.0001 ã2 0.0005 + 0.0005 ã2 0.0028 + 0.0059 ã2

5 0.0002 0.0005 0.0028

⇢ := 0.24 ⇢ := 0.47 ⇢ := 0.86
1 0.0068 + 0.7631 ã2 0.0298 + 0.7114 ã2 0.2642 + 0.7024 ã2

2 0.0068 + 0.9148 ã2 0.0298 + 0.8581 ã2 0.2642 + 0.9178 ã2

3 0.0068 + 0.0223 ã2 0.0298 + 0.0316 ã2 0.2642 + 0.0539 ã2

4 0.0068 + 0.0009 ã2 0.0298 + 0.0019 ã2 0.2642 + 0.0028 ã2

5 0.0068 0.0298 0.2642

We summarize our analysis as follows: The rebalancer’s orders appear to be driven

primarily by a large deterministic component depending on the realized trading target

ã. Dynamic e↵ects due to learning and sunshine trading due to the aggregate order via

qn are present but quantitatively small. These conclusions follow from the rebalancer’s

large order decomposition loadings on ã (in Figure 2A), the small rebalancer order

standard deviations after conditioning on ã (in Figure 5), and the MSE result that the

rebalancer’s equilibrium orders are close to the optimized deterministic constrained

dynamic strategy 5 (in Table 1). If noise due to the trading target ã is the largest

component of the rebalancer’s orders, then it should also be an important driver of

the equilibrium e↵ects of rebalancing on prices, the informed trader’s orders, and

other market variables.
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3.2 Equilibrium e↵ects

Price dynamics: We first discuss how dynamic rebalancing a↵ects the equilibrium

price dynamics in our market. Figure 7 show trajectories for the price-impact-of-

order-flow parameter �n over time. For comparison, the solid blue line in Figure 7A

is the corresponding price impact in Kyle (1985). In the first round of trading at

time n = 1, rebalancing noise by itself (consistent with 2.14) lowers the value of �1

relative to Kyle (1985). However, in equilibrium, the hedge fund’s trading strategy

also changes. The net e↵ect in this example is that �1 increases relative to Kyle

(1985).24 At later times n > 2, the price impacts are lower than in Kyle. The result

is an S-shaped twist in �n over time. Figure 7B shows similar but somewhat smaller

di↵erences relative to the modified FV model (solid blue and dashed yellow lines)

when ⇢ > 0. The price impact trajectory in our model also di↵ers from DJK (2014)

in which price impacts have an inverted U -shape (see their Figure 1).

Figure 7A shows that the S-shaped twist in �n increases when there is more

trading target volatility �

2
ã. When �

2
ã is high enough, the price impact of order flow

can even be non-monotone over time (see the dashed line corresponding to �

2
ã = 3.7,

which is comparable to the total daily noise trader order variance �

2
w = 4). Figure

7B shows the target/terminal price correlation ⇢ has an aysmetric impact on �n over

time. At early times, �n is increasing in the correlation ⇢, but at later times, �n is

decreasing in ⇢. This is because increasing ⇢ changes some rebalancing trades from

noise into informative order flow.

Figure 8 shows the trajectory of the variance ⌃(2)
n of the market pricing errors

ṽ � pn over time, which measures the quality of price discovery. When ⇢ = 0, more

information is revealed at early times compared to the Kyle model (due to more

aggressive informed trading by the hedge fund, see below), but pricing accuracy is

reduced later in the day. When ⇢ > 0 (so that ã is informative), the trading target

constrains the aggressiveness of the rebalancer’s orders relative to the purely informa-

tional unconstrained orders of the less informed investor in the modified FV model.

This constraint, depending on the parameterization, can cause the rebalancer’s or-

ders to be larger or smaller than in the modified FV model. For example, in the

case of ⇢ = 0.25 (when the information content of ã is relatively low and the less

informed investor would not trade much in the modified FV model), the rebalancing

24We see in (2.14) that �n is non-monotone in the aggressiveness of informed trading. Thus, there
may also be parameterizations for which our model has an inverted U -shape for �n.

30



Figure 7: Plots of price impacts (�n)Nn=1 for the parameters �2
ṽ := 1, �2

w := 4, N := 10,
�

2
ã := 1 (right only), and ⇢ := 0 (left only).

2 4 6 8 10
0.30

0.35

0.40

0.45

0.50

0.55

0.60

A: Kyle (—–), �2
ã = 0.48 (��), B: ⇢ = 0.25 (—–)[FV], ⇢ = 0.47 (��)[FV],

�

2
ã = 1 (� ·�), �2

ã = 3.7 (� · ·�). ⇢ = 0.25 (� ·�), ⇢ = 0.47 (� · ·�).

target volatility �

2
ã = 1 appears to enlarge the rebalancer’s orders. This, in turn,

increases the aggressiveness of the hedge fund’s orders (through the “rat race” e↵ect)

and, thereby, increases price accuracy relative to the modified FV model. However, in

the case of ⇢ = 0.47, the increased information content of ã causes the less informed

investor in the modified FV model to trade more aggressively and the di↵erence in

pricing accuracy between the two models shrinks.

A novel feature of markets with dynamic rebalancing is that expected orders do

not have price impacts (see 1.10). A key variable here is the market makers’ order

flow expectation qn of the reblancer’s latent remaining trading demand ã � ✓

R
n�1.

Figure 9 shows the market makers’ uncertainty ⌃(1)
n = V[ã � ✓

R
n � qn] about the

rebalancer’s remaining latent trading demand. Although a priori ⌃(1)
n does not need

to be monotone over time,25 Figure 9 shows that uncertainty about the remaining

latent trading demand is monotonically decreasing for modest values of ⇢.

Informed investor: Figure 10 shows the hedge fund’s strategy coe�cients �I
n, which

determine how aggressively she trades on her private information ṽ� pn�1 over time.

As in Kyle (1985), the intensity of informed trading in our model increases as time

approaches the terminal time N . This is consistent with the fact that the incentive to

25This is because ✓Rn is a di↵erent random variable at di↵erent times n. However, the conditional
variances of ã are, by definition, non-increasing.
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Figure 8: Plots of the pricing error variances (⌃(2)
n )N�1

n=0 for the parameters �

2
ṽ := 1,

�

2
w := 4, N := 10, �2

ã := 1 (right only), and ⇢ := 0 (left only).

A: Kyle (—–), �2
ã = 0.48 (��), B: ⇢ = 0.25 (—–)[FV], ⇢ = 0.47 (��)[FV],

�

2
ã = 1 (� ·�), �2

ã = 3.7 (� · ·�). ⇢ = 0.25 (� ·�), ⇢ = 0.47 (� · ·�).

Figure 9: Plots of the latent remaining trading demand variances (⌃(1)
n )N�1

n=0 for the
parameters �2

ṽ := 1, �2
w := 4, N := 10, �2

ã := 1 (right only), and ⇢ := 0 (left only).

A: �2
ã = 0.48 (—–), �2

ã = 1 (��), B: ⇢ = 0 (—–), ⇢ = 0.25 (��),
�

2
ã = 3.7 (� ·�). ⇢ = 0.47 (� ·�).

delay trading on information becomes weaker later in the day as the remaining time

available for trading becomes shorter. We also see that as the variance of the trading

target �2
ã increases, the informed investor trades more aggressively at early dates, less

so in the middle, and then slightly more aggressively again towards the end. The

informed trader’s increased initial aggressiveness reflects the fact that there is more

noise (due to the rebalancer’s trading target ã) in which to hide the hedge fund’s
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orders. In addition, if ⇢ > 0, hedge fund trading aggressiveness increases somewhat

due to a race–to–trade competition e↵ect. The apparent size of the changes in �

I
1 —

which are on the order of 10 percent — are visually understated in Figure 10 because

of the vertical scaling (due to the size of �I
10).

Figure 10: Plots of hedge fund strategy coe�cients (�I
n)

N
n=1 for the parameters �2

ṽ := 1,
�

2
w := 4, N := 10, �2

ã := 1 (right only), and ⇢ := 0 (left only).
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ã = 3.7 (� · ·�). ⇢ = 0.25 (� ·�), ⇢ = 0.47 (� · ·�).

Using the linear decomposition for the informed hedge fund’s orders in (3.4),

Figure 11 shows the ratios over the trading day of the hedge fund’s expected orders

conditional on her information about the terminal stock valuation ṽ relative to ṽ for

ṽ 6= 0, averaged over ã and the noise trader paths w. Unlike in the Kyle model (solid

blue line in Figure 11A), our model produces a slight U -shaped trading pattern. Our

hedge fund expects ex ante to trade somewhat more initially and again at the end of

the day. However, the U -shape is not big. Figure 11B shows that the modified FV

model can also produce U -shaped volume for the better-informed trader when ⇢ is

su�ciently large (the dashed yellow line corresponding to ⇢ = 0.47). However, the

U -shape pattern is even larger for the rebalancer.

The informed hedge fund and the rebalancer behave di↵erently in our model. This

can be seen in the di↵erent functional forms of their orders in (1.6) and (1.5) as well as

from the quantitatively di↵erent properties of their orders in our numerical analysis.

For example, the U–shaped patterns in expected trading skew towards more trading

earlier in the day for the rebalancer (consistent with the benefit of subsequent sun-

shine trading) versus later in the day for the informed hedge fund. These di↵erences
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Figure 11: Plots of the ratio E[�✓

I
n|�(ṽ)]/ṽ = A

I
n⇢�ã/�ṽ + B

I
n of the expected hedge

fund orders (conditional on a final stock value ṽ 6= 0) relative to ṽ for n = 1, 2, ..., 10.
The parameters are �

2
ṽ := 1, �2

w := 4, N := 10, �2
ã := 1 (right only) and ⇢ := 0 (left

only).

A: Kyle (—–), �2
ã = 0.48 (��), B: ⇢ = 0.25 (—–)[FV], ⇢ = 0.47 (��)[FV],

�

2
ã = 1 (� ·�), �2

ã = 3.7 (� · ·�). ⇢ = 0.25 (� ·�), ⇢ = 0.47 (� · ·�).

are empirically testable given data about parent and child orders from a cross-section

of heterogenous institutional investors who di↵er in their information and rebalancing

motives. In particular, the predicted relation between parent-child orders for large

index funds is very di↵erent from the parent-child relation for hedge funds. The nu-

merical comparative static results also suggest how rebalancer and informed investor

order submissions should change as parameters of the trading environment change.

Other intraday patterns: Stock markets have a variety of empirical intraday pat-

terns in prices and order flows.26 Our model features several intraday patterns in

addition to those already discussed above.

Figure 12 shows the unconditional standard deviation for the price changes over

time. Price volatility is monotonically increasing in the Kyle model (solid blue line in

Figure 12A), whereas our model produces U -shaped dotted lines (for various target

variances �2
ã). In other words, prices in our model are more volatile at the beginning

and at the end of the trading day relative to the middle of the trading day. In

addition, the U -shape becomes larger when rebalancing volatility is higher. When

⇢ > 0, Figure 12B shows that price volatility is U -shaped in both the modified FV

26Intraday patterns are robust properties of volume and price volatility in equity markets that
were first documented in Wood, McInish, and Ord (1985) and Jain and Joh (1988).
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model (solid blue and dashed yellow lines) and in our model with rebalancing.

Figure 12: Plots of price change standard deviations
p

E[(pn � pn�1)2] for n =
1, 2, ..., 10. The parameters are �

2
ṽ := 1, �2

w := 4, N := 10, �2
ã := 1 (right only),

and ⇢ := 0 (left only).
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A: Kyle (—–), �2
ã = 0.48 (��), B: ⇢ = 0.25 (—–)[FV], ⇢ = 0.47 (��)[FV],

�

2
ã = 1 (� ·�), �2

ã = 3.7 (� · ·�). ⇢ = 0.25 (� ·�), ⇢ = 0.47 (� · ·�).

Figure 13 shows the unconditional autocorrelation of the aggregate order flow over

time for di↵erent values of �2
ã and ⇢. Although the absolute level of autocorrelation

is low, there is a clear U -shaped pattern of higher order flow autocorrelation at the

beginning and the end of the day (when, from Figure 3, the rebalancer trades more)

and with lower autocorrelation during the middle of the day (when the rebalancer

trades less). Somewhat surprisingly, order-flow autocorrelation can be negative in the

middle of the day when the target-information correlation ⇢ is high.27

4 Robustness and empirical implications

Our model has empirical implications for order flow and prices:

27There are many interactions as play here, but part of the intuition for a negative autocorrelation
is as follows: The sign of the autocorrelation depends on the autocovariance cov(yn, yn�1), which
simplifies to (↵R

n + �R
n ) cov(qn�1, yn�1). If ⇢ is high, the rebalancer’s target ã is highly informative,

making the rebalancer want to take large positions. However, if �2
ã is small, the rebalancing constraint

limits his terminal position size. In this case, the rebalancer takes large positions ✓Rn > ã at early
dates but then later must partially unwind these positions. Part of this unwinding is predictable
when yn�1 is large later in the day, which leads to the negative autocovariance.
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Figure 13: Plots of aggregate order flow autocorrelation E[ynyn+1]p
E[y2n]E[y2n+1]

for n = 1, 2, ..., 9.

The parameters are N := 10, �2
w := 4, �2

ṽ := 1, �2
ã := 1 (right only), and ⇢ := 0 (left

only).
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ã = 3.7 (� ·�). ⇢ = 0.47 (� ·�), ⇢ = 0.86 (� · ·�).

1. Predictable order flow (i.e., given public information) should not have a perma-

nent/informational price impact.

2. Autocorrelation of the aggregate order flow should be linked to autocorrelation

in the orders of individual investors. An alternative is cross-autocorrelation

of order submissions across orders submitted by di↵erent investors at di↵erent

times due to front-running or back-running (see Yang and Zhu 2015).

3. Intraday U -shaped patterns in price volatility and volume are increasing in

target volatility �ã.28 This prediction is testable by looking at these intraday

patterns on stocks and days in which rebalancing trading uncertainty is greater

(e.g., days with high mutual fund inflows/outflows). In addition, our model

predicts, given the link between rebalancing and aggregate order flow autocor-

relation, that time-variation in these intraday patterns and aggregate order flow

autocorrelation should be positively correlated. In other words, daily order flow

autocorrelation (estimated using intraday data) can be a proxy to track changes

in rebalancing volatility.

28Order-splitting is certainly not the only cause of U -shaped intraday patterns, since many of the
empirically documented intraday patterns predate the widespread use of order-splitting algorithms.
However, the magnitude of these U -shaped patters should co-vary with rebalancing volatility.
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4. Dynamic trading by informed investors is qualitatively di↵erent from order-

splitting by rebalancers. In particular, rebalancer order flows are autocorrelated,

while informed investor orders are not. This is testable given order data linked to

individual institutions (e.g., using IIORC data). We expect lower trading profits

for institutions submitting more autocorrelated orders (i.e., likely rebalancers),

even after adjusting for transitory price e↵ects.

5. The correlation of orders from profitable (informed) investors and large indexers

(and other less-informed or passive investors) should turn negative over the

trading day. This is testable given investor-level order data (e.g., from the

IIORC).

These predications are mainly about e↵ects of time-variation in the volatility (i.e.,

second moment) of private portfolio rebalancing trading demand. Thus, they dif-

fer from e↵ects of predictable (i.e., first moment) trading demand investigated in

Bessembinder, Carrion, Tuttle, and Venkatarman (2016).

The qualitative properties of our analysis are likely to be robust to relaxing some

of our model’s assumptions. We discuss three here. First, our model assumes a hard

rebalancing constraint. Alternatively, the rebalancing constraint could be soft with a

quadratic cost for deviations from the target, or investors could have a random private

value for the asset that is decreasing in their terminal holdings. In either case, the

rebalancer should still engage in order-splitting to reduce their trading costs. These

alternative rebalancing motives should result in some amount of price elasticity in

the total amount traded by rebalancers. This should increase the importance of the

part of rebalancer orders that responds to changing intraday market conditions (e.g.,

the dependence on the past order flow history via the qn process in our model).

Second, informed investors and rebalancers only use market orders in our model.

In practice, however, order-splitting algorithms also use limit orders (see O’Hara

2015). In addition, limit order flows are also autocorrelated (see Biais, Hillion, and

Spatt 1995). While the mathematics of the dynamic programming problems and find-

ing the rational expectations equilibrium fixed point would be even more complicated,

we still expect rebalancing to result in order flow autocorrlation and for predictable

components of market and limit order flows to have no persistent price impacts.

Third, our market makers are competitive, risk-neutral, and have no order pro-

cessing costs. As a result, prices are martingales in our model. We do not expect
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market-making frictions and transitory price e↵ects to eliminate the informational

causes of order-splitting. However, it would be interesting to investigate empirically

how market frictions and informational causes of order-splitting interact.

5 Conclusion

This paper has explored the equilibrium interactions between dynamic order-splitting

for portfolio rebalancing and price discovery, order flow dynamics and market liquid-

ity. Our paper is the first to investigate these issues with both long-lived information

and dynamic rebalancing given a terminal trading target. We find that while the

rebalancer takes advantage of sunshine trading and endogenous learning, the quanti-

tative impact appears small relative to a deterministic component of order-splitting.

However, strategic rebalancing does not just inject additional trading noise in the

market; rather strategic rebalancing a↵ects the structure of the market equilibrium.

Order flow becomes autocorrelated and liquidity and price discovery dynamics change

because of sunshine trading. In addition, orders from the rebalancer and informed

trader tend to become negatively correlated over time. Because the hedge fund’s and

rebalancer’s orders partially cancel each other, they can supply liquidity to each other

symbioticallty with a reduced price impact.

We have identified a number of testable empirical predictions from our model.

There are many interesting possible extensions for future theory. One possible ex-

tension is to model trading in continuous-time. Another extension is to relax the

assumption that all investors are risk-neutral. For example, it would be natural to

consider exponential utilities with di↵erent coe�cients of absolute risk aversion. Fi-

nally, our model could be extended to include multiple hedge funds and rebalancers.
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A Proofs

A.1 Kalman filtering

Lemma A.1. Consider the conjectured system (2.3)-(2.7) corresponding to arbitrary

coe�cients (�I
n, �

R
n ,↵

R
n )

N
n=1. Whenever (2.14)-(2.17) hold, we have

p̂n = E[ṽ|�(ŷ1, ..., ŷn)], (A.1)

q̂n = E[ã� ✓̂

R
n |�(ŷ1, ..., ŷn)], (A.2)

where p̂ is defined by (2.6) and q̂ is defined by (2.7). Furthermore, the recursions for

the variances and covariance (2.18)-(2.20) hold.

Proof. For n = 1, ..., N , we have the moment definitions in (2.8)-(2.10) where the

starting values are given in (2.11). We then define the process ẑMn as

ẑ

M
n :=ŷn � (↵R

n + �

R
n )q̂n�1

=�

I
n(ṽ � p̂n�1) + �

R
n (ã� ✓̂

R
n�1 � q̂n�1) +�wn.

(A.3)

These Gaussian variables ẑM1 , ẑ

M
2 , ...., ẑ

M
N are mutually independent and satisfy �(ẑM1 ,

..., ẑ

M
n ) = �(ŷ1, ...ŷn). The projection theorem for Gaussian random variables gives

�p̂n =E[ṽ|�(ẑM1 , ..., ẑ

M
n )]� E[ṽ|�(ẑM1 , ..., ẑ

M
n�1)]

=
E[ṽ ẑMn ]

V[ẑMn ]
ẑ

M
n ,

�q̂n =E[ã� ✓̂

R
n |�(ẑM1 , ...ẑ

M
n )]� E[ã� ✓̂

R
n�1|�(ẑM1 , ..., ẑ

M
n�1)]

=E[ã� ✓̂

R
n�1|�(ẑM1 , ...ẑ

M
n )]� E[ã� ✓̂

R
n�1|�(ẑM1 , ..., ẑ

M
n�1)]� E[�✓̂

R
n |�(ẑM1 , ..., ẑ

M
n )]

=
E[(ã� ✓̂

R
n�1)ẑ

M
n ]

V[ẑMn ]
ẑ

M
n � E

⇥
�

R
n (ã� ✓̂

R
n�1 � q̂n�1) + (↵R

n + �

R
n )q̂n�1

��
�(ẑM1 , ..., ẑ

M
n )

⇤

=
E[(ã� ✓̂

R
n�1 � q̂n�1)ẑMn ]

V[ẑMn ]
ẑ

M
n � �

R
n E[ã� ✓̂

R
n�1 � q̂n�1|�(ẑMn )]� (↵R

n + �

R
n )q̂n�1

=(1� �

R
n )

E[(ã� ✓̂

R
n�1 � q̂n�1)ẑMn ]

V[ẑMn ]
ẑ

M
n � (↵R

n + �

R
n )q̂n�1.
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To proceed, we first need to compute

V[ẑMn ] =E
h⇣

�

I
n(ṽ � p̂n�1) + �

R
n (ã� ✓̂

R
n�1 � q̂n�1) +�wn

⌘2i

=(�I
n)

2⌃(2)
n�1 + (�R

n )
2⌃(1)

n�1 + 2�I
n�

R
n⌃

(3)
n�1 + �

2
w�,

E[ṽẑMn ] =E[(ṽ � p̂n�1)ẑ
M
n ]

=E
h
(ṽ � p̂n�1)

⇣
�

I
n(ṽ � p̂n�1) + �

R
n (ã� ✓̂

R
n�1 � q̂n�1) +�wn

⌘i

=�

I
n⌃

(2)
n�1 + �

R
n⌃

(3)
n�1,

E[(ã� ✓̂

R
n�1 � q̂n�1)ẑ

M
n ] =E

h
(ã� ✓̂

R
n�1 � q̂n�1)

⇣
�

I
n(ṽ � p̂n�1) + �

R
n (ã� ✓̂

R
n�1 � q̂n�1) +�wn

⌘i

=�

I
n⌃

(3)
n�1 + �

R
n⌃

(1)
n�1.

Combining these expressions and by matching coe�cients with (2.6) and (2.7), we

find the lemma’s statement equivalent to the restrictions (2.14)-(2.17). Based on

these expressions, the recursion for ⌃(1)
n , n = 1, ..., N , in (2.18) is

⌃(1)
n : = V[ã� ✓̂

R
n � q̂n]

= V[ã� ✓̂

R
n�1 � q̂n�1 ��✓̂

R
n ��q̂n]

= V[ã� ✓̂

R
n�1 � q̂n�1 ��✓̂

R
n � rnŷn � snq̂n�1]

= V
h
ã� ✓̂

R
n�1 � (1 + sn)q̂n�1 � (1 + rn)(�

R
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R
n q̂n�1)

� rn

�
�
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� rn�wn

i
,

= V
h�
1� (1 + rn)�

R
n

�
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� rn�
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where the last equality uses (2.15). The recursions for ⌃(2)
n and ⌃(3)

n , n = 1, ..., N , in

(2.19) and (2.20) are found similarly.

}
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A.2 Informed investor’s optimization problem

We start with the following lemma which contains most of the calculations we will

need later. We recall the hedge fund’s state processes (X(1)
n , X

(2)
n ) are defined by

(2.22).

Lemma A.2. Fix �✓

R
n by (1.5) and let the constants (2.1) and associated terms

(2.35) satisfy the pricing coe�cient relations (2.14)-(2.17) and the variances and

covariance recursions (2.18)-(2.20). Let �✓

I
n 2 �(ṽ, y1, ..., yn�1), n = 1, ..., N , be

arbitrary for the hedge fund. We define the Gaussian random variables

ẑ

I
n :=ŷn ��✓̂

I
n � (↵R

n + �

R
n )q̂n�1 � �

R
n

⌃
(3)
n�1

⌃
(2)
n�1

(ṽ � p̂n�1), n = 1, ..., N. (A.4)

Then ẑ

I
k is independent of (ṽ, ŷ1, ...., ŷk�1) for k  N and the following measurability

properties are satisfied:

✓̂

R
n � ✓

R
n 2 �(ṽ, y1, ..., yn) = �(ṽ, ŷ1, ..., ŷn) = �(ṽ, ẑI1 , ...ẑ

I
n), n = 1, ..., N. (A.5)

Furthermore, for n = 1, ..., N , we have the Markovian dynamics

�X

(1)
n = ��n

⇣
�✓

I
n + �

R
nX

(2)
n�1

⌘
� �nẑ

I
n, X

(1)
0 = ṽ, (A.6)

�X

(2)
n = �rn�✓

I
n � (1 + rn)�

R
nX

(2)
n�1 �

⌃(3)
n

⌃(2)
n

�nẑ
I
n, X

(2)
0 =

⇢�ã

�ṽ
ṽ. (A.7)

Finally, for any constants I

(1,1)
n , I

(1,2)
n , and I

(2,2)
n , we have the conditional expectation
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which is quadratic in �✓

I
n, and where the variance V[ẑIn] can be computed to be
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Proof. The joint normality claim follows by an induction argument. To see the inde-

pendence claim, we start by noticing
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i ⌘
+�wn

= �

R
n

⇣
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which is ẑIn (see A.4). To see the independence of the random variables (A.4) we let

k  n� 1 be arbitrary. Iterated expectations produce the zero correlation property:

E[ŷkẑIn] = E[E[ŷkẑIn|�(ṽ, ŷ1, ..., ŷk)]] = E[ŷkE[ẑIn|�(ṽ, ŷ1, ..., ŷk)]] = 0.

The independence then follows from the joint normality.

Next, we observe that the last equality in (A.5) follows directly from (A.4). We

proceed by induction and observe
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which proves (A.5). The dynamics (A.6) can be seen as follows
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n (ã� ✓

R
n�1) + ↵

R
n qn�1 + ŷn ��✓̂
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The dynamics (A.7) are found similarly using expressions (2.14)-(2.15) and (2.19)-

(2.20).

The expression for the variance (A.9) is found as follows:
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To compute the conditional expectation (A.8), we compute the four individual

terms. The first term in (A.8) equals
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The second term in (A.8) is
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�2 |�(ṽ, y1, ..., yn�1)]

=
⇣
X

(1)
n�1

⌘2

+ 2X(1)
n�1E[�X

(1)
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Finally, the last term in (A.8) is
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}

Theorem A.3. Fix �✓

R
n by (1.5) and let the constants (2.1) and associate terms

(2.35) satisfy the pricing coe�cient relations (2.14)-(2.17), the variances and covari-

ance recursions (2.18)-(2.20), the value function coe�cient recursions (A.22)-(A.24)

and the second-order-condition (2.26). Then the hedge fund’s value function has the

quadratic form (2.24) where X

(1)
n and X

(2)
n are defined in (2.22) and �pn is defined

by (1.10). Furthermore, the hedge fund’s optimal trading strategy is given by (2.25)
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with coe�cients
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Proof. We prove the theorem by the backward induction. Suppose that (2.24) holds

for n+ 1. The hedge fund’s value function in the n’th iteration then becomes
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(A.12)

Because (2.26) holds, Lemma A.2 shows that the coe�cient in front of (�✓

R
n )

2 appear-

ing in (A.12) is strictly negative. Consequently, the first-order condition is su�cient

for optimality and the maximizer is (2.25). The value function coe�cient recursions

(A.22)-(A.24) are obtained by inserting the optimizer (2.25) into (A.12).

}

A.3 Rebalancer’s optimization problem

In the following analogue of Lemma A.2 we recall that the rebalancer’s state variables

(Y (1)
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n , Y
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n ) are defined in (2.29).

Lemma A.4. We define �✓
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n by (1.6) and let the constants (2.1) and associate terms

(2.35) satisfy the pricing coe�cient relations (2.14)-(2.17) and the variances and co-
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n := ŷn ��✓̂

R
n � �

I
n
⌃

(3)
n�1

⌃
(1)
n�1
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k is independent of (ã, ŷ1, ...., ŷk�1) for k  N and the following measurability
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properties are satisfied
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ẑ

R
n , Y

(2)
0 =

�ṽ⇢
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which is quadratic in �✓
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Proof. The proof is similar to the proof of Lemma A.2 and is therefore omitted.

}

Theorem A.5. Fix �✓

I
n by (1.6) and let the constants (2.1) and associated terms
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(2.35) satisfy the pricing coe�cient relations (2.14)-(2.17), the variances and covari-

ance recursions (2.18)-(2.20), the value function coe�cient recursions (A.25)-(A.31)
and the second-order-condition (2.33). Then for n = 0, 1, ..., N � 1 the rebalancer’s

value function has the quadratic form (2.31) where (Y (1)
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Proof. The proof is similar to the proof of Theorem A.3 and is therefore omitted.

}

A.4 Remaining proof

Proof of Theorem 2.1. Part (iii) of Definition 1.1 holds from Lemma A.1. Parts (i)-

(ii) of Definition 1.1 hold from Theorem A.3 and Theorem A.5 as soon as we show that

the optimizers (2.25) and (2.32) agree with (2.3) and (2.4). This, however, follows

from the equilibrium conditions (2.27) and (2.34).

}

A.5 Value function coe�cients

The recursion for the hedge fund’s value function coe�cients is given by
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2(I(2,2)n r2n + �n(�1 + I(1,2)n rn + I(1,1)n �n))
,

(A.23)

I(2,2)n�1 = �n
�(I(1,2)n (�1 + �R

n ) + �R
n )

2�n � 4I(2,2)n (�1 + �R
n )(�1 + I(1,1)n �n + �R

n (1 + rn � I(1,1)n �n))

4(I(2,2)n r2n + �n(�1 + I(1,2)n rn + I(1,1)n �n))
.

(A.24)
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The recursion for the rebalancer’s value function coe�cients is given by

L(1,1)
n�1 = �

⇣
(L(1,3)

n )2r2n � 2(1 + L(1,2)
n )L(1,3)

n rn�n + (1 + L(1,2)
n )2�2

n

+ 4L(1,1)
n (�L(3,3)

n r2n + �n + L(2,3)
n rn�n � L(2,2)

n �2
n)
⌘.

4
�
L(1,1)
n � L(1,3)

n rn + L(3,3)
n r2n + �n(L

(1,2)
n � L(2,3)

n rn + L(2,2)
n �n)

�
,

(A.25)

L(1,2)
n�1 = �

⇣
(L(1,3)

n rn � �n)(L
(2,3)
n rn + L(1,3)

n rn�
I
n � 2L(2,2)

n �n) + (L(1,2)
n )2�n(�1 + �I

n�n)

+ L(1,2)
n (rn(L

(1,3)
n � 2L(3,3)

n rn) + �n + rn(L
(2,3)
n � 2L(1,3)

n �I
n)�n + �I

n�
2
n)

+ 2L(1,1)
n (�rn(L

(2,3)
n + 2L(3,3)

n rn�
I
n) + (2L(2,2)

n + �I
n + 2L(2,3)

n rn�
I
n)�n

� 2L(2,2)
n �I

n�
2
n)
⌘.

2
�
L(1,1)
n � L(1,3)

n rn + L(3,3)
n r2n + �n(L

(1,2)
n � L(2,3)

n rn + L(2,2)
n �n)

�
,

(A.26)

L(1,3)
n�1 =

h
(L(1,3)

n )2rn(�1 + ↵R
n + rn↵

R
n + �R

n + rn�
R
n )

+ (1 + L(1,2)
n )�n

⇣
� 2L(3,3)

n rn(�1 + ↵R
n + �R

n )� L(2,3)
n �n

+ (L(1,2)
n + L(2,3)

n )(↵R
n + �R

n )�n

⌘
+ 2L(1,1)

n

�
� 2L(3,3)

n rn(�1 + ↵R
n + rn↵

R
n + �R

n + rn�
R
n )

� L(2,3)
n �n + (↵R

n + �R
n )�n(1 + L(2,3)

n + 2L(2,3)
n rn � 2L(2,2)

n �n)
�

(A.27)

+ L(1,3)
n �n

⇣
� 1 + ↵R

n + �R
n + L(2,3)

n rn(�1 + ↵R
n + �R

n )

� L(1,2)
n (�1 + ↵R

n + 2rn↵
R
n + �R

n + 2rn�
R
n ) + 2L(2,2)

n �n � (↵R
n + �R

n )(rn + 2L(2,2)
n �n)

⌘i.

2(L(1,1)
n � L(1,3)

n rn + L(3,3)
n r2n + �n(L

(1,2)
n � L(2,3)

n rn + L(2,2)
n �n)),

L(2,2)
n�1 = �

h
(L(1,2)

n )2(�1 + �I
n�n)

2 � 2L(1,2)
n rn

�
L(2,3)
n � L(2,3)

n �I
n�n

+ �I
n(�L(1,3)

n + 2L(3,3)
n rn + L(1,3)

n �I
n�n)

�
+ rn

⇣�
(L(2,3)

n )2 � 4L(2,2)
n L(3,3)

n

�
rn

+ (L(1,3)
n )2rn(�

I
n)

2 + L(1,3)
n (4L(2,2)

n + 2L(2,3)
n rn�

I
n � 4L(2,2)

n �I
n�n)

⌘

� 4L(1,1)
n

�
L(2,2)
n (�1 + �I

n�n)
2 + rn�

I
n(L

(2,3)
n + L(3,3)

n rn�
I
n � L(2,3)

n �I
n�n)

�i.

4(L(1,1)
n � L(1,3)

n rn + L(3,3)
n r2n + �n(L

(1,2)
n � L(2,3)

n rn + L(2,2)
n �n)),

(A.28)

(A.29)
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L(2,3)
n�1 =

h�
L(1,3)
n rn(L

(2,3)
n + L(1,3)

n �I
n)� 2L(1,1)

n (L(2,3)
n + 2L(3,3)

n rn�
I
n)
�
(�1 + ↵R

n + rn↵
R
n + �R

n + rn�
R
n )

+
⇣
(L(2,3)

n )2rn(�1 + ↵R
n + �R

n ) + 2L(1,1)
n L(2,3)

n �I
n(�1 + ↵R

n + 2rn↵
R
n + �R

n + 2rn�
R
n )

+ 4L(2,2)
n (�L(3,3)

n rn(�1 + ↵R
n + �R

n ) + L(1,1)
n (↵R

n + �R
n ))

+ L(1,3)
n (L(2,3)

n rn�
I
n(�1 + ↵R

n + �R
n )� 2L(2,2)

n (1 + (�1 + rn)↵
R
n + (�1 + rn)�

R
n ))

⌘
�n

� 2L(2,2)
n �I

n(L
(1,3)
n (�1 + ↵R

n + �R
n ) + 2L(1,1)

n (↵R
n + �R

n ))�
2
n

+ (L(1,2)
n )2(↵R

n + �R
n )�n(�1 + �I

n�n) + L(1,2)
n (L(2,3)

n �n (A.30)

� 2L(3,3)
n rn(�1 + ↵R

n + rn↵
R
n + �R

n + rn�
R
n + �I

n(�1 + ↵R
n + �R

n )�n)

+ L(2,3)
n �n((�1 + rn)(↵

R
n + �R

n ) + �I
n(�1 + ↵R

n + �R
n )�n)

+ L(1,3)
n (�1 + ↵R

n + rn↵
R
n + �R

n + rn�
R
n + �I

n�n � (1 + 2rn)�
I
n(↵

R
n + �R

n )�n))
i.

2
�
L(1,1)
n � L(1,3)

n rn + L(3,3)
n r2n + �n(L

(1,2)
n � L(2,3)

n rn + L(2,2)
n �n)

�
,

L(3,3)
n�1 = �

h
(L(1,3)

n )2(�1 + ↵R
n + rn↵

R
n + �R

n + rn�
R
n )

2 + 2L(1,3)
n �n

�
(�1 + ↵R

n + rn↵
R
n + �R

n + rn�
R
n )⇥

�
L(2,3)
n (�1 + ↵R

n + �R
n )� L(1,2)

n (↵R
n + �R

n )
�
� 2L(2,2)

n (�1 + ↵R
n + �R

n )(↵
R
n + �R

n ) �n

�

� 4L(1,1)
n

⇣
L(3,3)
n (�1 + ↵R

n + rn↵
R
n + �R

n + rn�
R
n )

2 + (↵R
n + �R

n )�n⇥
�
� L(2,3)

n (�1 + ↵R
n + rn↵

R
n + �R

n + rn�
R
n ) + L(2,2)

n (↵R
n + �R

n )�n

�⌘
(A.31)

+ �n

⇣�
(L(2,3)

n )2 � 4L(2,2)
n L(3,3)

n

�
(�1 + ↵R

n + �R
n )

2�n + (L(1,2)
n )2(↵R

n + �R
n )

2�n

� 2L(1,2)
n (�1 + ↵R

n + �R
n )(2L

(3,3)
n (�1 + ↵R

n + rn↵
R
n + �R

n + rn�
R
n )� L(2,3)

n (↵R
n + �R

n )�n)
⌘i.

4
�
L(1,1)
n � L(1,3)

n rn + L(3,3)
n r2n + �n(L

(1,2)
n � L(2,3)

n rn + L(2,2)
n �n)

�
.

A.6 Algorithm

This section describes an algorithm for searching numerically for a linear Bayesian

Nash equilibrium. The algorithm is similar in logic to the algorithm in Section V in

Foster and Viswanathan (1996), except that our algorithm requires three constants as

inputs (due to the presence of two strategic agents) whereas Foster and Viswanathan

(1996) only requires one constant as an input.

The algorithm starts by taking as inputs three conjectured conditional moments
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for the final time N round of trading:29

⌃(1)
N�1 > 0, ⌃(2)

N�1 > 0, ⌃(3)
N�1 2 R such that

�
⌃(3)

N�1

�2  ⌃(1)
N�1⌃

(2)
N�1. (A.32)

The algorithm then proceeds through backward induction.

Starting step for trading time N : We need (�N , �
I
N) to satisfy (2.14) for n = N

and the last two parts of (2.36). Given those two constants (�N , �
I
N), we can define

�

R
N := 1, ↵

R
N := rN := 0, µN := ��N , sN := �1. (A.33)

Because of the rebalancer’s terminal constraint, his last round of trading (i.e., at time

N) does not involve any optimization, and so we have

E
⇥
�(ã� ✓

R
N�1)�pN |�(ã, y1, ..., yN�1)

⇤
= �Y

(1)
N�1

�
�N(Y

(1)
N�1 + �

I
NY

(2)
N�1)� �NY

(3)
N�1

�
.

This relation implies that the rebalancer’s value function coe�cients for n = N � 1

are given by

L

(1,1)
N�1 = ��N , L

(1,2)
N�1 = ��N�

I
N , L

(1,3)
N�1 = �N , L

(2,2)
N�1 = L

(2,3)
N�1 = L

(3,3)
N�1 = 0. (A.34)

On the other hand, the hedge fund’s problem in the last round of trading is similar

to her problem in any other round of trading. By inserting the boundary conditions

I

(1,1)
N = I

(1,2)
N = I

(2,2)
N = 0

into the recursions (A.22)-(A.24), we produce the value function coe�cients I(i,j)N�1.

Induction step: At each time n the algorithm takes the following terms as inputs:

⌃(1)
n ,⌃(2)

n ,⌃(3)
n , (I(i,j)n )1ij2, (L

(i,j)
n )1ij3. (A.35)

We first find the constants (�n, rn,⌃
(1)
n�1,⌃

(2)
n�1,⌃

(3)
n�1, �

I
n, �

R
n ) by requiring that (2.14)-

(2.15), (2.18)-(2.20) with ⌃(1)
n�1 > 0,⌃(2)

n�1 > 0 and (⌃(3)
n�1

�2  ⌃(1)
n�1⌃

(2)
n�1, monotonicity

29We do not take the post-trade date N moments (⌃(1)
N ,⌃(2)

N ,⌃(3)
N ) as inputs because they are

after the last round of trading. In addition, (2.18) and (2.20) together with the terminal condition

�R
N = 1 imply that ⌃(1)

N = ⌃(3)
N = 0.
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of ⌃(2)
n�1, (2.27), the first part of (2.34), as well as the second-order conditions (2.26)-

(2.33) hold. These are seven polynomial equations in seven unknown constants. We

can then subsequently define (µn, sn) by (2.16)-(2.17) and ↵

R
n by the second part of

(2.34).

Next, the value function coe�cients (I(i,j)n�1)1ij2 and (L(i,j)
n�1)1ij3 at time n�1

are found by the recursions (A.22)-(A.24) and (A.25)-(A.31).

Termination: The iteration above is continued back to time n = 0. If the result-

ing values at time n = 0 satisfy (2.11) the algorithm terminates and the computed

coe�cients produce a linear Bayesian Nash equilibrium. Otherwise, we adjust the

conjectured starting input values in (A.32) and start the algorithm all over.

B Modified Foster and Viswanathan (1994)

Our modification of the Foster and Viswanathan (1994) model has N periods of

trade after which the traded security pays o↵ ṽ ⇠ N(0, �2
ṽ) at time N + 1. Four

types of investors trade: First, a strategic risk-neutral investor who knows ṽ at time

0 and who trades dynamically over time using orders �✓

I
n. Second, a strategic risk-

neutral less-informed investor who receives an initial signal ã ⇠ N(0, �2
ã) with ã and

ṽ being jointly normally distributed random variables with corr(ã, ṽ) = ⇢ 2 (0, 1)

and who trades dynamically using orders �✓

L
n . The “L” superscript here denotes

that this second investor is “less” informed than the first (better-informed) investor

with superscript “I”. Third, noise traders submit random orders �wn ⇠ N(0, �2
w�)

which are independent of (ṽ, ã). Fourth, competitive risk-neutral market makers see

the aggregate order flow at each date

yn := �✓

I
n +�✓

L
n +�wn, y0 := 0, (B.1)

and set prices pn at which they then clear the market.

In our modified FV model, the better-informed investor does not know ã, whereas

in the original Foster and Viswanathan (1994) the better-informed investor knows

both ṽ and ã. Thus, except for the rebalancing constraint, the modified FV model

has the identical information structure as in our model of strategic rebalancing.

A Bayesian Nash Equilibrium for the modified FV model consists of: (i) Or-

der strategies that, at each time n, maximize the expected profits of the better-
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informed and less-informed investors given their their respective information sets

�(ṽ, y1, . . . , yn�1) and �(ã, y1, . . . , yn�1), and (ii) A pricing rule that sets prices to

be conditional expectations

pn = E[ṽ|�(y1, ..., yn)], n = 1, ..., N. (B.2)

Our goal is to find a linear equilibrium in which the price dynamics are given by

�pn = �nyn, p0 := 0. (B.3)

The two informed investors’ optimal orders take the form:

�✓

I
n = �

I
n(ṽ � pn�1), ✓

I
0 := 0, (B.4)

�✓

L
n = �

L
n (sn�1 � pn�1), ✓

L
0 := 0. (B.5)

In (B.5) the process sn denotes the less-informed investor’s expectation of the stock

payo↵ ṽ after trade at date n; that is,

sn = E[ṽ|�(ã, y1, ..., yn)], s0 := ⇢

�ṽ

�ã
ã. (B.6)

The dynamics of sn are given by

�sn = �n

⇣
yn � E(yn|�(ã, y1, . . . , yn�1)

⌘

= �n

⇣
yn � (�L

n + �

I
n)(sn�1 � pn�1)

⌘

= �n

⇣
�wn + �

I
n(ṽ � sn�1)

⌘
.

(B.7)

In particular, the less-informed investor learns about ṽ by updating based on the

observed order flow. Because the better-informed investor knows ṽ initially, she does

not update her expectations about ṽ over time. The Internet Appendix presents

su�cient conditions for a linear Bayesian Nash equilibrium to exist in the modified

FV model.

Finally, we remark that unlike in the rebalancing model considered in the main

part of the paper, there are no predictable components of the order flow process

(predictable for the market makers). Consequently, no qn process is present and the

the aggregate order flow process becomes a martingale with respect to the flow of
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public information.

C Internet Appendix

C.1 Su�cient conditions for the modified FV model

Our derivation of su�cient conditions for a linear Bayesian Nash equilibrium for the

modified FV model follows the same logic as in our dynamic rebalancing model.

Given a set (�n,�n, �
I
n, �

L
n )

N
n=1 of model parameters, we define the following set of

“hat”-processes:

�✓̂

I
n := �

I
n(ṽ � p̂n�1), ✓̂

I
0 := 0, (C.1)

�✓̂

L
n := �

L
n (ŝn�1 � p̂n�1), ✓̂

L
0 := 0, (C.2)

ŷn := �✓̂

I
n +�✓̂

L
n +�wn, ŷ0 := 0, (C.3)

�p̂n := �nŷn, p̂0 := 0, (C.4)

�ŝn := �n

⇣
ŷn � (�L

n + �

I
n)(ŝn�1 � p̂n�1)

⌘
, ŝ0 := ⇢

�ṽ

�ã
ã. (C.5)

These processes must satisfy a variety of restrictions to be a linear Bayesian equilib-

rium. We derive these restrictions in two steps.

Step 1: The conjectured price and less-informed investor expectation processes

must satisfy:

p̂n = E[ṽ|�(ŷ1, ..., ŷn)], (C.6)

ŝn = E[ṽ|�(ã, ŷ1, ..., ŷn)]. (C.7)

We define the conditional moments for n = 1, . . . N :

⌃(1)
n := V

⇥
ṽ � p̂n

⇤
, (C.8)

⌃(2)
n := V

⇥
ŝn � p̂n

⇤
, (C.9)

⌃(3)
n := E

⇥�
ŝn � p̂n

�
(ṽ � p̂n)

⇤
= ⌃(2)

n , (C.10)
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where the last equality follows from iterated expectations. The starting values are:

⌃(1)
0 = �

2
ṽ , ⌃(2)

0 = V
h
⇢

�ṽ

�ã
ã

i
= ⇢

2
�

2
ṽ . (C.11)

Furthermore, ⌃(1)
n � ⌃(2)

n because we have

0  V
⇥
ṽ � ŝn

⇤
= V

⇥
ṽ � p̂n + p̂n � ŝn

⇤
= ⌃(1)

n + ⌃(2)
n � 2⌃(3)

n = ⌃(1)
n � ⌃(2)

n . (C.12)

The filter dynamics are given by:

⌃(1)
n = V

⇥
ṽ � p̂n�1 ��p̂n

⇤

= V
⇥
ṽ � p̂n�1 � �n(�

I
n(ṽ � p̂n�1) + �

L
n (ŝn�1 � p̂n�1) +�wn)

⇤
(C.13)

= (1� �n�
I
n)

2⌃(1)
n�1 + (�n�

L
n )

2⌃(2)
n�1 � 2�n�

L
n (1� �n�

I
n)⌃

(3)
n�1 + �

2
n��

2
w,

⌃(2)
n = V

⇥
ŝn�1 +�ŝn � (p̂n�1 +�p̂n)

⇤

= V
⇥
ŝn�1 + �n(�

I
n(ṽ � p̂n�1 + p̂n�1 � ŝn�1) +�wn)

� p̂n�1 � �n(�
I
n(ṽ � p̂n�1) + �

L
n (ŝn�1 � p̂n�1) +�wn)

⇤

= (�I
n)

2(�n � �n)
2⌃(1)

n�1 + (1� �

I
n�n � �

L
n�n)

2⌃(2)
n�1

+ 2�I
n(�n � �n)(1� �

I
n�n � �

L
n�n)⌃

(3)
n�1 + (�n � �n)

2��

2
w.

(C.14)

To find the equations for the constants �n and �n appearing in (C.4) and (C.5)

we need the investors’ innovation processes. The informed investor (who knows ṽ)

has innovations defined by

z

I
n : = ŷn �

⇣
�

I
n + �

L
n

⌃(3)
n�1

⌃(1)
n�1

⌘
(ṽ � p̂n�1)

= �wn + �

L
n (ŝn�1 � p̂n�1)� �

L
n

⌃(3)
n�1

⌃(1)
n�1

(ṽ � p̂n�1).

(C.15)

The less-informed investor (who knows ã) learns about ṽ over time by filtering the

aggregate order flow process to construct the estimate process sn given by (C.7). His

innovations are defined by

z

L
n : = ŷn � (�I

n + �

L
n )(ŝn�1 � p̂n�1)

= �wn + �

I
n(ṽ � ŝn�1).

(C.16)

57



Finally, the market makers’ innovations are defined by

z

M
n := ŷn, (C.17)

because all trades of the forms (C.1) and (C.2) are unpredictable for the market mak-

ers. Based on the requirement (C.6), we can use (C.17) to obtain the representation

�p̂n =
E[(ṽ � p̂n�1)zMn ]

V[zMn ]
z

M
n . (C.18)

We can then use the projection theorem for multivariate normals to see that the price

coe�cient in (C.4) is given by

�n =
�

I
n⌃

(1)
n�1 + �

L
n⌃

(2)
n�1

(�I
n)

2⌃(1)
n�1 + (�L

n )
2⌃(2)

n�1 + 2�I
n�

L
n⌃

(2)
n�1 +��

2
w

. (C.19)

Similarly, we can use the less-informed investor’s innovation process (C.16) to

re-write (C.7) as

�ŝn =
E[(ṽ � ŝn�1)zLn ]

V[zLn ]
z

L
n . (C.20)

Consequently, we find the coe�cient requirement
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Step 2: The price and updating processes as well as the order flow coe�cients also

need to be consistent with the two informed investors’ optimization problems. First,

we consider the better-informed investor where the less-informed investor’s strategy

is fixed to be the conjectured strategy (B.5). Then, for �✓

I
n 2 �(ṽ, y1, ..., yn�1), we
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have
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nE[ṽ � pn�1 � �n�✓

I
n � �n�

L
n (sn�1 � pn�1)|ṽ � p̂n�1]

= �✓

I
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where we have defined the two state-variables:

X

(1)
n := ṽ � pn, X

(2)
n := sn � ŝn + p̂n � pn +
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n

(ṽ � p̂n). (C.23)

The dynamics of the first state-variable are given by
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Similarly, by using (C.13)-(C.14) and (C.19)-(C.21) we find the dynamics of the sec-

ond state-variable to be:
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Second, we consider the less-informed investor and here the fully informed in-
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vestor’s strategy is fixed as in (B.4). Then, for �✓

L
n 2 �(ã, y1, ..., yn�1), we have
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where we have defined the two state-variables:

Y

(1)
n := sn � pn, Y

(2)
n := ŝn � sn. (C.27)

Similarly to the fully informed investor considered before, we find the dynamics
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Based on the above dynamics of the state-variables (C.23) we see that the fully

informed investor’s problem (C.22) is a quadratic maximization problem. Therefore,

subject to second-order conditions, we find optimal orders �✓̂

I
n which are linear in

the state-variables (C.23). Similarly, given the above dynamics of the state-variables

(C.27), we see that the less-informed investor’s problem (C.26) is also quadratic with

linear optimal orders �✓̂

L
n . By inserting the respective optimal linear orders into their

respective quadratic optimization problems, we find recursions for the coe�cients

describing the two quadratic value functions.

C.2 Expected profits for constrained rebalancer strategies

Table 2 below shows the rebalancer’s expected trading profits conditional on the tar-

get ã for each of the constrained strategies (1 through 5) considered in Table 1 and for

the rebalancer’s equilibrium strategy (“Equilibrium”). Given risk neutrality and the

linearity of the prices and informed orders, the rebalancer’s value function is quadratic

in ã. We average over ṽ and the noise trader orders for various market parameteriza-

tions. The rebalancer’s value function based on the equilibrium strategy includes an

additional term that reflects the contribution of dynamic trading (versus determinis-
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tic trading) when using the equilibrium strategy due to dynamics in sunshine trading

(due to the impact of the random aggregate orders yn through qn) and endogenous

learning (due to the impact of yn on ã�✓

R
n �qn through qn). There are several things

to note in Table 2: First, the rebalancer’s expected profits when ã 6= 0 are negative

when ⇢ is zero or su�ciently small. This is because the rebalancer’s orders on average

push the price away from ṽ. The rebalancer’s expected profits increase significantly

when the rebalancer splits his orders over time relative to just trading once either at

date 1 or at an optimally chosen single date. In addition, taking the intraday pattern

of price impact into account also has a significant e↵ect. However, the incremental

impact of sunshine trading seems small. Lastly, the incremental impact of dynamic

(rather than deterministic) trading — which takes both endogenous learning and

sunshine trading dynamics into account — also has only a small e↵ect relative to

deterministic trading taking just intraday price impact di↵erences into account.

Table 2: Expected rebalancing cost for various strategies (see list in the paper) con-
ditional on target ã. The parameters are N := 10, �2

w := 4, �2
ṽ := 1, ⇢ := 0 (top panel

only) and �

2
ã := 1 (lower panel only).

Strategy �

2
ã := 0.48 �

2
ã := 1 �

2
ã := 3.7

1 -0.4364 ã2 -0.4489 ã2 -0.4830 ã2

2 -0.3669 ã2 -0.3660 ã2 -0.3569 ã2

3 -0.1402 ã2 -0.1403 ã2 -0.1278 ã2

4 -0.1267 ã2 -0.1261 ã2 -0.1142 ã2

5 -0.1267 ã2 -0.1259 ã2 -0.1121 ã2

Equilibrium 0.00008 - 0.1267 ã2 0.00026 - 0.1259 ã2 0.0014 - 0.1121 ã2

⇢ := 0.24 ⇢ := 0.47 ⇢ := 0.86
1 -0.2805 ã2 -0.1378 ã2 0.0401 ã2

2 -0.2533 ã2 -0.0991 ã2 0.1251 ã2

3 -0.0114 ã2 0.1029 ã2 0.2783 ã2

4 -0.0033 ã2 0.1187 ã2 0.3111 ã2

5 -0.0029 ã2 0.1194 ã2 0.3120 ã2

Equilibrium 0.0034 - 0.0029 ã2 0.0150 + 0.1194 ã2 0.1031+0.3120 ã2
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