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1 Introduction

The problem of estimating the likelihood that a given number of events is observed
by some horizon arises naturally in a wide range of disciplines (e.g. finance, queuing,
insurance, etc.). For instance, investors and fixed-income managers are concerned by the
odd chance a portfolio of defaultable assets (e.g. loans, bonds, etc.) experiences a large
number of credit events.1 Insurance risk management centers around the probability
of ruin due to some excessive number of claims. In reliability studies, the likelihood
of systemic breakdown caused by the failure too many system components in too short
a time is often emphasized. Unbiased and efficient algorithms for these problems are
important not only for the numerical values they produce, but also for investigating how
tail phenomena occur in a particular model via simulation.

This paper develops a novel, easy to simulate and fast Monte Carlo (MC) estimator of
rare event probabilities described in the examples above. We focus event timing models
whose dynamics may be prescribed by a (multivariate) point process. Such models
and their simulation algorithms are widely used in the literature. The events arrive at
some stochastic rate, or an “intensity” process which is typically modeled as a system
of stochastic differential equations. Our algorithms accommodate any such intensity
specification provided it may be simulated. However, plain MC is not adequate when the
intensity values are too small to produce the sufficient number of events that hits the rare
event threshold. For this reason, it is highly inaccurate at computing tail probabilities.

Importance sampling (IS) is a technique that facilitates efficient rare-event simulation.2

In our setting, it entails the sampling under an “importance” measure (distinct from
the reference distribution) for which the simulated event times occur more frequently.
A classical measure change that yields such outcomes is known as exponential twist-
ing (the approach originally dates back to Siegmund (1976)3). However, its application
typically hinges on the knowledge of a problem related moment generating function
(m.g.f.). Computing this function is usually not possible outside of simple event timing

1This tail probability is essential to the estimation of several popular (financial) risk measures such as
value at risk (VaR) and expected shortfall (ES).

2It is well known that plain Monte Carlo is highly inefficient for estimating a rare-event probability,
i.e., the number of simulation trials required to estimate this small probability scales in rough proportion
to one over its square-root (Asmussen & Glynn 2007, Chapter VI).

3Siegmund’s algorithm was originally designed for computing gambler’s ruin probabilities.
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models; for example, when the total intensity follows a (doubly-stochastic) Poisson pro-
cess. In general, when the event time intensities are governed by correlated stochastic
processes that exhibit interaction in the form of contagion or clustering,4 the m.g.f. is
intractable. This prohibits the application of IS schemes based on exponential twisting
to many empirically motivated models of event timing.

Motivated by recent work5, we utilize the Girsanov-Meyer, exponential martingale ap-
proach to construct our measure change. This is further coupled with a sequence of
zero-variance distributions that converge (weakly) to our importance measure. The lat-
ter step provides further efficiency gains by ensuring each simulated path hits the rare
event with probability one. This extends the scope of the algorithm to other parts of
the distribution besides the (right) tail. Perhaps more importantly, the limiting measure
possesses attractive properties for simulation. While the event counting process is no
longer a true point process, its arrival times are uniformly distributed up to horizon. Fur-
thermore, the remaining stochastic variables (those pertaining to the original intensity
process) have the same dynamics as under the reference measure. Thus, remarkably,
the simulation is simpler and faster than that of the plain MC estimator. Moreover, our
approach facilitates a reduction in the sampling bias that often plagues event time sim-
ulation estimators. For a certain class of models, the simulation bias may be entirely
eliminated (see Giesecke & Shkolnik (2018) for an in depth discussion).

Rare-event simulation literature often emphasizes asymptotic optimality6 of IS estima-
tors. However, a trade off usually arises between the restrictive conditions required for
optimality and algorithm specifications that are too difficult to implement. We pursue
weaker notions of optimality while preserving the speed and simplicity of our algo-
rithms.7 To this end, we prove that under mild conditions our estimator outperforms
plain MC in terms of variance reduction. This ensures our estimator is almost always
preferred to this standard option. Moreover, while most IS schemes are parametrized,
we avoid the computation of any “optimal” parameter prior to, or during the simulation.

4These models are typically referred to as “self-exciting” point processes in the literature.
5e.g., see Giesecke & Shkolnik (2018), Blanchet & Ruf (2016), Giesecke & Shkolnik (2014) and

Vanden-Eijnden & Weare (2012).
6This condition demands that the second moment of the estimator under the importance measure

decay at twice the rate of decay of the rare event probability.
7It should also be noted that significant gains in speed can often offset the increased variance with a

greater number of simulation trials (albeit at the slow, CLT square-root rate).
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We test our algorithms on several credit portfolio applications using a popular reduced-
form model of correlated name-by-name default timing. The model incorporates frailty
and self-exciting features central to corporate debt modeling (see Duffie, Eckner, Horel
& Saita (2009) and Azizpour, Giesecke & Schwenkler (2014) for example). Our nu-
merical examples are motivated by risk management and bond pricing case studies,
and illustrate the superior performance of our scheme over plain MC. In comparison,
standard IS techniques (based on exponential twisting) cannot be applied to these case
studies.

Previous research has studied tail estimation in the context of event timing simulation.
A thorough review of this literature may be found in Giesecke & Shkolnik (2018) and
Giesecke & Shkolnik (2014). We do not discuss here the literature on exponential twist-
ing since its scope is restricted in our setting. Several authors have developed interacting
particle schemed due to such difficulties (e.g., Del Moral & Garnier (2005), Carmona,
Fouque & Vestal (2009), Carmona & Crépey (2010)). Our work is most closely related
to Giesecke & Shkolnik (2010) which develops an asymptotically optimal IS scheme
for Markov chain models under a strict set of assumptions.

The rest of this paper is structured as follows. Section 2 formulates the problem of our
interest. Section 3 develops the proposed conditional IS scheme. Section 4 analyzes the
asymptotic efficiency of the conditional IS estimator. Section 5 illustrates numerical
examples. Section 6 concludes and proofs are provided as Appendices.

2 Problem Formulation

2.1 Preliminaries

Fix a measure space (Ω, ) equipped with a right continuous and complete information
filtration 𝔽 = {𝑡}𝑡≥0 satisfying the usual conditions. For some 𝑛 ∈ ℕ, consider a
set of distinct and totally inaccessible stopping times {𝜒𝑖}𝑛𝑖=1 on (Ω, ). Each time is
associated with an event indicator process 𝑁 𝑖

𝑡 = 𝟏{𝜒𝑖≤𝑡} for 𝑡 ≥ 0, where 𝟏𝒜 is the
indicator of 𝒜 ∈  . We define 𝑁 = (𝑁1,… , 𝑁𝑛) and let {𝜏𝑖}𝑛𝑖=1 be the order statistics
of {𝜒𝑖}𝑛𝑖=1. Thus, 𝜏𝑘 is the 𝑘th arrival of the aggregate counting process 𝑁 =

∑𝑛
𝑖=1𝑁

𝑖.
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Let 𝐏 be the probability measure of interest on (Ω, ). In a statistical application such
as a real-world risk management, one takes the physical probability measure as 𝐏. For
purposes of pricing derivatives, a risk-neutral measure should be taken as 𝐏. Suppose
that each𝑁 𝑖 admits a stochastic𝐏-intensity 𝑝𝑖 of the form 𝑝𝑖 = 𝑥𝑖 (1 −𝑁 𝑖) for a positive,
càdlàg process 𝑥𝑖. Each 𝑥𝑖 is a conditional rate of default with the cumulant rate given
by 𝐻 𝑖

⋅ = ∫ ⋅
0 𝑥

𝑖
𝑠𝑑𝑠. It holds that

𝑁 𝑖
⋅ −𝐻

𝑖
⋅∧𝜒𝑖

(1)

forms a 𝐏-martingale for 𝑖 = 1, 2,… , 𝑛. We further assume each 𝐻 𝑖
∞ = ∞, which is

equivalent to the assumption that 𝜒𝑖 < ∞ almost surely. If we define 𝑝 =
∑𝑛

𝑖=1 𝑝
𝑖, it

follows that𝑁 admits 𝑝 as its 𝐏-intensity, where 𝑝 is strictly positive almost everywhere
on [0, 𝜏𝑛) with 𝜏𝑛 <∞ almost surely under 𝐏.

2.2 Objective

We wish to compute the right-tail probability of 𝑁 given by

𝑌 𝜉 = 𝐏
(
𝑁𝑇 ≥ 𝜉

)
(2)

for a fixed horizon 𝑇 > 0 and a given 𝜉 ∈ {1, 2,… , 𝑛}.8 The true value of 𝑌 𝜉 could
be estimated via a plain Monte Carlo (pMC) simulation by generating a set of i.i.d.
𝐏-samples

{
𝑦̂𝜉𝑚

}𝑀
𝑚=1 of 𝟏{𝑁𝑇≥𝜉} for 𝑀 ∈ ℕ, where the empirical mean given by

𝑌 𝜉
𝑀 = 1

𝑀

𝑀∑
𝑚=1

𝑦̂𝜉𝑚 (3)

is the pMC-estimator of 𝑌 𝜉 .

However, the pMC method is computationally inefficient, as the central limit theorem
provides that we need𝐾 times more replications to reduce the confidence interval of the
pMC estimator by

√
𝐾 , regardless of the number of dimensions. A heavy computational

burden is unavoidable under the pMC scheme, if one is interested in the rare event with a

8We are also interested in computing 𝐏
(
𝑁𝑇 = 𝜉

)
for 𝜉 ∈ {0, 1, 2,… , 𝑛}.
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small probability. In general, the pMC method would fail to induce a decent coverage of
the confidence interval unless𝑀 is much larger than one over the probability of interest.

Moreover, the pMC scheme is subject to potential biases, if the implementation requires
the discretization of the intensity process. For example, the conventional time-scaling
algorithms based on time-change theorem of Meyer (1971) should be biased, unless the
time-integrated intensity process can be exactly drawn. Giesecke & Shkolnik (2018)
point out three potential sources of bias in the trivial time-scaling scheme: (i) intensity
discretization, (ii) numerical integration, and (iii) event-time location.

The root mean square error (RMSE) is commonly used to evaluate the performance of
different Monte Carlo methods. The RMSE is given by

√
bias2 + SE2, where the bias is

defined as the difference between 𝑌 𝜉 and 𝑌 𝜉
𝑀 with𝑀 as the number of simulation trials.

The standard error (SE) is the estimated sample standard deviation of {𝑦̂𝜉𝑚}
𝑀
𝑚=1 divided

by
√
𝑀 . Our goal is to achieve a relatively fast convergence rate of RMSE with a given

computational budget by adopting an efficient simulation measure specific to the event
of interest.

3 Conditional Importance Sampling Measure

We propose a method of conditional IS (cIS), which is facilitated by adaptive measure
changes conditional on the event of interest. For a given simulation horizon 𝑇 > 0,
define  𝜉𝑇 =

{
𝑁𝑇 ≥ 𝜉

}
and

𝜉
𝑇 = exp

(
−∫

𝜏𝜉

0
𝑝𝑠𝑑𝑠

) 𝜉∏
𝑖=1

𝑝𝜏𝑖−
𝑇 𝜉

𝜉!
(4)

for 𝜉 ∈ ℕ. We construct the cIS simulation measure specific to the event  𝜉𝑇 as

𝐐𝜉
𝑇 (𝒜 ) = 𝐄𝐏

(𝟏𝜉𝑇 ⋂
𝒜

𝜉
𝑇

)
(5)

for all 𝒜 ∈ 𝜉 , where 𝜉 = 𝜏𝜉 .9
9By design 𝐐𝜉

𝑇 is absolutely continuous with respect to 𝐏.
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Algorithm 1 Conditional Monte Carlo to estimate 𝐏
(
𝑁𝑇 ≥ 𝜉

)
1: procedure CONDITIONALIS(𝜉, 𝑇 ,𝑀) ⊳𝑀 is the number of cIS trials
2: Initialize 𝑌 ← 0
3: for 𝑚 ∈ {1,… ,𝑀} do
4: Draw an ordered sample of {𝜏1,… , 𝜏𝜉} from 𝑈 (0, 𝑇 )
5: Compute 𝜉𝑇 from a conditional sample of 𝑝 under 𝐐𝜉

𝑇
6: Update 𝑌 ← 𝑌 + 𝜉𝑇
7: end for
8: return 𝑌 ∕𝑀
9: end procedure

Theorem 3.1. 𝐐𝜉
𝑇 is a probability measure on

(
Ω,𝜉) and 𝐏

( 𝜉𝑇 ) = 𝐄𝐐𝜉
𝑇
(𝜉

𝑇

)
; i.e.,

the estimator of 𝐏
( 𝜉𝑇 ) under 𝐐𝜉

𝑇 is 𝜉
𝑇 . Moreover,

(i) If {𝑢𝑖}
𝜉
𝑖=1 denotes the order statistics of 𝜉 i.i.d. uniform random variables on [0, 𝑇 ],

we have 𝜏𝑖

= 𝑢𝑖 under 𝐐𝜉

𝑇 for 𝑖 = 1,… , 𝜉.

(ii) 𝐐𝜉
𝑇

(
𝐼𝑘 = 𝑖||𝜏𝑘−) = 𝐏

(
𝐼𝑘 = 𝑖||𝜏𝑘−) = 𝑝𝑖

/
𝑝 holds for all 𝑘 = 1,… , 𝜉, where 𝐼𝑘

is the component of 𝑁 at which the 𝑘th event of 𝑁 occurs.

(iii) Any 𝐏-local martingale that has no jumps in common with 𝑁 is a 𝐐𝜉
𝑇 -local mar-

tingale.

Proof. See Appendix A.1.

The proposed cIS algorithm, summarized in Algorithm 1, does not require ad-hoc level
selection or tuning procedures to compute 𝐏

(
𝑁𝑇 ≥ 𝜉

)
. The cIS algorithm generates

an unbiased estimator of 𝑌 = 𝐏
(
𝑁𝑇 ≥ 𝜉

)
, if one can evaluate 𝜉

𝑇 exactly under 𝐐𝜉
𝑇 .

Specifically, the cIS estimator is unbiased, if one can exactly sample the skeleton of 𝑝
on {𝜏1,… , 𝜏𝜉} uniformly distributed on [0, 𝑇 ], and evaluate the time-integrated trans-
form exp

(
− ∫ 𝜏𝜉

0 𝑝𝑠𝑑𝑠
)

without biases. Giesecke & Shkolnik (2018) find that the cIS
estimator 𝜉

𝑇 can be sampled both exactly and efficiently in a Markovian setting under
some conditions, when exact samples of 𝑝 can be obtained and the bridge transform
𝐄𝐐𝜉

𝛾

(
𝑒− ∫ 𝑠𝑡 𝑝𝑢𝑑𝑢||| 𝑝𝑡, 𝑝𝑠) can be evaluated in closed-form for 0 ≤ 𝑡 < 𝑠.
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Corollary 3.2. A similar cIS algorithm is applicable in that 𝐏
(
𝑁𝑇 = 𝜉

)
= 𝐄𝐐̂𝜉

𝑇

(̂𝜉
𝑇

)
,

where the limit conditional measure 𝐐̂𝜉
𝑇 is redefined for the modified set ̂ 𝜉𝑇 =

{
𝑁𝑇 = 𝜉

}
and ̂𝜉

𝑇 is given by

̂𝜉
𝑇 = exp

(
−∫

𝑇

0
𝑝𝑠𝑑𝑠

) 𝜉∏
𝑗=1

𝑝𝜏𝑗−
𝑇 𝜉

𝜉!
(6)

for a fixed simulation horizon 𝑇 > 0. Parts (i)–(iii) of Theorem 3.1 hold.

Proof. See Appendix A.2.

4 Asymptotic Optimality

This type of analysis is usually carried out in some appropriate asymptotic regime. We
let 𝜉 = ⌈𝜇𝑛⌉ for 𝜇 ∈ (0, 1) and adopt the rare event regime 𝑦𝑛 = 𝐏(𝑁𝑇 ≥ ⌈𝜇𝑛⌉) → 0
as 𝑛 ↑ ∞. Observe that

1
𝑛
𝐄𝐏 (𝑁𝑇 ) = ∫

𝑇

0

1
𝑛

𝑛∑
𝑖=1

𝐄𝐏 (𝑝𝑖𝑠) 𝑑𝑠. (7)

Thus, 1
𝑛

∑𝑛
𝑖=1 𝐄

𝐏 (𝑝𝑖𝑡) < 𝜇
𝑇

for all 0 ≤ 𝑡 ≤ 𝑇 and all 𝑛 large enough is a sufficient
condition for the rare event regime to be satisfied. It is not difficult to show that variance
of the plain MC estimator 𝐕𝐚𝐫𝐏 (𝟏{𝑁𝑇≥⌈𝜇𝑛⌉}) = 𝑦𝑛 (1 − 𝑦𝑛) . We compare this to the 𝐐𝜉

𝑇 -
variance of the estimator 𝜉

𝑇 to obtain the following result.

Theorem 4.1. Consider a 𝜎-algebra  = 𝜎
(
𝟏{𝜏⌈𝜇𝑛⌉≤𝑇 }

)
and define 𝑘 = 𝜏𝑘 ∨ 

for 𝑘 = 0, 1,… 𝑛 with 𝜏0 = 0. Suppose that 1
𝑛

∑𝑛
𝑖=1 𝐄

𝐏
(
𝑝𝑖𝜏𝑘−

|||𝑘−1

)
< 2𝜇

𝑒𝑇
holds for

𝑘 = 1,… , ⌈𝜇𝑛⌉ and 𝑛 sufficiently large under 𝐏 almost surely. Then,

𝐕𝐚𝐫𝐐
𝜉
𝑇 (𝜉

𝑇 )

𝐕𝐚𝐫𝐏 (𝟏{𝑁𝑇≥⌈𝜇𝑛⌉})
→ 0 as 𝑛 ↑ ∞ . (8)

Remark 4.2. The assumption on the {𝑝𝑖} may be further relaxed in terms of conver-
gence rates as 𝑛 ↑ ∞. Note that the condition is a stronger version of the rare event
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condition above and intuitively requires the average event count intensity to be small.

Proof. Under our hypothesis we have 𝑦𝑛 → 0 under 𝑛 ↑ ∞. Expanding (8), we obtain

lim
𝑛↑∞

𝐄𝐏 (𝜉
𝑇𝟏{𝑁𝑇≥⌈𝜇𝑛⌉}) − 𝑦2𝑛
𝑦𝑛 (1 − 𝑦𝑛)

= lim
𝑛↑∞

𝐄𝐏 (𝜉
𝑇𝟏{𝑁𝑇≥⌈𝜇𝑛⌉})
𝑦𝑛

. (9)

By Jensen’s inequality 𝐄𝐏 (𝜉
𝑇𝟏{𝑁𝑇≥⌈𝜇𝑛⌉}) = 𝐄𝐐𝜉

𝑇
(
(𝜉

𝑇 )
2
) ≥ 𝑦2𝑛. Also, since

𝐄𝐏
(⌈𝜇𝑛⌉∏
𝑖=1

𝑝𝜏𝑖−𝟏{𝑁𝑇≥⌈𝜇𝑛⌉}
)
= 𝐄𝐏

(
𝟏{𝑁𝑇≥⌈𝜇𝑛⌉}𝐄𝐏

(
𝑝𝜏1− ⋯𝐄𝐏

(
𝑝𝜏⌈𝜇𝑛⌉−|||⌈𝜇𝑛⌉−1

)
⋯
||||0

))
applying our assumptions,

𝐄𝐏(𝜉
𝑇𝟏{𝑁𝑇≥⌈𝜇𝑛⌉}) < (2 ⌈𝜇𝑛⌉ ∕𝑒)⌈𝜇𝑛⌉⌈𝜇𝑛⌉! 𝐄𝐏

(
exp

(
−∫

𝜏⌈𝜇𝑛⌉
0

𝑝𝑠𝑑𝑠
)
𝟏{𝑁𝑇≥⌈𝜇𝑛⌉}

)
(10)

Since the two random variables under the expectation are negatively associated and that
∫ 𝜏⌈𝜇𝑛⌉
0 𝑝𝑠𝑑𝑠 is equal in 𝐏-law to ⌈𝜇𝑛⌉ standard i.i.d. exponential (Meyer 1971), we obtain

𝐄𝐏 (𝜉
𝑇𝟏{𝑁𝑇≥⌈𝜇𝑛⌉}) < 𝑒−⌈𝜇𝑛⌉ ⌈𝜇𝑛⌉⌈𝜇𝑛⌉⌈𝜇𝑛⌉! 𝑦𝑛 , (11)

which provides that the right side of (9) tends to zero for large 𝑛 as required.

5 Numerical Examples

This section illustrates the performance of the cIS scheme in different settings. The
simulations were performed on a PC with an IntelⓇ CoreTM i7-4790 3.60 GHz processor

and 8.0 GB RAM. The code was written in Version 0.6.0.

5.1 Networked default clustering

Multivariate counting process models are widely used to measure and manage the cor-
related default risk in the system. For a fixed 𝑛 ∈ ℕ defaultable names, the stopping

9



times {𝜒𝑖}𝑛𝑖=1 models the default times of the individual constituent of the system, and
a central (systemic) quantity of interest is the total default count by a fixed time 𝑇 > 0,
is given by 𝑁𝑇 .

Our objective is to estimate the tail probability 𝐏
(
𝑁𝑇 ≥ 𝜉

)
for various 𝜉, where 𝐏 refers

to the physical probability measure. In a bottom-up formulation, consider a systematic
risk factor 𝜂0 ≥ 0 and a set of idiosyncratic factor processes {𝜂𝑖}𝑛𝑖=1 so that the state
process 𝑋 = (𝑥1,… , 𝑥𝑛) is given by

𝑥𝑖 = 𝜔𝑖𝜂
0 + 𝜂𝑖, (12)

where each default indicator process 𝑁 𝑖 admits 𝑝𝑖 = 𝑥𝑖
(
1 −𝑁 𝑖

)
as its 𝐏-intensity (see

Section 2.1). Here, 𝜔𝑖 > 0 is the systematic factor loading of the 𝑖th name in the system.
We further assume that 𝜂0 is the strong solution of the SDE given by

𝑑𝜂0𝑡 = 𝜅0 (𝜃0 − 𝜂0𝑡 )𝑑𝑡 + 𝜎0
√
𝜂0𝑡 𝑑𝑊

0
𝑡 , (13)

where 𝑊 0 is a 𝐏-Brownian motion with some 𝜅0 > 0, 𝜃0 > 0 and 𝜎0 > 0. Furthermore,
we assume that 𝜂𝑖 is governed by the SDE under the statistical probability measure 𝐏

𝑑𝜂𝑖𝑡 = 𝜅𝑖 (𝜃𝑖 − 𝜂𝑖𝑡 )𝑑𝑡 + 𝜎𝑖
√
𝜂𝑖𝑡𝑑𝑊

𝑖
𝑡 + 𝛿𝑖 ⋅ 𝑑𝑁𝑡 , (14)

where (𝑊 1,… ,𝑊 𝑛) is a vector of mutually independent 𝐏-Brownian motions, 𝜅𝑖 > 0
is the mean-reversion rate, 𝜃𝑖 > 0 is the long-run mean level, 𝜎𝑖 > 0 is the diffusive
volatility, and the vector 𝛿𝑖 = (𝛿𝑖1,… , 𝛿𝑖𝑛) represents name 𝑖’s sensitivity to defaults
in the system for 𝑖 = 1,… , 𝑛. Similar models are specified and analyzed by Giesecke,
Kim & Zhu (2011) among others.

For each 𝜂𝑖, we introduce the interarrival process ℎ𝑖𝑗 satisfying

𝜂𝑖𝑡 =
𝑛∑
𝑗=1

ℎ𝑖𝑗𝑡−𝜏𝑗−1𝟏
{
𝑁 𝑡=𝑗−1

} , (15)

where 𝜏0 = 0 and ℎ𝑖𝑗0 = 𝜂𝑖𝜏𝑗−1 for 𝑗 = 1,… , 𝑛. As the process ℎ𝑖𝑗 follows the Feller

diffusion 𝑑ℎ𝑖𝑗𝑡 = 𝜅𝑖 (𝜃𝑖 − ℎ
𝑖𝑗
𝑡 )𝑑𝑡 + 𝜎𝑖

√
ℎ𝑖𝑗𝑡 𝑑𝑊 𝑖

𝑡 , the distribution of ℎ𝑖𝑗𝑠 for 𝑠 > 0 given
ℎ𝑖𝑗0 is non-central chi-squared upto a scale factor. As shown by Cox, Ingersoll & Ross

10



Algorithm 2 The cIS algorithm to estimate 𝐏
(
𝑁𝑇 ≥ 𝜉

)
with 𝑇 > 0 under the default

intensity model described in equations (12)–(14)
1: procedure CIS_TAILPROBABILITY(𝜉, 𝑇 ,𝑀) ⊳𝑀 is the number of cIS trials
2: Initialize 𝑌 ← 0
3: for 𝑚 ∈ {1,… ,𝑀} do
4: Initialize  ← {1,… , 𝑛} and 𝑥𝑖0 ← 𝜔𝑖𝜂00 + 𝜂

𝑖
0 ∀𝑖 ∈ 

5: Set 𝑡← 0 and 𝜉𝑇 ← 𝑇 𝜉∕𝜉!
6: Draw an ordered sample of {𝜏1,… , 𝜏𝜉} from 𝑈 (0, 𝑇 )
7: for 𝑘 ∈ {1,… , 𝜉} do
8: Sample 𝜂0𝜏𝑘 given 𝜂0𝑡 from the transition density of ℎ0𝑘

9: Update 𝜉𝑇 ← 𝜉𝑇 × 𝜑0𝑘
(∑

𝑖∈ 𝜔𝑖, 𝜏𝑘 − 𝑡; ℎ0𝑘0 , ℎ0𝑘𝜏𝑘−𝑡
)

10: for 𝑖 ∈  do
11: Sample 𝜂𝑖𝜏𝑘 given 𝜂𝑖𝑡 from the transition density of ℎ𝑖𝑘

12: Update 𝜉𝑇 ← 𝜉𝑇 × 𝜑𝑖𝑘
(
1, 𝜏𝑘 − 𝑡; ℎ𝑖𝑘0 , ℎ

𝑖𝑘
𝜏𝑘−𝑡

)
13: Set 𝑥𝑖𝜏𝑘 ← 𝜔𝑖𝜂0𝜏𝑘 + 𝜂

𝑖
𝜏𝑘

14: end for
15: Update 𝜉𝑇 ← 𝜉𝑇 ×

∑
𝑖∈ 𝑥𝑖𝜏𝑘

16: Draw index 𝐼𝑘 = 𝑗 from the distribution
{
𝑥𝑗∕

∑
𝑖∈ 𝑥𝑖

}
𝑗∈ and set 𝑡← 𝜏𝑘

17: Update  ←  − {𝑗} and 𝜂𝑖𝑡 ← 𝜂𝑖𝑡 + 𝛿𝑖𝑗 ∀𝑖 ∈ 
18: end for
19: Update 𝑌 ← 𝑌 + 𝜉𝑇
20: end for
21: return 𝑌 ∕𝑀
22: end procedure

(1985), ℎ𝑖𝑗𝑠 can be drawn from the non-central chi-squared transition density from ℎ𝑖𝑗0 as

𝐏
(
ℎ𝑖𝑗𝑠 ≤ 𝑧||ℎ𝑖𝑗0 ) = 𝐹𝜒 ′2

𝑑 (𝜈)

(
4𝜅𝑧

𝜎2
(
1 − 𝑒−𝜅𝑠

)) , (16)

where 𝑑 = 4𝜅𝜃
𝜎2

is the degree of freedom and 𝜈 = 4𝜅𝑒−𝜅𝑠ℎ𝑖𝑗0
𝜎2
(
1−𝑒−𝜅𝑠

) is the non-centrality param-

eter. Moreover, the bridge transform

𝜑𝑖𝑗 (𝑎, 𝑠;ℎ𝑖𝑗𝑠 , ℎ
𝑖𝑗
0 ) = 𝐄𝐏

(
𝑒−𝑎 ∫ 𝑠0 ℎ𝑖𝑗𝑡 𝑑𝑡|||ℎ𝑖𝑗𝑠 , ℎ𝑖𝑗0 ) (17)

can be computed analytically for 𝑎 > 0; see Broadie & Kaya (2006) for a formula.
Algorithm 2 summarizes the cIS algorithm to estimate 𝐏

(
𝑁𝑇 ≥ 𝜉

)
with 𝑇 > 0.
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Table 1: Estimation results of 𝐏(𝑁𝑇 ≥ 𝜉) for 𝑇 = 1 year under the default intensity
model described in equations (12)–(14).

𝜉 cIS est. 99% C.I. JAM est. cIS error cIS var. Var. ratio
5 4.1304E-01 ± 1.6602E-03 4.1170E-01 1.10336 2.0769E-01 1.1021E+00
6 2.7401E-01 ± 1.0668E-03 2.7246E-01 1.06868 8.5751E-02 2.1626E+00
7 1.7050E-01 ± 6.4858E-04 1.7019E-01 1.04420 3.1696E-02 4.1051E+00
8 1.0006E-01 ± 3.7045E-04 9.9831E-02 1.01630 1.0340E-02 7.8809E+00
9 5.5701E-02 ± 2.0704E-04 5.5506E-02 1.02030 3.2299E-03 1.4503E+01

10 2.9500E-02 ± 1.1127E-04 2.9830E-02 1.03533 9.3281E-04 2.7122E+01
11 1.5061E-02 ± 5.8152E-05 1.5335E-02 1.05983 2.5481E-04 5.0921E+01
12 7.3892E-03 ± 2.9299E-05 7.5448E-03 1.08842 6.4683E-05 9.7959E+01
13 3.4710E-03 ± 1.3591E-05 3.5546E-03 1.07480 1.3917E-05 2.1992E+02
14 1.5909E-03 ± 6.6923E-06 1.5886E-03 1.15469 3.3747E-06 4.1492E+02
15 7.0593E-04 ± 3.1368E-06 6.9904E-04 1.21972 7.4138E-07 7.9935E+02
16 3.0338E-04 ± 1.3589E-06 2.9016E-04 1.22958 1.3915E-07 1.9433E+03
17 1.2631E-04 ± 5.7287E-07 1.4004E-04 1.24495 2.4728E-08 4.9734E+03
18 5.1644E-05 ± 2.4117E-07 6.1286E-05 1.28187 4.3825E-09 1.2052E+04
19 2.0557E-05 ± 1.0167E-07 2.5432E-05 1.35761 7.7891E-10 3.3811E+04
20 7.9875E-06 ± 4.2342E-08 9.1633E-06 1.45512 1.3509E-10 9.9570E+04
21 3.0265E-06 ± 1.6349E-08 3.0732E-06 1.48279 2.0139E-11 2.6282E+05
22 1.1232E-06 ± 6.1108E-09 1.5413E-06 1.49348 2.8137E-12 9.4529E+05
23 4.0873E-07 ± 2.5559E-09 N/A 1.71654 4.9223E-13 N/A
24 1.4514E-07 ± 8.4581E-10 N/A 1.59963 5.3905E-14 N/A

Note. This table reports cIS (𝑀 = 5 × 105) and JAM (𝑀 = 5 × 105) estimates of 𝑌 = 𝐏
(
𝑁𝑇 ≥ 𝜉

)
for 20 values of 𝜉. The JAM estimates are reported in the fourth column. The fifth column reports the
relative error 𝜎̂𝑌 ∕𝑌 of the cIS estimator. The sixth column reports the 𝐐𝜉

𝑇 -variance of the cIS estimator.
The last column reports the variance ratio, the sample variance of the exact JAM estimator over the
sample variance of the cIS estimator.

We present estimates of the tail probability 𝐏(𝑁𝑇 ≥ 𝜉) in Table 1 for the portfolio
of size 𝑛 = 100 with time horizon 𝑇 = 1 year. For each name of 𝑖 = 1,… , 𝑛,
we uniformly draw 𝜔𝑖 from [0, 1], 𝜅𝑖 from [0.5, 1.5], 𝜃𝑖 from [0.001, 0.051], and set
𝜎𝑖 = min(

√
2𝜅𝑖𝜃𝑖, 𝜎̄𝑖) , where 𝜎̄𝑖 is drawn from [0, 0.2] uniformly. That is, the parame-

ters of 𝜂0 and 𝜂𝑖 satisfy the Feller condition to ensure that 𝑥𝑖 > 0 holds under 𝐏 almost
surely for 𝑖 = 1,… , 𝑛. We set the initial value 𝜂𝑖0 = 𝜃𝑖. For the systematic factors, we
set 𝜃0 = 0.02, 𝜅0 = 1.0, 𝜎0 = 0.1, and 𝜂00 = 𝜃0. The jump sensitivies are constructed
by drawing each 𝛿𝑖𝑗 from [0, 1∕𝑛] uniformly. The selected parameters model a system
with 𝐏(𝑁𝑇 = 0) = 0.0281186615220496.

In Table 1, we compare the cIS estimator with the exact jump approximation method

12



5 10 15 20
10 7

10 6

10 5

10 4

10 3

10 2

10 1

P(
N

T
)

JAM
cIS

Figure 1: The cIS and JAM estimates (markers) and 99% confidence intervals (dashed
lines) for 𝐏(𝑁𝑇 ≥ 𝜉) for 𝜉 ∈ {5, 6,… , 24} with 𝑀 = 5 × 105. Confidence intervals
extending below zero are omitted.

(JAM) estimator, which is shown to be superior to the naïve pMC estimator; see Giesecke
& Shkolnik (2018) for reference. Figure 1 shows the cIS and JAM estimates along with
their 99% confidence intervals by running 𝑀 = 5 × 105 trials of cIS and exact JAM
trials, respectively.10 Note that the exact JAM method fails to generate the rare events
and return [0, 0] as the empirical confidence interval of 𝐏(𝑁𝑇 ≥ 𝜉) for 𝜉 ≥ 23. How-
ever, the event {𝑁𝑇 ≥ 𝜉} always occurs under the cIS simulation measure 𝐐𝜉

𝑇 for any
choice of 𝜉. As shown, a significant variance reduction that can be achieved by the cIS
scheme for the rare-event probability estimation.

The full distribution of 𝑁𝑇 can be estimated via the cIS scheme in the context of
Corollary 3.2. The distribution of 𝑁𝑇 under 𝐏 can be represented by {𝜙𝜉}𝑛𝜉=0, where
𝜙𝜉 = 𝐏

(
𝑁𝑇 = 𝜉

)
. Table 2 and Figure 2 illustrate that the cIS scheme can substantially

reduce the variance of 𝐏
(
𝑁𝑇 = 𝜉

)
for large 𝜉, if compared to the performance of the

10Separate cIS experiments need to be performed for each of the values of 𝜉.
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Table 2: Estimation results of 𝐏(𝑁𝑇 = 𝜉) for 𝑇 = 1 year under the default intensity
model described in equations (12)–(14).

𝜉 cIS est. 99% C.I. JAM est. cIS error cIS var. Var. ratio
5 1.3866E-01 ± 1.1543E-04 1.3924E-01 0.22850 1.0039E-03 1.1929E+02
6 1.0357E-01 ± 1.0546E-04 1.0227E-01 0.27953 8.3809E-04 1.0674E+02
7 7.0413E-02 ± 8.5618E-05 7.0358E-02 0.33377 5.5234E-04 1.1318E+02
8 4.4282E-02 ± 6.2882E-05 4.4325E-02 0.38980 2.9794E-04 1.3329E+02
9 2.6088E-02 ± 4.2267E-05 2.5676E-02 0.44474 1.3461E-04 1.7135E+02

10 1.4518E-02 ± 2.6450E-05 1.4495E-02 0.50010 5.2715E-05 2.4588E+02
11 7.6823E-03 ± 1.5649E-05 7.7905E-03 0.55914 1.8451E-05 3.7449E+02
12 3.8926E-03 ± 8.7986E-06 3.9901E-03 0.62046 5.8332E-06 6.0045E+02
13 1.8894E-03 ± 4.6787E-06 1.9660E-03 0.67972 1.6494E-06 1.0360E+03
14 8.8565E-04 ± 2.4311E-06 8.8958E-04 0.75351 4.4534E-07 1.7275E+03
15 4.0176E-04 ± 1.1895E-06 4.0888E-04 0.81271 1.0661E-07 3.2547E+03
16 1.7610E-04 ± 5.6182E-07 1.5011E-04 0.87577 2.3783E-08 5.3459E+03
17 7.5104E-05 ± 2.5167E-07 7.8757E-05 0.91982 4.7723E-09 1.3668E+04
18 3.1105E-05 ± 1.0989E-07 3.5853E-05 0.96980 9.0995E-10 3.2286E+04
19 1.2557E-05 ± 4.8029E-08 1.6269E-05 1.04993 1.7381E-10 7.6550E+04
20 4.9464E-06 ± 2.0352E-08 6.0902E-06 1.12942 3.1210E-11 1.5060E+05
21 1.8998E-06 ± 8.2876E-09 1.5319E-06 1.19743 5.1753E-12 2.2671E+05
22 7.1593E-07 ± 3.1627E-09 1.5413E-06 1.21262 7.5369E-13 1.5760E+06
23 2.6348E-07 ± 1.3013E-09 N/A 1.35571 1.2759E-13 N/A
24 9.4678E-08 ± 4.6784E-10 N/A 1.35639 1.6492E-14 N/A

Note. This table reports cIS (𝑀 = 5 × 105) and JAM (𝑀 = 5 × 105) estimates of 𝑌 = 𝐏
(
𝑁𝑇 = 𝜉

)
for 20 values of 𝜉. The JAM estimates are reported in the fourth column. The fifth column reports the
relative error 𝜎̂𝑌 ∕𝑌 of the cIS estimator. The sixth column reports the 𝐐̂𝜉

𝑇 -variance of the cIS estimator.
The last column reports the variance ratio, the sample variance of the exact JAM estimator over the
sample variance of the cIS estimator.

exact JAM method. Figure 3 illustrates the cIS estimates and their 99.999% confidence
levels of 𝜙𝜉 for 𝜉 ∈ {0, 1,… , 𝑛}.

A risk manager and/or policymaker should be concerned about failure of an abnormally
large fraction of the total population in the system. The default rate in the system is
given by 𝐷𝑇 = 𝑁𝑇∕𝑛, where the distribution of 𝐷𝑇 ∈ [0, 1] represents the likelihood
of failure by time 𝑇 > 0 of any fraction of the population in the system; see Giesecke
& Kim (2011) for similar failure-based measures of systemic risk. To measure and
quantify the downside credit risk in the system, quantile-based tail-risk measures are
often used. For example, the Value-at-Risk (VaR) at level 𝛼 ∈ (0, 1) is defined based
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Figure 2: The cIS and JAM estimates (markers) and 99% confidence intervals (dashed
lines) for 𝐏(𝑁𝑇 = 𝜉) for 𝜉 ∈ {5, 6,… , 24} with 𝑀 = 5 × 105. Confidence intervals
extending below zero are omitted.

on a descrete distribution as

VaR𝛼
(
𝑁𝑇

)
= min

{
𝑥 ≥ 0 ∶

𝑛∑
𝜉=𝑥

𝜙𝜉 ≤ 1 − 𝛼

}
. (18)

Subsequently, the definition of expected shortfall (ES) is given by

ES𝛼
(
𝑁𝑇

)
= 1
𝛼 ∫

𝛼

0
VaR𝛽

(
𝑁𝑇

)
𝑑𝛽 , (19)

which can be computed based on a discrete distribution as

ES𝛼
(
𝑁𝑇

)
= 𝜔𝛼 + (1 − 𝜔𝛼)

∑
𝜉>

𝜉
𝜙𝜉∑
𝜉> 𝜙𝜉

, (20)
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Figure 3: The cIS estimates (markers) and 99.999% confidence intervals (shaded area)
of 𝐏(𝑁𝑇 = 𝜉) for 𝜉 ∈ {0, 1,… , 100} with 𝑀 = 5 × 105.

where  = VaR𝛼 (𝑁𝑇 ) and𝜔𝛼 =
(∑

𝜉≤ 𝜙𝜉 − 𝛼
)/

(1−𝛼).11 Figure 4 depicts both VaR
and ES of 𝑁𝑇 under 𝐏 across various confindence levels 𝛼 between 80% and 99.999%
estimated from the cIS scheme with 𝑀 = 5 × 105. It is noteworthy that the shortfall
measure (𝑠𝛼) is proposed by Bertsimas, Lauprete & Samarov (2004) as

𝑠𝛼
(
𝑁𝑇

)
= ES𝛼

(
𝑁𝑇

)
− 𝐄𝐏(𝑁𝑇

)
, (21)

where the subtraction from the mean leads to the mean-shortfall systemic risk analysis
more akin to the classical mean-variance optimization problem.

11As 𝑛 ↑ ∞, note that 𝜔𝛼 ↓ 0 holds and ES𝛼
(
𝑁𝑇

)
converges to 𝐄𝐏

(
𝑁𝑇

|||𝑁𝑇 > VaR𝛼
(
𝑁𝑇

))
.
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Figure 4: Mean value, Value at Risk (VaR) and Expected shortfall (ES) of𝑁𝑇 under 𝐏
across various confindence levels 𝛼 between 80% and 99.999% estimated from the cIS
scheme with 𝑀 = 5 × 105.

5.2 Zero-coupon bond pricing

It is well-documented by literature that jumps play an important role in the dynamics of
interest rates. For instance, Johannes (2004) emphasizes the role of jumps in continuous-
time interest rate models both statistically and economically. However, most of the
short-rate models with jump diffusion do not allow closed-form expressions of their
integral transforms. This makes it difficult to apply the models to obtain the unbiased
pricing estimators of interest rate derivates analytically.

Suppose that the short-rate process follows the SDE under the risk-neutral pricing mea-
sure 𝐏 given by

𝑑𝑟𝑡 = 𝜅
(
𝜃 − 𝑟𝑡

)
𝑑𝑡 + 𝜎

√
𝑟𝑡𝑑𝑊𝑡 + 𝛿𝑡𝑑𝜋𝑡 , (22)
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Figure 5: Sample scenarios under the shor-rate model specified in (22) with jump
sensitivities given by 𝛿𝑡 = 𝑟𝑡

(
exp

(
𝜂𝑡
)
− 1

)
, where 𝜂𝑡 ∼ Normal

(
(𝜃 − 𝑟𝑡)𝑢, 𝑣2

)
. The se-

lected parameters are (𝜅, 𝜃, 𝜎, 𝜆0, 𝜆1, 𝑢, 𝑣, 𝑟0) = (0.1, 0.08, 0.05, 1.0, 5.0, 1.0, 1.0, 0.05).
Both positive and negative jumps occur, while 𝑟𝑡 keeps its nonnegativity.

where 𝜋 is the jump arrival counting process with the intensity Λ(𝑟), and the jump size is
represented by 𝛿 = 𝛿(𝑟). The jump intensity is assumed to take the formΛ(𝑟𝑡) = 𝜆0+𝜆1𝑟𝑡
for 𝜆0, 𝜆1 > 0. We consider a special case when the state-dependent jump sensitivities
given by 𝛿𝑡 = 𝛿(𝑟𝑡) = 𝑟𝑡

(
exp

(
𝜂𝑡
)
− 1

)
, where 𝜂𝑡 ∼ Normal

(
(𝜃 − 𝑟𝑡)𝑢, 𝑣2

)
for 𝑢, 𝑣 > 0.

In this setting, the log-normal jump component allows both positive and negative jumps,
while keeping 𝑟𝑡 nonnegative.12 The sign-indefinite jumps provide additional source of
mean reversion; i.e. there is a greater chance of a positive jump at lower interest rate
levels than 𝜃, and a higher chance of a negative jump at high levels of interest rate.
Figure 5 illustrates the sample scenarios for 𝑇 = 10 years.

Estimating the zero-coupon bond price via cIS is a special case with 𝑛 = 1 and the
event indicator process 𝑁1 = 𝑁 admits 𝑟 as its 𝐏-intensity on [0, 𝜏1), where 𝐏 is the
risk-neutral pricing measure. Specifically, the price of a zero-coupon bond with unit

12A generalized version of the log-normal jump size model has been introduced by Johannes (2004).
Giesecke & Smelov (2013) examine the case of positive jump sizes, which are uniformly distributed
between two strictly positive values.
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face value and time-to-maturity 𝑇 > 0 takes the form of the time-integrated transform
of 𝑟 given by

𝐵0(𝑇 ) = 𝐄𝐏
(
𝑒− ∫ 𝑇0 𝑟𝑡𝑑𝑡

)
= 1 − 𝐏

(
𝑁𝑇 ≥ 1

)
= 1 − 𝐄𝐐𝜉=1

𝑇

(𝜉=1
𝑇

)
, (23)

where 𝐐𝜉=1
𝑇 is the cIS simulation measure conditional on the event {𝑁𝑇 ≥ 1}. In

other words, the zero-coupon bond price can be interpreted as the 𝐏-probability that no
events occur during the interval [0, 𝑇 ] in a doubly stochastic counting process with its
𝐏-intensity 𝑟 ≥ 0.

Note that the joint process of (𝑟,𝑁) is self-affecting due to the entangled dependence
structure between the state of 𝑟, the jump intensity Λ(𝑟), and the jump size 𝛿(𝑟). This
implies that the jump times of 𝑟 cannot be generated independently in the simulation of
𝑟. However, a notable computational advantage can be attained by taking a sequence of
measure changes under the state-dependent specifiation of the 𝐏-intensities of the jump
term 𝜋. That is, the jump-counting process 𝜋 and the event-counting process 𝑁 satisfy
a so-called doubly stochastic property in that they are conditionally independent given
the state of 𝑟.

We sample the jump arrivals in the intensity dynamics by the exact JAM method as
illustrated in Giesecke & Shkolnik (2018). Its basic idea is to construct a simulation
measure under which the jump arrival intensity is a pure jump process with jumps oc-
curing at the jump arrival times. Specifically, let 0 = 0 < 1 < 2 <… be the ordered
jump arrival times of 𝜋. We then construct a jump-simulation measure 𝐐𝐽 under which
the jump arrival times are sampled based on the twisted jump arrival intensity whose
paths are piecewise constant between two consecutive jumps; i.e., the measure 𝐐𝐽 is
constructed with the twisted jump intensities 𝜓 defined as 𝜓𝑘 = Λ(𝑟𝑘) for 𝑘 ≥ 0. The
Radon-Nikodym derivative of 𝐐𝐽 with respect to 𝐏 is given by 𝐽

∞, which takes the
form of

𝐽
∞ = exp

(
∫

∞

0

(
Λ(𝑟𝑠) − 𝜓𝜋𝑠

)
𝑑𝑠

) ∞∏
𝑖=1

𝜓𝑖−1
Λ
(
𝑟𝑖−

) . (24)

The Doob martingale of 𝐽
∞ is given by 𝐽

𝜏1
= 𝐄𝐏(𝐽

∞
||𝜏1) =

(𝐽
𝜏1

)
−1 for 𝜏1 > 0. It
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follows that 𝐽
𝜏1

is given by

𝐽
𝜏1
= exp

(
∫

𝜏1

0

(
−Λ(𝑟𝑠) + 𝜓𝜋𝑠

)
𝑑𝑠

) 𝜋𝜏1∏
𝑖=1

Λ
(
𝑟𝑖−

)
𝜓𝑖−1

(25)

so that we can compute 𝐏
(
𝑁𝑇 ≥ 1

)
= 𝐄𝐐𝜉=1

𝑇

(
𝐄𝐐𝐽 (𝜉=1

𝑇 𝐽
𝜏1

⏟⏞⏟⏞⏟
∶=⋆𝑇

))
.

We introduce the interjump short-rate process 𝜌𝑗 satisfying

𝑟𝑡 =
∑
𝑗≥1

𝜌𝑗𝑡−𝑗−1𝟏{𝜋𝑡=𝑗−1} , (26)

where 𝜌𝑗0 = 𝑟𝑗−1 for 𝑗 ≥ 1. As the process 𝜌𝑗 follows the Feller diffusion without
jump arrivals, the exact JAM scheme is available so that one can avoid sampling the
time-integrated transform of the jump intensity Λ(𝜌𝑗) = 𝜆0 + 𝜆1𝜌𝑗 from its Markov
property along with the existence of the closed-form expression of the bridge transform
𝜑
(
𝑎, 𝑠; 𝜌𝑗𝑠, 𝜌

𝑗
0

)
= 𝐄𝐏

(
𝑒−𝑎 ∫ 𝑠0 𝜌𝑗𝑡 𝑑𝑡||| 𝜌𝑗𝑠, 𝜌𝑗0) for 𝑎 > 0 and 𝑠 > 0. Algorithm 3 summarizes

the cIS algorithm to estimate a zero-coupon bond price with maturity 𝑇 > 0.

Beliaeva & Nawalkha (2012) propose a multinomial tree model to obtain an approxi-
mated bond price. Their proposed methodology illustrates how to superimpose mixed
jump-diffusion trees by recombining multinomial jump trees on the diffusion tree for the
stochastic short-rate model extended with various types of jumps. Although the multi-
nomial tree does not generate simulation errors, its discretized nature along with linear
approximation should produce non-negligible biases; see Beliaeva & Nawalkha (2012)
for details.

We adopt the trapezoidal discretization scheme as the benchmark pMC method. Specif-
ically, we divide the time inverval [0, 𝑇 ] into

⌈√
𝑀

⌉
equal time steps of length. 13 As-

suming that at most one jump can occur at each discretized time point, we sequentially
generate the value of 𝑟𝑗 ≜ 𝑟𝑡𝑗 conditional on 𝑟𝑗−1 as 𝑟𝑗 ≈ 𝑟𝑗− + 𝛿𝑗Δ𝜋𝑗 , where 𝑟𝑗− can
be drawn from the noncentral chi-squared transition density from 𝑟𝑗−1 given by equa-
tion (16). Furthermore, we approximate the probability of jump arrival at time 𝑡𝑗 as

13Specifically, we set the number of discretization time steps equal to the square-root of the number of
simulation trials, as suggested by Duffie & Glynn (1995).
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Algorithm 3 The cIS algorithm to estimate a zero-coupon bond price with 𝑇 > 0
1: procedure CIS_BONDPRICING(𝑇 ,𝑀) ⊳𝑀 is the number of cIS trials
2: Initialize 𝑌 ← 0
3: for 𝑚 ∈ {1,… ,𝑀} do
4: Set ⋆𝑇 ← 𝑇 , 𝑟𝑡 ← 𝑟0 and draw 𝜏 from 𝑈 (0, 𝑇 )
5: while 𝜏 > 0 do
6: Draw Δ from the exponential distribution with rate Λ(𝑟𝑡) = 𝜆0 + 𝜆1𝑟𝑡
7: if Δ ≥ 𝜏 then
8: Sample 𝑟𝑡+𝜏 given 𝑟𝑡 from the transition density of 𝑟 without jump arrivals
9: Compute 𝐴 = 𝑒−𝜆0𝜏𝜑

(
1 + 𝜆1, 𝜏; 𝑟𝑡, 𝑟𝑡+𝜏

)
10: Update ⋆𝑇 ← ⋆𝑇 × 𝑟𝑡+𝜏 × 𝐴𝑒Λ(𝑟𝑡)𝜏 and 𝜏 ← 0
11: else
12: Sample 𝑟𝑡+Δ given 𝑟𝑡 from the transition density of 𝑟 without jump arrivals
13: Compute 𝐴 = 𝑒−𝜆0Δ𝜑

(
1 + 𝜆1, Δ; 𝑟𝑡, 𝑟𝑡+Δ

)
14: Set ⋆𝑇 ← ⋆𝑇 × 𝐴𝑒Λ(𝑟𝑡)ΔΛ(𝑟𝑡+Δ)∕Λ(𝑟𝑡)
15: Draw 𝜂𝑡+Δ from  (

(𝜃 − 𝑟𝑡+Δ)𝑢, 𝑣2
)

and set 𝛿𝑡+Δ ← 𝑟𝑡+Δ
(
exp(𝜂𝑡+Δ) − 1

)
16: Update 𝑟𝑡 ← 𝑟𝑡+Δ + 𝛿𝑡+Δ and 𝜏 ← 𝜏 − Δ
17: end if
18: end while
19: Update 𝑌 ← 𝑌 + ⋆𝑇
20: end for
21: return 1 - 𝑌 ∕𝑀
22: end procedure

𝐏
(
Δ𝜋𝑗 = 1

)
≈

(
𝜆0 + 𝜆1𝑟𝑗−

)
ℎ for small ℎ > 0. We obtain the pMC estimator of zero-

coupon bond price by the trapezoidal rule as 1
𝑀

∑𝑀
𝑖=1 exp

(
−ℎ

∑⌈√
𝑀

⌉
𝑗=1

𝑟𝑗−+𝑟𝑗−1
2

)
. The

bias of the the pMC estimator with a given number of time discretization steps is esti-
mated using 109 trials to estimate the expectation of the estimator, and then taking the
difference with the true value, which is estimated by cIS algorithm with 1010 iterations.

Table 3 and Figure 6 report the numerical results for the cIS, multinomial tree, and trape-
zoidal discretization schemes on the zero-coupon bond pricing. The RMSE convergence
rate of our proposed cIS scheme is substantially faster than those of the multinomial tree
and the trapezoidal discretization schemes.
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Table 3: Estimation results under the short-rate model in (22) for a bond price with
maturity 𝑇 = 3 years.

Method Trials (K) Steps Bias SE RMSE Time (sec)
50

N/A 0

1.5477E-04 1.5477E-04 0.2164
Conditional 500 4.9092E-05 4.9092E-05 1.4017

Importance Sampling 5,000 1.5513E-05 1.5513E-05 14.1515
50,000 4.8123E-06 4.8123E-06 142.4679

N/A

1,000 -3.7366E-04

0

3.7366E-04 0.2403
Multinomial 2,500 -1.5910E-04 1.5910E-04 1.5892

Tree 7,000 -8.7096E-05 8.7096E-05 12.0744
20,000 -5.3870E-05 5.3870E-05 115.0961

10 100 5.2978E-05 2.6705E-04 2.7225E-04 0.2594
Trapezoidal 50 225 2.1852E-05 1.1908E-04 1.2107E-04 0.9502

Discretization 250 500 8.5263E-06 5.3402E-05 5.4078E-05 10.6361
1,250 1,120 5.3556E-06 2.3793E-05 2.4389E-05 119.5019

Note. The jump sensitivities are specified as 𝛿𝑡 = 𝑟𝑡
(
exp

(
𝜂𝑡
)
− 1

)
, where 𝜂𝑡 ∼ Normal

(
(𝜃 − 𝑟𝑡)𝑢, 𝑣2

)
.

The selected parameters are (𝜅, 𝜃, 𝜎, 𝜆0, 𝜆1, 𝑢, 𝑣, 𝑟0) = (0.1, 0.08, 0.05, 1.0, 5.0, 1.0, 1.0, 0.05). The true
price of the bond as estimated by cIS algorithm with 1010 iterations is 0.8447251.

6 Conclusion

This paper proposes a simple but efficient importance sampling method for a wide range
of counting processes. The proposed algorithm facilitates the conditional Monte Carlo
simulation based on the limit of conditional probability measures specific to the event
of interest. Numerical results illustrate the performance of the methodology that gen-
erates unbiased simulation estimators of rare-event probabilities of clustered defaults in
a network and exact fixed-income security prices under the jump-diffusion interest rate
models.

References

Asmussen, S. & P Glynn (2007), Stochastic Simulation – Algorithms and Analysis,
Springer, New York.

Azizpour, Shahriar, Kay Giesecke & Gustavo Schwenkler (2014), Exploring the sources
of default correlation. Working Paper, Stanford University.

Beliaeva, Natalia & Sanjay Nawalkha (2012), ‘Pricing american interest rate options un-

22



Figure 6: Convergence of the RMSEs for a bond price under the short-rate model in
(22) with maturity 𝑇 = 3 years.

10 0.5 100.0 100.5 101.0 101.5 102.0

CPU Time (sec)

10 5.5

10 5.0

10 4.5

10 4.0

10 3.5

RM
SE

Conditional IS
Multinomial Tree
Discretization

Note. The jump sensitivities are specified as 𝛿𝑡 = 𝑟𝑡
(
exp

(
𝜂𝑡
)
− 1

)
, where 𝜂𝑡 ∼ Normal

(
(𝜃 − 𝑟𝑡)𝑢, 𝑣2

)
.

The selected parameters are (𝜅, 𝜃, 𝜎, 𝜆0, 𝜆1, 𝑢, 𝑣, 𝑟0) = (0.1, 0.08, 0.05, 1.0, 5.0, 1.0, 1.0, 0.05).

der the jump-extended constant-elasticity-of-variance short rate models’, Journal
of Banking and Finance 36, 151–163.

Bertsimas, Dimitris, Geoffrey J. Lauprete & Alexander Samarov (2004), ‘Shortfall as
a risk measure: properties, optimization and applications’, Journal of Economic
Dynamics and Control 28, 1353–1381.

Blanchet, J. & J. Ruf (2016), ‘A weak convergence criterion for constructing changes of
measure’, Stochastic Models 32(2), 233–252.

Broadie, M. & O. Kaya (2006), ‘Exact simulation of stochastic volatility and other affine
jump diffusion processes’, Operations Research 54(2), 217–231.

Carmona, René, Jean-Pierre Fouque & Douglas Vestal (2009), ‘Interacting particle sys-
tems for the computation of rare credit portfolio losses’, Finance and Stochastics
13(4), 613–633.

23



Carmona, René & Stéphane Crépey (2010), ‘Particle methods for the estimation of
Markovian credit portfolio loss distributions’, International Journal of Theoret-
ical and Applied Finance 13(4), 577–602.

Cox, J., J. Ingersoll & S. Ross (1985), ‘A theory of the term structure of interest rates’,
Econometrica 53, 385–408.

Del Moral, Pierre & Josselin Garnier (2005), ‘Genealogical particle analysis of rare
events’, Annals of Applied Probability 15, 2496–2534.

Duffie, Darrell, Andreas Eckner, Guillaume Horel & Leandro Saita (2009), ‘Frailty cor-
related default’, Journal of Finance 64, 2089–2123.

Duffie, Darrell & Peter Glynn (1995), ‘Efficient monte carlo estimation of security
prices”, Annals of Applied Probability 4(5), 897–905.

Giesecke, Kay & Alexander Shkolnik (2010), Importance sampling for indicator
Markov chains, in B.Johansson, S.Jain, J.Montoya-Torres, J.Hugan & E.Yücesan,
eds, ‘Proceedings of the 2010 Winter Simulation Conference’, IEEE Press,
pp. 967–975.

Giesecke, Kay & Alexander Shkolnik (2014), Optimal importance sampling of default
losses. Working Paper, Stanford University.

Giesecke, Kay & Alexander Shkolnik (2018), Reducing bias in event time simulation
via measure changes. Mathematics of Operations Research, Forthcoming.

Giesecke, Kay & Baeho Kim (2011), ‘Systemic risk: What defaults are telling us’, Man-
agement Science 57(8), 1387–1405.

Giesecke, Kay, Baeho Kim & Shilin Zhu (2011), ‘Monte carlo algorithms for default
timing problems’, Management Science 57(12), 2115–2129.

Giesecke, Kay & Dmitry Smelov (2013), ‘Exact sampling of jump diffusions’, Opera-
tions Research 61(4), 894–907.

Johannes, Michael (2004), ‘The statistical and economic role of jumps in continuous-
time interest rate models’, Journal of Finance 59(1), 227–260.

24



Meyer, P.-A. (1971), ‘Démonstration simplifée d’un théorème de knight’, Séminaire de
Probabilités V. Lecture Notes in Mathematics 191 pp. 191–195.

Protter, Philip (2005), Stochastic Integration and Differential Equations, Springer-
Verlag, New York.

Siegmund, D (1976), ‘Importance sampling in the Monte Carlo study of sequential
tests’, The Annals of Statistics 4(4), 673–684.

Vanden-Eijnden, E. & J. Weare (2012), ‘Rare event simulation of small noise diffusions’,
Communications on Pure and Applied Mathematics 65(12), 1770–1803.

A Proofs

A.1 Proof of Theorem 3.1

Proof. Let 𝑢𝛾 =
(
𝛾𝑝

)
−1 be a nonnegative càdlàg process on [0, 𝜏𝑛) for 𝛾 ∈ ℕ.14 Define

𝛾
∞ = exp

(
𝑛∑
𝑖=1

∫
𝜏𝑛

0
𝑝𝑖𝑠
(
1 − 𝑢𝛾𝑠

)
𝑑𝑠 +𝑁 𝑖

𝜏𝑖
log

(
𝑢𝛾𝜏𝑖−

))
(27)

= exp
(
∫

𝜏𝑛

0
𝑝𝑠𝑑𝑠 −

𝜏𝑛
𝛾

) 𝑛∏
𝑖=1

(
𝛾𝑝𝜏𝑖−

)−1 . (28)

Our assumption 𝜏𝑛 < ∞ 𝐏-almost surely and that 𝛾 < ∞ implies that, for all 𝑇 > 0,
𝛾
𝑇 = 𝐄𝐏 (𝛾

∞
||𝑇 ) is a (uniformly integrable) Doob martingale with 𝐄𝐏(𝛾

𝑇

)
= 1; see

Theorem 3.1 in Giesecke & Shkolnik (2018). Furthermore, 𝐐𝛾
𝑇 = 𝑍𝛾

𝑇𝐏 is an absolutely
continuous probability measure in the sense that 𝐐𝛾

𝑇

(
𝒜
)
= 𝐄𝐏(𝛾

𝑇𝟏𝒜
)

holds for all
𝒜 ∈ 𝑇 . Since  𝜉𝑇 ∈ 𝜉 , we have

𝐄𝐏
(𝛾

𝜏𝜉
𝟏𝜉𝑇 ⋂

𝒜

)
= 𝐄𝐏

(
𝐄𝐏

(𝛾
𝜏𝜉
𝟏𝜉𝑇 ⋂

𝒜
|||𝜉)) = 𝐐𝛾

𝑇

( 𝜉𝑇 ⋂𝒜
)

(29)

for all 𝒜 ∈ 𝜉 . Note that 𝑁 is a 𝐐𝛾
𝑇 -Poisson process with rate 𝛾−1 on [0, 𝑇 ∧ 𝜏𝑛). This

implies that 𝐐𝛾
𝑇

( 𝜉𝑇 ) = 𝑒−𝑇 ∕𝛾

𝛾𝜉

(
𝑇 𝜉

𝜉!
+ 𝛼(𝛾)

)
holds, where 𝛼(𝛾) ↓ 0 as 𝛾 ↑ ∞. It follows

14We follow the convention 1∕0 = ∞.
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that 𝛾
𝜏𝜉
𝟏𝜉𝑇 ⋂

𝒜 = 𝑒−𝜏𝜉∕𝛾

𝜉𝑇 𝛾𝜉 holds and 𝛾𝜉𝐐𝛾
𝑇

( 𝜉𝑇 ) can be expressed as

𝐄𝐏

(𝟏𝜉𝑇
𝜉
𝑇

𝑒−𝜏𝜉∕𝛾 𝑇
𝜉

𝜉!

)
= 𝑒−𝑇 ∕𝛾

(
𝑇 𝜉

𝜉!
+ 𝛼(𝛾)

)
(30)

by taking 𝒜 = Ω in equation (29). Since
𝟏𝜉𝑇𝜉𝑇 𝑒

−𝜏𝜉∕𝛾 𝑇
𝜉

𝜉!
is increasing as 𝛾 ↑ ∞ and non-

negative, by monotone convergence we have

𝐐𝜉
𝑇

(
Ω
)
= 𝐄𝐏

(𝟏𝜉𝑇
𝜉
𝑇

)
= 1 , (31)

which proves that 𝐐𝜉
𝑇 ≪ 𝐏 is a well-defined probability measure on

(
Ω,𝜉) .

We subsequently have

𝐏
( 𝜉𝑇 ) = 𝐄𝐏

(
𝟏𝜉𝑇

)
= 𝐄𝐏

(
𝟏𝜉𝑇

𝜉
𝑇

𝜉
𝑇

)
= 𝐄𝐐𝜉

𝑇

(𝜉
𝑇

)
, (32)

as 𝜉
𝑇 > 0 holds under 𝐏 almost surely by our assumption.

(i) We construct a conditional measure 𝐐𝛾|𝜉
𝑇 =

𝟏𝜉𝑇 
𝛾
𝑇

𝐐𝛾
𝑇

(𝜉𝑇 ) 𝐏 on
(
Ω,𝜉) in the sense that

𝐐𝛾|𝜉
𝑇

(
𝒜
)
= 𝐐𝛾

𝑇

(
𝒜 ||| 𝜉𝑇 ) for all 𝒜 ∈ 𝜉 . By Fatou’s lemma with 𝛾

𝑇 ≥ 0, we
have

lim inf
𝛾↑∞

𝐐𝛾|𝜉
𝑇

(
𝒜
)
= lim inf

𝛾↑∞

𝐄𝐏
(
𝟏𝒜 ⋂ 𝜉𝑇𝛾

𝑇

)
𝐐𝛾
𝑇

( 𝜉𝑇 ) = 𝐄𝐏

(𝟏𝒜 ⋂ 𝜉𝑇
𝜉
𝑇

)
= 𝐐𝜉

𝑇

(
𝒜
)
. (33)

Therefore, we have by Portmanteau’s theorem that 𝐐𝛾|𝜉
𝑇 ⇒ 𝐐𝜉

𝑇 as 𝛾 ↑ ∞. We also
have

𝐐𝛾|𝜉
𝑇 =

𝟏𝜉𝑇𝐐
𝛾
𝑇

𝐐𝛾
𝑇

( 𝜉𝑇 ) =
𝟏𝜉𝑇

(𝛾
𝜏𝜉

/1
𝜏𝜉

)
𝐐1
𝑇

𝐐𝛾
𝑇

( 𝜉𝑇 ) =
𝟏𝜉𝑇 𝑒

(1−𝛾−1 )𝜏𝜉𝐐1
𝑇

𝑒−𝑇 ∕𝛾
(
𝑇 𝜉

𝜉!
+ 𝛼(𝛾)

) . (34)

Now consider a 𝐐𝜉
𝑇 -continuity set 𝐴 (𝑡1,…,𝑡𝜉 ) =

{
𝜏1 ≤ 𝑡1, 𝜏2 ≤ 𝑡2,… , 𝜏𝜉 ≤ 𝑡𝜉

}
for
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any 0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝜉 ≤ 𝑇 . As 𝜏𝜉 ≤ 𝑇 and 𝑒𝜏𝜉−𝑇 ∕𝛾 ≤ 𝑒 (1−𝛾−1 )𝜏𝜉 ≤ 𝑒𝜏𝜉 must
hold on  𝜉𝑇 ⊆ 𝐴 (𝑡1,…,𝑡𝜉 ) , we have

𝐄𝐐1
𝑇

(
𝟏𝐴 (𝑡1 ,…,𝑡𝜉 )

𝑒𝜏𝜉
)

𝑇 𝜉

𝜉!
+ 𝛼(𝛾)

≤ 𝐐𝛾|𝜉
𝑇

(
𝐴 (𝑡1,…,𝑡𝜉 )

) ≤ 𝐄𝐐1
𝑇

(
𝟏𝐴 (𝑡1 ,…,𝑡𝜉 )

𝑒𝜏𝜉
)

𝑒−𝑇 ∕𝛾
(
𝑇 𝜉

𝜉!
+ 𝛼(𝛾)

) , (35)

where Meyer (1971)’s time-change theorem implies that

𝐄𝐐1
𝑇

(
𝟏𝐴 (𝑡1 ,…,𝑡𝜉 )

𝑒𝜏𝜉
)
= ∫

𝑡1

0 ∫
𝑡2

𝑥1

⋯∫
𝑡𝜉

𝑥𝜉−1

𝑑𝑥𝜉 ⋯ 𝑑𝑥2𝑑𝑥1 =
𝑇 𝜉

𝜉!
𝐹
(
𝑡1,… , 𝑡𝜉

)
, (36)

where 𝐹
(
𝑡1,… , 𝑡𝜉

)
is the distribution of the {𝑢𝑖}

𝜉
𝑖=1. It follows that

𝑇 𝜉

𝜉!
𝐹
(
𝑡1,… , 𝑡𝜉

)
𝑇 𝜉

𝜉!
+ 𝛼(𝛾)

≤ 𝐐𝛾|𝜉
𝑇

(
𝐴 (𝑡1,…,𝑡𝜉 )

) ≤
𝑇 𝜉

𝜉!
𝐹
(
𝑡1,… , 𝑡𝜉

)
𝑒−𝑇 ∕𝛾

(
𝑇 𝜉

𝜉!
+ 𝛼(𝛾)

) . (37)

Taking 𝛾 ↑ ∞, we conclude that

𝐐𝛾|𝜉
𝑇 → 𝐹

(
𝑡1,… , 𝑡𝜉

)
, (38)

which proves the uniform arrivals of the first 𝜉 event times on [0, 𝑇 ] under 𝐐𝜉
𝑇 .

(ii) Let 𝑘 ∈ {1,… , 𝜉} and consider 𝐼𝑘 ∈ {1,… , 𝑛}. By the conditional change of
measure formula, we have

𝐄𝐐𝛾
𝑇

(
𝟏𝜉𝑇

|||𝜏𝑘−)
𝐐𝛾
𝑇

( 𝜉𝑇 ) 𝐐𝛾|𝜉
𝑇

(
𝐼𝑘 = 𝑖||𝜏𝑘−) = 𝐄𝐐𝛾

𝑇

(
𝟏𝜉𝑇 ⋂

{𝐼𝑘=𝑖}
|||𝜏𝑘−)

𝐐𝛾
𝑇

( 𝜉𝑇 ) . (39)

Since 𝟏𝜉𝑇 = 0 if 𝜏𝑘 > 𝑇 and 𝜏𝑘 is 𝜏𝑘−-measurable, we obatin

𝐐𝛾|𝜉
𝑇

(
𝐼𝑘 = 𝑖||𝜏𝑘−) = 𝟏{𝜏𝑘≤𝑇}

𝐐𝛾
𝑇

( 𝜉𝑇 ⋂{𝐼𝑘 = 𝑖}|||𝜏𝑘−)
𝐐𝛾
𝑇

( 𝜉𝑇 |||𝜏𝑘−) (40)

= 𝟏{𝜏𝑘≤𝑇}𝐐
𝛾
𝑇

(
𝐼𝑘 = 𝑖||𝜏𝑘−) (41)
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= 𝟏{𝜏𝑘≤𝑇}
𝑝𝑖𝜏𝑘−𝑢𝜏𝑘−
𝑝𝜏𝑘−𝑢𝜏𝑘−

= 𝟏{𝜏𝑘≤𝑇}
𝑝𝑖𝜏𝑘−
𝑝𝜏𝑘−

. (42)

Since 𝐐𝛾|𝜉
𝑇

(
𝜏𝑘 ≤ 𝑇

)
= 1 holds for all 𝑘 ∈ {1,… , 𝜉}, we conclude that

𝐄𝐐𝛾|𝜉
𝑇

(
𝟏𝒜𝟏{𝐼𝑘=𝑖}

)
= 𝐄𝐐𝛾|𝜉

𝑇

(
𝟏𝒜
𝑝𝑖𝜏𝑘−
𝑝𝜏𝑘−

)
(43)

for all 𝒜 ∈ 𝜏𝑘−. Taking 𝛾 ↑ ∞ by Portmanteau’s theorem we obtain

𝐐𝜉
𝑇

(
𝐼𝑘 = 𝑖||𝜏𝑘−) = 𝑝𝑖𝜏𝑘−

𝑝𝜏𝑘−
. (44)

(iii) This is a direct consequence of the Girsanov-Meyer theorem (see Protter (2005,
Theorem III.41).

A.2 Proof of Corollary 3.2

Proof. This follows directly by the arguments in the proof of Theorem 3.1 with some
slight adjustments that lead to significant simplification. Again we take the sequence
of conditional measures 𝐐̂𝛾

𝑇 (⋅ | 𝜉𝑇 ) but for the modified set ̂ 𝜉𝑇 =
{
𝑁𝑇 = 𝜉

}
. Observe

that on ̂ 𝜉𝑇 ,

𝛾
𝑇∕𝐐̂

𝛾
𝑇 (̂ 𝜉𝑇 ) = 𝑒𝑇 ∕𝛾

̂𝜉
𝑇

. (45)

We follow the same arguments that take 𝛾 ↑ ∞ as in the proof of Theorem 3.1. Statement
(i) is simple to prove due to the new definition of ̂ 𝜉𝑇 . Statements (ii)–(iii) are proved in
the same way as in Theorem 3.1.
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