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For alternative options pricing models and heavy-tailed distributions, this study proposes and analyzes

a continuous-time stochastic volatility (SV) model based on an arithmetic Brownian motion. The normal

stochastic alpha-beta-rho model is a special case of our model. Using the generalizations from Bougerol’s iden-

tity in the literature, we propose a closed-form simulation scheme, efficient quadrature integration for vanilla

options pricing, and fast moment-matching method. Furthermore, the transition probability of another

special case is given by Johnson’s SU curve, a popular heavy-tailed distribution with superior analytical

tractability. Therefore, our model serves as an analytically tractable SV model and heavy-tailed distribution

backed by stochastic differential equations.
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1. Introduction

Stochastic volatility (SV) models have been proposed to overcome the failure of the Black-Scholes-

Merton (BSM) model in explaining non-constant implied volatilities across strike prices on option

markets, a phenomenon called volatility smile. Therefore, most previous studies (e.g., Hull and

White (1987), Stein and Stein (1991), Heston (1993)) focus on SV models based on geometric

Brownian motion (BM) (thereafter, lognormal SV models). On the other hand, SV model studies

based on arithmetic BM (thereafter, normal SV models) are scarce. This study aims to fill this gap

by proposing and analyzing a class of normal SV models. Our motivation for choosing arithmetic

BM as the backbone of the SV model are twofold: an options pricing model alternative to the

lognormal SV model and a skewed and heavy-tailed distribution family generalizing the normal

distribution.

We first discuss the options pricing model. Although eclipsed by the success of the BSM model,

the arithmetic BM was analyzed for the first time as an options pricing model by Bachelier (1900)

(thereafter, normal model) and still provides more relevant dynamics than the geometric BM for

some financial asset classes. See Brooks and Brooks (2017) and Schachermayer and Teichmann

(2008) for recent surveys on the normal model. Interest rate is a first example. The proportionality
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between the daily changes and level of interest rate, a key assumption of the BSM model, is

empirically weak (Levin 2004). Therefore, among fixed-income market traders, the normal model

has long been a popular alternative to the BSM one for quoting and risk-managing the options

on interest rate swap and Treasury bonds (and futures). An important difference between them

is that the volatility under the arithmetic BM (thereafter, normal volatility), which measures the

uncertainty for an absolute, not relative, change of interest rate. For example, Merrill Lynch option

volatility index (MOVE), the equivalent of the VIX index for the fixed-income market, is calculated

as the weighted average of the normal implied volatilities of the US Treasury bond yield. It is

also worth noting that the hedging ratio, delta, from the normal and BSM models can be often

significantly different, although the volatilities of the corresponding models are calibrated to the

same option price observed on the market. Therefore, the normal model’s delta provides more

efficient hedging if market conditions are similar to the assumptions of the normal model. The

use of the normal model for the interest market is further justified by the negative policy rates

observed in several developed economies after the global financial crisis of 2008. Other than the

interest rate, the normal model is often used for modeling the inflation rate (Kenyon 2008) and

spread option (Poitras 1998).

Despite this background, studies on the normal SV model are rare. The scarcity of the normal

SV model is even more surprising considering lognormal SV models are often analyzed under

the framework of normal diffusion on the log price variable, meaning the solution methods for

the lognormal SV models can be applied to the corresponding normal SV model with minimal

modifications. To the best of our knowledge, the only previous study on the normal SV model is

in the context of the stochastic alpha-beta-rho (SABR) model (Hagan et al. 2002), an SV model

popular among practitioners. In SABR, the price follows a constant elasticity of variance (CEV)

backbone, while the volatility follows a geometric BM. Therefore, the model provides a range of

backbone choices, with normal and lognormal backbones being the two extremes. The normal SV

model we propose is inspired by (i.e., is a special case of) the SABR model with normal backbone.

For a more in-depth review of the SABR model, see § 2.2.

We propose and analyze a class of normal SV models, which includes the normal SABR model as

a special case. Since it is closely related to the BMs in hyperbolic geometry (and involves hyperbolic

functions), we name the class hyperbolic normal SV model or NSVh model, as an abbreviation

similar to how hyperbolic sine becomes sinh. Based on the generalized Bougerol’s identity (Alili

et al. 1997, Alili and Gruet 1997), we equip the NSVh model with two tools critical to the success

of any SV model: (i) an exact closed-form simulation method and (ii) vanilla options pricing with

efficient quadratures integration. Notably, our simulation scheme requires merely one and a half

(1.5) normal random numbers for a transition between time intervals of any length. The vanilla
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option price is more efficient than previous integration representations (Henry-Labordère 2008,

Korn and Tang 2013, Antonov et al. 2015), in that our expression can be accurately evaluated with

numerical quadratures. Additionally, we provide a simpler proof of the key mathematical result of

Alili and Gruet (1997).

The second aspect of our study is that the distributions resulting from the normal SV models

can incorporates skewness and heavy-tail generalizing of the normal distribution. Heavy-tailed

distributions occur everywhere, and their importance cannot be emphasized enough. In this regard,

the study of normal SV models has a much broader significance than that of lognormal SV models,

since the latter generalize the lognormal distribution, whose application is rather limited compared

to the normal distribution.

A large number of distribution families has been suggested by the statistics community to incor-

porate skewness and heavy tails into a normal distribution. Even if we narrow our focus to finance

literature, the following are examples of the distributions to model asset returns: generalized lambda

(Corlu and Corlu 2015), stable (Fama 1965), skewed t (Theodossiou 1998), Gaussian mixture (Kon

1984, Behr and Pötter 2009), generalized hyperbolic (Eberlein et al. 1995, Behr and Pötter 2009),

Turkey’s g- and h- (Badrinath and Chatterjee 1988, Mills 1995), and Johnson’s SU (thereafter SU)

distribution (Shang and Tadikamalla 2004, Gurrola 2007, Choi and Nam 2008).

Most such distributions are obtained from the generalizations of the normal probability den-

sity function (PDF) or the transformations of the normal random variable. To the best of our

knowledge, no heavy-tailed distribution is either defined from or associated with a continuous-time

stochastic process, including the SV model. This is because, in general, it is difficult for a stochas-

tic differential equation (SDE) to yield an analytically tractable solution. There are only a few

examples of continuous-time diffusion models whose transition probabilities are associated with

well-known distributions: arithmetic BM with normal distribution (by definition), geometric BM

with lognormal distribution, and CEV and CIR processes with non-central χ2 distribution.

Our study adds to the literature by showing that the transition probability for a special case of

the NSVh model (different from the normal SABR case) is given by the SU distribution (Johnson

1949). The SU curve has become increasingly popular for modeling heavy-tailed distributions in

numerous fields due to its computational flexibility (see § 2.3 for a review of SU). Our finding

that the SU distribution comes from an SV model provides the theoretical justification for the

popularity of SU . The NSVh model provides a more intuitive representation of SU and generalizes

the SU distribution.

Overall, an important contribution of the NSVh model is that it bridges two unrelated topics:

SV models from financial economics and heavy-tailed distributions from statistics. There are many
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benefits from the interchangeable usage of the two. For example, the SU distribution is now rec-

ognized an options pricing model with superior analytic tractability: vanilla option price, density

functions, skewness, ex-kurtosis, value-at-risk (VaR), and expected shortfall (ES) have closed-form

expressions that are not available in the normal SABR model. Moreover, we show that the two

distributions are very similar if calibrated to the same option prices or moments through empir-

ical examples, thus can be used interchangeably. We propose a rapid method to find equivalent

parameter sets based on moment matching.

This remainder of this paper is organized as follows. Section 2 defines the NSVh model and

reviews the SABR model and the SU distribution. Section 3 describes the main results. Section 4

presents the numerical results with empirical data. Finally, Section 5 concludes the paper.

2. Models and Preliminaries
2.1. NSVh Model

We introduce the NSVh model as

dFt = σt

(
ρdZ

[λα/2]
t + ρ∗ dXt

)
and

dσt
σt

= α dZ
[λα/2]
t , (1)

where Ft and σt are the processes for the price and volatility, respectively, α is the volatility of the

volatility parameter, and ρ the instantaneous correlation between Ft and σt with the orthogonal

component, ρ∗ =
√

1− ρ2. In our setting, Zt and Xt are independent BMs and Z
[µ]
t =Zt+µt denotes

BM with drift µ. Similar to lognormal SV models, correlation ρ accounts for the asymmetry in the

distribution (e.g., skewness or slope of the volatility smile) and α for the heavy tail (e.g., excess

kurtosis or convexity of the volatility smile). The so-called leverage effect, the negative correlation

between spot prices and volatility, is explained with a negative ρ, although it is in the context of

normal volatility.

Note that drift λα/2 is applied to Zt in both SDEs for Ft and σt in the NSVh model. Drift

parameter λ plays a role of constant elasticity for σt in that (σt)
1−λ is a martingale:

d(σt)
1−λ

(σt)1−λ
= (1−λ)α dZt if λ 6= 1,

d(logσt) = α dZt if λ= 1.

For example, λ= 0 yields the volatility process of the SABR model and λ=−1 that of Hull and

White (1987).

However, note that Ft is martingale only when λ= 0 (or, less importantly, ρ= 0), owing to the

drift. The NSVh model with λ= 0 is the SABR model with normal backbone which is subsequently

introduced, and has been an important motivation for this study. Although it may not be a desir-

able price process, the NSVh model for λ 6= 0 may be understood as the probability distribution
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perturbed from base case λ = 0, according to the Girsanov theorem. As subsequently discussed,

λ does not significantly increase the structural diversity of the distribution, hence a perturbation

rather than a generalization. Nevertheless, the introduction of λ sheds light on the general under-

standing of the NSVh model: λ connects the normal SABR (λ= 0) to Johnson’s SU distribution

(λ= 1).

While volatility σt is analytically integrated to

σt = σ0 exp
(
αZ

[ 12 (λ−1)α]
t

)
, (2)

price Ft is integrated as below for a fixed time T :

FT −F0 =
ρ

α

(
σT −σ0

)
+ ρ∗

∫ T

0

σtdXt.

As Ft is not a martingale in general, it is better to rewrite the integral using the expectation of

FT , F̄T = F0 + (σ0ρ/α)
(
e

1
2λα

2T − 1
)
:

FT − F̄T =
ρ

α

(
σT −σ0 e

1
2λα

2T
)

+ ρ∗

∫ T

0

σtdXt. (3)

We now simplify the expressions into canonical forms by the following changes of variables:

s= α2t (S = α2T ), σ̃s =
σt
σ0

, and F̃s =
α

σ0

(
Ft− F̄T

)
,

where the new time variable s is the integrated variance of log volatility. Therefore, the NSVh

distribution is effectively parametrized by five parameters, (F̄T , σ0/α, α
2T, ρ, λ). The SDEs and

joint distributions at s= S are respectively cast into the following canonical forms:

dF̃s = σ̃s(ρdZ
[λ/2]
s + ρ∗ dXs) and dσ̃s = σ̃s dZ

[λ/2]
s (σ̃0 = 1), (4)

F̃S
d
= ρ

(
eZ

[ 12 (λ−1)]

S − e 1
2λS
)

+ ρ∗X
A

[ 12 (λ−1)]

S

and σ̃S = exp
(
Z

[ 12 (λ−1)]
S

)
, (5)

where
d
= denotes the equality in the distribution law. Here, the integral term of (3), the part of

price transition uncorrelated to volatility, is further simplified with the exponential functional of

BM defined by

A
[µ]
T =

∫ T

t=0

e2Z
[µ]
t dt, (6)

which has been the topic of extensive research (Matsumoto and Yor 2005a,b, Yor 2012). While

inspired from the time-integrated price under the BSM model in the context of continuously mon-

itored Asian options, the exponential functional, A
[ 12 (λ−1)]
S in this study denotes time-integrated

variance. Although the functional A
[µ]
T can be defined with any standard BM, throughout this

paper, we implicitly assume A
[µ]
T is tied to specific BM Zt, driving volatility process. This is because

the conditional distribution of A
[µ]
T on ZT is a quantity of interest. While we distinguish between

the original and canonical forms in the rest of this paper, we often use S (= α2T ) in the original

form for the sake of concise notation.
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2.2. SABR Model and BM on Hyperbolic Geometry

Here, we review the SABR model with a focus on the normal case. Our approach is also compared

to those of the previous studies. The SABR model (Hagan et al. 2002) is an SV model with a CEV

backbone:
dFt

F β
t

= σt (ρdZt + ρ∗dXt) and
dσt
σt

= αdZt for 0≤ β ≤ 1, (7)

where Xt and Zt are independent BMs. Therefore, the SABR model with β = 0 (thereafter normal

SABR) is equivalent to the NSVh model with λ= 0. The effects of parameters ρ and α are similar

to those in the NSVh model.

The SABR model has been widely used in the financial industry due to several merits: (i) arbi-

trary backbone choice, including normal (β = 0) and lognormal (β = 1) backbones, (ii) availability

of an approximate but fast vanilla options pricing method, and (iii) parsimonious and intuitive

parameters. The comments on those merits are presented in order. Regarding the CEV backbone,

the popularity of the SABR model is yet another indication that the lognormal backbone is not a

one-fits-all solution. The normal SABR (β = 0) should not be confused with the continuous limit of

β→ 0+: while β = 0 allows negative prices, β→ 0+ does not. Hagan et al. (2002) derives an approx-

imate formula for the BSM-implied volatility, from which option price can be obtained through

the BSM formula. It is worth noting the derivation was via the perturbation from normal diffu-

sion, therefore the implied normal volatility is computed first, even for β > 0. Since this study is

concerned with the normal SV model, normal volatility is more relevant. For reference, the normal

volatility approximation (Hagan and Woodward 1999, Hagan et al. 2002) for the normal SABR is:

σn(σ0, α, ρ,K) = σ0

(
ζ

χ

)(
1 +

2− 3ρ2

24
α2T

)
where ζ =

α

σ0

(F̄T −K) and χ= log

(√
1− 2ρζ + ζ2− ρ+ ζ

1− ρ

)
,

(8)

where K is the strike price and T time-to-expiry. The volatility approximation is an asymptotic

expansion for small volatility variance α2T (= S). Although the accuracy of the approximation

noticeably deteriorates as α2T increases, the error is irrelevant for vanilla options pricing to the

extent that the model parameters, σ0, α, ρ with pre-determined β, are to be calibrated to observable

option prices. In this sense, the implied volatility formula rather serves as an interpolation method

for the volatility smile. The error causes serious issues only when the usage of the model goes

beyond vanilla options pricing. Two important cases are (i) exotic options pricing, which requires

the knowledge of probability density, and (ii) path-dependent claims, which require Monte Carlo

(MC) simulation. In the first case, the probability density implied from the formula often results

in negative density at out-of-the-money strikes, thus allowing for arbitrage. In the second case, the

vanilla option price from the formula is not consistent with that from the MC simulation with the
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same parameters. Therefore, the parameter calibration for MC scheme should be performed with

extra care. As such, the literature on more accurate SABR solutions arrive after the SABR model

establishes its popularity among practitioners. Below, we review prior work on the SABR model,

particularly the normal case.

For vanilla options pricing, there have been various improvements to the implied volatility

approximation (Ob lój 2007, Lorig et al. 2015, Balland and Tran 2013, Wu 2012, Andersen and

Brotherton-Ratcliffe 2005, Jordan and Tier 2011). The exact vanilla option price is known only

for three special cases: (i) zero correlation (ρ= 0), (ii) lognormal SABR (β = 1), and (iii) normal

SABR (β = 0). For the zero-correlation case, the price process can be transformed into the CEV

process with the changed time scale of the integrated variance, A[−1/2]. Therefore, the option price

can be expressed by (multiple) integral over the option prices from the CEV model. See Antonov

et al. (2013) for the most simplified integral representation based on the heat kernel on the two-

dimensional hyperbolic geometry (McKean et al. 1970) (see below). The solution to the lognormal

SABR is expressed in terms of Gaussian hypergeometric series (Lewis 2000). For the general cases

(i.e., ρ 6= 0 and 0 < β < 1), there is no analytic alternative to the finite difference method (Park

2014, Le Floc’h and Kennedy 2014). However, a further discussion is beyond the scope of this

paper.

The normal SABR (and NSVh) model is closely related to the BM on hyperbolic geometry,

represented as a Poincaré half-plane. We denote the n-dimensional Poincaré half-plane by Hn.

Table 1 is the cheat sheet for the properties of H2 and H3. The standard BM in a geometry is

defined to be the stochastic process whose infinitesimal generator is given by Laplace-Beltrami

operator ∆ defined under the geometry. Heat kernel p(t,D) is the fundamental solution of diffusion

equation (∂t− 1
2
∆)p(t,D) = 0, thus the transition probability of the standard BM. The heat kernels

on Hn has analytic solutions (see Grigor’yan and Noguchi (1998) for derivation). In Table 1, we

show the heat kernels for H2 (McKean et al. 1970), often referred to as McKean kernels, and H3

(Debiard et al. 1976).

The standard BM on H2 corresponds exactly to the normal SABR with ρ= 0 in canonical form.

Naturally, the H2 heat kernel has been used for the analysis of the normal SABR. Henry-Labordère

(2005, 2008) expresses the vanilla option price under the normal SABR with a two-dimensional

integral, although it is later corrected by Korn and Tang (2013). Antonov et al. (2015) further

simplify the price to a one-dimensional integration with an accurate approximation. However, their

approaches are limited in that they fail to provide efficient numerical methods with fast convergence,

such as numerical quadrature or fast Fourier transform, nor are their approaches based on the H2

kernel useful for the simulation algorithm.
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Table 1 Properties of the n-Dimensional Hyperbolic Geometry Represented by n-Dimensional Poincaré

Half-Plane Hn for n= 2 and 3. Symbols ∂x and ∂2
x are the shortened notations for partial derivative operators ∂

∂x

and ∂2

∂x2
, respectively.

Dimension H2 = {(x, z) : z > 0} H3 = {(x, y, z) : z > 0}
Metric (ds)2 (dx2 + dz2)/z2 (dx2 + dy2 + dz2)/z2

Volume element dV dxdz/z2 dxdy dz/z3

Geodesic distance D
acosh

(
(x′−x)2+z2+z′2

2zz′

)
acosh

(
(x′−x)2+(y′−y)2+z′2+z2

2zz′

)
(x, ·, z) to (x′, ·, z′)
Laplace-Beltrami

z2 (∂2
x + ∂2

z) z2 (∂2
x + ∂2

y + ∂2
z)− z ∂zoperator ∆Hn

Standard BM
dxt = ztdXt, dxt = ztdXt, dyt = ztdYt,
dzt/zt = dZt dzt/zt = dZt− dt/2

Heat kernel pn(t,D) √
2e−t/8

(2πt)3/2

∫ ∞
D

ds
se−s

2/2t

√
coshs− coshD

1

(2πt)3/2
D

sinhD
e−(t

2+D2)/2tfor n= 2 or 3
(∂t− 1

2
∆Hn)pn = 0

The simulation methods of SABR dynamics have been recently developed. While several efficient

approximations (Chen et al. 2012, Leitao et al. 2017a,b) have been proposed, Cai et al. (2017)

develop a simulation method that is exact under three special cases: (i) ρ= 0, (ii) β = 0, and (iii)

β = 1. The key of this method is to simulate the time-integrated variance, conditional on terminal

volatility A
[−1/2]
S |ZS from the CDF obtained from the Laplace transform of (1/A

[−1/2]
S ) |ZS, which

has a closed-form expression (Matsumoto and Yor 2005a). For the normal SABR, given the pair of

ZS and A
[−1/2]
S , (5) can be easily simulated using X

A
[−1/2]
S

d
=X1

√
A

[−1/2]
S for a standard normal X1.

Although this method is exact in that the time-discretized Euler method is avoided, it comes at a

heavy computation cost, that is, numerical inversion of the Laplace transform and root-solving for

the CDF inversion.

On the other hand, our approach based on Alili and Gruet (1997) exploits the H3 heat kernel.

Despite the added dimensionality, the H3 kernel is simpler in form than the H2 one. Furthermore,

from the radial symmetry of (xt, yt), it is easy to extract xt (or yt) via cosine (or sine) projection.

This approach works for both vanilla options pricing and MC simulation. Although our vanilla

option price is expressed by a double integral, it can be evaluated with a numerical quadratures

integral, thus being more efficient than the formula in (Henry-Labordère 2008, Korn and Tang

2013, Antonov et al. 2015). For MC simulation, we directly simulate X
A

[ 12 (λ−1)]

S

, conditional on

ZS in a closed-form expression. The advantage of using H3 is analogous to the two-dimensional

normal density as the radial function being exploited for the evaluation of Gaussian integration∫∞
−∞ e

−x2dx=
√
π and the Box-Muller algorithm (Box and Muller 1958) for drawing normal random

numbers.
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2.3. Johnson’s Distribution Family

Johnson (1949) proposes a system of distribution families in which a random variable X is repre-

sented by the following transformations from a standard normal variable Z:

X − γX
δX

= f

(
Z − γZ
δZ

)
for f(x) =


1/(1 + e−x) for SB (bounded) family

ex for SL (lognormal) family

sinhx for SU (unbounded) family,

(9)

where γX and γZ are location parameters and δX and δZ scaling parameters. Although not explicitly

included in the original manuscript, a normal distribution is also included in the systems, denoted

by SN with the trivial transformation f(x) = x. The range of X is unbounded for SU and SN ,

semi-bounded for SL, and bounded for SB. The system is designed such that a unique family is

chosen, given a feasible pair of skewness and kurtosis. Given a fixed value for skewness, the kurtosis

increases in the order of SB, SL, and SU .

Particularly, the SU distribution has been an attractive choice for modeling skewed and heavy-

tailed distributions generalizing the normal distribution, and has been adopted in various fields.

See Jones (2014) and the references therein. A few examples of applications in financial economics

includes heavy-tailed innovation in the GARCH model (Choi and Nam 2008), accurate prediction

of value-at-risk (Simonato 2011, Venkataraman and Rao 2016), and modeling returns of financial

assets (Shang and Tadikamalla 2004, Corlu and Corlu 2015).

The merits of the SU distribution are as follows. First, it explains a wide range of skewness and

kurtosis. For a fixed value of skewness, it can accommodate arbitrary high values of kurtosis, which

is not feasible in the classical approaches, such as the Gram-Charlier or Cornish-Fisher expan-

sions. Second, many properties of the distributions are expressed in closed forms: probability and

cumulative distribution functions and moments. Third, the parameters are efficiently estimated:

see Tuenter (2001) for the reduced moment matching and Wheeler (1980) for the quantile-based

estimation. Finally, it is trivial to sample random numbers, thus making SU ideal for Monte-Carlo

simulations, particularly in a multivariate setting (Biller and Ghosh 2006). Generally, sampling

random numbers is not trivial, although the PDF is given in closed form.

Additionally, this study assigns a first-class-citizen status to the SU distribution among other

heavy-tailed distributions by showing it is a solution of a continuous-time SV process, that is,

the NSVh model with λ= 1. This result relies on Alili et al. (1997). We thereby explain why the

SU distribution has been superior in estimating asset return distributions and risk metrics. The

unlikely connection between SU and the NSVh model is mutually beneficial (see § 3.3 for details).

Furthermore, we numerically show the normal SABR (λ= 0) and SU (λ= 1) are very close, thus

can be used interchangeably for practical purposes. Therefore, the normal SABR can be replaced

with the SU distribution, which has closed-form option price (see § 4 for details).
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3. Main Results

We begin by stating Bougerol (1983)’s identity in the original form. The proof is deferred to

Proposition 3, which presents the more general result.

Proposition 1 (Bougerol’s identity). For a fixed time T , the followings are equal in the

distribution: ∫ T

0

eZtdXt
d
= XAT

d
= sinh(WT ), (10)

where Xt, Wt and Zt are independent BMs and AT =A
[0]
T is defined by (6).

This identity is surprising, in that the stochastic integral involving two independent BMs is equal to

a sinh transformation of one BM in the distribution. See Matsumoto and Yor (2005a), Vakeroudis

(2012) for a review and related topics. Note that the identity is valid as distribution at a fixed

time t = T , not as a process for 0 ≤ t ≤ T . Nevertheless, it does not directly help solve (5). The

identity needs to be generalized to include drift in A[µ] and provide the joint distribution with Z [µ]

for µ 6= 0. Such generalizations are found in Alili and Gruet (1997) and Alili et al. (1997). Our

main results are the direct consequences of the results.

3.1. Monte-Carlo Simulation Scheme

The first generalization is concerned with the identity of the distribution of X
A

[µ]
T

, conditional on

Z
[µ]
T , which is related to the BMs in H3. We restate Proposition 3 in Alili and Gruet (1997) in a

slightly modified form:

Proposition 2 (Bougerol’s identity in hyperbolic geometry). Let Xt and Zt be two

independent BMs and the function φ defined by

φ(Z,D) = eZ/2
√

2coshD− 2coshZ for Z ≤D. (11)

Then, the following are equal in the distribution:∫ T

0

eZ
[µ]
t dXt

d
=X

A
[µ]
T

d
= cosθ φ

(
Z

[µ]
T ,

√
R2
T + (Z

[µ]
T )2

)
, (12)

where Rt is a two-dimensional Bessel process, that is, the radial part of a BM in two-dimensional

Euclidean space, and θ is a uniformly distributed random angle. The three random variables, RT ,

ZT , and θ, are independent.

Proof Among the two proofs in Alili and Gruet (1997), we follow the one exploiting geometrical

interpretation. We further simplify the original proof by use of the H3 heat kernel.

Let (xt, yt, zt) be a three-dimensional hyperbolic BM with a drift on z-axis, started at (x0, y0, z0) =

(0,0,1):

dxt = zt dXt, dyt = zt dYt, and
dzt
zt

= dZt +

(
1

2
+µ

)
dt. (13)
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Obviously,

xT
d
=yT

d
=X

A
[µ]
T

and zT = exp
(
Z

[µ]
T

)
,

so drift µ is equivalent to (λ−1)/2 in NSVh model. The standard BM in H3 introduced in Table 1

corresponds to µ= λ=−1. If we let Dt be the hyperbolic distance between (xt, yt, zt) and starting

point (0,0,1),

Dt = acosh

(
1

2

(
x2
t + y2t
zt

+ zt +
1

zt

))
,

the function φ is related to the Euclidean radius of (xt, yt) by

rt =
√
x2
t + y2t = φ

(
Z

[µ]
t , Dt

)
. (14)

The underlying BM, Z
[µ]
t , can be also interpreted as the projection of (xt, yt, zt) onto the z-axis,

that is, the signed hyperbolic distance from (0,0,1) to (0,0, zt). Therefore, restriction Z
[µ]
t ≤Dt is

naturally satisfied.

A critical step of the proof is to show, for a fixed time T ,

DT
d
=

√
X2
T +Y 2

T + (Z
[µ]
T )2 conditional on Z

[µ]
T , (15)

which effectively means that the hyperbolic distance between (xT , yT , zT ) and starting point (0,0,1)

has the same distribution as the Euclidean distance of the underlying BMs, (XT , YT ,Z
[µ]
T ), from

(0,0,0). Furthermore, the identity holds conditional on Z
[µ]
T . Based on the identity, it follows that√

x2
T + y2T

d
= φ

(
Z

[µ]
T ,

√
X2
T +Y 2

T + (Z
[µ]
T )2

)
,

xT
d
= cosθ φ

(
Z

[µ]
T ,

√
X2
T +Y 2

T + (Z
[µ]
T )2

)
.

Proving (15) for just one value of µ is enough and the rest follows from Girsanov’s theorem.

To take advantage of the H3 heat kernel, we choose µ=−1. From the derivative of (14), rTdrT =

zT sinhDTdDT , the joint PDF on rT and zT is obtained from p3(t,D):

Prob(rT ∈ drT , zT ∈ dzT ) = p3(T,DT )
2πrT drTdzT

z3T
=

1√
2πT 3

DT e
− 1

2T (T2+D2
T )dDTdzT

z2T
.

From dzT/zT = dZ
[−1]
T , we also know

Prob(zT ∈ dzT ) =
1√
2πT

e−
1
2T Z

2
T · dzT

zT
.

Therefore, the conditional probability is given as

Prob(rT ∈ drT |ZT ) =
Prob(rT ∈ drT , zT ∈ dzT )

Prob(zT ∈ dzT )
=
DT

T
e−

1
2T (D2

T+T2−Z2
T )dDT

zT
=
DT

T
e
− 1

2T

(
D2
T−(Z

[−1]
T

)2
)
dDT .

The probability can be interpreted as the conditional probability Prob(

√
X2
T +Y 2

T + (Z
[−1]
T )2 ∈

dDT |ZT ). �
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Although not explicitly stated in the original manuscript, it is obvious from (15) that the iden-

tities hold conditional on Z
[µ]
T . Therefore, Proposition 2 can be directly applied to the NSVh

distribution of (5).

Corollary 1. The joint distribution of the NSVh model at a fixed time S is given as

F̃S
d
= ρ

(
eZ

[ 12 (λ−1)]

S − e 1
2λS

)
+ ρ∗ cosθ φ

(
Z

[ 12 (λ−1)]
S ,

√
R2
S + (Z

[ 12 (λ−1)]
S )2

)
, (16)

and σ̃S = exp
(
Z

[ 12 (λ−1)]
S

)
. Furthermore, from the independence of RS and θ, we have the MC

simulation as follows:

(
ZS,R

2
S, cosθ

) d
=

(
Z1

√
S, (X2

1 +Y 2
1 )S,

X1 (or Y1)√
X2

1 +Y 2
1

)
, (17)

where X1 and Y1 are independent standard normals.

Our simulation method using standard normals is more efficient than drawing RS and θ from

exponential and uniform distributions, respectively, as we avoid the costly computation of cosθ.

Therefore, our MC method follows a similar idea to the Marsaglia polar method (Marsaglia and

Bray 1964) for drawing normal random variables. Note that the three random numbers, X1, Y1,

and Z1, generate two draws of F̃S. Therefore, one draw only requires one and a half (1.5) normal

random variables. This is an unprecedented efficiency for any simulation method of SV models.

For a special case of NSVh discussed in § 3.3, we achieve a one-to-one ratio. Although scheme (16)

jumps directly from s= 0 to s= S, it can be used for any time interval from s= S1 to s= S2 for

S1 <S2.

3.2. Vanilla Option Price and Probability Density

The closed-form transition (16) also enables an efficient pricing method for vanilla options. The

random variables, ZS, R2
S, and θ, follow closed-form PDFs, that is, normal, exponential, and

uniform distributions, respectively. We can easily identify the integration range under which the

payoff is positive. Given the values of ZS and RS, we identify the range of θ.

For numerically stable integration, we instead use the probability measure under which Z
[−1/2]
S

is a standard BM. The inverse Radon-Nikodym derivative exp(− 1
2
Z

[−1/2]
S − 1

8
S) mitigates and

symmetrizes the exponential growth of the integrand to exp(1
2
|ZS|) as |ZS| →∞, regardless of λ.

Note that choice Z
[−1/2]
S corresponds to drift parameter λ=−1, which is the standard BM in H3.

Let u = Z
[−1/2]
S /

√
S and v = R2

S/S − v0 for some v0 ≥ 0 we define below. Then, the probability

densities around variables u, v, and θ are e−
1
2u
√
S− 1

8Sn(u)du, e−
1
2 (v0+v)dv/2, and dθ/π, respectively.
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We define the following functions:

g(u) = ρ e
1
2 û
√
S −

(
ρe

1
2λS +

α

σ0

(K − F̄T )
)
e−

1
2 û
√
S,

h(u, v0 + v) = ρ∗

(
2cosh

√
(v0 + v+ û2)S− 2cosh(û

√
S)
)1/2

(v≥ 0),

where û= Z
[ 12 (λ−1)]
S /

√
S = u+ 1

2
λ
√
S is introduced for simpler notation. Using g and h, the mon-

eyness of an option with strike price K is expressed as

FT −K =
σ0

α
e

1
2 û
√
S (g(u) + cosθ h(u, v0 + v)) .

Value v0 is the root of |g(u)|= h(u, v0), so that h(u, v0 + v) cosθ0 = |g(u)| can always have root θ0

for any value v ≥ 0. This is possible because function h(u, ·) monotonically increases from 0 to ∞
regardless of u. Therefore, v0 and θ0 are expressed as functions of u and v:

v0(u) =
1

S
acosh2

(
cosh

(
û
√
S
)

+
g2(u)

2ρ2∗

)
− û2

θ0(u, v) = arccos

(
|g(u)|

h(u, v0 + v)

)
.

The undiscounted price of vanilla options struck at K is expressed as a double integration:

V± =E (max(±(FT −K),0))

= e
1
8 (1+λ)S

σ0

α

∫ ∞
u=−∞

n(u)du

(
max(±g,0) +

∫ ∞
v=0

e−
1
2 (v0+v)

dv

2

∫ θ0

θ=0

dθ

π
(−|g|+h cosθ)

)
= e

1
8 (1+λ)S

σ0

α

∫ ∞
u=−∞

n(u)du

(
max(±g,0) + e−

v0
2

∫ ∞
v=0

e−
v
2
dv

2π
(−|g|θ0 +

√
h2− g2)

)
,

(18)

where the call option price is denoted by V+ and the put option by V−.

This integration can be efficiently evaluated with numeral quadratures. We use the Gauss-

Hermite quadrature associated with weight n(u) for u and the generalized Gauss-Laguerre quadra-

ture associated with weight
√
v e−v/2 for v. We include

√
v to accurately capture the cusp of

integrand (−|g|θ0 +
√
h2− g2)∼

√
v for small v. Total node size is the product of each quadrature

size M =M1M2, where M1 and M2 are discretization sizes for u and v, respectively. In the pricing

of ATM options (K = F̄T ), under the normal SABR (λ = 0), which is the most frequent usage,

we can use u= û and the symmetries on u, g(u) =−g(−u), and h(u, v) = h(−u, v), so the size of

quadrature nodes can be halved. For this reason, it is better to choose M1 as an even number.

The cumulative probability density at (or the price of undiscounted binary put options struck

at) K is similarly obtained as

Pλ(K) = e−
1
8S

∫ ∞
u=−∞

n(u)du e−
1
2u
√
S

(
1− sgn(g)

2
+ sgn(g)e−

v0
2

∫ ∞
v=0

e−
v
2
dv

2π
θ0

)
, (19)

where sgn(·) is the sign function. The evaluation can be similarly done with the quadratures

described above.
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3.3. SU Distributions for λ= 1

We now show that the NSVh distribution for λ = 1 is expressed by the SU distribution and is

related to Bougerol’s identity generalized to an arbitrary starting point. In the following proposi-

tion, we restate Proposition 4 of Alili and Gruet (1997) (or Theorem 3.1 of Matsumoto and Yor

(2005a)). More general results are found in Proposition 1 of Alili et al. (1997) (or Proposition 2.1

of Vakeroudis (2012)), and we follow the proof therein.

Proposition 3 (Bougerol’s identity with an arbitrary starting point). For a fixed

time T and independent BMs, Xt, Zt and Wt, the following are equal in the distribution:

sinh(a)eZT +

∫ T

0

eZtdXt
d
= sinh(a)eZT +XAT

d
= sinh(WT + a). (20)

Proof The following two processes

Pt = sinh(Wt + a) and Qt = eZt
(

sinh(a) +

∫ t

0

e−ZsdXs

)
,

are equivalent because the SDEs are the same with the same starting point, P0 =Q0 = sinh(a):

dPt =
1

2
Ptdt+

√
1 +P 2

t dWt and dQt =
1

2
Qtdt+ dXt +Qt dZt

d
=

1

2
Qtdt+

√
1 +Q2

t dWt.

Therefore, Pt and Qt have the same distribution for any time t. For a fixed time T , ZT −ZT−s for

0≤ s≤ T is also a standard BM with the same ending point ZT . By the time reversal s→ T − s,

QT and the left-most term of (20) are equal in the distribution. �

The original Bougerol’s identity of Proposition 1 is a special case, with a= 0. Now, Proposition

3 can be applied to derive the NSVh distribution for λ= 1.

Corollary 2. The NSVh distribution for λ= 1 at a fixed time S is given by a re-parametrized

SU distribution:

F̃S
d
= ρ∗ sinh (WS + atanhρ)− ρeS/2, (21)

or equivalently by a simpler form:

F̃S
d
= sinh(WS) + ρ

(
cosh(WS)− eS/2

)
. (22)

Proof We use the following hyperbolic function identities,

asinh

(
ρ

ρ∗

)
= atanhρ=

1

2
log

(
1 + ρ

1− ρ

)
.

The rest of the proof is trivial. �

From the simulation perspective, Corollary 2 is even more efficient than Corollary 1, although

for a special case λ= 1. However, this is at the expense of the conditional volatility state ZS being
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lost. While Corollary 1 can generate the path of price Ftk for a discrete set of 0≤ tk ≤ T , Corollary

2 can only generate final price FT .

The far more important consequence of Corollary 2 is that it bridges the SU and NSVh model

SDEs, which have been considered unrelated. Although Proposition 3 is a well-known result, to

the best of our knowledge, this is the first time the result is recognized in the context of the SU

distribution and SV model, which is mutually beneficial.

First, the NSVh model gives a better parametrization of the SU distribution than the original

in (9). The two sets of parameters are interchanged by

δZ =
1√
S
,

γZ
δZ

=−atanhρ, δX =
σ0ρ∗
α

, and γX = F̄T −
σ0ρ

α
eS/2.

Note that this is the one-to-one mapping between parameter sets {(δZ > 0, γZ , δX > 0, γX)} and

{(F̄T , σ0/α > 0, S > 0, ρ)}. NSVh parameters are more intuitive. From the simpler form (22), the

symmetric heavy tail comes from the sinh term, controlled by S, and the asymmetric skewness from

the cosh term, controlled by ρ. The new parametrization also helps understand the relationship

between Johnson family members. The lognormal family SL is recognized as a special case with

ρ=±1 (ρ∗ = 0) as F̃S
d
= ± (eZS − eS/2). The normal family SN is obtained as F̃S/

√
S in the limit

of S→ 0 from linearization F̃S ≈WS + (ρ/2)(W 2
S −S) for small S.

Conversely, the SU distribution provides analytic tractability to the NSVh model. Below are the

closed-form expressions for the quantities of interest:

• PDF, pλ=1(x), and CDF, Pλ=1(x):

pλ=1(x) =
n(d)

ρ∗σ0

√
T
√

1 + ξ2
m and Pλ=1(x) =N(−d)

where ξ =
α

ρ∗σ0

(F̄T −x)− ρ

ρ∗
eS/2, d=

1√
S

(asinh ξ+ atanhρ) .

• The undiscounted price of vanilla option price struck at K (± indicates call/put options

respectively):

V± =
σ0

2α
eS/2

(
(1 + ρ)N(d+

√
S)− (1− ρ)N(d−

√
S)− 2ρN(d)

)
±
(
F̄T −K

)
N(±d),

where d=
1√
S

(
asinh

(
α

ρ∗σ0

(F̄T −K)− ρ

ρ∗
eS/2

)
+ atanhρ

)
.

(23)

• Value-at-risk (VaR):

VaR(q) = F̄T +
σ0

α

(
ρ∗ sinh

(√
SZq + atanhρ

)
− ρeS/2

)
for Zq =N−1(q).

• Expected shortfall (ES):

ES(q) = F̄T +
σ0e

S/2

2αq

(
(1 + ρ)N(Zq −

√
S)− (1− ρ)N(Zq +

√
S)− 2ρq

)
for Zq =N−1(q).
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The presented PDF and CDF are merely a re-parametrization of those under the SU distribution,

while the rest are new. Note that the vanilla option price is given by a closed-form solution (23),

which is unprecedented in the literature on SV. The exact option value will serve as a benchmark

to measure the accuracy of the numerical method in § 3.2 (see § 4).

3.4. Moments Matching of the NSVh Distribution

We derive the first four moments, skewness, and ex-kurtosis parameters of the NSVh distribution.

The result can be used for the parameter estimations from samples and parameter conversion

between the normal SABR (λ= 0) and SU (λ= 1).

The moments conditional on Z
[µ]
T is given by

E
(
X2n

A
[µ]
T

∣∣∣Z [µ]
T

)
=E(cos2n θ)E

(
φ2n

(
Z

[µ]
T ,

√
X2
T +Y 2

T + (Z
[µ]
T )2

))
=

(2n− 1)!!

n!
T n enu

√
T

∫ ∞
u

re−
1
2 r

2
(

cosh(r
√
T )− cosh(u

√
T )
)n

dr,

where u= |Z [µ]
T |/
√
T and (2n− 1)!! = (2n− 1)(2n− 3) · · ·3 · 1. This formula is comparable to the

formula for E
((
A

[µ]
T

)n∣∣∣Z [µ]
T

)
given in Proposition 5.3 in Matsumoto and Yor (2005a). The first two

values are computed in closed form:

E
(
X2

A
[µ]
T

∣∣∣Z [µ]
T

)
= Teu

√
Tm(u,

√
T )

E
(
X4

A
[µ]
T

∣∣∣Z [µ]
T

)
= 3T 2e2u

√
T
(
m(u,2

√
T )− cosh(u

√
T )m(u,

√
T )
)

where m(u, ε) =
N(u+ ε)−N(u− ε)

2ε e−
1
2 ε

2
n(u)

.

From these, the first two conditional moments of A
[µ]
T are trivially obtained as E

(
A

[µ]
T

∣∣∣Z [µ]
T

)
=

E
(
X2

A
[µ]
T

∣∣∣Z [µ]
T

)
and E

((
A

[µ]
T

)2∣∣∣Z [µ]
T

)
= 1

3
E
(
X 4

A
[µ]
T

∣∣∣Z [µ]
T

)
, and the result matches that of Kennedy

et al. (2012).

The unconditional moments of X
A

[µ]
S

are given as

E
(
X 2

A
[µ]
S

)
=
w2+2µ− 1

2 + 2µ

E
(
X 4

A
[µ]
S

)
=

3

2

(
−w2+2µ w

6+2µ− 1

6 + 2µ
+ (w4+2µ + 1)

w4+2µ− 1

4 + 2µ
− w

2+2µ− 1

2 + 2µ

)
,
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where w= eS. Finally, the moments of the canonical NSVh distribution, µ̃n =E(F̃ n
S ) for 2≤ n≤ 4,

are given as

µ̃2 =ρ2 wλ(w− 1) + ρ2∗
w1+λ− 1

1 +λ
,

µ̃3 =ρ3 w
3
2λ(w− 1)2(w+ 2) + 3ρρ2∗ w

1
2λ

(
w3+λ− 1

3 +λ
− w

1+λ− 1

1 +λ

)
, and

µ̃4 =ρ4 w2λ(w− 1)2(w4 + 2w3 + 3w2− 3) + 6ρ2ρ2∗ w
λ

(
w
w5+λ− 1

5 +λ
− 2

w3+λ− 1

3 +λ

+
w1+λ− 1

1 +λ

)
+

3

2
ρ4∗

(
−w1+λ w

5+λ− 1

5 +λ
+ (w3+λ + 1)

w3+λ− 1

3 +λ
− w

1+λ− 1

1 +λ

)
.

(24)

The central moments of the original form can be scaled as µn = (σ0/α)nµ̃n, and the skewness

and ex-kurtosis parameters are given as s= µ̃3/µ̃
3/2
2 and κ= µ̃4/µ̃

2
2− 3, respectively. The obtained

expressions generalize those for the special cases: SL (lognormal) distribution (ρ = ±1) and SU

(λ = 1). Particularly, the moments for the normal SABR (λ = 0) are reported for the first time.

With λ= 0, the variance, skewness, and ex-kurtosis can be further simplified as

µ̃2 =w− 1, s= ρ(w+ 2)
√
w− 1, κ= (w− 1)

((
4ρ2 + 1

5

)
(w3 + 3w2 + 6w+ 5) + 1

)
. (25)

In Figure 1, we plot the contours of skewness and ex-kurtosis for various ρ and S. While the

ex-kurtosis is attributed by S, skewness is explained by ρS rather than ρ itself. Therefore, we

plot the contours on the plane of (ρS,S). As implied from the SU curve, the range the ex-kurtosis

NSVh distribution can produce is unbounded. While the contours for λ= 1 (SU) and λ= 0 (normal

SABR) are similar, the parameters for λ= 0 is slightly higher (in absolute terms for ρ) than those

for λ= 1 as to obtain the same skewness and ex-kurtosis levels.

In parallel to Tuenter (2001)’s reduced moment matching method for the SU distribution, we

also develop a similar method for the normal SABR. Combined with Tuenter (2001), it can be

used to quickly find the equivalent parameter sets calibrated to the same moments. By joining the

s and κ of (25) via ρ, we express κ as a univariate function on w≥ 1

f(w) =
4s2(w3 + 3w2 + 6w+ 5)

5(w+ 2)2
+ (w− 1)

(
1 +

1

5
(w3 + 3w2 + 6w+ 5)

)
, (26)

For which we can numerically find the root w∗ of κ= f(w∗). The first term of (26) can be alge-

braically proven to be monotonically increasing for w ≥ 1, thus so is f(w). Therefore, we have a

unique root, if it exists. We can further bound w∗ by wm ≤ w∗ ≤ wM to expedite the numerical

root-finding. Lower bound wm is the unique cubic root of s2 = (w− 1)(w+ 2)2 (the ρ2 = 1 case)

with w≥ 1:

wm = 2cosh

(
1

3
acosh

(
1 +

s2

2

))
.
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Figure 1 Contour Plot of Skewness (Dashed Line, Red) and Excess Kurtosis (Solid Line, Blue) for Varying

S (= α2T ) versus ρS. The upper-left triangle (ρS,S) is for λ= 1 (SU) and the lower-right triangle (S,ρS) for λ= 0

(normal SABR). The values for skewness are 0, 1.5, 3, 4.5, 6, and 8 and those for ex-kurtosis are 2, 7, 16, 40,

100, and 200 from the lower-left to the upper-right corner.
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Upper bound wM is obtained by plugging w=wm into (26), except the (w− 1) term:

wM = 1 +
κ− 4

5
s2(w3

m + 3w2
m + 6wm + 5)/(wm + 2)2

1 + 1
5
(w3

m + 3w2
m + 6wm + 5)

.

The existence of w∗ is ensured by f(wm) ≤ κ. If w∗ exists and is found, the parameters can be

solved as

S = logw∗, ρ=
s

(w∗+ 2)
√
w∗− 1

, and
σ0

α
=

√
µ2 logw∗
(w∗− 1)S

.

In Table 2, we summarize our results for the three important drift values, λ=−1, 0, and 1, for

comparison.

4. Parameter Estimation from Empirical Data

Here, we calibrate the NSVh distribution to two empirical datasets: swaption volatility smile and

daily stock index return. The purpose of this exercise is demonstrating various numerical procedures

rather than arguing the NSVh model is superior to other SV models or heavy-tailed distributions

in fitting these data. Additionally we show the two important NSVh models, λ= 0 (normal SABR)

and λ = 1 (SU), yield very similar distributions if calibrated to the same target (e.g., implied

volatility or moments). Therefore, they can be used interchangeably.
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Table 2 Summary of NSVh Model for the Three Key Drift Values: λ=−1,0, and 1.

Drift parameter λ=−1 λ= 0 λ= 1

Related topics
standard BM in H3 normal SABR

SU distribution
heat kernel p3(t,D) (martingale)

Drifted BM for σ̃s Z [−1/2]
s Zs Z [1/2]

s

Terminal volatility σ̃S exp(Z
[−1]
S ) exp(Z

[−1/2]
S ) exp(ZS)

Integrated variance A
[−1]
S A

[−1/2]
S AS(=A

[0]
S )

Exact simulation Corollary 1
Corollary 2

Vanilla option price Quadrature integral (18)
(23)

Moments (24)
Reduced moment matching (26) Tuenter (2001)

Figure 2 Swaption Volatility Smile in Normal Implied Volatility Observed on the US Market on March 14,

2017: (a) one year into one-year swap (1y1y) and (b) 10 years into 10-year swap (10y10y). While the circles are

the volatilities implied from observed market prices, the three black circles indicate ATM and ATM ± 1% point,

which are used for calibration. The solid line represents λ= 1 (SU), the dashed one λ= 0 (normal SABR), the

dotted the asymptotic expansion (8) for the normal SABR model.
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4.1. Swaption Volatility Smile

We calibrate the NSVh model to the US swaption market prices on March 14, 2017 from Reuters.

The two heavily traded expiry—tenor pairs of US swaption, 1y1y and 10y10y, are chosen to illus-

trate different volatility smile shapes. To avoid the complication of annuity of the underlying swap,

we compute the price in the unit of annuity from the BSM implied volatilities provided by Reuters,

rather than raw dollar prices. See the insets of Figure 2 for the BSM implied volatilities.

Figure 2 shows the results of the calibration in normal volatility and Table 3 the calibrated

parameter values for λ= 0 and λ= 1. While option prices are given for strike prices with spreads

of ±150, ±100, ±50, ±25, and 0 basis points from the forward swap rates F̄T (denoted by the

circles in the plot), we only use the three spreads, −100, 0, +100 basis points (denoted by the
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Table 3 Parameters Calibrated to the US Swaption Volatility Smile on March 14, 2017. See Figure 2 for the

volatility smile and calibration points.

Parameters
1y1y (T = 1) 10y10y (T = 10)
λ= 0 λ= 1 λ= 0 λ= 1

ρ (%) 35.280 32.244 1.811 1.580
α (%) 64.634 62.181 23.535 22.196
σ0 (%) 0.532 0.477 0.689 0.609
F̄T (%) 2.0221 3.0673

filled circles), so that the calibrated parameter set, (σ0, α, ρ), reproduces option prices at the three

strike prices. Note that the two volatility smile curves (solid blue and dashed red) implied from

the calibrated models, λ= 0 and λ= 1, are almost indistinguishable, indicating similarity in the

distributions. Therefore, this reconfirms the possibility of λ= 1 being used as an alternative to the

normal SABR (λ= 0).

In Table 4, we show the accuracy of the option prices obtained from the quadratures integration

in § 3.2 and the MC simulation (§ 3.1). To take advantage of the analytic option prices of (23),

we choose the calibrated parameter values for λ= 1 in Table 3. and measure errors from the exact

prices. The exact prices are purely computed from the calibrated parameters, thus different from

the observed market prices for the off-calibration strike. The prices from the quadratures method

shows good accuracy: 128 (8× 16) quadrature nodes yields errors in the order of 10−6. The MC

simulation with 105 samples (i.e., generated from 1.5×105 normal random numbers) have errors in

the order of 10−5. We observe a similar performance of our methods for the normal SABR (λ= 0)

model. Since exact prices are not available in this case, we obtain the converged price by increasing

quadrature sizes. Our method also reconfirms the exact prices of the two test cases in Korn and

Tang (2013).

4.2. Daily Return of Stock Index

We fit the NSVh distribution to the daily returns of two stock indices: US Standard & Poor’s 500

Index (S&P 500) and China Securities Index 300 (CSI 300). The data cover the 12-year period

from the beginning of 2005 to the end of 2016. To simplify the analysis and make it reproducible,

daily returns are computed from the values of the outright indices, rather than total return indices.

The statistics of the daily returns are summarized in Table 5. Note that S&P 500 shows heavier

tails but less skewness than CSI 300. The NSVh distribution is fitted to the first four moments

for λ= 0 and 1, for which the reduced moment-matching of Tuenter (2001) and ours in § 3.4 are

respectively used. Table 6 shows the calibrated parameters. Based on these values, VaR and ES are

computed and compared to those from the normal distribution assumption and the true values in

the dataset. Table 7 shows the result. Overall, the VaR and ES from the fitted NSVh distributions
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Table 4 Accuracy of Vanilla Options Pricing § 3.2 Tested against the λ= 1 Parameters of Table 3. We

evaluate the numerical integration with quadrature sizes, M = 128 (M1 = 8,N2 = 16) and measure the error from

the analytic prices for λ= 1, evaluated by (23). The mean square error of the Monte-Carlo simulation (MC-MSE)

is measured from 100 simulation runs with 100,000 paths. Prices are in the unit of the annuity of the underlying

swap.

K − F̄T 1y1y 10y10y
(bps) Price (%) Error MC-MSE Price (%) Error MC-MSE

-150 1.5016 -4.0E-11 2.1E-5 1.8726 1.2E-6 5.9E-5
-100 1.0080 9.6E-12 2.0E-5 1.5059 3.5E-6 5.7E-5
-50 0.5473 5.0E-9 1.8E-5 1.1823 9.8E-6 5.4E-5
-25 0.3582 7.3E-7 1.7E-5 1.0387 1.3E-5 5.3E-5
0 0.2180 1.9E-6 1.4E-5 0.9078 3.5E-6 5.1E-5
25 0.1272 1.1E-6 1.2E-5 0.7899 1.1E-5 4.9E-5
50 0.0736 2.5E-7 9.5E-6 0.6847 9.3E-6 4.7E-5
100 0.0256 7.3E-8 5.9E-6 0.5103 3.9E-6 4.3E-5
150 0.0097 6.7E-8 3.7E-6 0.3781 1.6E-6 3.9E-5

Table 5 Statistics of Daily Returns of S&P 500 and CSI 300 Indices from 2005 to 2016. The number of

samples, k-th (central) moment, skewness, and ex-kurtosis are denoted by N , µk, s, and κ, respectively. The

moments are computed from percent returns.

S&P 500 CSI 300

N 3020 2914
F̄T 0.0282 0.0417
µ2 1.5154 3.4092
µ3 -0.1741 -3.1949
µ4 33.1731 73.6293
s -0.0933 -0.5075
κ 11.4454 3.3348

Table 6 Parameters Fitted to the Moments of Daily Returns of Stock Indices. We assume T = 1.

Parameters
S&P 500 CSI 300

λ= 0 λ= 1 λ= 0 λ= 1
ρ (%) -2.042 -1.725 -20.454 -18.539
α (%) 88.533 84.587 63.782 61.853
σ0 (%) 99.915 82.538 166.213 150.167

Table 7 VaR and ES from Normal Distribution (Normal), the Two NSVh Distributions (λ= 0 and λ= 1), and

the True Values from the Dataset (Sample).

Risk Measures
S&P 500 CSI 300

Normal λ= 0 λ= 1 Sample Normal λ= 0 λ= 1 Sample
VaR (q= 5%) -1.997 -1.825 -1.824 -1.832 -2.995 -3.032 -3.036 -3.007
VaR (q= 1%) -2.836 -3.405 -3.432 -3.615 -4.254 -5.234 -5.246 -5.732
ES (q= 5%) -2.511 -2.858 -2.872 -3.042 -3.767 -4.434 -4.440 -4.745
ES (q= 1%) -3.253 -4.784 -4.820 -5.309 -4.879 -6.853 -6.857 -7.298
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Figure 3 Normal QQ Plots of Daily returns of the S&P 500 (left) and CSI 300 Indexes (right). The sample

Z-score in y-axis is plotted against the Z-score from the normal distribution (black dot) and the λ= 1 SU (λ= 1)

distribution (green circle). The QQ plot between the two theoretical distributions from λ= 0 and 1 (dashed red)

is indistinguishable from the y= x line (solid blue).
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are much closer to the true values than those from the normal distribution. Note that the values

from λ= 0 and 1 are very close, indicating the similarity between the two distributions.

Further, we compare the goodness-of-fit of the SU (λ= 1) to that of the normal distribution using

a normal quantile–quantile (QQ) plot. In Figure 3, the theoretical Z-score, Z(j)
y =N−1( 1

N
(j−1/2))

for the j-th sample, is shown on the x-axis and two different sample Z-scores on the y-axis: (i)

from the estimated normal distribution, Z(j)
x = (Xj − F̄T )/

√
µ2, as dots (black) and (ii) from the

SU distribution as circles (green) computed by

Z(j)
x =N−1(Fλ=1(Xj)) =

1√
S

(
asinh

(
α

ρ∗σ0

(Xj − F̄T ) +
ρ

ρ∗
eS/2

)
− atanhρ

)
.

Finally, we also show the normal QQ plot of the two NSVh for λ = 0 and 1 to demonstrate the

closeness of the two distributions. The Z-score from the normal SABR (λ= 0), Zy =N−1(Fλ=0(X)),

on the y-axis is plotted versus the Z-score from the SU (λ = 0), Zx = N−1(Fλ=1(X)) on the x-

axis. The QQ line (dashed red) is difficult to distinguish from the identity y = x line (solid blue),

indicating the two distributions are practically the same.

5. Conclusion

We consider a class of normal SV models, which serves as a derivative pricing model for assets

such as interest rate and as a generator for heavy-tailed distributions. We provide tools to utilize

the model, such as the closed-form simulation method, efficient numerical options pricing method,
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and closed-form moments. The two important special cases of the hyperbolic normal SV model are

the normal SABR (λ= 0) and the SU distribution (λ= 1), thereby connecting the two seemingly

unrelated topics. Numerical examples further demonstrate the distributions from the two cases are

similar, so Johnson’s SU can serve as a fully analytic option valuation model. We estimate the

model parameters for two empirical datasets: US swaption and daily returns distribution of the

US S&P 500 and CSI 300 indexes.
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Bougerol, Philippe. 1983. Exemples de théorèmes locaux sur les groupes résolubles. Annales de l’IHP

Probabilités et statistiques, vol. 19. 369–391.

https://ssrn.com/abstract=2653682


Choi, Liu, and Seo: NSVh model
24

Box, George EP, Mervin E Muller. 1958. A note on the generation of random normal deviates. The Annals

of Mathematical Statistics 29(2) 610–611.

Brooks, Robert, Joshua A Brooks. 2017. An option valuation framework based on arithmetic Brownian

motion: Justification and implementation issues. Journal of Financial Research 40(3) 401–427.

Cai, Ning, Yingda Song, Nan Chen. 2017. Exact simulation of the SABR model. Operations Research 65(4)

931–951.

Chen, Bin, Cornelis W Oosterlee, Hans Van Der Weide. 2012. A low-bias simulation scheme for the SABR

stochastic volatility model. International Journal of Theoretical and Applied Finance 15(02) 1250016.

Choi, Pilsun, Kiseok Nam. 2008. Asymmetric and leptokurtic distribution for heteroscedastic asset returns:

the SU -normal distribution. Journal of Empirical finance 15(1) 41–63.

Corlu, Canan G, Alper Corlu. 2015. Modelling exchange rate returns: which flexible distribution to use?

Quantitative Finance 15(11) 1851–1864.

Debiard, Amédée, Bernard Gaveau, Edmond Mazet. 1976. Théoremes de comparaison en géométrie rieman-
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