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Abstract

We study the pricing of equity options in India which is the world’s
second largest stock option market and third largest index options
market. Several of our findings are supportive of market efficiency:
a parsimonious smile adjusted Black Scholes model fits option prices
quite well, and the implied volatility has incremental predictive power
for future realized volatility. However the risk premium embedded
in implied volatility for Single Stock Options is higher than in other
markets, and appears to be in excess of what might be expected from
theoretical considerations. This could be due to noise trading: In-
dian regulations and market structure allows greater participation of
noise traders in option writing, possibly channels informed speculators
into its highly liquid Single Stock Futures market, and perhaps gives
greater scope for insider trading and market manipulation. The study
suggests that even a very liquid market with substantial participation
of global institutional investors can have structural features that lead
to systematic departures from the behaviour of a fully rational market
while being ‘micro-efficient’.
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INDIAN EQUITY OPTIONS: SMILE, RISK PREMIUMS AND
EFFICIENCY

Abstract

We study the pricing of equity options in India which is the world’s
second largest stock option market and third largest index options
market. Several of our findings are supportive of market efficiency:
a parsimonious smile adjusted Black Scholes model fits option prices
quite well, and the implied volatility has incremental predictive power
for future realized volatility. However the risk premium embedded
in implied volatility for Single Stock Options is higher than in other
markets, and appears to be in excess of what might be expected from
theoretical considerations. This could be due to noise trading: In-
dian regulations and market structure allows greater participation of
noise traders in option writing, possibly channels informed speculators
into its highly liquid Single Stock Futures market, and perhaps gives
greater scope for insider trading and market manipulation. The study
suggests that even a very liquid market with substantial participation
of global institutional investors can have structural features that lead
to systematic departures from the behaviour of a fully rational market
while being ‘micro-efficient’.

1 Introduction

We examine the pricing of Indian Equity Options market, which in 2016
was the world’s second largest? single stock options (SSO) market and the
third largest® index option market. Indian equity derivatives market has
many unique features that provide a good setting to investigate the pricing
efficiency of the options market at both micro and macro levels. First, In-
dian regulations and market structure allows greater participation of noise
traders in option-writing than in other countries.* Second, India has a very
liquid Single Stock Futures (SSF) market along with a highly liquid equity
options market. This may channel leverage-hungry informed speculators
into its highly liquid SSF markets, unlike most developed markets like the
US. Third, illiquid strike options are suspected to be used for tax hedging/
manipulation in India. All of the above factors could potentially make In-
dian equity options less efficient than in other countries. In contrast, the
unfragmented Indian market is expected to result in more efficient pricing

2World Federation of Exchanges, Annual Statistics Guide, 2016

3The equity derivatives turnover on National Stock Exchange (NSE) was about INR
648 trillion in 2015-16 (SEBI Handbook of Statistics, 2016). The growth in the notional
turnover of equity derivatives markets vis-a-vis the equity cash segment is one of the
highest in the world at 15.54 in 2016 (Discussion Paper on Growth and Development of
Equity Derivatives Market in India, SEBI, 2017)

4Discussion Paper on Growth and Development of Equity Derivatives Market in India,
SEBI, 2017(Chart 2).



of derivatives. In India, all derivatives segments - Index Options, SSOs, In-
dex Futures and SSF's - trade on the same exchange as the spot, potentially
removing any noise arising from fragmented markets. The literature on In-
dian derivative market is scant, and this study is perhaps the first study that
comprehensively examines the pricing efficiency of SSO and Index Option
contracts at both micro- and macro-level.

We attempt to answer two questions on the efficiency of the Indian op-
tion market using a large dataset consisting of 66 unique SSOs and the
Nifty® Index option during 2011-2015. First, we investigate whether the op-
tion prices are ‘micro-efficient’ by measuring the relative consistency in the
prices across contracts with the same underlying. This is done by examining
the conformity of observed option prices to a parsimonious smile-adjusted
Black-Scholes model.

Second, we investigate the ‘macro-efficiency’ of the equity options market
by verifying the relationship between the estimated smile-adjusted implied
volatility (IV) and the realized volatility (RV). Empirical observations indi-
cate that IV exceeds RV for all options. This difference has been attributed
to mispricing and risk premium.® However, the magnitude of the difference
between the IV and RV varies across underlying and markets. The difference
has been found to be higher in index options than SSOs (Bollen and Whaley,
2004; Jackwerth and Rubinstein, 1996). Bakshi and Kapadia (2003a) argue
that when the market is in stress, there is a rise in the market volatility.
Investors are, therefore, willing to pay a higher price for the option contracts
for insurance purpose. This implies a higher IV which has been observed
by A1 et al. (2007); Bakshi and Kapadia (2003a); Bollerslev et al. (2011);
Jones (2006); Carr and Wu (2008). The difference between IV and RV is
higher for SSOs vis-a-vis Index options because the idiosyncratic volatil-
ity component of SSOs reduces the effect of market volatility. Theoretically,
Girsanov’s theorem states that under lognormality (GBM) assumptions, the
risk-neutral and the physical volatility are the same, and only the drift is
shifted. But under departures from GBM, this identity no longer obtains
and IV exceeds RV. A risk premium can exist only if volatility risk is priced
in equilibrium. This requires that the volatility risk is non-diversifiable and
that volatility is correlated with the Stochastic Discount Factor (SDF). Both
of these are true for index options but are much less true for SSOs. Lastly,
we also investigate some empirical regularities between the IV and the RV.

Our main results are as follows. First, we find that the Indian equity

®Nifty 50 Index is India’s market based stock-market Index, consisting of 50 highly
liquid Indian stocks. Options on this Index are the Nifty Index Options.

5This risk premium is attributed to negative market volatility risk premium and to
positive market-wide correlation shocks.



options market is micro-efficient. The median pricing errors in both the
SSOs and the Nifty Index Option are very small at 0.3% and 0.8% respec-
tively. Second, the difference between IV and RV is positive for both SSOs
and Nifty Index Option. The mean difference between IV and the forward-
looking (backward-looking) RV is about 3.11% (3.31%) for Nifty Index Op-
tion and 2.49% (3.55%) for SSOs. Further examination of determinants of
SSO-1IV suggests that the estimated SSO-IV is an optimal forecast of the
risk-neutral volatility. Our results can be regarded as being supportive of ra-
tional markets except that SSO risk premiums appear to be too high relative
to other economies. In line with global literature, we also find that (a) IV
varies directly with RV; (b) stocks with lower RV also have lower IV; (c) IV
has incremental predictive power for future volatility; and (d) the SSO smile
contains a significant systematic component. The study suggests that even
a very liquid market with substantial participation of global institutional in-
vestors can have structural features that lead to systematic departures from
the behaviour of a fully rational market while being ‘micro-efficient’.

The results of the study would be useful for arbitrageurs and traders.
Various institutional investors like mutual funds, pensions funds, hedge
funds, insurance funds, who use a lot of structured equity derivatives prod-
ucts (Francis et al., 2000) and operate arbitrage funds, would find our results
useful. Booming global Alternative Investment Funds (AIF), especially cat-
egory III, invest in listed and unlisted derivatives in India.” Our results
would provide them useful insights for making informed decisions. Lastly,
the results of the study may be helpful for hedgers. We find a systematic gap
between IV and RV, which implies that a consistent strategy of a covered
call may help enhance profits.

The structure of the document is as follows. Section 2 outlines the
literature, Section 3 formulates the research questions, and Section 4 men-
tions data sources and sample formulation. Analysis of micro-efficiency and
macro-efficiency are in Sections 5 and 6 respectively. Robustness tests are
included in Section 7 while section 8 concludes.

2 Literature Review

2.1 Volatility Smile

Seminal work of Black and Scholes (1973) showed that option payoff can be
replicated using a portfolio of the underlying stock and the bond, paving

"http://www.sebi.gov.in/media/press-releases/may-2012/
sebi-notifies-sebi-alternative-investment-funds-regulations-2012_22799.
html, http://www.sebi.gov.in/sebiweb/other/0OtherAction.do?doRecognisedFpi=
yes&intmId=16


http://www.sebi.gov.in/media/press-releases/may-2012/sebi-notifies-sebi-alternative-investment-funds-regulations-2012_22799.html
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http://www.sebi.gov.in/media/press-releases/may-2012/sebi-notifies-sebi-alternative-investment-funds-regulations-2012_22799.html
http://www.sebi.gov.in/sebiweb/other/OtherAction.do?doRecognisedFpi=yes&intmId=16
http://www.sebi.gov.in/sebiweb/other/OtherAction.do?doRecognisedFpi=yes&intmId=16

the way for a theoretical option pricing formula. Black-Scholes made many
assumptions to derive the formula including lognormally distributed instan-
taneous stock prices and friction-less markets. All parameters of the formula,
except volatility, are observable from market data. Volatility was first es-
timated from historical stock prices. However, as option liquidity soared,
investors used the market prices of options to back-calculate the volatility
parameter, the Implied Volatility (IV), from the Black-Scholes formula. All
else being equal, the theoretical price of an option should be a monotonically
increasing function of its IV. Further, since only one volatility parameter
(of the underlying) governs the option price, the plot of IV against strike
price should be flat and constant through time. However, empirical findings
greatly deviate from the expected flat and time-invariant relationship.

Rubinstein (1985) report a U-shaped ‘smile’-like relationship between IV
of individual stock options and their strike prices for a given maturity. The
smile indicates that OTM options are severely overpriced in the market.
Similar evidence was noted in Index options as well. Jackwerth (2000) an-
alyzes monthly put trading strategies in S&P 500 Index options from 1988
to 1995 and finds that they deliver high (risk-adjusted) returns. Broadie
et al. (2009) uses option prices from 1986 to 1996 and finds that a portfolio
of long or short ATM or OTM options earned a significantly higher Sharpe
Ratio. Jones (2006) reaches a similar conclusion with daily data. The smile
could not be explained by market noise or bid-ask spreads. Such smiles are
reported in various international markets as well. Mayhew (1995) surveys
the literature on IV smile.

These smiles became skewed and downward-sloping (‘volatility smirk’),
particularly for Index Options, after the market crash of 1987 (Bates, 2000).
A volatility smirk implied that OTM put options are priced higher in the
market than OTM call options. Toft and Prucyk (1997) and Jackwerth and
Rubinstein (1996) argue that investors became pessimistic after the crash
causing the underlying distribution of Index returns to have a fatter left
tail (‘crashophobia’). Others have found volatility smirks in SSOs, although
they are less steep than that in the Index (Bollen and Whaley, 2004).

A number of potential explanations for volatility smile/smirk have been
given in the literature. Black (1976) and others suggested the leverage ef-
fect. A firm’s debt-to-equity ratio increases when the price of the stock
falls. Ceteris paribus, the impact of a shock on equity is larger after the
fall in the asset value (than before) causing volatility to increase for low
strike prices. However, Toft and Prucyk (1997) report that it is a minor
effect and that it couldn’t explain the volatility smile in the Index options.
Information aggregation model was suggested by Grossman (1987) where
trading allows investors to learn the true value of the asset and this learning



then allows prices to adjust to the true value. However, such models pre-
dict that asset prices are equally likely to fall and rise, which is inconsistent
with a downward-sloping smirk that implies that decreases are more likely
than increases. Other explanations include increased risk aversion param-
eter during market stress (Franke et al., 1998) and higher buying pressure
on put options for hedging purposes (Bollen and Whaley, 2004). However,
these models only moderately explain the smile and do not explain the steep
volatility smirk.

Another stream of literature relaxes the assumptions prevalent in Black-
Scholes model to explain the smile. A smile arises if there is a departure from
the lognormality of stock prices while retaining frictionless market assump-
tions. The model parameters like interest rate, volatility, etc. are allowed to
vary deterministically or stochastically than being assumed constant. For
example, deterministic volatility models allow the underlying stock volatil-
ity to evolve as a function of certain inputs (stock price and time as in Local
Volatility Models) (Cox and Ross, 1976; Cox, 1996). However, even these
models do not explain the volatility smirk completely.

These problems have motivated researchers to derive ‘smile-consistent’
volatility models. In this class of models, the market prices of standard Eu-
ropean options are taken as given and an IV is computed by inverting those
prices using the Black-Scholes formula. Thus, the computed IV is not only
a no-arbitrage value, but it is endogenously determined from the options’
market prices. The smile-consistent volatility models can be further classi-
fied as deterministic smile-consistent models and stochastic smile-consistent
models. Deterministic smile-consistent models allow the smile to vary with
given inputs (like strike price or option Delta). They are tractable and eas-
ily implemented through binomial/trinomial implied trees (Dupire, 1997;
Jackwerth, 1997; Cox et al., 1979) or as an adhoc process (Malz, 1997).Ski-
adopoulos (2001) surveys smile-consistent volatility models. In this paper,
we estimate a deterministic smile-consistent model for a large dataset of
Indian equity options.

2.2 Variance Risk Premium

Realized Volatility, or RV, is defined as the volatility of the underlying stock
over the life of an option, measured ex-post (forward-looking). It can also be
computed as the volatility of underlying stock in the last 30 days (backward-
looking). RV is a proxy for the true volatility of the underlying. Empirically,
IV exceeds RV. Bakshi and Kapadia (2003b) find that the S&P 500 IV ex-
ceeds the RV by 3.3% during 1991 to 1995. French et al. (1987) showed that
market returns and shocks to market volatility are negatively correlated.
Bakshi and Kapadia (2003a) argue that this negative relationship implies



that when the market is in stress (negative market returns), the market
volatility increases. Holding options help hedge such market risk as the op-
tion Vega (sensitivity to underlying volatility) is positive. Hence investors
are willing to pay a higher price for this insurance. This implies a negative
volatility risk premium and a higher IV. Similar evidence is also noted by
A1 et al. (2007), Bakshi and Kapadia (2003a), Bollerslev et al. (2011), Jones
(2006), Carr and Wu (2008) and Broadie et al. (2009). Recently, Driessen
et al. (2009) argue that Index options may have a correlation premium,
which is insurance for reduced diversification during negative market move-
ments.

However, IV and RV difference is smaller for SSOs. Bakshi and Kapadia
(2003b) find a variance premium of 1.5% in their sample of 25 individual
stock options from 1991 to 1995. Similar evidence is also noted by Bollen
and Whaley (2004), Driessen et al. (2009) and Carr and Wu (2008). Bakshi
and Kapadia (2003b) give two possible reasons for a smaller variance risk
premia in SSOs than in Index Options. First, they argue that the idiosyn-
cratic volatility component of SSOs’ total volatility may reduce the effect of
market volatility and hence the variance premium in SSOs. Second, market
volatility may also affect the pricing of other risks (like jumps) in the index
options making them more sensitive to market volatility than SSOs.

Theoretically, Girsanov’s theorem states that under GBM (lognormal-
ity) assumptions, the risk-neutral volatility and the physical volatility are
the same, and only the mean (drift) is shifted. But under stochastic volatil-
ity or jumps or other departures from GBM, this identity no longer obtains,
and hence IV is greater than RV. This difference can be interpreted as evi-
dence of mispricing or as negative volatility risk premium in Index options.
A risk premium can exist only if volatility risk is priced in equilibrium. This
requires that the volatility risk is non-diversifiable and that volatility is cor-
related with the Stochastic Discount Factor. Both of these are true for index
options (volatility rises in bear markets). They are much less true for SSOs.

2.3 Options Mispricing in India

The bulk of empirical work in options markets in India deals with validat-
ing Black-Scholes model and noting the existence of a volatility smile in
Nifty Index Option. Shaikh and Padhi (2014) study the volatility smile,
term structure and implied volatility surfaces on Nifty Index Options from
January 2012 to December 2012. They find a classical U-shaped volatility
smile, and evidence of a volatility smirk. Narain et al. (2016) use Nifty
Index Options prices from 2004 to 2014 and observes that IV of call op-
tions with lower strike prices was higher than IV of call options with the



higher strike price. The results were reversed in the case of put options.
Sehgal and Vijayakumar (2008) use daily Nifty Index option data of 2004
and 2005, and find the existence of an asymmetric volatility smile. Histori-
cal volatility and time to expiration seem to determine this smile asymmetry.

Varma (2002) shows evidence of severe mispricing in Indian Nifty Op-
tions during the period June 2001 to February 2002. The author uses Black’s
formula with Nifty Futures to calculate Implied Volatility of Index options.
Volatility smiles are computed using a GARCH model on IV and found to
be statistically different for put and call options, violating the put-call par-
ity. Breeden-Litzenberger formula (Breeden and Litzenberger, 1978) is then
used to compute the implied risk-neutral probability distributions for the
terminal stock index price from the two smiles. As compared to normal or
historical distribution, the implied probability distribution are more highly
peaked and have thinner tails, implying volatility underpricing. Bi et al.
(2014) use 10 SSOs closing prices from May 2012 to April 2013 to calculate
their volatility under a GARCH (1,1) framework. The estimated volatility
was fed into Black-Scholes option pricing formula, and the estimated prices
were compared to market prices. The paper finds evidence of overpricing in
the equity options markets.

The present literature, to the best of our knowledge, does not compare
the pricing dynamics of Indian equity options market comprehensively. We
use a recent and large dataset to observe both micro and macro-efficiency
of 66 SSOs and Nifty Index Option. We further allow the volatility smile to
vary with time by estimating a smile daily. We also compare IV with two
measures of RV, and comment on the stylized empirical regularities between
the IV and the RV.

3 Research Questions
FEmpirically examine mispricing in Indian Equity Options:

e Estimate ‘volatility smile(s)’ in Indian SSOs to observe any relative
pricing inconsistency

e Identify any macro-pricing inefficiency and Risk Premia in Indian op-
tions market by measuring deviation between Implied Volatility and
Realized Volatility

4 Data

The sample period for our study is January 2011 to December 2015. The
sample period has been selected for two reasons. First, SSO contracts in



India switched from American to European type in January 2011. Thus,
our sample consists of European options only. Second, Indian option mar-
ket noticed an upward trend in volume after 2011, partly due to the shift to
European options. We restrict our sample to Nifty Index option and to only
those SSOs whose underlyings were components of the Nifty Index at any
point between 2011 to 2015. These SSOs may be regarded as the most active
contracts in India. Indian SSOs, especially illiquid contracts, are suspected
to be used for tax manipulation purpose and therefore a liquidity filter was
applied wherein all SSOs which traded less for less than (any) five minutes
during the day have been excluded. As in Bakshi and Kapadia (2003b) and
Driessen et al. (2009), only near-month SSOs with number of days to expiry
between 7 and 30 (both included) calendar days are considered. All the
scrips in the sample have atleast 100 valid trading days to remove newest
entries.

The data on SSOs and Nifty Index Option is taken from National Stock
Exchange (NSE) trade book.® As explained later, we use the Black’s model
instead of the Black-Scholes model to estimate the volatility smile. Black’s
model requires futures prices on the same underlying as the options. Since
in India, the SSF market is more liquid than the SSO markets, we retrieve
the last trading time (accuracy to the minute) of each unique option (char-
acterized by scrip, expiry date, and strike price) and then match it to the
futures price in that minute. Hence, all the SSFs and SSOs in our sample
have prices within 59 seconds trading period.” This reduces any bias due
to asynchronicity and stale prices. We follow the same pattern for Nifty
Index Options. All options contracts whose market prices lies outside the
Black model’s arbitrage bounds have also been removed. Our sample of
minute-matched futures and options would potentially reduce the number
of options violating the arbitrage bounds due to pure asynchronicity. Fi-
nally, our sample consists of 66 unique SSOs and one (Nifty) index option.

Following Mixon (2009), we estimate smiles only for those SSO-days'’
where more than or equal to five unique options traded in a day. The speci-
fication avoids the problem of under- or perfect-fit of the quadratic smile.'!

The riskfree rate is computed from the Implicit yield at Cut-off Price of
91-day Government Bonds (RBI).!2

80ver 95% of equity derivatives in India trades on NSE (Discussion Paper on Growth
and Development of Equity Derivatives Market in India, SEBI, 2017 (Pg. 7))

9The observations where futures price did not exist within the same minute were
dropped (less than 1%).

1By SSO-Day we mean all option contracts of a particular underlying on a given day.

1The case of > 3 unique options has been included as a robustness test.

12Tn the Black’s formula, the riskfree rate appears as the discounting factor on the



5 Results: Micro-efficiency

This section addresses the first question, that is, it examines the extent of
mispricing in the Indian equity options markets. We first outline the smile
estimation method and then give the pricing errors.

5.1 Estimating Smile

We estimate a smile for each underlying-day'® using a quadratic function,
defined by IV = a * Delta® + b * Delta + c. The smile estimation method
follows Malz (1997). Although some researchers have used a linear smile
(Mixon, 2009), our choice of a quadratic function aims to capture the two
most important departures from lognormality - fatter tails and skewness. A
quadratic smile is, infact, a different parametrization of Vanna-Volga pricing.
Any higher order smile may bring with it the problems of over-estimation.
Our volatility smile is a call volatility smile. Following Varma (2002), we
estimate the IV and delta simultaneously using Black’s model rather than
the Black-Scholes model. Black’s model helps to circumvent the problems
of cost-of-carry and dividend yields arising in Black-Scholes formula.

The smile delta range has been limited to [0,1], by converting the put
option deltas to call deltas. To estimate the smile for each underlying-day,
we minimize the sum of the squared pricing errors between the market prices
of the options and the estimates of the prices using IV from the volatility
smile recursively. We minimize the squared pricing error and not the IV
error because the latter may be biased. For lower option prices, the IV can
increase substantially while the option price itself may remain almost the
same (Christoffersen et al., 2009).

The volatility smile is constrained to always lie above the X-axis within
our domain of Delta [0,1] because negative IV (and hence prices) do not
make sense. We do this by adjusting the smile parameter ¢ to c_new. Note
that simply adding back the minimum value of the function into ¢, i.e.,
c-new = ¢ + b*/4a and constraining ¢ >= 0 does not work for two reasons
- First, such unconditional addition may result in ‘over-correction’ if the lo-
cation of the minima (—b/2a) lies beyond our range of Delta [0,1]. Second,
when a is close to 0, b>/4a may blow up. Thus, our adjustment requires
that although we estimate a, b, c, the smile is characterized by a,b, c.new

difference of probability-weighted futures and strike prices, and has a very small effect
on the price. Varma (2002) notes that even setting the riskfree rate to zero will make a
difference of less than 1% for most option prices.

13each of 66 SSOs or Index Option

10



such that cnew = ¢+ b%/4a if —b/2a € [0,1] else c.new = ¢ —min(0,a + b).
Let us consider a simplified function f = a * Delta® + b * Delta (a >= 0) (f
and the smile function have the location of the minima at —b/2a, which is
independent of ¢). The first part of the adjustment is adding the minimum
value if the location of the minima (—b/2a) lies in Delta [0,1] domain. The
second part derives from the fact that if —b/2a does not lie in [0,1], then f
would be monotonous between 0 and 1. In such a case, the location of min-
ima would then occur at either 0 or 1, and the minimum would be f(0) =0
or f(1) = a+ b; whichever is lower we subtract from c¢. Any over-correction
due to assuming the simplified function a* Delta® +bx Delta rather than the
actual function f will adjust in the next iteration as all these modifications
occur within the estimation loop. The estimated smile is robust to sample
size, size of error variances, and initial values supplied to it. Further, our
sample of European options means that only the terminal asset price dis-
tribution matters and the stochastic process that carries the initial price to
the terminal price is irrelevant.

Using the estimated smile for each underlying-day, we compute three
parameters that perfectly describe the smile. The three parameters-level,
scope and curvature, are measured as IV at Delta=0.5 (At-the-money or
ATM 1IV), IV at Delta 0.25 - IV at Delta 0.75 (Risk-reversal or RR 1V),
and 0.5*(IV at Delta 0.25 + IV at Delta 0.75)-ATM (Butterfly or BF IV),
respectively. Further, IV Skew is also computed as -RR/ATM. These are
our IV variables used in all analysis. Unless explicitly mentioned, simply
‘TV’ refers to the ATM-IV.

5.2 Summary Statistics: Smiles

We have 41,565 smiles for 66 unique SSOs and 913 for Nifty Index option.'*
41,378 (99.55%) SSO smiles have a non-zero quadratic coefficient, implying
that a quadratic smile is a better fit than the linear for our sample.

The median (mean) number of smiles estimated for each SSOs is 693
(630). The estimated number of SSO smiles has risen each year from 5890
(2011) to 10,437 (2015) signifying the growing liquidity'® in the Indian equity
derivatives markets. For each smile for an SSO, the median number of points
(unique options each day) are 12. The mean, minimum and maximum points
are 13, 5 (by construction) and 72 respectively. The median (mean) for the

“For the purpose of our study, we have removed the outliers based on ATM SSO
options (90th percentile or less than equal to 197%). This is following Driessen et al.
(2009) whose sample excludes any extreme IVs. However, results with the full sample
have been reported in the robustness section.

15 A small part of the increase may be attributed to SSOs on underlying that were listed
in the middle of the sample period.
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Nifty Index Option is 47 (49).

5.3 Pricing Errors

This section addresses the first question, that is, it examines the extent of
micro-mispricing present in the Indian equity options markets. We measure
the pricing error of an option as the difference between the estimated price
from the volatility smile and the market price of the option. Table 1 reports
the pricing error in absolute (Rupees) and in percentage terms (Rupees di-
vided by the closing spot price of the security that day). The mean pricing
errors of both SSOs and Nifty Index options are very small, implying that
the equity options market is relatively efficient.'® The mean and median
pricing errors are -0.3% (SSOs) and -0.8% (Nifty Index Option) of the clos-
ing spot prices.

[Insert Table 1 here]

However, the errors are negative, which implies that the estimated prices
from the volatility smile are, in general, higher than the market prices. Fur-
ther, Nifty Index Options seem to have less variation of mispricing across the
various unique strikes and days (lower standard deviation at 0.05%). Across
SSOs, the median (mean) of the median percentage pricing error for each
SSO is -0.26% (-0.34%). Hence, there appear to be no outliers in the SSOs
in terms of their pricing errors. One of the reasons for the lower pricing
errors obtained could be attributed to the fact that our sample consists of
the most liquid stocks in India.

To conclude, the Indian equity options market has low relative mispricing
and is micro-efficient. Conformity to a quadratic smile is consistent with a
rational market and the known stylized facts about return distributions in
finance.

6 Results: Macro-efficiency

This section addresses the second research question about the macro-mispricing
(or risk premium) present in the Indian equity options markets. We first
outline estimation procedure of RV and then give our results.

161f the smile were calibrated using a linear OLS model, the mean pricing error would
be zero. However, non-linear estimation means a small non-zero value can emerge.
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6.1 Estimating RV

Following Bakshi and Kapadia (2003b), we compute the Realized Volatility
as:

where R is the daily return, N is 252 and n is the number of trading days
between t and T.17

For SSOs, R is calculated using dividend-adjusted returns obtained from
the CMIE database. The Nifty returns are calculated as the difference of log
closing prices, where the closing prices are collected from the NSE website.
RV using SSF and Nifty Futures prices have been included as a robustness
test later.

RV is calculated at two time-horizons as in Bakshi and Kapadia (2003b):

e From t-30 to t. All the trading days in the 30 calendar day period
are taken to compute this RV. It is referred to as RV30 henceforth.
Hence, this is a historical/ backward-looking measure of RV.

e From t to t+7, where, 7 = number of days to expiry. All trading days
till option expiry are taken to compute this RV. It is referred to as
RVexp henceforth. Hence, this is a forward-looking measure of RV.

6.2 Visual Evidence

The ATM (IV) and Realized Volatility (RV30 and RVexp) of SSOs and Nifty
are plotted in Figures 1 and 2. The values represent the median values of
ATM, RV30, and RVexp each month.

[Insert Figures 1 and 2 here]

The figures show that the median IV and RV follow a similar pattern.
A simple visual inspection reveals that IV generally exceeds RV, suggesting
some mispricing or risk premium in options. A wide range of risk premiums
is consistent with rational markets. Further analysis provides evidence cor-
roborated by these graphs and suggests the presence of macro-mispricing/
risk premium in the Indian equity options markets.

1"Bakshi and Kapadia (2003b) note that subtracting the mean may introduce biases,
and hence we calculate the RV without subtracting the mean.
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6.3 Correlation between IV and RV

The correlations between ATM (IV) and RV30 and RVexp for SSOs and
Nifty Index Options are given in Table 2. The correlations between IV and
RV are around 0.58.'%

[Insert Table 2 here]

6.4 Difference between IV and RV

We expect that IV (ATM) would exceed the RV for all options and the
difference between IV and RV would be smaller for SSOs than Nifty Index
Option. Table 3 give the various percentiles and mean of IV and the two
measures of RV.

[Insert Table 3 here]

We observe that IV is higher than RV for SSOs as well as the Index Op-
tion. For SSOs, the difference between mean IV and mean RV30 is 2.49%
(35.19% - 32.7%). For Nifty Index Options, the difference between mean
IV and mean RV30 is 3.11% (19.14% - 16.03%). The difference in Nifty
Index Option is higher than the corresponding difference in SSOs, in line
with the literature (Bollen and Whaley, 2004; Jackwerth and Rubinstein,
1996; Bakshi and Kapadia, 2003b; Driessen et al., 2009).

However, the magnitude of the difference between IV and RV for SSOs
is higher than found in other markets. In fact, when we take differences
through RVexp or medians, SSOs appear to have a higher difference than
the Index Option. The difference between the mean IV and mean RVexp of
SSOs is 3.55%, while it is 3.31% for Nifty Index Options. The difference be-
tween median IV and median RV30 (RVexp) for SSOs is 2.41% (3.61%) and
for Nifty Index Options is 1.95% (2.19%). Our values for IV-RV difference
in SSOs are closer to that reported by Mixon (2009) at 6% than reported
by Bakshi and Kapadia (2003b) at 1.5%.

The differences across firms in SSOs show a homogenous pattern. The
mean difference between median IV and median RV30 (RVexp) is 2.29%
(3.72%). For 7 (2) of 66 firms, the difference IV - RV30 (RVexp) is negative
with an average of -1.62% (-1.42%).

18 Although the correlation between IV and RV30 is higher than IV and RVexp, fur-
ther examination in Section 6.5.3 shows that IV contains useful information about future
volatility, and not just extrapolate the past.
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Our results can be regarded as being supportive of rational markets
except that SSO risk premiums appear to be too high relative to other
economies. That being said, comparison with risk premiums in other economies
is useful but not determinative. We explore the reasons behind this obser-
vation in section 6.5.4.

6.5 Regression Analysis

This section aims to analyse some cross-sectional and time-series dynamics

of IV and RV.

6.5.1 Cross-section of IV and RV

First, we check if the cross-section of IV matches the cross-section of RV.
As noted by Mixon (2009), this tests the relative mispricing in the options
markets - higher volatility stocks should have higher prices. If the cross
sections of IV and RV do not match, it could be argued that investors merely
select “hot” stocks which may not have any bearing with the underlying’s
RV. It is essentially a restriction on the option pricing model. The regression
equation is:

where ATM; and RV; are time-series averages of IV (ATM) and RV (RV30
or RVexp) of stock i.

The results are shown in Table 4. We see a coefficient of 0.93 (0.95)
for RV30 (RVexp) which is close to unity and significant at 1%. This sug-
gests that, in general, options on high volatility stocks are more expensive.'?

[Insert Table 4 here]

6.5.2 IV and RV - Systematic relationship

The second question that we ask is whether ATM IV varies directly with
RV. For this purpose, we run the pure-cross sectional regression,

ATM;y = a+ SRV + €y (3)
where RV is RV30 or RVexp, i is the firm, t is the trading day.

[Insert Tables 5 and 6 here]

19The regression results with volatility values in the natural log and RV computed from
futures prices are reported in the robustness section 7.2.

15



We run the regression separately for Nifty Index Options (Table 5) and
SSOs (Table 6). Our results are in line with Mixon (2009), who finds that
if RV of a stock is less than RV of another stock, then the IV (ATM) of the
former stock is also lesser than the latter’s. Further, he observes that intu-
itively the slope should be positive, which our results support. The results
are consistent with both definitions of RV.

We also control for time by including year-dummies. It aims to verify if
the results of equation 3 are simply time series variation in the data. We
find that the results remain unchanged when time-series effects are included.
There is little change in slope for both Nifty Index Options and SSOs, im-
plying the regression results are not due to aggregate movements in the data.

Additionally, we run a regression to control for firm fixed effects in SSO
regression by including 65 dummy variables for 66 firms. This helps to ex-
amine any difference in IV levels across firms. The results in Table 6 show
that there is a substantial increase in the explained variance when firm-level
effects are controlled for. Further, we observe a decline in the slope coef-
ficient of RV when firm effects are included similar to Mixon (2009). The
decline could be interpreted that a transitory shock that increases RV also
increases IV but to lesser extent.

Finally, we run a regression for SSOs including both the time and firm
effects. The results are reported in Table 6. The results remain unchanged.?’
Hence, this section can be concluded with the observation that IV (ATM)
are systematically related to the RV.

6.5.3 IV and future volatility

An equally interesting question we ask is whether IV contains new informa-
tion above and beyond what can be extrapolated from the historical prices.
Poon and Granger (2003) reviews literature on the predictive power of IV
and reports empirical evidence on IV containing information about future
volatility. The paper also states that the IV often beats the predictive power
of many sophisticated volatility models that use historical data. Since RV30
is constructed using backward-looking prices, and RVexp is a constructed
using forward-looking prices, the regression equation that is,

RVexpit = RV30;; + ATM; s + € (4)

where i is the stock and t is the trading day.

29The results with natural log of variables and RV computed with futures prices are
included in Section 7.2
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[Insert Table 7 here]

The results are shown in Table 7. For both SSOs and Nifty Index Option,
IV is significant at 1% in the presence of RV30, demonstrating that the
market is forecasting the future and not simply extrapolating the past. The
results remain significant when controlled for firm and year effects. The R-
square is high (37% and 39% for SSOs and Nifty Index Option, respectively)
and in line with the global evidence. Poon and Granger (2003) lists that in
equity options, the R-square is around 13-50% while the maximum reported
R-square for Index Options is 50%. Hence, implied volatility of Indian equity
options contains incremental predictive power for future realized volatility.

6.5.4 Determinants of SSO IV

Our results from Section 6.4 can be regarded as being supportive of rational
markets except that SSO risk premiums appear to be too high relative to
other economies. Therefore, a more detailed examination of the determi-
nants of SSO IV (ATM) is called for. In an irrational market or one with
a lot of frictions, IV will tend to reflect supply and demand: if a lot of in-
vestors want to buy options, the IV will rise far above the expected future
volatility. In a market where dynamic hedging is unimpeded, writers will
meet the demand by replication and IV will still reflect expected volatility
over the life of the option. The first univariate regression we run is,

ATMsso,it = o+ BAT Myt + €t (5)

where i is the stock and t is the trading date. We also control for firm and
year dummies.

[Insert Table 8 here]

The results are reported in Table 8. The coefficient of ATM of Nifty
Index Option Smile is positive and highly significant. In terms of R-square,
over 38% of ATM of SSOs is explained by Nifty Index Option’s ATM. Since
ATM can be proxied for the level of the volatility smile, it seems that level
of SSOs and Nifty Index Option seem to have a significant relationship.

Second, because of the non-linearity of option prices, we expect ATM
of SSO to depend on the entire Index smile. Thus, we include all the In-
dex smile parameters as dependent variables. The following multivariate
regression equation is run,

AT Mss0,it = o+ B1ATMNifey+ + BoRRNiftyt + B3BFNiftyt + € (6)

where i is the stock and t is the trading date.
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The results are presented in Table 8 (column 2). We observe that ATM,
RR, and BF of Nifty Index Option have significant coefficients, but the ex-
plained variance is unchanged. Further, the coefficient of ATM of Nifty
Index Option is the same in both univariate and multivariate cases. Since
ATM, RR, and BF proxy for level, slope, and curvature of the Nifty Index
Option smile respectively, we find that the level of the SSO smile is explained
by the entire Nifty Index option smile in line with our expectation.

The third equation also includes RV and days to expiry as dependent
variables. The results in Table 8 (column 3) indicate an increased R-square
of 47%. Both RV and Days to expiry are highly significant, although the
highest coefficients are from Nifty Smile (Nifty BF (1.63) and Nifty ATM
(0.473)).

Finally, we include the lag of ATM IV for SSO as an independent vari-
able, to account for the well-known clustering of volatility. The sample here
includes SSO smiles of only those trading days for which a lag (consecutive
or lag 1) smile is also available. The results are shown in Table 8 (column
4). The explained variance increases to 54% when the lagged variable is
added. The coefficient of lagged ATM is also very high, indicating volatility
clustering as is expected. Further, the previous variables also remain signif-
icant and of the same signs.

The results suggest that although the difference between the IV and RV
of SSOs is higher in Indian equity options market, the market is nonetheless
rational and the estimated IV is an optimal forecast of risk-neutral volatility.

6.5.5 Idiosyncratic Smile of SSOs

We now address how much of SSO smile characteristics are explained by the
Nifty smile characteristics? The systematic component, or the explained
variance, can be attributed to the average IV of stocks and the correlation
between the stocks. The residuals, or the unexplained variance, can be
attributed to the idiosyncratic/unsystematic volatility of the SSOs. The
regression equation is,

IVsso,it = o+ BAT Myifiyt + €t (7)
where i is the stock and t is the trading date. Three measures from the SSO
IV smile are considered separately- Risk-Reversal (RR), Butterfly (BF) and
Volatility Skew (skew).

[Insert Table 9 here]
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The results are reported in Table 9. All results are positive and signifi-
cant. The table shows that 20%, 22%, and 4% of RR, BF and Skew of SSOs
are explained by Nifty Index Option’s RR, BF, and Skew respectively. The
results of Skew are weaker as expected because SSOs generally do not have
volatility skew while indices do (Volatility smile in SSOs vs. volatility smirk
in Index). Higher R-square with firm-fixed effects indicates that SSO smile
slope (RR) and curvature (BF) depend largely on firm characteristics which
are to be expected on theoretical grounds.

Further, because of the non-linearity of option prices, we expect each of
the SSO smile parameters to depend on the entire Index smile. Thus, we
next include all the Index smile parameters in equation 7. The following
multiple regression equation is run,

IVsso,it = o+ BLATMyifeyt + BoRRNiftyt + B3BFNifty e +€ir (8)

where 1 is the stock and t is the trading date.

The results are presented in Table 9. We observe that explained vari-
ance remains unchanged. The coefficients from univariate and multivariate
regression also remain unchanged for RR and BF. However, all the additional
coefficients are significant implying that SSO smile is explained by the en-
tire Nifty Index Option smile. Overall, the results suggest the presence of a
significant systematic component in the SSO smile.

7 Robustness Tests

7.1 Micro-efficiency

RV-F values are computed using near-month Single Stock futures prices
for SSOs and near-month Nifty Index futures prices for Nifty Index Op-
tion. RV30-F is the backward-looking measure, and RVexp-F is the forward-
looking measure (analogous to RV30 and RVexp). Table 10 give the various
percentiles and mean of IV and the two measures of RV-F. The pattern is
similar to that observed through RV computed from spot returns.

[Insert Table 10 here]

7.2 Macro-efficiency

We carry out the analysis using the natural log of variables or RV-F (as
above) in this section. We find that these specifications do not alter the re-
sults. The regression results on time series average of IV regressed on RV are
reported in Table 11. The results remain qualitatively same as that in the
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main section 6.5.1. Higher volatility options seem to have expensive options.
[Insert Table 11 here]

The regression results ov IV on RV are reported in Tables 12 and 13.
The results remain qualitatively same as that in the main section.

[Insert Tables 12 and 13 here]

The results for RV regressed on IV for SSO and Nifty Index option are
shown in Table 14. For both, ATM IV is significant in the presence of RV30
computed with futures prices as in the main section.

[Insert Table 14 here]

Results for samples including three unique options for smile estimation,
including all SSO ATMs, and including near and next month options are
qualitatively similar and are available on request.

8 Conclusion

India had the second highest notional turnover in SSOs and the third high-
est in Index Options in 2016. The structure of the Indian equity deriva-
tives market is unique. First, Indian regulatory regime potentially leads to
a greater proportion of noise traders among option writers than in other
countries. Second, India has a very liquid Single Stock Futures (SSF) mar-
ket along with a highly liquid equity options market. Third, illiquid strike
options are suspected to be used for tax hedging/ manipulation. All of these
could potentially make Indian SSOs less efficient than in other countries. We
study mispricing in Indian equity options markets and answer two questions.

First, whether SSO prices in India consistent relative to one another?
We estimate quadratic smiles using a large dataset and find that the me-
dian pricing errors in both the SSOs and the Nifty Index Option are very
small at 0.3% and 0.8% respectively. The results suggest that Indian equity
options market is micro-efficient and has low relative mispricing. Second,
whether the ‘volatility smile’ reflects the true volatility. We find a positive
difference between IV and RV for both Indian SSOs (2.49%) and Nifty Index
Options (3.11%). The results can be regarded as being supportive of ratio-
nal markets except that SSO risk premiums appear to be too high relative
to other economies. Examining determinants of SSO IV suggests that the
estimated IV is an optimal forecast of risk-neutral volatility. We further find
that stocks with higher volatility have higher prices; and if RV of a stock
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is less than RV of another stock, then the IV of the former stock is also
lesser than the latter’s. We also observe that IV contains useful information
about future volatility, above and beyond what is contained in past prices.
Finally, our results suggest that the SSO smile has a significant systematic
component.

Our results suggest that even a very liquid market with substantial par-
ticipation of global institutional investors can have structural features that
lead to systematic departures from the behaviour of a fully rational market
while being ‘micro-efficient’.
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Figure 1: SSOs - IV and RV

—— ATM —— RV_30 —— RV &xp

30 -

Median Volatilty %

2011 2012 2013 2014 2015 2016
Months
ATM is IV of the 50 Delta option from the estimated Volatility
smile. RV30 is the t-30 to t backward-looking realized volatility.
RVexp is the t to t+ Number of days to expiry for the option forward-

looking realized volatility. This graph computes month-wise median
for the SSOs.
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Figure 2: Nifty Index Option - IV and RV
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ATM is IV of the 50 Delta option from the estimated Volatility
smile. RV30 is the t-30 to t backward-looking realized volatility.
RVexp is the t to t+ Number of days to expiry for the option forward-

looking realized volatility. This graph computes month-wise median
for the SSOs.
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Table 1: Average pricing errors

Statistic Mean St. Dev. Min Median Max
Panel A: SSO

Rs —0.034 0.107 —4.360 —0.011 2.938

Rs/Spot Price  —0.009 0.073 —-2.901 —0.003  0.067
Panel B: Nifty Index Option

Rs —0.585 0.286 —4.373 —-0.533  0.067

Rs/Spot Price  —0.009 0.005 —0.090 —0.008  0.001

Note: Pricing Error is defined as the difference between the price of
the option computed using Black’s formula using volatility from the
smile and the market price of the option. The errors are reported
both in absolute (Rupees) and percentage (Rupees divided by the
closing spot price of the security that day).
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Table 2: Correlation between IV and RV

ATM RV30 RV _exp
Panel A: SSOs
ATM 1
RV30 0.578 1
RV_exp 0.492  0.526 1
Panel B: Nifty Index Option
ATM 1
RV30 0.589 1
RVexp 0410 0.480 1

Note: ATM is IV of the 50 Delta option from
the estimated Volatility smile. RV30 is the t-30
to t backward-looking realized volatility. RVexp
is the t to t+ Number of days to expiry for the
option forward-looking realized volatility.
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Table 3: Summary Statistics IV and RV for SSOs

Volatility 1% 10% 25% 50% 75% 90% 99%  Mean
SSOs
1 ATM 17.37 2277  26.57 32.23  40.13  50.17 84.15  35.19
2 RV30 13.61 1941 23.89 29.82 38.15 49.01 79.23 32.7
3 RV _exp 10.21  17.19  22.09 28.62 376  49.26 82.97 31.64
Nifty Index Option
1 ATM 10.45 12.27 14.12 17.13  23.55  29.26  37.82 19.14
2 RV30 7.46 10.35 1291 15.18 1834 23.22 30.84 16.03
3 RV _exp 7.19 9.3 12.28  14.94 18.21 23.51  32.88 15.83

ATM is IV of the 50 Delta option from the estimated Volatility
smile. RV30 is the t-30 to t backward-looking realized volatility.
RVexp is the t to t+ Number of days to expiry for the option
forward-looking realized volatility .
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Table 4: Time series average IV (ATM) regressed on time series average of

RV -SSOs
Dependent Variable
Avg. ATM
(1) (2)
Avg. RV30 0.926***
(0.031)
Avg. RVexp 0.947***
(0.033)
Constant 0.050*** 0.054***
(0.010) (0.011)
Observations 66 66
Adjusted R? 0.934 0.927

Note:

*p<0.1; **p<0.05; ***p<0.01
ATM is IV of the 50 Delta option from the es-
timated Volatility smile. RV30 is the t-30 to t
backward-looking realized volatility. RVexp is the
t to t+ Number of days to expiry for the option
forward-looking realized volatility . Standard Er-
rors are in parenthesis.
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Table 5: IV (ATM) regressed on RV - Nifty Index Options

Dependent Variable

ATM
(1) (2) (3) (4)

RV30 0.793*** 0.802***

(0.036) (0.038)
RVexp 0.487*** 0.462***

(0.036) (0.039)

Constant 0.064***  0.114™*  0.055*** 0.122***

(0.006) (0.006) (0.009) (0.009)
Year Controls No No Yes Yes
Observations 913 913 913 913
Adjusted R? 0.347 0.167 0.439 0.282
Note: *p<0.1; **p<0.05; **p<0.01

ATM is IV of the 50 Delta option from the es-
timated Volatility smile. RV30 is the t-30 to t
backward-looking realized volatility. RVexp is the
t to t+ Number of days to expiry for the option
forward-looking realized volatility . Standard Fr-
rors are in parenthesis.
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Table 7: RVexp regressed on RV30 and IV(ATM)

Dependent Variable: RVexp

Nifty SSO
(1) (2) (3) (4)

RV 30-Nifty 0.415***  0.174***
(0.040) (0.042)
ATM-Nifty 0.164***  (0.223***
(0.030) (0.030)
RV30-SSO 0.395*** 0.245***
(0.005) (0.006)
ATM-SSO 0.287*** 0.201***
(0.005) (0.005)
Constant 0.061***  0.122***  0.086*** 0.133***
(0.006) (0.008) (0.002) (0.006)
Year Controls No Yes No Yes
Firm Controls No NA No Yes
Observations 913 913 41,565 41,565
Adjusted R? 0.254 0.369 0.330 0.390

Note:

*p<0.1; **p<0.05; **p<0.01
ATM is IV of the 50 Delta option from the es-
timated Volatility smile. RV30 is the t-30 to t
backward-looking realized volatility. RVexp is the
t to t+ Number of days to expiry for the option
forward-looking realized volatility . Standard Er-
rors are in parenthesis.
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Table &: Determinants of SSO ATM IV

Dependent Variable: SSOs ATM

ATM-SSO
(1) (2) (3) (4)
LAG ATM-SSO 0.365***
(0.006)
RV30-SSO 0.291*** 0.185***
(0.005) (0.006)
RVexp-SSO 0.153*** 0.112%*
(0.004) (0.005)
ATM-Nifty 0.682*** 0.631** 0.473*** 0.309***
(0.010) (0.013) (0.012) (0.015)
RR-Nifty —0.432***  —0.218***  —0.192***
(0.055) (0.054) (0.062)
BF-Nifty 3.417*** 1.630*** 0.573**
(0.204) (0.203) (0.225)
Days —0.001***  —0.001***
(0.0001) (0.0001)
Constant 0.180*** 0.152*** 0.100*** 0.067***
(0.006) (0.006) (0.006) (0.008)
Year Controls Yes Yes Yes Yes
Firm Controls Yes Yes Yes Yes
Observations 41,565 41,565 41,565 26,690
Adjusted R? 0.384 0.392 0.466 0.541
Note: *p<0.1; **p<0.05; **p<0.01

ATM is the IV of the 50 Delta option, read off
from the estimated Volatility smile. RR s de-
fined as the difference of IV of 25 Delta option
and IV od 75 Delta option, both read from the
volatility smile. BF is defined as the difference
between the average of IV of 25 Delta option and
IV of 75 Delta option and the ATM. Skew is de-
fined as negative RR divided by ATM. RV30 is
the t-30 to t backward-looking realized volatility.
RVexp is the t to t+ Number of days to expiry
for the option forward-looking realized volatility.
Standard Errors are reported in parenthesis.
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Table 9: SSO IV measures regressed on Nifty Index Option IV measures

Dependent Variable: SSOs IV

RR BF Skew RR BF Skew
(1) (2) (3) (4) (5) (6)
ATM-Nifty —0.034***  0.045*** 0.039*
(0.004) (0.002) (0.023)
RR-Nifty 0.593*** 0.521***  0.137** —1.331***
(0.011) (0.016) (0.007) (0.103)
BF-Nifty 0.509*** 0.175%*  0.770*** —0.174
(0.023) (0.060) (0.026) (0.349)
Skew-Nifty 0.019*** —0.016***
(0.005) (0.006)
Constant —0.007***  0.015*** 0.081***  —0.004*  0.008***  0.032***
(0.002) (0.001)  (0.010) (0.002) (0.001) (0.011)
Year Controls Yes Yes Yes Yes Yes Yes
Firm Controls Yes Yes Yes Yes Yes Yes
Observations 41,565 41,565 41,565 41,565 41,565 41,565
Adjusted R? 0.195 0.218 0.036 0.198 0.232 0.045

Note:

od 75 Delta option, both read from the wvolatility smile.

*p<0.1; *p<0.05; **p<0.01
RR is defined as the difference of IV of 25 Delta option and IV

BF 1s

defined as the difference between the average of 1V of 25 Delta
option and IV of 75 Delta option and the ATM. Skew is defined
as negative RR divided by ATM. RV30 is the t-30 to t backward-
looking realized volatility. RVexp is the t to t+ Number of days to
expiry for the option forward-looking realized volatility. Standard
Errors are reported in parenthesis.
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Table 10: Summary Statistics IV and RV-F

Volatility 1% 10% 25% 50% 75% 90% 99%  Mean

Panel A: SSOs

1 ATM 1737 2277 2657 3223 40.13 50.17 84.15  35.19
2 RV30_F 13.65 19.28 23.73 29.88 3855 4996 9342  35.17
3 RV.expF 1022 16.88 21.83 28.49 37.71 50.12 94.17 33.85

Panel B: Nifty Index Option

1 ATM 10.45 1227 14.12 17.13 23,55 29.26 3782 19.14
2 RV30_F 8.34 10.72  13.21 15,73 1898 23.79 31.26  16.58
3 RV.exp.F 6.94 9.59 12.52  15.39 18.6 24.24 3414  16.24

Notes: ATM is IV of the 50 Delta option from the estimated
Volatility smile. RV30-F 1is the t-30 to t backward-looking realized
volatilit y. RVexp-F is the t to t+ Number of days to expiry for
the option forward-looking realized volatility. RV-F are computed
using near month futures prices.
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Table 11: Time series average IV (ATM) regressed on time series average of

RV-F -SS0s

Dependent Variable
Avg. ATM Avg. ATM
(1) (2) (3) (4)
Avg. RV30-F 0.736***

(0.054)
Avg. RVexp-F 0.677***
(0.054)
Avg. LN-RV30 0.866***
(0.034)
Avg. LN-RVexp 0.847***
(0.036)
Constant 0.095***  0.125***  (0.542*** 0.643***
(0.020) (0.019) (0.116) (0.123)
Year Controls No No No No
Firm Controls No No No No
Observations 66 66 66 66
Adjusted R? 0.741 0.706 0.911 0.896
Note: *p<0.1; *p<0.05; **p<0.01

ATM is IV of the 50 Delta option from the es-
timated Volatility smile. RV30-F is the t-30 to
t backward-looking realized volatility. RVexr -F
is the t to t+Number of days to expiry for the
option forward-looking realized volatility. RV-F
are computed using near-month futures prices.
LN refers to the natural log of the wvariable.
Standard Errors are reported in parenthesis.
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Table 12: IV (ATM) regressed on RV-F for Nifty Index Options

Dependent Variable

ATM ATM
(1) (2) (3) (4)
RV30-F 0.773***
(0.035)
RVexp-F 0.489***
(0.034)
LN-RV30 0.681***
(0.029)
LN-RVexp 0.454***
(0.029)
Constant 0.063***  0.112***  —0.432*** —0.846***
(0.006) (0.006) (0.055) (0.055)
Year Controls No No No No
Firm Controls No No No No
Observations 913 913 913 913
Adjusted R? 0.344 0.180 0.376 0.216

Note:

*p<0.1; **p<0.05; **p<0.01
ATM is IV of the 50 Delta option from the es-
timated Volatility smile. RV30-F is the t-30 to
t backward-looking realized volatility. RVexr -F
is the t to t+Number of days to expiry for the
option forward-looking realized volatility. RV-F
are computed using near-month futures prices.
LN refers to the natural log of the wvariable.
Standard Errors are reported in parenthesis.
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Table 13: IV (ATM) regressed on RV-F -SSOs

Dependent Variable

ATM ATM
(1) (2) (3) (4)
RV30-F 0.086***
(0.002)
RVexp-F 0.057***
(0.002)
LN-RV30 0.603***
(0.004)
LN-RVexp 0.435***
(0.003)
Constant 0.321***  0.333***  —0.392"** —0.567***
(0.001) (0.001) (0.005) (0.005)
Year Controls No No No No
Firm Controls No No No No
Observations 41,565 41,565 41,565 41,565
Adjusted R? 0.048 0.027 0.391 0.271

Note:

*p<0.1; *p<0.05; **p<0.01
ATM is IV of the 50 Delta option from the es-
timated Volatility smile. RV30-F is the t-30 to
t backward-looking realized volatility. RVex -F
is the t to t+Number of days to expiry for the
option forward-looking realized volatility. RV-F
are computed using near-month futures prices.
LN refers to the natural log of the variable.
Standard Errors are reported in parenthesis.
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Table 14: RVexp regressed on RV30-F and IV(ATM)

Dependent Variable: RVexp-F

Nifty SSO
(1) (2) (3) (4)

RV30-F-Nifty ~ 0.408**  0.157**
(0.040)  (0.042)

ATM-Nifty 0.188***  (0.236***
(0.031) (0.030)
RV30-F-SSO 0.110*** 0.078***
(0.006) (0.006)
ATM-SSO 0.418*** 0.205***
(0.014) (0.017)
Constant 0.059***  0.128***  (0.153*** 0.163***
(0.006) (0.008) (0.005) (0.022)
Year Controls No Yes No Yes
Firm Controls No N/A No Yes
Observations 913 913 41,565 41,565
Adjusted R? 0.263 0.385 0.036 0.063
Note: *p<0.1; **p<0.05; **p<0.01

ATM is IV of the 50 Delta option from the es-
timated Volatility smile. RV30-F is the t-30 to
t backward-looking realized volatility. RVexr -F
is the t to t+Number of days to expiry for the
option forward-looking realized volatility. RV-F
are computed using near-month futures prices.
Standard Errors are reported in parenthesis.
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