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Abstract

Time-varying price discovery in spot, futures and options markets: Evidence
from China

This paper analyzes the time-varying price discovery roles of the spot, futures and options
markets, represented by three products based on the SSE50 Index using high frequency data
from April 2015 to July 2017. This sample is particularly interesting in that (1) it spans the
period immediately after the launches of the options and futures, which enables us to evalu-
ate the development course of the derivatives markets, and (2) the Chinese financial markets
have meanwhile undergone dramatic fluctuations and abrupt regulation changes. After iden-
tifying two structural breaks in the sample period, we estimate time-varying strength of price
discovery roles among spot, futures and options markets. We find that the derivatives mar-
kets in China soon started playing a dominant role in the price discovery despite their short
history. The leading price discovery role of the spot market quickly declined after the launch
of the two derivatives. The contributions of the futures market have been considerably large
since their launch, while those of the options market was mediocre in the beginning but re-
cently becomes dominant. In case of a bivariate, rather than trivariate, analysis with a single
derivative and its underlying spot markets, the role of the derivative is overstated, which
confirms the importance of joint examination of the three markets. This paper also explores
the determinants of the time varying price discovery ability of derivatives. We find that
substantial changes in futures transaction costs do not lead to significant changes in price
discovery, which is inconsistent with the trading cost hypothesis. We provide a potential
explanation.

Keywords: Price discovery, Chinese derivatives markets, Trading cost hypothesis, Trivari-

ate VECM

JEL Classification: G13, G14



1 Introduction

The stock markets in China have achieved rapid development and recently became the
second biggest following the US stock markets in terms of the market capitalization,® but its
derivative markets are still in an infant stage. In 2010, the first stock index futures (CSI300
Index futures) was launched in the China Financial Futures Exchange (CFFEX). In early
2015, the Shanghai Stock Exchange (SSE) introduced the very first exchange-traded stock
options (SSE50 ETF options) and the CFFEX launched the second index futures (SSE50
Index futures), which marked the advent of a new derivative era in China.

The introduction of futures and options greatly makes up the limitations of trading mech-
anism in the current Chinese stock markets in several aspects. First, the derivatives virtually
enable short-selling, which is severely limited in the underlying spot market. Second, the
derivatives are traded based on the “T+40” settlement system. In contrast, regulators have
adopted the “T+1" settlement system in the spot market since early 1995 to prevent the
excessive speculation and potential flash crash events. Since the “T+1” system could aggra-
vate trend-chasing trading behavior, the “T'+0” system in the derivatives markets can make
information transmission more efficient. Third, instead of the traditional continuous auction
systems, the options market adopts the market-making system, which is expected to provide
sufficient liquidity to the market. In theory, all of these aspects are conducive to enhancing
the market quality (Subrahmanyam, 1991; Gorton and Pennacchi, 1993).

A large number of studies have documented the price discovery role between a single
derivative (either futures or options) market and its underlying spot market, and show
that the derivative market responds faster to the arrival of new information due to lower
transaction costs and the lack of short-sale restrictions (Chan, 1992; ITihara et al., 1996;
Tse, 1999; So and Tse, 2004; Chakravarty et al., 2004; Chou and Chung, 2006; Chen and

Chung, 2012), but relatively few papers have jointly considered the spot, futures and options

L As of October 31, 2017, the market capitalization of the New York Stock Exchange and the NASDAQ
is USD 21,377 billions and USD 9,585 billions, respectively, while the Shanghai (Shenzhen) Stock Exchange
has the market capitalization of USD 5,043 (3,688) billions.



markets, particularly in emerging countries.? If both futures and options are actively traded
but we only consider a bivariate relationship between a single derivative market and its
underlying spot market, then the estimated price discovery role can be biased because of
the omitted variable. Since it is not likely that the role of the omitted market is exactly
proportionally allocated to the other markets, the bivariate analysis can be misleading. Not
only does this paper fill the research gap between developed and developing markets by using
high frequency Chinese data, but also it estimates the relative strength in price discovery in
the spot, futures and options markets without potential bias by jointly analyzing the three
cointegrated markets.

Compared to the data used in previous studies, the sample in this paper is particularly
interesting and valuable for two reasons. First, the sample spans the period immediately
after the launches of the derivatives, which enables us to evaluate the development course of
the derivatives markets. Unlike a mature and developed derivative market, a nascent deriva-
tive market particularly in an emerging country may not necessarily play its supposed price
discovery role (Yang et al., 2012; Sohn and Zhang, 2017). From this sample, we can learn
how long it takes for nascent derivatives markets to function properly and what determines
the strength of price discovery. Second and more importantly, the Chinese derivatives mar-
kets have undergone dramatic up and down swings and abrupt changes in regulations during
this sample period. The transaction cost for futures trading was 0.0025% of the settlement
amount at first, slid slightly to 0.0023%, rose five times to 0.0115%, skyrocketed 20 times
to 0.23%, and then declined again to 0.092%. Meanwhile, the option trading cost dropped
by 35% from 0.02% to 0.013% of the transaction amount. The literature has shown numer-
ous evidence that supports the trading cost hypothesis (Fleming et al., 1996; de Jong and
Donders, 1998; Booth et al., 1999; Hsieh et al., 2008). In other words, the dominant price

discovery role in the derivatives markets is attributed to their relatively lower transaction

2Fleming et al. (1996) and Booth et al. (1999) are two of a few papers that jointly examine the relative
price discovery roles in the spot, futures and options markets. Their data are from developed markets (the US
or Germany) and the sample periods begin after several years since the launches of the derivatives markets.



cost. This sample period enables us to test this hypothesis because substantial and almost
exogenous changes in the transaction cost occurred within a couple of years.

This paper first overviews the institutional facts about the launches of the SSE50 ETF
options and the SSE50 Index futures, and discusses their development over the two years. By
using the recursive Chow tests, two structural breaks are detected in the sample period. The
two identified structural breaks turn out to well coincide with the major regulation changes.
Next, we construct the comprehensive measures of the price discovery ability in the spot,
futures and options markets, and investigate how they evolve over time. Specifically, we use
SSE50 ETF, SSE50 Index futures and SSE5S0 ETF options to represent the spot, futures
and options market, respectively, and then quantify the price discovery ability by Gonzalo
and Granger (1995)’s common factor weights and Hasbrouck (1995)’s information shares,
both of which are based on a cointegration relationship. We also consider the gross and net
spillover of each market by decomposing the forecast error variance attributed to innovations
in each market (Pesaran and Shin, 1998; Diebold and Yilmaz, 2012). Instead of a parametric
specification of the time-varying price discovery ability, we estimate the VECM on a daily
basis using the intraday data to learn its fluctuations as in Hasbrouck (2003) and several
others.

We find that although the Chinese derivatives markets have only a few years of trading
history, they soon start playing a dominant role in the price discovery. In the overall sample,
the information share of the futures (options) market is 34.03% (41.49%). The results show
that the leading price discovery role of the spot market quickly declines after the launch of the
two derivatives. In the first subsample, the information share of the spot market is 40.16%,
but in the last subsample, it is only 15.40%. The information share of the futures market
has been considerably large since the launch (37.54% in the first subsample; 30.17% in the
last), while the information share of the options market is mediocre in the first subsample
(22.30%) but steadily increasing and becomes dominant in the last subsample (54.43%). The

results are robust when the price discovery is measured by the common factor weights and



the net spillover effects.

We also show that the bivariate analysis overestimate the price discovery role of the
derivative products. When we consider a bivariate relationship between spot and futures
markets, the estimated information share in the futures market is 67.42%. For the same
analysis with spot and options data, the options market takes 67.76% of the information
share. In other words, given that both futures and options markets exhibit superior price
discovery ability to the underlying spot market, the contribution of the omitted derivative
market is subsumed mostly by the included derivative market. This tendency is more pro-
nounced recently when both derivatives are actively traded. This finding reveals a possibility
of potential bias in the previous literature in which only two markets, out of other actively
traded markets, are analyzed.

Finally, this paper explores the factors that affect the time variation in price discovery
ability of derivatives. The results show that in the options market, the price discovery role
is positively correlated with the trading volume and the open interests, and negatively cor-
related to the volatility, which is consistent with the literature (Chakravarty et al., 2004;
Chen and Chung, 2012). In the futures market, however, the trading volume does not sig-
nificantly covary with the magnitude of price discovery. Even with more than 90% plunge
in trading volume after stringent regulations and raised transaction costs, the futures mar-
ket still make considerable contributions to price discovery. Its information share, common
factor weights and net spillovers did not significantly decreased after the regulation. This
finding is not consistent with the trading cost hypothesis. We conjecture that the trading
experience of investors, rather than the transaction cost, matters more for the price dis-
covery role in a nascent market. When the SSE50 Index futures was launched, the futures
investors had already accumulated five-year trading experiences since the introduction of the
first index futures (CSI300 Index futures). In contrast, the SSE50 ETF options were the
very first exchange-traded options and investors needed time to familiarize themselves with

the new financial instrument. This result provides a novel implication about the strength of



price discovery. In a nascent market, the price discovery ability in a market does not nec-
essarily depends on transaction costs but on whether investors are mature and experienced
sufficiently.

The rest of the paper continues as follows. Section 2 briefly describes the background
of the spot, futures and option products commonly based on the SSE50 Index. Section 3
explains the data construction process and the structural breaks in the sample period. In
Section 4, we present the methodology to measure the price discovery ability of the three

markets, and discuss the findings. Section 5 concludes the study.

2 Institutional Background

The SSE created the SSE50 Index on January 2, 2004, which picks up the 50 largest and most
liquid A-share stocks listed on the SSE. This index aims to reflect the overall performance
of the most influential blue-chip Shanghai stocks. Its constituent stocks account for more
than 28% of the A-shares market capitalization. On February 23, 2005, the SSE launched
the first exchange-traded fund (ETF) in China, called SSE50 ETF, which is now one of the
largest and most liquid ETFs in China. The ETF’s stock portfolio is constructed according
to the constituent stocks of the underlying SSE50 Index and its corresponding weights.

After ten years since the launch of the ETF, the SSE introduced the SSE50 ETF options
on February 9, 2015, which is the first exchange-traded options in China. The SSE chose
the SSEH0 ETF as the underlying asset for two purposes. First, the SSE intended to lead
investors’ interest towards large-cap stocks, reducing their exposure to higher risk of small-
cap stocks, for which Chinese individual investors tend to trade. Second, the SSE50 ETF is
difficult to manipulate thanks to its high liquidity and trading volume, which can alleviate
investors’ potential distrust of the very first exchange-traded option.?

The SSE50 ETF options market adopts the market maker mechanism, which requires

market makers to provide liquidity by maintaining bilateral quotes. The SSE organizes ten

3See Appendix A for the details of the SSE50 ETF options.



market makers and the orders are executed by the principle of price/time priority. The mar-
ket maker mechanism is helpful in keeping the bid-ask spread narrow, enhancing the market
transaction rate, and meeting the immediate transaction needs of investors by providing
liquidity. These roles are particularly important in the nascent options market in China
because the trading volume of deeply out-of-the-money contracts could be relatively small
and a consequent possibility of pricing bias is big concern for investors. Under the market
maker mechanism, the market maker provides the bilateral quotation for the market in real
time, which alleviates the mispricing concern.

The entry barrier of the SSE50 ETF options trading is set high not only through the cap-
ital requirement (at least CNY500,000; approximately, USD78,000) for individual investors
but also through the strict qualification demand for investors’ professional knowledge. Specif-
ically, the participants in the options market are required to pass qualification tests and
according to the test level, investors can start options trading for the pre-defined purposes.*
As a result, the microstructure of the options market is relatively well balanced compared
to the spot market, in which less sophisticated individual investors dominate. According to
the recent statistics from the SSE, individual investors contribute 43.29% of trading volume,
while institution investors’ trading volume amount to 56.71% in the options market. These
figures are in contrast to the XX% of institutional investors’ trading volume in the spot
market. Therefore, one can expect that there are more informed and professional investors
in the options market, which is supposedly conducive to faster information transmission and
price discovery in the market.

Following the first introduction of the index futures in China in 2005 (CSI300 Index
futures), the China Financial Futures Exchanges (CFFEX) introduced two additional index
futures, SSE50 Index futures and CSI500 Index futures on April 16, 2015. These two new

futures contracts aim to complement the existing CSI300 Index futures and provide more

4Investors who pass the level 1 test are allowed to trade options to hedge existing underlying holdings.
Level 2 investors are allowed to take long positions for non-hedging purpose, while level 3 investors have full
rights for both long and short options trading.



investment instruments and risk management tools for asset allocation.’

In September 2015, the China Securities Regulatory Commission (CSRC) attributed the
traders in China’s stock index futures market to one of the reasons for the stock market
crash, and began to strictly control the trading activities. First, the CSRC limited the daily
open positions for each type of stock index futures to ten contracts. Second, it tightened
the margin requirements of the index futures, so that the margin for non-hedging positions
increased from 30% to 40% of the contract value, whilst that for the hedging positions
increased from 10% to 20% of the contract value. Third, the commission fees for intraday
position closing increased from 0.0115 percent to 0.23 percent of the transaction volume.
Indeed, it was since late August that the CSRC started imposing a series of regulations on
the index futures market. The non-hedging transactions margin increased from 10% to 12%
on August 26, to 15% on August 27, to 20% on August 28, and to 30% on August 31. The
regulators tried to curb speculations and stabilize the capital market through tightening the
stock index futures market. The trading volume in China’s stock index futures plunged
approximately 99% after the announcement of the strict regulations from the CSRC. The
market liquidity was seriously affected, which could possibly affect the price discovery in
the futures market. The details of futures trading activities are addressed in the following

section.

3 Data

3.1 Price Time Series

This section describes how to construct the price time series in the spot, futures and options
markets. The sample spans the period from April 16, 2015 to July 20, 2017 and is obtained
from the WIND Financial Terminal. Previous studies have used various data frequency.

Manaster and Rendleman Jr. (1982) analyze daily closed spot and option prices, while rel-

5See Appendix A for the details of the SSE50 Index futures.



atively recent papers by Stephan and Whaley (1990) and Fleming et al. (1996) use higher
frequency 5-minute and 1-minute price observations, respectively. Nowadays most exchanges
adopt electronic trading and the cost of transactions has been reduced. Consequently, the
trading volume has significantly increased and information transmission is presumably much
faster. To better estimate the extent of price discovery in each market, the high frequency
data are desirable. In addition, in the empirical analysis, higher frequency data make the
correlations among inter-market residuals smaller, which enables us to construct more pre-
cise information share measures. Hence, we use 1-minute frequency observations of closed
prices from the spot, futures and options markets.

SSE50 ETF is used to represent SSE50 Index. Because not all securities can be traded
at the same time, the index level recorded every minute may not be a perfect reflection of
information regarding the constituent stocks’ equilibrium value, while SSE50 ETF is less
subject to the nonsynchronous trading problem addressed in Scholes and Williams (1977).
We call the price of SSE50 ETF the spot price in this paper.

Unlike the spot price, the time series of futures and option prices are not readily available
because there are multiple simultaneously traded contracts with different expiration dates.
We construct a single price time series for each derivative as follows. Among the four futures
contracts with the different expiration dates, we choose the one with the largest trading
volume each day. We construct the data in this way because the most frequently traded
contract has the largest liquidity and supposedly contains the most information. In general,
the most nearby contract has the largest trading volume except for several days before the
expiration date. The futures prices are then scaled down to make them comparable to the
prices of SSE50 ETF. Specifically, we use the one-thousandth of the SSE50 index futures
price, which we call the futures price in this paper.

The similar method is adopted to construct a single price time series in the options
market. Among various simultaneously traded options with different expiration dates and

strike prices, we choose the most nearby at-the-money pair of call and put options. At-the-



money options are defined as the options whose strike prices are within 2.5% of the underlying
spot price. To avoid the well-documented variability several days before the expired date,
the next month contract replaces the expiring one when there are nine trading days left to
maturity as in Booth et al. (1999). If there are multiple pairs of call and put options that
have strike prices within 2.5% of the spot price, we choose the pair with the largest trading
volume.® Using this pair of at-the-money call and put options, we recover the implied spot

price by the put-call parity:

O, =Cir— Por+ Ke_T(T_t), (1)

where Cy (P, r) is the call (put) option price at ¢ with the expiration date 7', K is the strike
price, and r is the risk-free rate. Oy is the option-implied spot price, which we call the option
price in this paper. Three-month Treasury Bills rate is used for the risk-free rate.

Compared with the Black and Scholes (1973)’s model, which suffers from the model
misspecification risk and the burden of parameter estimation (Jiang and Tian, 2005), the
put-call parity is only based on the law of one price and no friction assumption and does not
depend on any asset-pricing model. In the liquid market, there is supposedly no arbitrage
opportunity to earn profit from the divergence of the put and call options. The at-the-money
options among the nearest month contracts is generally the most liquid ones. Therefore, a
violation of put-call parity is the least likely for the at-the-money nearby option contracts.
Indeed, the put-call parity has been used as an alternative to the Black-Scholes model in the
literature (Kang et al., 2006; Hsieh et al., 2008).

6The empirical results are robust to how the time series are constructed. For example, the conclusion
remains qualitatively unchanged when the price time series of futures and option are defined based on open
interests rather than trading volume.



3.2 Structural Breaks

Figure 1 plots the price time series obtained in Section 3.1: log prices (Panel A) and log
bases (Panel B). The log futures (option) basis is defined as the difference between the log
spot price and the log futures (option) price. Panel C shows the daily standard deviation of
I-minute returns in each market. The figures show that during the sample period, China’s
capital market experienced dramatic fluctuations. After the peak in the middle of June
2015, the bubble began to burst. In just one month, the stock market lost approximately
30% of its value. Since the dominant players in the market are individual investors, the
Chinese government tried to stabilize the market and to limit investors’ losses, curbing the
expansion of systemic risk. Table 1 presents the list of major regulations in the derivatives
markets during the sample period. After several months of calm periods since the strict
serial regulations, however, the stock market fell into another crash in the beginning of 2016.
In late February 2016, the market began to stabilize.

With both strong bull and bear markets, and calm and volatile periods in the sample,
we suspect at least one structural break. To detect structural breaks, we use the recursive
Chow tests. Ten variables are considered for the test: daily return volatility and trading
volume from the three markets, and daily open interests and log basis volatility from the
two derivative markets. Each variable is assumed to follow an autoregressive process. A
Chow test is recursively conducted for each variable using the 60-day rolling windows. The
null hypothesis is no structural break, while the alternative hypothesis is a break in the
middle of the window. For each estimation window, we choose the optimal lag length of the
autoregressive process by the Bayesian information criterion (BIC). A structural break is
recorded on a day if the null is rejected for more than two-third of the considered variables.
We record only one structural break within 60 trading days. If multiple breaks are detected
within 60 trading days, the day with the most rejections of the null is recorded as a single
break.

Table 2 shows the result of the recursive Chow tests. During the sample period, two

10



structural breaks are detected: September 7, 2015 and November 1, 2016. These two points
are well coincident with important regulation changes as shown in Table 1. The aforemen-
tioned restrictive regulations on the futures market came into effect on September 7, 2015.
November 1, 2016 is the day after the announcement of promoting regulations on the options
market. Specifically, the commission fees were reduced from 0.02% to 0.013% of the closed
transaction amount. The detected structural breaks are generally consistent with Figures 1,
2 and 3. The trading volume in the spot and futures markets plummeted after September
7, 2015. The open interests in the futures market and return volatility in all three mar-
kets also dropped significantly, although their extent is not as notable as in trading volume.
After November 1, 2016, trading volume and open interests in the derivative markets are
significantly greater, while the return volatility is significantly reduced.

Based on these two structural break points, we divide the full sample into three subsam-
ples and call them Period 1, 2 and 3. Table 3 presents the descriptive statistics for the overall
sample and three subsamples and shows the significant differences among the subsamples.
After the first subsample, which is the strong bear market with extreme volatility, the trading
activities in the spot and futures markets are dramatically suppressed due to weak investor
sentiment and strict regulations. In contrast, the options market trading grows steadily. In
the third subsample, which is the period of steady and stable recovery, trading activities in
the options market more than double, while those in the spot and futures markets almost

stagnate.

4 Empirical Analyses

This section describes the methodology to analyze the extent to which the spot, futures and
options markets contribute to price discovery. Then, we present the results and discuss their

meanings.
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4.1 Information Shares and Common Factor Weights

The price discovery ability of a market is usually measured by Hasbrouck (1995)’s information
share (IS) and Gonzalo and Granger (1995)’s common factor weight (CFW). The IS of a
market captures its contribution to the variance of innovations to the common factor. The
CFW reflects each market’s relative contribution to the common factor. These two measures
are derived from a common cointegration relationship and have similarity, but they differ in
that the IS incorporates the correlation between innovations of the three markets while the
CFW does not. Therefore, the two measures provide complementary views of price discovery
among the markets.

The analysis of the long-run price discovery implicitly assumes a cointegration relation-
ship among the spot, futures and option prices. The plots in Figure 1 and the test results
in Table 3 graphically and formally confirm the existence of a cointegration relationship
among them over various sample periods. Table 3 presents the summary results of the daily
cointegration tests. The Engle-Granger test assesses the null hypothesis of no cointegration
among the log prices of the three markets. The Johansen test assesses the null hypothesis of
cointegration rank equal to two against the alternative of three. In case of the full sample,
the null of no cointegration is rejected in 516 trading days (93.14%) out of the total 554
trading days according to the Engle-Granger test. The Johansen test shows that the null
hypothesis of the cointegration rank being equal to two cannot be rejected for more than
80% of the trading days. Even when the market was in turmoil (Period 1), 97.96% of the
total trading days are indicated to have a cointegration relation by at least one of the tests.
Based on these test results, this paper assumes the existence of a cointegration relationship
with the cointegration rank of two.

Let py = (s¢, ft,0¢)" be a vector of log prices in the spot, futures, and options markets at
/

1 -1 0
time t, and let g = be the cointegrating matrix. As implied by the Johansen
1 0 -1

test, there are two cointegrating vectors: (1, —1,0)" and (1,0, —1)". The cointegration implies

12



that the cointegration errors, the log futures basis s; — f; and the log option basis s; — 0; in
this case, should be stationary. In other words, the prices may temporarily deviate from one
another, but they should share a common stochastic trend in the long run. A cointegration

relationship is represented by the vector error correction model (VECM) as follows:”

K
Apy = af'p_1 + Z ARApi_i, + €, (2)
k=1

where « is the 3-by-2 error-correction coefficient matrix for the two cointegration error terms
B'pi—1 and measures how the prices react to the deviation from long-run equilibrium rela-
tionships. Its sign and magnitude represent the direction and speed of the error correction.
K is the lag length of the model and is chosen by the BIC. Ay is the 3-by-3 autoregressive
coefficient matrix, reflecting the effects of the short-term fluctuation on prices. ¢ is the
3-by-1 zero-mean vector of serially uncorrelated disturbances with covariance matrix €.
The CFW is obtained from Gonzalo and Granger (1995)’s permanent-transitory de-
composition, in which the common permanent component is a linear combination of the
cointegrated time series vector. They show that the weight for the linear combination is
orthogonal to the error-correction coefficient vector. Specifically, the 3-by-1 weight vector is
denoted by oy = (o5, a,a9) and is defined such that o/, = 0. With the orthogonal com-
ponent to the error-correction coefficient vector, the CFW's in the spot, futures and options

markets is respectively defined as follows:

[ _ o | _ [

|+ lo | + lag | | + o[ + Jag | T Jadl el ]+ lag)

CFW, =

Since o/, py is the common permanent factor, the CFW indicates the contribution of each
time series to the common efficient price.
The IS takes into account additional information of the innovation variances and co-

variances. By the Granger representation theorem, Equation (2) can be expressed as the

TA constant term does not affect the analysis and is omitted for notational simplicity.
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VMA(00) as follows:
Apt = ‘I]<L)6t7 (3)

where W(L) = Y 7 W, L* U is the 3-by-3 moving average coefficient matrix and L is the

lag operator. The integrated form of VMA (c0) is expressed as:

t

pe=(1)) e+ V(L) (4)

s=1

where U*(L)e; is a zero-mean stationary process, representing the transient effect. W(1) is

the sum of moving average coefficients and it turns out to be such that f'U(1) = 0 due

to the properties of cointegrated time series. Given 3’ = , all rows in (1)
1 0 -1

should be identical. Denoting the common row as v, ¥(1) = ¢, where ¢ is a 3-by-1 vector
of ones. Hasbrouck (1995) interprets the increment te; as the common permanent impact
of the shock at ¢ into the prices, and calls it the common efficient price. The variance of
the common efficient price is denoted as Var(ye,) = Q. Hasbrouck (1995) suggests a
measure of the price discovery ability as the weight of the common factor variance. The
greater proportion of the variance the innovations in a market constitute, the stronger price
discovery capability the market possess. Formally, the ISs of the spot, futures and options

markets are defined as follows:

([ M]y)?
Y

([ M]y)?
Y

([ M]3)?

1S, = WMls)”
PO

ISf: ISO:

where M is a lower triangular matrix of the Cholesky factorization of €2 such that = M M’,
and [ty M]; is the j entry in 1) M. Note that the IS is closely related to the ordering of state
variables because of the nature of the Cholesky factorization. It maximizes (minimizes) the
IS of the first-ordered (last-ordered) variable. In a bivariate analysis, the IS is commonly
calculated as the midpoint of upper and lower bounds. Since this paper considers prices in

the three markets, there are six possible permutations. We compute the IS of each market

14



as the average value from the six permutations, which is the same calculation method as So
and Tse (2004).

We obtain the IS and CFW each day using the intraday 1-minute frequency price ob-
servations.® Table 5 reports the mean and median of the daily IS and CFW of the three
markets in the overall sample and the three subsamples. We find that these two measures
are almost identical, which implies that the contemporaneous correlation among inter-market
residuals is sufficiently small (Baillie et al., 2002). This could be due to the virtue of high
frequency observations.

In the overall sample, the ISs (CFWs) of the spot, futures and options markets are,
on average, 24.48% (23.14%), 34.03% (30.36%), and 41.49% (46.50%), respectively, which
shows that the options market plays the dominant price discovery role. Throughout the
subsamples, however, we observe substantial changes in the IS (CFW). When the futures
and options markets were just launched (Period 1), the spot market mostly led the other
markets with 40.16% of the IS (40.95% of the CFW). In contrast, the contribution of the
options market was limited to approximately 20%. As the derivatives markets mature, the
role of the spot market was taken over by the options market. The IS of the spot market is
reduced to 24.85% in Period 2 and to 15.4% in Period 3. Meanwhile, the IS in the options
market increases to 39.87% in Period 2 and to 54.43% in Period 3. Interestingly, the price
discovery role of the futures market was relatively large even in the nascent stage, and it
was not severely harmed despite the restrictive serial regulations and a consequent plunge in
trading activities. The IS (CFW) in the futures market dropped from 37.54% (36.31%) in
Period 1 to 35.27% (31.30%) in Period 2 and to 30.17% (25.65%) in Period 3. These findings
do not change when we use the medians instead of the means.

These patterns are visually confirmed as well. Figure 4 plots the moving average of the

daily IS and CFW in the spot, futures and options markets.® Even with short-term jiggles,

8Most recent studies attempt to estimate time-varying price discovery measures by employing a daily
VECM. For more details, see Hasbrouck (2003), Chakravarty et al. (2004) and Chen and Chung (2012)
among several others.

9The time series are smoothed with a trailing exponentially weighted moving average: M A;(a) = 0.2a; +
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we observe a clear long-tern trend in each market. Specifically, the role of the spot market
steadily diminishes over time, while the options market plays an increasingly important price
discovery role. The contribution of the futures market is considerable and persistent, but
gradually decreases.

Many previous papers examined the price discovery role in a bivariate setting. In other
words, they estimate a bivariate VECM with a single derivative (either futures or options)
market and its underlying spot market. To test this potential bias and confirm the impor-
tance of the trivariate analysis, we try estimating ISs and CFWs in the bivariate setting
and report the results in Appendix B. When we consider only spot and futures markets,
their estimated ISs are 32.58% and 67.42%, respectively, in the full sample. For the same
analysis with spot and options data, the spot and options markets respectively take 32.24%
and 67.76% of the IS. In other words, given that both futures and options markets exhibit
superior price discovery ability to the underlying spot market, the contribution of the omit-
ted derivative market is subsumed almost entirely by the included derivative market. This
tendency is more pronounced recently when both derivatives are actively traded. As shown
in Table 5, in Period 3, the sum of ISs in futures and options market is 84.6%, which is almost
identical to 80.27% (85.1%), the IS in the futures (options) market obtained in the bivariate
calculation. This finding reveals a possibility of potential bias in the previous literature in

which only two markets, out of other actively traded markets, are analyzed.

4.2 Error-correction Coeflicients

Since the IS and CFW from the three markets should sum to one by construction, they only
capture the relative strength of price discovery. When the speed of information incorporation
into the price concurrently increases or decreases in the three markets, these measures can-
not effectively reflect this change. To comprehensively understand the changes in strength

of price discovery, we consider whether and to what extent a market reacts to short-run

0.8M A¢_1(a), where a is either IS or CFW.
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deviation from a long-run equilibrium by examining the error-correction coefficient in the
VECM equation. « in Equation (2) indicates how each market reacts at t + 1 to changes in
two cointegration error terms, s; — f; and s; — o;. When the dependent variable is the spot
return, we can easily expect the supposed signs of the coefficients; they should be negative
for both cointegration error terms as long as the spot market actively corrects the errors.
However, when the dependent variables are futures and option returns, the interpretation is
not as straightforward. At a glance, it is difficult to expect how a futures return would react
in response to an increase in log option basis (s; — 0;). For clear understanding, Equation (2)
is re-written such that for each dependent variable, there are two cointegration error terms:
log price deviations from the other two log prices. For example, when the futures return
(Afiy1) is the dependent variable, the differences from log spot price (f; — s;) and from
log option price (f; — o;) are the two cointegration error terms. Under this specification,
the supposed signs of the error correction coefficients are always negative, and it suffices to
test its magnitude and significance. Intuitively, if one market evolves regardless of the past
cointegration error (short-term deviation from a long-run equilibrium) while other markets
respond to it, it is likely that the market incorporates information earlier than others and
plays a more important role in price discovery.

The VECM is estimated each day in a given sample period, and the means of the daily es-
timates and their corresponding Newey-West robust standard errors are presented in Table 6.
Only error-correction coefficients are reported to save space. As expected, all coefficients are
negative, but their magnitude and significance vary across the three markets and over time.
In the overall sample, it turns out that the error correction occurs most strongly in the spot
market. The extent to which the spot returns are explained by the cointegration errors and
past returns is also the highest (R? = 17.46%). These findings imply that the spot market
tends to follow the other markets, rather than it leads other markets. In contrast, the deriva-
tives markets correct the error to a lesser extent. Other things being equal, when a distance

between the spot price and the futures (option) price widens, the magnitude of subsequent
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correction by the futures (option) price is less than a half of that by the spot price. The
R? from the derivatives markets are relatively smaller, which means that the variations in
the derivatives returns are attributed more to new information, compared to the spot return
variation. The results indicate that the index derivatives markets in China have played its
supposed price discovery role.

The subsample estimations indicate that the “absolute” strength of each market’s price
discovery exhibits dramatic changes over time; the response of the option (spot) market to
the cointegration errors became weaker (stronger), and the variation in option (spot) returns
attributed to new information has increased (decreased) in a monotone way. In Period 1,
the options market was rather a follower than a leader. The deviations from a long-run
equilibrium price were corrected mostly in the options market, and the R? for the option
returns was almost 20%, which is quite high in a return time series regression. In contrast,
the variation in futures and spot returns was mostly from new information (relatively low
R?s) and the futures and spot markets did not respond as much to the conintegration errors.

After the first structural break caused by restrictive regulations in August and September
2015, the magnitude of error-correction coefficients and the R? in the futures market more
than doubled, implying that the price discovery role of the futures markets was severely
weakened. This was not clearly shown in the IS and CFW analyses, possibly because the
information processing ability in all three markets was concurrently affected due to common
market shocks and the IS and CFW only reflect the relative price discovery. In Period 3,
the options market substantially matures and plays a major role in price discovery. Option
returns never respond to the past cointegration errors and its R? is as low as 4.95%, which
means that the option price mostly reacts only to new information. The futures market does
not respond as much to the deviation from the spot market, but it more strongly corrects
the deviation from the options market than before. The tendency that spot market follows

the derivatives markets is more pronounced in Period 3.
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4.3 Volatility Spillover Effects

ISs and CFWs are calculated mainly from the error correction coefficients, which indicate
how each market reacts to the deviation from the long-run common trend. To further
evaluate the informativeness of each market, it is also important to examine how each market
reacts to shocks in other markets. If shocks in one market affects the prices in other markets
more than the other way around, then the market is said to play more important roles in
price discovery. For this examination, we conduct the forecast error variance decomposition
as suggested by Pesaran and Shin (1998) and Diebold and Yilmaz (2012).

Recall Equation (3), the VMA(co) representation of the first difference in price vector

time series:

Ap, = Z V€ k- (5)
k=0

Following Pesaran and Shin (1998), we compute the generalized impulse response, which
does not require orthogonalization of the shocks and is invariant to the variable ordering.
Specifically, the h-period ahead generalized impulse response with respect to a unit innova-
tion in variable j is defined as ¢;(h) = E[Apiipleje = 1,0;1] — E[Apiyn|©:i—1], where ©;_;
is the known history of the economy up to time ¢ — 1 and €j; is the j* entry in ¢, Pesaran

and Shin (1998) show that it can be calculated as follows:
¢;(h) = w2 0Qe;, h=0,1,2,..., (6)

where wj; is the 7™ diagonal entry in  and e; is a column vector which takes one for the
J™ entry and zero for others. The entry in row 7 in ¢;(h) indicates the consequence of the
ith-ordered state variable at time ¢ + h with respect to a unit innovation in j*'-ordered state
variable in time .

The idea of the generalized impulse response enables us to obtain the generalized forecast
error variance decomposition, which is also invariant to the state variable ordering. Specif-

ically, the generalized h-step ahead forecast error variance of the " variable attributed to
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the innovations in the j™ variable, denoted by 6;;(h), is

Wit S (€0 e;)?

91" h) = i3
i1 Z;(l] e, UL QW e;

, 1,7=1,23 h=0,1,2 .. (7)

For better economic interpretation, we normalize this measure so that the generalized forecast

0i; (h)
i1 0i(h)

Following Diebold and Yilmaz (2012), 6,;(h) is interpreted as the gross volatility spillover

error variances of a variable accounted for by all variables sum to one: éij(h) =

transmitted from variable j to variable i. Similarly, the net volatility spillover from variable j
to variable 7 is defined as ;;(h) —60;;(h). We choose the one-hour horizon (h = 60) to capture
the long-run spillovers. From these measures, we can learn the extent to which shocks in one
market accounts for the variation of other markets.

Table 7 presents the gross spillover effects from one market to another, and the net
spillover effects from a market. The (i, 7) entry in the gross spillover represents the estimated
contribution to the forecast error variance of market ¢ coming from innovations of market
j, while the entry in the net spillover is the difference between the spillover from market i
to all other markets and the spillover from all other markets to market i. The spillovers are
estimated for each day and the values in the table are the average of the daily estimates in
a given sample period. The daily net spillover from each market is depicted in Figure 7.

In the overall sample, the volatility spillover from the spot market to the other markets is
40.73%, while that to the spot market from the others is 44.20%. That is, the spot market is
more influenced by the innovations in the other markets than the other way around, which is
reflected by the negative net spillover (-3.47%). In the whole sample, only the futures market
exerts positive net spillover effects over the other markets. The subsample analysis shows
the results consistent with previous subsections. In Period 1 when the options market was
immature, its gross spillover to the other markets was only 39.93% whilst that to the options
market was 49.24%. The spot and futures markets have the positive net spillover effects.

Since then, however, the net spillover from the options market has steadily increased and
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finally reaches 4.52% in Period 3. The net spillover from the futures market has remained
positive almost all the time, but slightly weakened over time. The volatility spillover analysis
confirms the major price discovery role in the derivatives markets, particularly in the options

market.

4.4 Determinants of Price Discovery

The analyses in previous sections show that the strength of the price discovery role in the
derivatives markets fluctuates over time. To better understand the factors that drive this
fluctuation, this subsection analyzes how price discovery abilities in the futures and options
markets vary with market conditions. Specifically, we regress IS and CFW on the ratio of
daily trading volume of futures and options to that of the spot (RT'V} and RT'V,), the open
interest of futures and options (OIf and OI,), the ratio of daily return standard deviation
of futures and options to that of the spot (RSD; and RSD,), and the absolute value of
average log futures- and options-basis (Abs.LogBasis; and Abs.LogBasis,). Chakravarty
et al. (2004) and Chen and Chung (2012) find that the trading volume and market volatility
are the determinant of the price discovery in a market. We include the open interest to
further reflect the trading activities. The absolute value of the log basis is the gap between
the two prices and represents the arbitrage opportunities among the markets.

Table 8 tabulates the estimation results. The results show that the information share
and common factor weights in the options market are higher when its open interest is larger
and the relative volatility is smaller. When the competitor (futures) has more arbitrage
opportunities, the price discovery ability in the options market decreases. These findings are
generally consistent with the aforementioned literature.

In the futures market, the price discovery becomes stronger with smaller return volatil-
ity and more arbitrage opportunities, which is in line with options market. Interestingly,
the futures trading activities do not significantly co-vary with the futures price discovery.

When a series of stringent regulations, including an abrupt increase in transaction costs,
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were imposed in the futures market and the trading volume subsequently plunged 90% in
August and September 2015, the futures market still made considerable contributions to
price discovery. Its IS and CFW did not significantly decrease after these regulations. This
finding is evidence against the trading cost hypothesis. If this hypothesis held, we could
have observed a significant drop in IS and CFW in the futures market after the sudden and
almost exogenous increase in the transaction costs.

Both the SSE50 Index futures and the SSE50 ETF options were launched in early 2015,
but the futures market started exhibiting a strong price discovery from the beginning while
the options market did not. What makes a difference in the price discovery ability? We
conjecture that investors’ trading experience crucially matters in a nascent market. When
the SSE50 Index futures was launched, the futures investors had already accumulated five-
year of trading experiences since the introduction of the first index futures (CSI300 Index
futures) in 2010. In contrast, the SSE50 ETF options were the very first exchange-traded
options and options investors had no such experience. They needed time to familiarize
themselves with the new financial instrument. This explanation is consistent with the fact
that when the CSI300 Index futures began trading in 2010, the spot market played a more
important role in price discovery than the futures market (Yang et al., 2012; Sohn and Zhang,
2017). This result implies that in a nascent market, the price discovery ability of a derivative
market does not necessarily depends solely on its transaction cost but on whether investors

in the market are mature and experienced sufficiently.

5 Conclusion

We study the time-varying price discovery roles in the spot, futures and options markets using
the SSE50 Index-based securities in China. The recent and almost concurrent launches of
the SSE50 ETF options and SSE50 Index futures (February and April 2015, respectively)

provide a good setting for evaluating the development course of the two derivatives markets.
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We find that the derivatives markets started to play their supposed price discovery role after
several months since their launches. The leading price discovery role of the spot market
quickly declined after the launch of the two derivatives. The contributions of the futures
market have been considerably large since their launch, while those of the options market was
mediocre in the beginning but recently becomes dominant. The spillover analyses confirm the
findings from information shares and common factor weights. Trading activities, volatility
and arbitrage opportunities are the determinants of options price discovery, which supports
the trading cost hypothesis. In the futures market, however, changes in transaction costs
and consequent variation in trading activities cannot explain the fluctuation in futures price
discovery, which is evidence against the hypothesis. We provide a potential explanation that

investors’ experience could be crucial in a nascent market such as China.
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Figure 1: Log Prices in the Spot, Futures, and Options markets
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Note: Figure 1 plots the time series of log prices of SSE50 ETF (spot), SSE50 ISSE50ndex futures and
SSE50 ETF option at the 1-minute frequency from April 16, 2015 to July 20, 2017. The log basis is defined
as the difference between the spot log price and the corresponding derivative log price, demeaned each day.
Return volatility is calculated each day by the standard deviation of 1-minute returns.
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Figure 2: SSE50 Index Futures Trading Activities
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T T T T T T T

15 T T

Jul2015  Oct2015 Jan2016 Apr2016 Jul2016 Oct2016 Jan2017 Apr2017 Jul2017

Panel B. Log Open Interest in Futures Market
T T T T T T T

12 T T

Main

11 L Total | |
WN

10

8 | | | | | | | | |
Jul2015  Oct2015 Jan2016 Apr2016 Jul2016 Oct2016 Jan2017 Apr2017 Jul2017

Note: Figure 2 plots the daily log trading volume and log open interest of the SSE50 Index futures contracts.
There are four simultaneously traded contracts with different expiration dates. The main contract is the one
with the largest trading volume (open interest).

28



24

23

22

21

20

19

18

15

10

14

13

12

11

10

Figure 3: SSE50 ETF and Its Options Trading Activities
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Note: Figure 3 plots the daily log trading volume of the SSE50 ETF, and the daily log trading volume and

log open interest of its at-the-money option contracts.

There can be multiple at-the-money call and put

options within a day. The main contract is the one with the largest put and call combined trading volume
(open interest).
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Figure 4: Information Shares and Common Factor Weights
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Note: Figure 4 plots the daily information shares and common factor weights in the spot, futures and options
markets. Information shares and common factor weights are calculated from a vector error correction model
of prices in the three markets according to Hasbrouck (1995) and Gonzalo and Granger (1995), respectively.
The lag length of the model is chosen by the Bayesian information criterion. The time series are smoothed
with a trailing exponentially weighted moving average: M A;(a) = 0.2a; + 0.8M A;_1(a), where a is either
information share or common factor weight.
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Figure 5: Net Spillover from Each Market
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Note: Figure 5 depicts the daily long-horizon (60-minute) net spillovers. Following Diebold and Yilmaz
(2012), the net spillover from market ¢ is defined as the gross spillover from market i to all other markets
minus that to market i from all other markets.
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Table 2: Structural Breaks: Recursive Chow Tests

Structural Break Point Variables

Remarks

September 7, 2015 TV, OIp**, SDg***,
SDf***, SDO***’
SDy %, § D, %%

Futures margin requirement in-
creased from 30% to 40% of con-
tract value (for non-hedging pur-
pose); from 10% to 20% (for hedging
purpose); Futures commission fees
increased from 0.0115% to 0.23% of
the closed transaction value; An-
nounced on September 2; Imple-
mented on September 7, 2015

November 1, 2016 TV, TV**, TV, **,
OI*, SDg**, SDs**,
SDy*, S, **

Option commission fees reduced
from 0.02% to 0.013% of the
closed transaction value; Announced
on October 28; Implemented on
November 11, 2016

Note: Table 2 shows the result of recursive Chow tests. We consider ten variables for testing structural
breaks: daily trading volume of three markets (T'V,, TVy, TV,), daily open interests of two derivative mar-
kets (OIy,01,), daily return volatility of three markets (SDs, SDy,SD,) and daily volatility of two bases
(SDss,SDs,). Each variable is assumed to follow an autoregressive process. A Chow test is conducted for
each variable using the 60-trading-day moving window. The null hypothesis is no structural break, while
the alternative hypothesis is a break at the 31st observation. For each estimation window, we choose the
optimal lag length by the Bayesian information criterion. A structural break occurs if the null is rejected
for more than two-third of ten variables. We record only one structural break within 60 trading days. If
multiple breaks are detected within 60 trading days, the day with the most rejections of the null is recorded

as a single break. *** (** *) indicates the 1% (5%, 10%) significance level.
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Table 3: Descriptive Statistics

Owverall Period 1 Period 2 Period 3
Aprl7, 2015  Aprl7, 2015  Sep07, 2015  Nov01, 2016
- Jul20, 2017 - Sep02, 2015 - Oct31,2016 - Jul20, 2017

Panel A. Intraday 1-min Returns

Spot. (%) -0.00007 -0.00126 0.00005 0.00038
(0.11701) (0.22426) (0.08883) (0.05025)
Futures (%) -0.00011 -0.00183 0.00016 0.00041
(0.12458) (0.23720) (0.09751) (0.04892)
Option (%) -0.00008 -0.00168 0.00019 0.00038
(0.11193) (0.21346) (0.08678) (0.04560)
Obs. 132,638 23,519 66,639 42,480

Panel B. Daily Trading Activities

Trading Volume

Spot (in thousands) 596,752 2,144,850 283,652 233,145
(989,559) (1,593,240) (166,777) (104,833)
Futures 55,543 288,657 5,118 5,956
(119,770) (122,733) (1,537) (1,996)
Futures Total 63,234 323,583 6,632 8,307
(133,408) (135,037) (2,122) (3,059)
Option 56,600 11,817 37,956 110,783
(50,821) (7,207) (22,853) (51,394)
Option Total 113,154 24,222 68,336 233,038
(110,237) (18,145) (43,366) (113,970)
Open Interest
Futures 17,684 35,061 11,693 17,507
(11,746) (18,335) (2,454) (3,695)
Futures Total 27,013 49,126 18,343 28,436
(14,789) (22,301) (2,244) (3,416)
Option 86,242 14,421 61,886 164,398
(72,347) (6,210) (44,581) (57,703)
Option Total 177,385 27,100 112,934 362,185
(158,868) (14,234) (78,602) (126,198)
Obs. 554 98 279 177

Note: Table 3 reports the descriptive statistics of the intraday l-minute returns (Panel A) and the daily
trading activities (Panel B) of three securities based on the SSE50 Index. Spot indicates the SSE50 Index-
tracking ETF managed by China Asset Management Co., Ltd. Futures (Option) indicates the SSE50 Index
futures (SSE50 ETF at-the-money option) contract with the largest trading volume. The option return is
obtained from the price of the SSE50 ETF implied by the put-call parity. Futures Total considers the sum of
the four futures contracts with different expiration dates. Option Total considers the sum of all at-the-money
options. The values in parenthesis are the corresponding standard deviations.
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Table 4: Cointegration Tests

Owverall Period 1  Period 2 Period 3

Percentage of rejecting Hy

Engle-Granger (Hy : No cointegration) — 93.14%  69.39%  97.13%  100.00%
Johansen (Hj : Cointegration rank of 2) 19.13%  14.29%  20.79%  19.21%

Percentage of cointegrated trading days

Judged by both tests 74.55%  57.14% 76.70% 80.79%
Judged by either test 99.46%  97.96%  99.64%  100.00%
Obs. 554 98 279 177

Note: Table 4 presents the summary results of the daily cointegration tests. The Engle-Granger test assesses
the null hypothesis of no cointegration among the log (implied) prices of SSE50 ETF, SSE50 Futures and
SSE50 ETF option. The Johansen test assesses the null hypothesis of cointegration rank equal to 2 against
the alternative of 3. The number of lags in the tests is set to zero and the significance level is 1%.

Table 5: Information Shares and Common Factor Weights

Information shares Common factor weights

Spot  Futures Option Spot  Futures Option

Overall

Mean 24.48% 34.03%  41.49% 23.14% 30.36%  46.50%
Median 19.14% 31.62% 41.71% 17.97% 25.50% 50.50%
SD 17.09% 15.36% 19.86% 19.51% 20.80% 25.08%

Period 1

Mean 40.16% 37.54% 22.30% 40.95% 36.31% 22.75%
Median 39.79% 35.01% 21.41% 39.54% 32.51% 19.98%
SD 17.50% 18.11% 13.60% 22.79% 23.46% 15.67%

Period 2

Mean 24.85% 35.27% 39.87% 23.19% 31.30% 45.51%
Median 20.93% 34.02% 38.70% 18.50% 27.61% 47.26%
SD 16.46% 15.50% 17.96% 18.66% 20.96% 24.72%

Period 3

Mean 15.40% 30.17% 54.43% 13.41% 25.65% 60.94%
Median 13.03% 28.23% 57.79% 10.61% 23.32%  65.02%
SD 10.19% 12.57% 15.84% 9.65% 17.89% 18.76%

Note: Table 5 reports the information shares and the common factor weights of the spot, futures and options
markets. They are calculated from a vector error correction model of prices in the three markets according
to Hasbrouck (1995) and Gonzalo and Granger (1995) at one-minute frequency. The model is estimated
for each day in a given sample period. The lag length of the model is chosen by the Bayesian information
criterion. The values in the table are summary statistics for these daily estimates.
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Table 6: Error Correction Coefficients in VECM

Dependent variable Error correction term R?
Log price deviation from
Spot Futures Option
Qverall
Spot return (Apy) -0.121%%%  -0.098***  17.46%
(0.007)  (0.010)
Futures return (Apy) -0.055%** -0.102%**  6.92%
(0.004) (0.006)
Option return (Ap,)  -0.029%**  -0.061*** 11.41%
(0.007)  (0.008)
Period 1
Spot return (Ap,) -0.053***  -0.039***  8.58%
(0.015)  (0.012)
Futures return (Apy) -0.033%** -0.041%**  3.56%
(0.010) (0.009)
Option return (Ap,)  -0.114*%**  -0.065%*** 19.54%
(0.023)  (0.016)
Period 2
Spot return (Aps) -0.126***  -0.099***  18.06%
(0.009)  (0.015)
Futures return (Apy) -0.070%** -0.107*%*%  7.80%
(0.006) (0.008)
Option return (Ap,)  -0.016***  -0.099*** 12.71%
(0.006)  (0.010)
Period 3
Spot return (Apy) -0.149%**  -0.128***  21.33%
(0.011)  (0.015)
Futures return (Apy) -0.042%** -0.130%*%*  7.36%
(0.007) (0.010)
Option return (Ap,) -0.002 -0.002 4.95%
(0.005)  (0.009)

Note: Table 6 tabulates the estimated coefficients of the error correction terms obtained from a vector error
correction model of prices in the three markets at one-minute frequency. The model is estimated for each
day in a given sample period. The lag length of the model is chosen by the Bayesian information criterion.
The table reports means of the daily estimates and their corresponding Newey-West robust standard errors.
For each dependent variable, there are two error correction terms: log price deviation from the other two log
prices. For example, when the spot return (Ap;) is the dependent variable, the differences from log futures
price (ps — py) and from log option price (ps — p,) are the two error correction terms. The coefficients for
other terms (constant and autoregressive terms) are not reported to save space, but available upon request.

K (0 *) indicates the 1% (5%, 10%) significance level.
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Table 7: Spillover Table

To From

Spot  Futures Option The Others

Overall

Gross Spillover ~ Spot 55.80% 22.11% 22.08% 44.20%
Futures 19.67% 52.66% 27.67% 47.34%
Option 21.06% 29.11% 49.83% 50.17%
The Others 40.73% 51.23%  49.76%

Net Spillover -3.47%  3.89%  -0.41%

Period 1

Gross Spillover  Spot 48.14% 31.42%  20.44% 51.86%
Futures 31.14% 49.37% 19.49% 50.63%
Option 24.83% 24.41% 50.76% 49.24%
The Others 55.97% 55.83%  39.93%

Net Spillover 4.11%  520%  -9.31%

Period 2

Gross Spillover  Spot 57.60% 20.20% 22.20% 42.40%
Futures 17.92% 55.25% 26.83% 44.75%
Option 21.22% 28.29%  50.48% 49.52%
The Others 39.15% 48.49%  49.04%

Net Spillover -3.25%  3.73% -0.48%

Period 3

Gross Spillover  Spot 57.13% 20.08% 22.79% 42.87%
Futures 16.19% 50.38%  33.43% 49.62%
Option 18.75% 32.96% 48.30% 51.70%
The Others 34.94% 53.04% 56.22%

Net Spillover -7.93%  3.41%  4.52%

Note: Table 7 shows the long-horizon (60-minute) gross and net spillovers. The (i,4) entry in the gross
spillover represents the estimated contribution to the forecast error variance of market i coming from inno-
vations of market j, while the entry in the net spillover is the difference between the spillover from market
i to all other markets and the spillover from all other markets to market . The spillovers are estimated for
each day and the values in the table are the average of the daily estimates in a given sample period.
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Table 8: Time Variation in Information Shares and Common Factor Weights in Derivatives

Markets

Futures market

Options market

IS CFW IS CFW
RTVy -0.230 -0.140 -0.133 -0.314%*
(0.162) (0.198) (0.112) (0.134)
RTV, -0.0378 -0.0205 0.0747 0.0703
(0.0469) (0.0730) (0.0562) (0.0745)
Oly 0.000579 0.000330 -0.000782 -0.00107
(0.000660)  (0.000930) (0.000760)  (0.000802)
ol, -0.000353**  -0.000519** 0.000886***  0.00103***
(0.000179)  (0.000244) (0.000209)  (0.000257)
RSDy -0.117* -0.130* 0.0255 0.0502
(0.0613) (0.0693) (0.0518) (0.0618)
RSD, 0.134** 0.183%#* -0.204*** -0.274%*%
(0.0589) (0.0682) (0.0567) (0.0661)
Abs.LogBasisf 2.702%* 3.787* -5.340*** -5.507***
(1.479) (1.985) (1.495) (1.641)
Abs.LogBasis, -2.348 -3.655%* 1.484 0.599
(1.480) (1.875) (1.508) (1.603)
Constant 0.369%*** 0.308%** 0.543%#* 0.644*+*
(0.0536) (0.0601) (0.0555) (0.0637)
Obs. 551 551 551 551
R? 0.078 0.073 0.404 0.362
adjusted- R? 0.064 0.059 0.395 0.353

Note: Table 8 tabulates the regression results of the daily information share (common factor weights) in the
futures and options markets on several market variables. RTV;(RTV,) is the ratio of the daily trading volume
in the futures (options) market to that in the spot market. OI;(OI,) is the ratio of the daily open interest in
the futures (options) market to that in the spot market. RSD¢(RSD,) is the ratio of the daily return stan-
dard deviation in the futures (options) market to that in the spot market. Abs.LogBasiss(Abs.LogBasis,) is
the absolute value of the average log futures (options) basis. The values in parenthesis are the corresponding
robust standard errors. *** (** *) indicates the 1% (5%, 10%) significance level.
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Appendix A

This appendix section describes the details of the SSE50 Index futures contract and the

SSE50 ETF option contract.

Table Al: Details of SSE50 Index Futures Contract

[tem Details
Underlying SSE 50 Index
Tick size Quotations for the contact is integer multiples of 0.2 index points

Contract multiplier

Contract month
Expiration date
Trading hours

Trading mechanism
Settlement method

The value of the contract equals the futures index points multiplying
CNY300.

Current month, next month, and subsequent two quarter-ending months
Third Friday of the contract month

9:30-11:30 and 13:00-15:00*

T+0 trading system

Cash settlement

Exchange China Financial Futures Exchange

Table A2: Details of SSE50 ETF Option Contract
Item Details
Underlying SSE50 ETF

Contract type
Exercise style
Contract unit
Contract month
Expiration date
Strike price

Trading hours

Trading mechanism
Settlement method

Exchange

Call option and put option

European option

Each contract corresponds to 10,000 SSE50 ETF shares.

Current month, next month, and subsequent two quarter-ending months
Fourth Wednesday of the contract month

Five strike prices (one at-the-money, two out-of-the-money, and two in-
the-money) are set for the first listings. Options with new strike prices
are added when the change in spot price results in fewer than two out-
of-the-money options or two in-the-money options.

9:30-11:30 and 13:00-15:00

T+0 trading system

Physical delivery

Shanghai Stock Exchange

Appendix B

In this appendix section, we present the bivariate analysis results in which we consider only
two out of the three price time series: SSE50 ETF, SSE50 Index Futures and SSE50 ETF
Options.
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Note: Figure Bl plots the daily information shares of the spot, futures and options markets, when they
are estimated from bivariate VECMs. For example, Panel A is obtained from a VECM only with spot and
futures prices. The lag length of the model is chosen by the Bayesian information criterion. The time series
are smoothed with a trailing exponentially weighted moving average: M A;(1S) = 0.215; + 0.8M A;_1(a),
where IS is the information share.



Table B1: Information Shares from Bivariate VECMs

pe = (56, ft) Pt = (5¢,0¢) pe = (fr.00)

IS, IS s, IS, 1s; IS,
Full Mean 32.58% 67.42% 32.24% 67.76% 42.33% 57.67%
Median 22.12% 77.88% 15.21% 84.79% 34.11% 65.89%
SD 31.04% 31.04% 34.48% 34.48% 34.28% 34.28%
Period 1 Mean 51.88% 48.12% 69.71% 30.29% 64.13% 35.87%
Median 59.47% 40.53% 84.25% 15.75% 80.41% 19.59%
SD 35.19% 35.19% 32.76% 32.76% 36.81% 36.81%
Period 2 Mean 34.11% 65.89% 30.34% 69.66% 43.67% 56.33%
Median 25.68% 74.32% 14.49% 85.51% 39.30% 60.70%
SD 290.71% 29.71% 32.79%% 32.79% 33.53% 33.53%
Period 3 Mean 19.73% 80.27% 14.90% 85.10% 28.41% 71.59%
Median 10.48% 89.52% 9.46%  90.54% 21.78% 78.22%
SD 24.09% 24.09% 19.20% 19.20% 26.72% 26.72%

Note: Table Bl reports the information shares of the spot, futures and options markets, when they are
estimated from bivariate VECMs. For example, the first two columns are obtained from a VECM only with
spot and futures prices. The model is estimated for each day in a given sample period. The lag length of
the model is chosen by the Bayesian information criterion. The values in the table are summary statistics

for these daily estimates.
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