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1. Introduction

The seminal work of Black and Scholes (1973) laid the foundation of modern option pricing the-
ory. While their theory, still serving as the fundamental workhorse in the derivative world, has
drawn tremendous impact on both academics and practitioners alike, its empirical performance
has not been fully entertaining, which is largely due to its restrictive assumptions. Consequently,
researchers have proposed, for the past four decades, a myriad of option pricing models based
on more realistic assumptions and theories, attempting to correct the mispricing of the standard
Black-Scholes model.1

In this paper, we extend the standard Black-Scholes option pricing framework and derive a closed-
form solution for a generalized pricing model by utilizing the general solution to the heat equation.
Specifically, by transforming the partial differential equation of option price to the heat equation
whose generalized solution has newly been obtained (Choi et al. (2017)), we derive a generalized
BS (called GBS hereafter) pricing model. Our analytic pricing formula contains additional pricing
factors for a call option. In particular, the option price of our GBS model is shown to be a linear
combination of the original BS price and the option’s ∆ (delta) and Γ (gamma). We then further
refine our GBS pricing model using a judicious parametrization of additional pricing terms to
show that they are likely to be related to investor sentiment. The corresponding parameters are

1Volatility smile, which was initially identified by market professionals, for instance, is among the early empirical challenges
of the validity of the BS assumptions, which led to a broader question of how to correct the Black-Scholes pricing bias. See

Rubinstein (1994) for an early studies concerning the smile.
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interpreted as implied sentiment factors because they tend to reflect investors’ perception of future
return prospect, more specifically, expectation of future return and its volatility.

The GBS model proposed in the current study is a novel modification to the standard BS model
in that it provides a new, economically meaningful way to fix the mispricing extant in the exist-
ing option models by directly incorporating the impact of investor sentiment into the theoretical
pricing model. So the standard BS model can be viewed as a special case of the GBS, wherein
investor sentiment plays no role for pricing options. Empirical results confirm our interpretation:
When investors have a bullish (bearish) expectation of future return as captured by the sentiment-
related paratmeters, they tend to long (short) more call options, driving the option prices higher
(lower). Thus, our empirical analysis provides direct evidence that investor sentiment may serve as
a significant pricing determinant in the derivative market as well, not just in the stock market.

Using 50ETF call option prices from Shanghai Stock Exchange, we conduct both in-sample fit
and out-of-sample prediction tests to see if our proposed pricing model and the corresponding
interpretations are to be empirically validated. Overall, results from both tests clearly corroborate
that the GBS model outperforms the BS model in a consistent manner with much smaller pricing
errors. For in-sample pricing fit, we estimate the parameters using four different approaches2 to
compare the relative pricing errors of the two models considered. We document the dominant
advantage of GBS model that average daily sum of squared errors (SSE) of the GBS model is less
than half of that of the BS model over the entire sample period with 100% win-ratio. Following
Bakshi et al. (1997), we further divide our option data into different categories according to
moneyness and maturity for two reasons. First, we want to examine how well the GBS model
captures the potential impact of underlying properties of the option contracts. Second, this
subsample investigation also serves for the robustness test of in-sample fit and out-of-sample
prediction performances. The correlation and regression results in Tables 6 - 9 show that the
new structural parameters in the GBS model are closely related to a popular investor sentiment
proxy, confirming our interpretation of the parameters. For out-of-sample pricing performance,
we employ the same estimation methodologies as used for in-sample tests to find that the
GBS model does not only have a better in-sample pricing fit, but also has strong predictive
power. It is interesting to note that the GBS model, along with its lower pricing errors, yields
lower call option prices than the BS model over the sample period. This is because bearish
sentiment has prevailed in Chinese stock market since the market turbulence in 2015, and the
GBS pricing model, as opposed to the BS model, is able to capture its influence on the option prices.

The major innovations in the option pricing research follwing Black and Scholes (1973) have
been made in three broad areas. First, the stochastic nature of the underlying determinants of
option prices is incorporated into the models. Notably, temporal variations in interest rates and
the volatility of underlying assets are shown to be important aspects that need to be accounted for
in any option pricing models aiming for satisfactory empirical performances. 3

2Refer to Appendix D for a brief description of the four estimation methods employed in the paper.
3Since Merton (1973) developed a stochastic interest rate pricing model for equity options, a large number of studies have

followed by further relaxing the restrictive BS assumptions to investigate different markets. To name a few among many others,
Amin and Jarrow (1991), pointing out Merton’s model cannot be extended to pricing American options due to the lack of

a continuum of distinct bonds, propose an alternative approach based on the equivalent martingale measure and stochastic
interest rate in Heath et al. (1992) with the application to foreign currency and currency futures options. Amin and Jarrow
(1992) further extend their stochastic interest rate option pricing model by including risky asset, and derive the closed-form

solutions for European type call and put options on a risky asset, forward and future contracts. They also explore the valuation
of an American option whose payoff depends on the term structure of interest rate. Miltersen and Schwartz (1998) further

extend this research field to commodity option market, assuming stochastic interest rate as well as convenience yield. Constant

volatility, another restrictive assumption of the BS model, has also been challenged. Following Scott (1987), Hull and White
(1987) and Wiggins (1987), stochastic volatility is built in option models with substantial pricing and hedging improvement

(Bakshi et al. (1997) and Melino and Turnbull (1990, 1991) for currency options). Following largely numerical-analysis-based

studies till then, Heston (1993) derives a closed-form solution to European options with stochastic volatility. Amin and Ng
(1993) introduce both stochastic volatility and stochastic interest rate in a different approach, assuming the underlying stock

price is correlated with consumption growth or market return, and generalizing the consumption based equilibrium of Rubinstein
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Secondly, researchers began to realize that the Gaussian assumption for underlying asset return
distribution might not perfectly be in line with what they observed in the actual data. In particular,
higher moments such as skewness and kurtosis have been shown to affect the market participants’
perception toward risk and hence the risk premiums. Alternative distributions and jump component
have been proposed to capture the departure from the Gaussian distribution of underlying asset
returns and abrupt movements in stock prices.4

Finally, the most recent improvements in option pricing research have been made by questioning
the full rationality of investors. There exists ample evidence that investors may not be fully rational
to the extent that behavioral aspect of investors does help better account for various empirical
observations including stock returns, insider trading, mergers and acquisitions, etc.5

In particular, a growing body of literature shows that investor sentiment is a key determinant
for asset prices. Investor sentiment refers to the overall attitude or aggregate belief of investors
towards the anticipated price development of a particular security or financial market. Starting from
early studies of the general mechanism through which mispricing is formed by investor sentiment
(Barberis et al. (1998)), substantial amount of research in this regard has been devoted to its effect
on the cross-section of stock returns (Baker and Wurgler (2006)). Because option prices are strictly
tied down by no-arbitrage constraints such as put-call parity regardless of the model emplyed,
one might be tempted to say: There is little, if any, room for behavioral factors, particularly
investor sentiment, to play a role for asset return determination. However, since the volatility of
the underlying asset is unknown and subject to temporal variation, option can be considered a
speculative instrument of current and future volatilities, which might lead to irrational investor
behavior and mispricing.

Indeed, as in the stock market, empirical evidence has been documented that sentiment-driven
mispricing also exists in the option market (Stein (1989) and Poteshman (2001)).6 Based on the
finding that the risk-neutral distribution extracted from option prices could reflect investor sen-
timent, researchers in recent years have attempted to take a new routes to the relation between
investor sentiment and the pricing behavior in the option market.7 Since the risk-neutral skewness
is proven to be determined by the slop of pricing kernel (Aı̈t-Sahalia and Lo 1998, 2000), a signifi-
cant relation between investor sentiment and the risk-neutral skewness would suggest that investor
sentiment might affect option prices. By testing the relation of risk-neutral skewness with three
sentiment proxies, namely bull-bear spread, net position of large speculators and the valuation error
of index proposed by Sharpe (2002), Han (2008) shows when investors are bearish, the risk-neutral
skewness is more negative and volatility smile is deeper; when investors turn more bullish, skewness
becomes less negative and volatility smile gets flatter. Han concludes that investor sentiment is one

(1976) and Brennan (1979). Bakshi and Chen (1997a,b) study the valuation and hedging of foreign currency options with Lucas

(1982) two-country model, assuming a stochastic structure for international economy.
4Bates (1991, 1996) derives a pricing model with jump-diffusion process to test whether there exists expectation of market
crash before 1987, and later combines stochastic volatility model with jump-diffusion process by extending the methodology of
Stein and Stein (1991) and Heston (1993). Scott (1997), and Bakshi and Chen (1997a) further extends the jump-diffusion model

to incorporate both stochastic volatility and stochastic interest rate to reflect such empirical characteristics of underlying stock
return as leptokurtosis, random change of volatility and negative correlation between stock returns and volatility. Some other

studies relax the Gaussian assumption by applying Edgeworth series expansion (Jarrow and Rudd (1982)) or Gram-Charlier

expansion (Corrado and Su (1996)). Borland (2002a,b) and Borland and Bouchaud (2004) develop a non-Gaussian stock pricing
model by employing a Tsallis distribution of entropic index to capture the driving noise of underlying price. McCauley and
Gunaratne (2003) use the exponential distribution generated from a Fokker-Planck equation instead to capture the probability

of extreme outcomes.
5Traditional studies believe that the trading behavior of unsophisticated investors can be ignored, because their trades are

random and thus cancel each other out or are exploited by competitive rational arbitrageurs who drive the asset prices back to
their fundamentals. However, it is shown that noise trading and various limits to arbitrage can significantly drive the market
price away from the fundamental value, and reduce the profit opportunity for arbitrageurs ((De Long et al. (1990), and Shleifer
and Vishny (1997)).
6Note that the evidence in the option market is consistent with the general investor sentiment model proposed by Barberis et
al. (1998). Also see other mispricing ....
7Earlier studies (e.g. Jarrow and Rudd (1982), Corrado and Su (1996)) build up non-Gaussian option pricing models with a

correction part incorporating skewness and kurtosis without connecting to investor sentiment or any other behavioral factors.
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of the key determinants element of option prices, but existing popular rational models including
the ones with stochastic volatility, stochastic volatility with jumps, or asymmetric jumps, cannot
account for the impact of investor sentiment.

As such, existing studies, by and large, attempt to relate empirical sentiment proxies with certain
features of option prices such as risk-neural skewness and kurtosis to draw some indirect evidence
on the pricing implications of investor sentiment. This is largely because theoretical option pricing
models cannot accommodate the impact of investor sentiment in isolation. Our paper, on the other
hand, directly admits investor sentiment to the analytic option pricing formula which we theo-
retically derive and provides direct empirical support that taking into account investor sentiment
substantially reduces the pricing errors in option market.

The rest of the paper proceeds as follows. Section 2 shows in detail how we derive a closed-form
solution for our GBS option pricing model, and the interpretation of the two key parameters
newly incorporated in the model. Section 3 introduces the 50ETF option data set and provide
the descriptive information. Section 4 presents the in-sample fit and out-of-sample prediction
performances and the discussion on the economic meaning of the GBS model. Section 5 concludes.

2. Theoretical framework

2.1. Standard BS model

Black and Scholes (1973) show how to solve for option price with heat equation. We briefly
summarize the key steps here because part of the derivation will be used to obtain the GBS
pricing equation.8

The call option price is governed by the following partial differential equation:

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0 (1)

with boundary condition

C (T, S) = max (S − E, 0) ,

where E is the strike price. Through change of variables, we get

C (t, S) = Ee−
1

2
(k−1)x− 1

4
(k+1)2τu (τ, x) ,

8Further details are presented in Appendix A.

4



where

x = ln

(
S

E

)
τ =

σ2

2
(T − t)

k =
2r

σ2

∂u

∂τ
=
∂2u

∂x2

with boundary condition

φ (x) = u (0, x) = max
[
e(1−α)x − e−αx, 0

]
And the solution to the heat equation is

u (τ, x) =
1√
4πτ

∫ ∞
−∞

φ (y) e−
(x−y)2

4τ dy (2)

The final solution to the price of a call option is

CBS (t, S) = SN (d1)− Ee−r(T−t)N (d2)

where

d1 =
log (S/E) +

(
r + σ2/2

)
(T − t)

σ
√
T − t

d2 =
log (S/E) +

(
r − σ2/2

)
(T − t)

σ
√
T − t

2.2. Generalized BS model

Choi et al. (2017) show a generalized solution to the heat equation. Starting from Eq. (2), we define

ψ (τ, x) ≡ u (τ, x) =
1√
4πτ

∫ ∞
−∞

φ (y) e−
(x−y)2

4τ dy

θ (τ, x) ≡ −∂ψ
∂x

= − 1√
4πτ

∫ ∞
−∞

φ (y)

(
−x− y

2τ

)
e−

(x−y)2

4τ dy

η (τ, x) ≡ −∂θ
∂x

=
1√
4πτ

∫ ∞
−∞

φ (y)

[
− 1

2τ
+

(x− y)2

4τ2

]
e−

(x−y)2

4τ dy

In fact, θ (τ, x) is the negative of the first-order derivative and η (τ, x) is the second-order derivative.
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It is straightforward to prove that θ (τ, x) and η (τ, x) satisfy the heat equations as specified below.9

∂ψ

∂τ
=
∂2ψ

∂x2

∂θ

∂τ
=
∂2θ

∂x2

∂η

∂τ
=
∂2η

∂x2

Then we linearly combine the three terms to obtain the generalized solution to the heat equation.
Here, λ and κ are introduced as coefficients and assumed to be constants for simplicity.

ϕ (τ, x) = ψ (τ, x) + λθ (τ, x) + κη (τ, x) (3)

We obtain the expression of ϕ (τ, x) below.10

ϕ (τ, x) = I0 + I1 + I2 + I3 + I4,

where

I0 =
(

1− κ

2τ

) [
e

1

2
(k+1)x+ 1

4
(k+1)2τN (d1)− e

1

2
(k−1)x+ 1

4
(k−1)2τN (d2)

]
I1 = − λ√

4πτ
e

1

2
(k+1)x+ 1

4
(k+1)2τ

[
e−

1

2
d21 + (k + 1)

√
πτN (d1)

]
I2 =

λ√
4πτ

e
1

2
(k−1)x+ 1

4
(k−1)2τ

[
e−

1

2
d22 + (k − 1)

√
πτN (d2)

]
I3 =

κ√
2π2τ

e
1

2
(k+1)x+ 1

4
(k+1)2τ

{[
1 +

1

2
(k + 1)2 τ

]√
2πN (d1) +

[
(k + 1)

√
2τ − d1

]
e−

1

2
d21

}
I4 = − κ√

2π2τ
e

1

2
(k−1)x+ 1

4
(k−1)2τ

{[
1 +

1

2
(k − 1)2 τ

]√
2πN (d2) +

[
(k − 1)

√
2τ − d2

]
e−

1

2
d22

}
And the boundary condition still holds

lim
τ→0

ϕ (τ, x) = max
[
e

1

2
(k+1)x − e

1

2
(k−1)x, 0

]
Then we obtain

V (τ, x) =

[
1− λ

2
(k + 1) +

κ

4
(k + 1)2

]
exN (d1)−

[
1− λ

2
(k − 1) +

κ

4
(k − 1)2

]
e−τkN (d2)

− 1√
4πτ

[
λ− κ

2
(k + 1) +

κ

2τ
x
]

ex−
1

2
d21 +

1√
4πτ

[
λ− κ

2
(k − 1) +

κ

2τ
x
]

e−τk−
1

2
d22

Note that we can get the following relationship, which helps us greatly simplify the final solution.11

ex−
1

2
d21 = e−τk−

1

2
d22

9Later we will prove that the boundary condition still holds.
10See Appendix B for further details
11See Appendix C for further details
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Thus

V (τ, x) =

[
1− λ

2
(k + 1) +

κ

4
(k + 1)2

]
exN (d1)

−
[
1− λ

2
(k − 1) +

κ

4
(k − 1)2

]
e−τkN (d2) +

κ√
4πτ

ex−
1

2
d21

So the final closed-form solution to the price of a call option is

CGBS (t, S) =

[
1− λ

2
(k + 1) +

κ

4
(k + 1)2

]
SN (d1)

−
[
1− λ

2
(k − 1) +

κ

4
(k − 1)2

]
Ee−r(T−t)N (d2) +

κ

σ
√

2π (T − t)
Se−

1

2
d21 (4)

where

k =
2r

σ2

We can obtain the relation between the two models because

CGBS (t, S) = Ee−
1

2
(k−1)x− 1

4
(k+1)2τ

[
ψ − λ∂ψ

∂x
+ κ

∂2ψ

∂x2

]
Letting ω = −1

2 (k − 1)x− 1
4 (k + 1)2 τ ,

CGBS (t, S) = CBS − λEeω
∂ψ

∂x
+ κEeω

∂2ψ

∂x2

First calculate ψ, ∂ψ
∂x , ∂2ψ

∂x2

ψ (τ, x) =
CBS
Eeω

∂ψ

∂x
= e−ω

[
(k − 1)

2E
CBS + ex

∂CBS
∂S

]
∂2ψ

∂x2
= e−ω

[
(k − 1)2

4E
CBS + kex

∂CBS
∂S

+ Ee2x∂C
2
BS

∂S2

]

The call option price of GBS model is then equal to:

CGBS(t, S) = CBS − λ
[

(k − 1)

2
CBS + S∆

]
+ κ

[
(k − 1)2

4
CBS + kS∆ + S2Γ

]
, (5)

where

∆ =
∂CBS
∂S

= N (d1)

Γ =
∂C2

BS

∂S2
=

N′ (d1)

Sσ
√
T − t

=
1

Sσ
√
T − t

e−
1

2
d21

√
2π
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Note that Equation (4) is equivalent to Eq. (5), and can be expressed as

CGBS = J1CBS + J2∆ + J3Γ, (6)

where

J1 = 1− λ(k − 1)

2
+ κ

(k − 1)2

4

J2 = (−λ+ κk)S

J3 = κS2

Equation (6) shows that CGBS can be understood as a modification of CBS by incorporating
option’s ∆ and Γ, with adjustment parameters λ and κ. Note that while no restrictions are imposed
on λ and κ, it can easily be shown that λ negatively affects and κ positively affects the call price:

−
[

(k − 1)

2
CBS + S∆

]
< −

[
−1

2
CBS + S∆

]
= −1

2

[
SN (d1) + e−r(T−t)N (d2)

]
< 0

(k − 1)2

4
CBS + kS∆ + S2Γ > 0

2.3. Interpretation of the GBS model

To better understand the pricing implications of λ and κ, we first extend the pricing formula in
Equation (6) using the following result.
If we assume the n-1st order derivative (with a negative sign) satisfies the heat equation

ψn−1 (τ, x) ≡ (−1)n−1 ∂
n−1ψ

∂xn−1
,

then the negative n-th order derivative (with a negative sign)

ψn (τ, x) ≡ −∂ψn−1

∂x

also satisfies the heat equation, because

∂ψn
∂τ

= −∂
2ψn−1

∂τ∂x
= − ∂

∂x

∂2ψn−1

∂x2
=
∂2ψn
∂x2

Hence we can expand Eq. (3) to an infinite series with additional derivatives

ϕ′(τ, x) = ψ(τ, x) + λθ(τ, x) + κη(τ, x) + . . . (7)

Since the coefficients in Eq. (7) are not constrained ex ante, we take the liberty of setting them
equal to the corresponding coefficients in a Taylor series expansion. Namely,

λ = −a, κ =
1

2
a2, . . .
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By doing so and applying the Taylor series expansion inversely to the right-hand side of Eq. (7),
we endow the parameters with economically meaningful interpretations as further derivation below
demonstrates.

ϕ′(τ, x) = ψ(τ, x) + a
∂ψ

∂x
+

1

2
a2∂

2ψ

∂x2
+ . . .

= ψ (τ, x+ a)

The resultant call option price from the GBS model under this parametrization is

C ′GBS (τ, x) = Ee−
1

2
(k−1)x− 1

4
(k+1)2τϕ (τ, x)

= Ee−
1

2
(k−1)x− 1

4
(k+1)2τψ (τ, x+ a)

= e
1

2
(k−1)aCBS (τ, x+ a)

By changing the notation in terms of time and spot price, we obtain

C ′GBS (t, S) =

(
S +∆S

S

)( r

σ2
− 1

2)
CBS (t, S +∆S) , (8)

where

∆S = Eex+a − Eex = S (ea − 1)

a = ln

(
S +∆S

S

)
The result in Eq. (8) is quite intuitive. The option price derived from the GBS model is pro-

portional to the price of the standard BS model when the spot price used is S + ∆S rather than
S. In other words, when investors assess the value of an option with GBS model, the situation is
equivalent to the one where they are still applying the BS formula, but with a potentially diverted
spot value. Therefore, ∆S can be interpreted as a mental deviation from the actual spot price due
to investor sentiment arising from the future return prospect they have in their mind.12 Further-
more, a is shown to be exactly equal to the continuously compounded rate of return, which renders
λ, and κ intuitive sentiment measures, each related to investors’ belief in regard to future return
and its volatility. For example, when the market keeps going up, no matter what the underlying
reason might be, investors tend to become increasingly confident that stock prices will go even
higher. Under this situation, they are likely to long more call options for some speculative profits,
leading to higher call prices. In the BS framework, the mechanism of such phenomenon can not be
explained; in GBS model, on the other hand, the option price can be adjusted by λ and κ. When
investors are bullish (bearish), we expect λ to be negative (positive) and κ to be larger (smaller),
both leading to positive (negative) adjustments to the BS price. From a broader perspective, it is
noteworthy that our GBS model and the benchmark BS model coincide if investor sentiment is
neutral. In other words, the GBS model nests the BS model as a special case in which there exists
no room for sentiment effect, just as in a fully rational world. 13

12We empirically validate this insight in later sections.
13At this juncture, it should be noted that we derive the GBS option price in equation (8) by first expanding the generalized
solution for the heat equation to an infinite series. We then convert the series back to the BS framework using an economically

intuitive parametrization. For the purpose of the empirical analysis of the model, however, we truncate the series at the second

order derivative for two reasons. First, as a practical matter, it is simply impossible to estimate an infinite number of parameters.
Second, only the first- and second-order derivatives of options are widely used in reality which is consistent with the option’s

∆ and Γ in the final solution in equation (6).
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2.4. Sensitivity analysis

The main purpose of the analysis in this subsection is to examine i) how underlying pricing deter-
minants of the BS model will interact with λ and κ of the GBS model, and ii) whether the pricing
effects of those parameters in the GBS model are consistent with the interpretation we addressed
in the previous section.

Figure 1 shows the sensitivity analysis of spot and strike prices for the four different cases of
(λ, κ) pair. Overall, the GBS model and the BS model share a quite similar response pattern for
each case, and the GBS-induced adjustment is small in magnitude partly due to parameter values
assigned. More importantly, when we set λ to be positive, GBS model yields a lower price than
BS model; and if we set κ to be positive, the GBS price is higher, which is consistent with our
interpretation.
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Figure 1. Sensitivity analysis 1). The figure shows the sensitivity analysis of spot price and strike price. Holding
the other parameters constant, in particular, r = 0.03, vol = 0.3, delta t = 100/365, we set strike price K to be 2
and let spot price S increase from 1 to 3 in the left four figures in which λ are set to be 0.01 and -0.01, κ are set to
be 0.001 and -0.001, respectively. Likewise, we set spot price S to be 2 and let strike price K increase from 1 to 3 in
the right four figures.

Figure 2 shows the sensitivity analysis of interest rate and volatility. Option price increases with
both interest rate and volatility for the same reason in the BS model. As seen in Figure 1, positive
investor sentiment consistently leads to the higher prices of the GBS model.

Figure 3 shows the sensitivity analysis of maturity, λ and κ. In particular, the right four figures
illustrate the influence of λ and κ. Again, the result is consistent with our analysis that λ negatively
affects option prices, whereas price effect of κ is positive.

3. Data

3.1. Introduction of 50ETF option

This study uses a dataset of daily close prices of 50ETF call option (delisted and on board) from
February 9, 2015 to February 28, 2017. 50ETF option was listed on the Shanghai Stock Exchange
(SSE) on February 9, 2015 (the same date as our data start), and is the first publicly traded option
in Chinese market. Currently, there are more options being traded on SSE including options on
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Figure 2. Sensitivity analysis 2). The figure shows the sensitivity analysis of interest rate and volatility. Holding
other parameters constant, in particular, S = 2, K = 2, delta t = 100/365, we set volatility σ to be 0.3 and let
interest rate r increase from 0.02 to 0.04 in the left four figures in which λ are set to be 0.01 and -0.01, κ are set to
be 0.001 and -0.001, respectively. Likewise, we set interest rate r to be 0.03 and let volatility σ increase from 0.2 to
0.4 in the right four figures.
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Figure 3. Sensitivity analysis 3). The figure shows sensitivity analysis of maturity, λ and κ. Holding other
parameters constant, in particular, S = 2, K = 2, r = 0.03, vol = 0.3, we let maturity delta t increase from 1/365
to 200/365 in the left four figures in which λ is set to be 0.01 and -0.01, κ is set to be 0.001 and -0.001, respectively.
Then we set delta t = 100/365, and let λ increase from -0.01 to 0.01 in the upper right two figures in which κ is set
to be 0.001 and -0.001,respectively. Likewise, we let κ increase from -0.001 to 0.001 in the lower right two figures in
which λ is set to be 0.01 and -0.01, respectively.

ETFs, stocks, indexes ,and commodity futures. Table 1 shows all the existing option contracts
in China. We believe that 50ETF option data is among the best datasets for studying the effect
of investor sentiment on option prices partly because the vast majority of investors in China are
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Table 1. Summary of Options in Chinese Market

Exchange Name Style Status

Shanghai Stock Exchange(SSE)

50ETF option European Trading

Pingan Bank option European Simulating

Shanghai Automobile option European Simulating

Huaan SSE 180ETF option European Simulating

Shenzhen Stock Exchange (SZE)

Vanke A option European Simulating

SZ 100ETF option European Simulating

Originwater option European Simulating

Efund Second-Board option European Simulating

Nf-bearings option European Simulating

HS 300ETF option European Simulating

Goertek option European Simulating

SME board option European Simulating

China Financial Futures Exchange (CFFEX)
HS 300 Index option European Simulating

SH 50 Index option European Simulating

Dalian Commodity Exchange (DCE) Bean pulp option American Trading

Shanghai Futures Exchange (SHFE)
Gold option American Simulating

Copper option American Simulating

Zhengzhou Commodity Exchange (ZCE) White Sugar option American Trading

Source: WIND database

Table 2. Main Features of 50ETF Option Contract

Underlying asset Huaxia SSE 50 Index open exchange traded securities investment fund (510050.SH)

Contract type Call options and put options

Contract unit 10000

Expiration month Current month, next month and the following two consecutive quarters

Strike price 5 (1 at-the-money option, 2 in-the-money options, 2 out-of-money options)

Expiration date The fourth Wednesday of each expiration month

Option Style European style

Contract delivery Physical delivery

Source: WIND database

individual investors, who tend to be much more prone to sentiment or subjective beliefs. Also the
50ETF option is the only publicly traded European option in China while most of other options
are either in experimentation phase or American type. To help better understand the nature of our
dataset, Table 2 presents the important contract details of 50ETF option.

The listing practice in the SSE requires that call options and put options be listed as a pair
with the same strike price and expiration date. For example, on February 9, 2015, call option
‘10000001.SH’ was listed on SSE with strike price 2.2000 and expiration date 2015/03/25, while on
the same day, put option ‘10000006.SH’ was also on board with strike price 2.2000 and expiration
date 2015/03/25. Due to this unique listing feature, we only pay our attention to call options while
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expecting similar conclusions for puts.

3.2. Descriptive statistics

Following Bakshi et al. (1997), we divide all call option data into different categories. This method-
ology has two main benefits. First, we can examine the volatility smile phenomenon by calculating
the average implied volatility of each category, thereby investigate whether there exist pricing bi-
ases in Chinese market. Second, the estimation of implied volatility (or implied parameters) of each
category help us understand how pricing performances of an option pricing model can be improved.
Whereas Bakshi et al. (1997) obtain 18 categories in total, we divide options into 24 categories
for a smoother distribution in each category. We take the following steps for the classification and
present the result in Table 3.

(i) First, according to moneyness measured by S/K, options are divided into out-of-the-money
(OTM) if S/K < 0.97, at-the-money (ATM) if 0.97 ≤ S/K < 1.03 and in-the-money (ITM)
if 1.03 ≤ S/K. Then, in each group, options are divided into several categories. There are
8 categories in total;

(ii) Second, according to maturity measured by days-to-expiration, options are divided into
short-term (ST) if T − t < 60, medium-term (MT) if 60 ≤ T − t < 150 and long-term (LT)
if 150 ≤ T − t.

Table 3 summarizes the mean, standard deviation (in parenthesis), and total number of option
prices in each category, as well as the subtotal number of each group.

4. Discussion

4.1. Volatility smile

Volatility smile indicates pricing biases across both moneyness and maturity. To investigate whether
there exist such pricing biases in Chinese market, we calculate the implied volatility of each option
from the market price to estimate the average value for each category.

Table 4 shows that BS implied volatility exhibits an apparent smile shape. Implied volatility
decreases sharply as option strike price decreases. When option goes deep in-the-money (ITM),
implied volatility increases again. However, implied volatility is quite steady across different ma-
turities. This result shows that the BS model is indeed subject to mispricing in Chinese market,
especially across moneyness. Figure 4 clearly displays the implied volatility structure.

4.2. In-sample fit performance

To compare the in-sample fit performances of the two models, we estimate the implied parameters
in the following steps:

(i) Collect all call option prices from the same day. We set the annual interest rate r =
0.03 for a good reason that will be explained below. Denote the parameter set by Φit =
{St, Ki, Ti, t, σt, λt, κt}, theoretical option price by Ĉit(Φit), and the market price by
Cit. Then we define the pricing error of option i in day t:

εit(Φit) = Ĉit(Φit)− Cit
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Table 3. Descriptive statistics

Maturity (Days-to-expiration)

Moneyness (S/K) < 60 60− 150 ≥ 150 Subtotal

OTM

< 0.91

0.0095 0.0433 0.1221

5637(0.0209) (0.0449) (0.0882)

2799 2053 785

0.91− 0.94

0.0263 0.0758 0.1362

1894(0.0385) (0.0668) (0.1001)

854 592 448

0.94− 0.97

0.0331 0.0866 0.1410

2901(0.0421) (0.0700) (0.0970)

1369 808 724

ATM

0.97− 1

0.0504 0.1111 0.1656

2961(0.0480) (0.0730) (0.0989)

1410 808 743

1− 1.03

0.0820 0.1425 0.1946

2745(0.0505) (0.1425) (0.1946)

1315 738 692

ITM

1.03− 1.06

0.1298 0.1824 0.2330

2623(0.0512) (0.0816) (0.1086)

1232 734 657

1.06− 1.09

0.1836 0.2288 0.2746

2172(0.0547) (0.0878) (0.1137)

1033 638 501

≥ 1.09

0.4089 0.4644 0.4283

6159(0.1978) (0.2252) (0.1834)

2892 2394 873

Subtotal 12904 8765 5423 27092

This table calculates the average, standard deviation, and total
number of option prices in each category, as well as the subtotal
number of each subgroup.

(ii) Find parameters σt, λt, κt that minimize

SSEt =

N∑
i=1

ε2it(Φit)
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Table 4. Implied volatility

Implied volatility (%) Maturity (Days-to-expiration)

Moneyness (S/K) < 60 60− 150 ≥ 150

OTM

< 0.91 36.55 35.72 36.94

0.91− 0.94 30.91 26.85 27.27

0.94− 0.97 26.16 24.22 24.12

ATM
0.97− 1 23.69 23.21 22.96

1− 1.03 21.81 22.20 21.92

ITM

1.03− 1.06 20.79 20.99 21.11

1.06− 1.09 20.37 19.17 20.20

≥ 1.09 27.18 23.94 21.96

This table shows the BS implied volatility in each of
the 24 categories. The implied volatility of each option
is first calculated from the market prices and then
averaged in each category.
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Figure 4. Volatility smile. This figure exhibits the implied volatility surface in Chinese option market. The x-axis
represents different moneynesses, y-axis represents different maturities, and z-axis represents the average implied
volatility.

(iii) Go back to step 1 and repeat the above procedure for each day.

We assume the annual interest rate to be constant at 3% because of the following three reasons.
1) The main purpose of this paper is not to study the influence of interest rate, and as such, a
constant interest rate can highlight our empirical emphasis and simplify the estimation procedure.;
2) Wang et al. (2017) propose an option pricing model under the Students t distribution, assuming
a constant interest rate at 5%; 3) AS of April 19, 20017, the overnight Shanghai Interbank Offered
Rate (Shibor) is about 2.5% and 6-month rate is about 4%. It seems reasonable, therefore, to
assume the risk-free rate is 3%. The objective function SSEt represents the overall daily pricing
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Table 5. Fit parameters

Parameters σ(%) λ κ SSE

BS
average 23.68 - - 0.0137

std. err. 0.54 - - -

GBS
average 24.79 0.0101 0.0010 0.0066

std. err. 0.53 0.0005 0.0001 -

This table shows means and standard errors of
daily parameter estimates and the average SSE.
σ denotes the annualized volatility. We estimate
the parameters of the BS model and GBS model
on a daily basis using all available option prices
each day before calculating the statistics reported
in the table.

bias of each particular group of options.14

The GBS model estimates slightly higher average and lower standard deviation of implied volatil-
ity, and a positive average of the two parameters each. Strikingly, the GBS model yields a much
lower average SSE, i.e., less than half of the BS counterpart. Figure 5 shows that the GBS model
outperforms the BS model every single day with a 100% win-ratio as measured by the incremental
SSE of the GBS model over the BS model.
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Figure 5. Daily relative fits of GBS and BS. This figure shows the daily difference in fit performance between
the two models measured by SSE of the GBS model less SSE of the BS model.

We further compare the relative fits of the models in differen moneyness- and maturity-sorted
categories. Figure 6 shows that in most cases the GBS model outperforms the BS model by a
large margin with one exception in which the BS model is just slightly outperforms. Note that

14For this part of the analysis, we treat all option prices in each day as a single group to back out the same implied parameter

for options with different moneyness levels and maturities. We take this approach to examine the overall impact of investor

sentiment on option prices although it deviates in spirit from our analysis of implied volatility. In a later part we further divide
options into different categories according to moneyness and maturity to investigate how well the GBS model captures the

structure of the implied parameters.
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this result is not in contradiction to the previous 100% win-ratio, because when we solve for the
implied parameters, our objective function is the overall pricing error in each day, rather than in
each category. Hence, it does not necessarily mean the GBS model will outperform in all categories.

Figure 6. Relative fitness of two models in each category. For each category, we calculate the average pricing
error of two models and calculate |ε̄GBS | − |ε̄BS | to measure the relative fitness.

Recall that based on the theoretical analysis in section 2, we interpret that λ and κ both reflect
investor sentiment toward future return prospect. Further, we expect λ is negatively related to
return expectation and κ is positively related to the squared expectation. We run the regressions to
investigate whether there exists a significant relationship between each of the two GBS parameters
and a set of past index returns as our sentiment proxies.

For our empirical investigation, we first calculate the weekly average values of λ, κ and NAV of
50ETF. We use the weekly averages because investor sentiment is not deemed as volatile as daily
trading data or stock price movements. Indeed, existing literature usually uses one week or one
month as an appropriate time period. The recent returns of past 1, 2, 3 and 4 weeks are calculated
based on the weekly NAV of 50ETF.

It is widely known that stock index returns, in most cases, exhibit positive autocorrelations (Lo
and MacKinlay (1988)). Ample empirical evidence also suggests that investors tend to form their
expectations of future returns, heavily relying on the past performances (Amin et al. (2004)) to
the extent that recent return might serve as the most important determinant of investor sentiment
(Brown and Cliff (2004)).15 Thus we choose the historical returns as the proxies of investors’ belief
in regard to future return prospect. We report the correlation coefficient estimates in Table 6.16

All negative correlations between λ and the historical returns strongly suggest that the parameter
is significantly related to the investor sentiment captured by the past returns. Interestingly, the
correlation becomes increasingly stronger as the return horizon extends up to a month. Although
this result seems to warrant a deeper look, a plausible story, as we postulate, is that investors might
rely more heavily on the monthly return history in forming their subjective belief or sentiment
compared to the past returns over shorter time span.

We then proceed to regress λ on the historical returns of past 1, 2, 3 and 4 weeks, respectively.
We also regress κ on the squared historical returns of past 1, 2, 3 and 4 weeks in the same manner.
The first-order lag term is included in both regressions to correct for the potential autocorrelations.

15Amin et al. (2004) demonstrate that the momentum of stock market can have impact on option price, and investors’

expectation of future return could be one of the channels.
16λw denotes weekly average λ.
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Table 6. Correlation coefficients 1

λw ret1w ret2w ret3w ret4w

λw 1 -0.3212 -0.5040 -0.5082 -0.5279

ret1w 1 0.7739 0.6143 0.5524

ret2w 1 0.8625 0.7519

ret3w 1 0.9077

ret4w 1

This table presents the correlation matrix among
the estimated λ and historical returns. λw de-
notes weekly average λ, and ret1w, ret2w, ret3w
and ret4w denote past recent returns of 1, 2, 3
and 4 weeks, respectively.

Table 7. Regression results 1

λw (1) (2) (3) (4)

(Intercept)
0.0041*** 0.0035*** 0.0042*** 0.0046***

(4.3915) (3.6495) (3.9440) (4.3732)

λw lag
0.6048*** 0.6575*** 0.5936*** 0.5534***

(8.8578) (8.8958) (7.3308) (6.8598)

ind1

-0.0621*** -0.0765*** -0.0385** -0.0191

(-3.2200) (-5.1584) (-2.3715) (-1.2152)

ind1 lag
-0.0650*** 0.0263 0.0043 -0.0168

(-3.2049) (1.5921) (0.2531) (-1.0263)

Adj. R2 0.584 0.594 0.520 0.532

This table shows the regression results of λ on historical re-
turns. λw denotes weekly average λ, ind1 denotes ret1w, ret2w,
ret3w and ret4w respectively. And the first-order lag terms
are introduced to remove auto-correlation. t-statistics are re-
ported in the parenthesis. *, ** and *** denote significant at
10%, 5% and 1% level, respectively.

Table 7 presents the regression results of λ, where ind1 denotes ret1w , ret2w, ret3w and ret4w,
respectively. In all four regressions, we find that λ is negatively related to the sentiment proxy.
When the market has been going up over a certain time, investors are likely to expect that the
upward trend will continue and become highly bullish as a consequence. In this situation, they
tend to seek to exploit this expectation by buying more calls to speculate, thereby pushing up the
call prices.17 and such an effect of positive expectation is reflected in a negative λ.

17In line with this reasoning, several researches have proposed demand-based option pricing models that connect buying pressure

with the daily changes of implied volatility(Bollen and Whaley (2004)) or pricing kernel (Garleanu et al. (2009)). Garleanu
et al. (2009) conclude that when investors anticipate positive expected returns, they take actions by longing more call, which

turned to a positive demand pressure.

18



Table 8. Correlation coefficients 2

κw ret21w ret22w ret23w ret24w

κw 1 0.5624 0.7472 0.6731 0.5066

ret21w 1 0.7836 0.4612 0.4552

ret22w 1 0.8140 0.6472

ret23w 1 0.8657

ret24w 1

This table shows the correlation matrix
among estimated κ and squared historical re-
turns. κw denotes weekly average κ, ret21w,
ret22w, ret23w and ret24w denote squared past
recent returns of 1, 2, 3 and 4 weeks, respec-
tively.

Table 9. Regression results 2

κw (1) (2) (3) (4)

(Intercept)
0.0002** 0.0002 0.0003* 0.0004*

(2.0843) (1.4475) (2.5415) (2.6054)

κw lag
0.2548*** 0.3803*** 0.4491*** 0.4229***

(3.4070) (4.1736) (5.0323) (4.6189)

ind2

0.2761*** 0.2063*** 0.1561*** 0.0892***

(8.4322) (10.0847) (8.8767) (5.1193)

ind2 lag
0.2006*** -0.0282 -0.0968*** -0.0559***

(5.0707) (-0.9498) (-4.6290) (-3.0657)

Adj. R2 0.621 0.644 0.572 0.389

This table shows the regression results of κ on squared histor-
ical returns. κw denotes weekly average κ, ind2 denotes ret21w,
ret22w, ret23w and ret24w, respectively. And the first-order lag
terms are introduced to remove auto-correlation. t-statistics
are reported in the parentheses. *, ** and *** represent sig-
nificance at 10%, 5% and 1% level, respectively.

Table 8 checks the correlation coefficient matrix of κ and squared historical returns. κw denotes
weekly average κ, and ret21w, ret22w, ret23w and ret24w denote squared historical returns of past 1, 2,
3 and 4 weeks, respectively. The correlation estimates suggest that κ positively impacts investor
sentiment, driving up the option price.

Table 9 reports the regression results of κ on squared historical returns. ind2 denotes ret21w,
ret22w, ret23w and ret24w, respectively.

The results in Table 9 further support our interpretation that κ is positively related to investor
sentiment. All parameter estimates for the sentiment proxy, ind2, are positive and statistically
significant at 1% level. Moreover, as we see in the sensitivity analysis (Figure 3), option price
becomes higher as κ gets larger. With higher κ, we would know that investor sentiment is stronger
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Table 10. In-sample fit performance

SSE All options Moneyness Maturity MM

BS 0.0137 0.0100 0.0114 0.0074

GBS 0.0066 0.0043 0.0028 0.0018

This table shows the average SSE of in-sample fit
using four estimation methods. See appendix D for
details of the estimation methods.

in the market, but we cannot distinguish whether investors are more bullish or more bearish in
this situation. Why then does κ have a positive impact under both scenarios? This question is
important to understand how κ drives option prices. We want to go back to equation (6) to answer
this question. Recall that λ is the coefficient of ∆, and κ is the coefficient of Γ. If option price has
a linear relationship with spot price, the change in option price due to spot price change would
be proportional to ∆. It is well known that the relation between option and underlying prices is
non-linear, as is reflected by Γ , the option convexity. When spot price increases, therefore, the
option price increases, and yet Γ makes the increase larger; likewise, when spot price decreases, the
option price also decreases. However, Γ makes the decrease not as large. This is why κ always gets
larger when investors become either more bullish or bearish.

To improve the pricing performance and validate the robustness of our model, we employ three
additional classification schemes based on two important option characteristics – moneyness and
maturity. Following Bakshi et al. (1997), i) options are divided into OTM, ATM and ITM by
moneyness, called moneyness-based method; or ii) options are divided to ST, MT and LT by
maturities, called maturity-based method; or iii) options are divided into 9 categories (3*3 matrix)
according to both moneyness and maturity, called MM-based method. Table 10 shows that 1) all
three methods improve the in-sample pricing fits of both the GBS and the BS models; 2) GBS
model consistently outperforms the BS model by a large margin regardless of the classification
scheme; 3) MM-based fit greatly reduces the pricing error. The results in Table 10 are very striking
because the percentage reduction in pricing error from using the GBS ranges between 52% and 76%
with MM-based and maturity-based classifications saving more than three quarters of the pricing
errors. Note that such enormous improvements on pricing accuracy in the GBS model derives from
the additional parameters (and the corresponding pricing terms) related to investor sentiment.

4.3. out-of-sample prediction performance

We have shown that GBS model substantially outperforms BS model with regard to in-sample
pricing fit. One may argue, however, that its superior in-sample fit could be just a result of over-
fitting with more parameters. To substantiate that our GBS model has a comparative advantage,
we compare the out-of-sample prediction performances of the two models in the following steps.

(i) Estimate the implied parameters each day with the four methods used for in-sample tests
(ii) In each day t, calculate the predicted option prices using the implied parameters estimated

in day t− 1 (σt−1, λt−1, κt−1) and the observed parameters in day t
(iii) Calculate the prediction error: Let the parameter set denoted by Φit =

{St, Ki, Ti, t, σt−1, λt−1, κt−1}, the theoretical option price by C̃it(Φit) , and market
price by Cit. Pricing errors are calculated as

εit(Φit) = C̃it(Φit)− Cit

(iv) Compare the daily average SSE as is defined in the in-sample performance tests following
each of the four methods
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Table 11. Out-of-sample prediction performance

SSE All options Moneyness Maturity MM

BS 0.0173 0.0148 0.0161 0.0131

GBS 0.0125 0.0114 0.0099 0.0100

T-stat -8.5442*** -9.6429*** -7.4049*** -5.9574***

This table shows the average SSE of out-of-sample pre-
diction using four estimation methods. See appendix D for
details of the estimation methods.

Table 12. MM based prediction error

MM based BS GBS

Overall average error 0.0020 -0.0004

Category average error ST MT LT ST MT LT

OTM

< 0.91 -0.0017 -0.0036 -0.0030 -0.0002 0.0002 0.0013

0.91− 0.94 -0.0003 0.0026 0.0037 0.0009 0.0004 0.0013

0.94− 0.97 0.0015 0.0053 0.0069 0.0002 -0.0003 0.0004

ATM
0.97− 1 -0.0012 -0.0017 -0.0024 -0.0003 -0.0006 -0.0011

1− 1.03 0.0020 0.0030 0.0045 0.0001 -0.0006 0.0006

ITM

1.03− 1.06 0.0003 -0.0040 -0.0068 0.0004 -0.0012 -0.0013

1.06− 1.09 0.0040 0.0029 0.0014 -0.0002 -0.0014 -0.0006

≥ 1.09 0.0062 0.0104 0.0094 -0.0006 -0.0020 -0.0029

This table shows the average pricing errors in each category of the BS model
and GBS model through the MM based estimation method. See appendix D for
details of MM based estimation method.

(v) Compare the average prediction error of all categories.

Following the estimation procedure specified above, we calculate the daily average SSE to di-
rectly compare the out-of-sample pricing performances of the GBS and the BS models. We find
that the SSE of the GBS model is invariably smaller compared to the BS model, which is addi-
tional strong evidence of the dominant advantage of the GBS model. Although the reductions in
the pricing error are not as large as in in-sample fit tests, 23% to 39% of the BS pricing errors are
saved by employing the GBS model. For each method, Table 11 reports the daily average SSE of
two models. The t-tests for mean differences of the SSE show that GBS model yield statistically
significant smaller prediction errors.

Table 12 examines the average predicting error estimated by the four methods we use throughout
the current paper. To save space, we only present the results of MM-based prediction with the
other three tables provided in Appendix D.

We report the following findings from out-of-sample prediction tests.

(i) From all four tables here and in Appendix D, the GBS model shows consistently superior
out-of-sample pricing performances than the BS model, demonstrating that the improved
prediction power of the GBS model is not an overfitting result.;
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(ii) The three alternative methods all outperform the original method, indicating we can esti-
mate implied parameters more precisely by classifying the option data along the significant
option characteristics such as moneyness and maturity. Furthermore, the MM-based pre-
diction approach beats the other two methods in most cases.

(iii) All four tables show that the GBS model tends to prescribe lower estimated option prices
compared to the BS model. This result indicates that, more or less, bearish sentiment
prevails in Chinese market over the sample period. The average daily λ of all options from
in-sample fit analysis is indeed positive, which is consistent with the fact that China A
share market has experienced a bearish phase since June of 2015.

We further compare the relative pricing performances in each category using MM-based method.
A negative value indicates a smaller absolute average pricing error from the GBS model. Figure 7
shows clearly that the GBS model outperforms the BS model in most cases with only two exceptions
at trivial disadvantages.

Figure 7. For each category, we calculate the average out-of-sample pricing errors of the two models (|ε̄GBS |−|ε̄BS |)to
compare the relative predictive power.

5. Conclusion

We propose a generalized Black-Scholes (GBS) option pricing model by utilizing the generalized
solution to the heat equation recently obtained. We provide the closed-form pricing formula for the
model, wherein two newly incorporated parameters are interpreted as implied investor sentiment
factors.

While prior research in recent years has documented that behavioral factors, particularly investor
sentiment has significant pricing implications in option market, not just stock market, most papers
have attempted to relate investor sentiment to option prices either relying on purely empirical
approach or by studying the association between investor sentiment and certain aspects of the
option or its underlying security (e.g., volatility smile and risk-neutral skewness). Our approach
is distinguished from those studies in that our analytical option pricing formula endogenously
incorporates additional terms which, through judicious parametrization, turn into factors related
to investor sentiment.

Our empirical results show that our model invariably outperforms the standard BS model in
terms of both in-sample fit and out-of sample pricing performances. Further analysis based on four
subsamples that represent different option characteristics confirms that the reduction in pricing
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errors by the GBS is between 52% and 76% for in-sample fit performance and between 23% to 39%
for out-of-sample prediction. Moreover, our results demonstrate that when we divide options based
on moneyness and maturity, namely in the MM-based test, the GBS model can precisely capture
the term structure of implied parameters, thereby exhibiting a significant pricing impact.

Our empirical analysis provides strong evidence that our interpretation of the two additional
parameters in our GBS is consistent with the option pricing behavior salient in 50ETF option
data. The first implied sentiment factor tends to capture investors belief about the future return
prospect, while the second factor is related to their expectation of return volatility. Thus our results
shed some light on a possible mechanism through which investor sentiment works directly into the
option price.

Our study focuses on call options, leaving the investor sentiment reflected in put options to future
research. Because the prices of call and put options are tightly linked by put-call parity, we expect
that put options will give us a similar conclusion. Yet, it would still be interesting to investigate
how different characteristics in sentiment might be reflected distinctively in calls and puts and the
investors’ heterogeneous responses. Also, this study examines the investor sentiment mainly from a
time series perspective, looking into how temporal variations in investor sentiment affect the option
pricing behavior. It will also be meaningful to extend our study to investigate differential impact
of investor sentiment across different markets, different economic and regulatory conditions, and
so on. Comparison with other option pricing models for relative pricing and hedging performances
will add to the existing literature as well.
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Appendix

Appendix A-Solution of BS model

Assume the price of underlying asset is represented by S, and follows

dS = µSdt+ σSdW

where µ is the drift term and σ is the volatility of underlying assets return.
C is the price of call option, according to Ito’s Lemma

dC =

(
∂C

∂S
µS +

∂C

∂t
+

1

2

∂2C

∂S2
σ2S2

)
dt+

∂C

∂S
σSdW

Now construct a portfolio Π in which we short one share of call option and long ∂C
∂S shares of

underlying assets. Thus

Π = −C +
∂C

∂S
S

With a slight change of time dt, the value of this portfolio is

dΠ = −dC +
∂C

∂S
dS

=

(
−∂C
∂t
− 1

2

∂2C

∂S2
σ2S2

)
dt

The return of this portfolio should be equal to risk-free rate, or there will exists opportunity to
arbitrage. Thus we get the following partial differential equation

∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rS

∂C

∂S
− rC = 0 (9)

with boundary condition

C (T, S) = max (S − E, 0)

where E is the strike price. Let

S = Eex

t = T − 2τ

σ2

C (t, S) = EV (τ, x)

and change the variables in Eq. (9), we get

1

2
σ2∂

2V

∂x2
+

(
r − 1

2
σ2

)
∂V

∂x
− 1

2
σ2∂V

∂t
− rV = 0 (10)
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Let k = 2r
σ2 , then Eq. (10) is transformed to

∂V

∂t
=
∂2V

∂x2
+ (k − 1)

∂V

∂x
− kV (11)

The boundary condition is changed to

V (0, x) = max (ex − 1, 0)

We will change the variable again and transform Eq. (11) to heat equation, whose solution is
already known, then we can easily obtain the solution of call price. Let

V (τ, x) = eαx+βτu (τ, x)

where α and β will be defined later. Eq. (11) will be transformed to

∂u

∂t
=
∂2u

∂x2
+ (2α+ k − 1)

∂u

∂x
− [(α+ k) (α− 1)− β]u

In order to remove u and ∂u
∂x , let the coefficients be zero. Thus

α = −1

2
(k − 1)

β = −1

4
(k + 1)2

Then the solution of Eq. (11) is

V (τ, x) = e−
1

2
(k−1)x− 1

4
(k+1)2τu (τ, x)

where

∂u

∂τ
=
∂2u

∂x2
, −∞ < x <∞ and τ > 0 (12)

with boundary condition

φ (x) = u (0, x) = max
[
e(1−α)x − e−αx, 0

]
And the solution of heat equation is

u (τ, x) =
1√
4πτ

∫ ∞
−∞

φ (y) e−
(x−y)2

4τ dy (13)

Because the initial condition equals to

φ (y) = max
[
e

1

2
(k+1)y − e

1

2
(k−1)y, 0

]
= e

1

2
(k+1)y − e

1

2
(k−1)y
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when y > 0. So Eq. (13) is equivalent to

u (τ, x) =
1√
4πτ

∫ ∞
0

[
e

1

2
(k+1)y − e

1

2
(k−1)y

]
e−

(x−y)2

4τ dy

We solve the integral

u (τ, x) = e
1

2
(k+1)x+ 1

4
(k+1)2τN (d1)− e

1

2
(k−1)x+ 1

4
(k−1)2τN (d2)

then

V (τ, x) = exN (d1)− e−τkN (d2)

The final solution of price of call option is

CBS (t, S) = SN (d1)− Ee−r(T−t)N (d2)

where

d1 =
log (S/E) +

(
r + σ2/2

)
(T − t)

σ
√
T − t

d2 =
log (S/E) +

(
r − σ2/2

)
(T − t)

σ
√
T − t

Appendix B-Solution of generalized BS model

ϕ (τ, x) = ψ (τ, x) + λθ (τ, x) + γη (τ, x)

=
1√
4πτ

∫ ∞
−∞

φ (y)

[
1− λ (y − x)

2τ
− κ

2τ
+
κ (y − x)2

4τ2

]
e−

(y−x)2

4τ dy

=
1√
4πτ

∫ ∞
0

[
e

1

2
(k+1)y − e

1

2
(k−1)y

] [
1− λ (y − x)

2τ
− κ

2τ
+
κ (y − x)2

4τ2

]
e−

(y−x)2

4τ dy

Let ρ = y−x√
2τ

, y =
√

2τρ+ x

u (τ, x) =
1√
2π

∫ ∞
−x√
2τ

[
e

1

2
(k+1)(

√
2τρ+x) − e

1

2
(k−1)(

√
2τρ+x)

] [
1− κ

2τ
− λρ√

2τ
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κρ2

2τ

]
e−

1

2
ρ2dρ

Seperate Eq.(8) to five parts

I0 =
1√
2π

(
1− κ

2τ

)∫ ∞
frac−x

√
2τ

[
e

1

2
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2
(k−1)(
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2
ρ2dρ

=
(

1− κ

2τ
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e

1

2
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4
(k+1)2τN(d1)− e

1

2
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4
(k−1)2τN(d2)

]
where
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d1 =
x√
2τ
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√
2τ
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2

Then the second one
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Similarly
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Then come to the forth part
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Similiarly

I4 = − κ√
2π2τ

e
1

2
(k−1)x+ 1

4
(k−1)2τ

{[
1 +

1

2
(k − 1)2 τ

]√
2πN (d2) +

[
(k − 1)

√
2τ − d2

]
e−

1

2
d22

}

u(τ, x) is the summation of five parts up above

ϕ (τ, x) = I0 + I1 + I2 + I3 + I4
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Appendix C-Relation between GBS and BS model

First we solve the expression of
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It can be proven
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Appendix D

Followings are the descriptions to the four methods we use for parameter estimation.

(i) All options fit: In each day we estimate the parameters using all the option prices in that
day. Thus, we get one set of parameters.

(ii) Moneyness based fit: In each day we divide the options into three groups according to
moneyness, i.e., OTM, ATM and ITM. Then we estimate the parameters using the option
prices in each group, and get three set of parameters.

(iii) Maturity based fit: In each day we divide the options into three groups according to time to
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maturity, i.e., ST, MT and LT. Then we estimate the parameters using the options prices
in each group, and get three set of parameters.

(iv) MM based fit: In each day we divide the options into nine groups according to time to
maturity and moneyness, i.e., OTM-ST, OTM-MT, etc. Then we estimate the parameters
using the options prices in each group, and get nine set of parameters.

Table A1 and A2 show the correlation coefficients between estimated λ, κ and subsequent returns.
And table A3, A4 and A5 show the results for average pricing error of two models.

Table A1. Correlation coefficients 3

λw ret1w ret2w ret3w ret4w

λw 1 -0.0960 -0.0852 -0.1555 -0.1585

ret1w 1 0.7864 0.6207 0.5594

ret2w 1 0.8666 0.7511

ret3w 1 0.9113

ret4w 1

This table shows the correlation matrix among
estimated λ and subsequent returns. λw denotes
weekly average λ, ret1w, ret2w, ret3w and ret4w
denote subsequent return of 1, 2, 3 and 4 weeks
respectively.

Table A2. Correlation coefficients 4

κw ret21w ret22w ret23w ret24w

κw 1 0.0472 0.0312 0.0241 0.0010

ret21w 1 0.5042 0.3748 0.2925

ret22w 1 0.7653 0.5785

ret23w 1 0.8051

ret24w 1

This table shows the correlation matrix
among estimated κ and squared subsequent
returns. κw denotes weekly average κ, ret21w,
ret22w, ret23w and ret24w denote squared subse-
quent return of 1, 2, 3 and 4 weeks respec-
tively.
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Table A3. All options prediction error

All options based BS GBS

Overall average error 0.0013 -0.0006

Category average error ST MT LT ST MT LT

OTM

< 0.91 -0.0038 -0.0112 -0.0090 -0.0015 -0.0070 -0.0036

0.91− 0.94 -0.0043 -0.0088 -0.0058 0.0000 -0.0054 -0.0028

0.94− 0.97 -0.0039 -0.0067 -0.0046 0.0011 -0.0039 -0.0024

ATM
0.97− 1 -0.0023 -0.0036 -0.0017 0.0023 -0.0025 -0.0007

1− 1.03 0.0009 0.0010 0.0052 0.0011 -0.0003 0.0041

ITM

1.03− 1.06 0.0035 0.0069 0.0100 -0.0024 0.0026 0.0068

1.06− 1.09 0.0056 0.0109 0.0157 -0.0045 0.0038 0.0104

≥ 1.09 0.0060 0.0135 0.0199 -0.0054 0.0027 0.0109

This table shows the average pricing errors in each category of the BS model and
GBS model through all option based estimation method.

Table A4. Moneyness based prediction error

Moneyness based BS GBS

Overall average error 0.0014 -0.0001

Category average error ST MT LT ST MT LT

OTM

< 0.91 -0.0031 -0.0060 0.0008 -0.0002 -0.0033 0.0023

0.91− 0.94 -0.0020 -0.0004 0.0061 0.0012 -0.0018 0.0045

0.94− 0.97 -0.0005 0.0021 0.0081 0.0013 -0.0011 0.0048

ATM
0.97− 1 -0.0021 -0.0031 -0.0008 0.0000 -0.0027 -0.0005

1− 1.03 0.0011 0.0013 0.0057 0.0004 0.0001 0.0047

ITM

1.03− 1.06 -0.0004 -0.0030 -0.0056 0.0015 -0.0004 -0.0038

1.06− 1.09 0.0033 0.0035 0.0025 -0.0010 0.0008 0.0001

≥ 1.09 0.0053 0.0100 0.0105 -0.0030 0.0016 0.0028

This table shows the average pricing errors in each category of the BS model and
GBS model through the moneyness based estimation method.
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Table A5. Maturity based prediction error

Maturity based BS GBS

Overall average error 0.0018 -0.0003

Category average error ST MT LT ST MT LT

OTM

< 0.91 -0.0029 -0.0097 -0.0108 -0.0015 -0.0018 0.0003

0.91− 0.94 -0.0028 -0.0074 -0.0069 -0.0009 -0.0008 0.0015

0.94− 0.97 -0.0028 -0.0054 -0.0062 -0.0008 0.0001 0.0010

ATM
0.97− 1 -0.0014 -0.0025 -0.0035 0.0002 0.0008 0.0003

1− 1.03 0.0018 0.0023 0.0033 0.0010 0.0015 0.0016

ITM

1.03− 1.06 0.0045 0.0079 0.0083 0.0005 0.0020 0.0002

1.06− 1.09 0.0067 0.0119 0.0138 0.0003 0.0013 0.0002

≥ 1.09 0.0069 0.0144 0.0173 -0.0006 -0.0015 -0.0027

This table shows the average pricing errors in each category of the BS model and
GBS model through the maturity based estimation method.
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