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Central Counterparty Exposure in Stressed Markets

Abstract

Time is valuable, particularly in stressed markets. As central counterparties (CCPs)
have become systemically important, we need to understand the dynamics of their
exposure towards clearing members in real-time. We track such exposure and
decompose it which leads to the following insights. First, the composition of
CCP exposure is fundamentally different in the tails. Second, at extreme levels or
during rapid increases, there is elevated crowding. This is the result of clearing
members all concentrating their positions on a single security or a particular port-
folio, desirable if motivated by hedging, worrying if due to speculation.



1 Introduction
Regulators are worried about central counterparties (CCPs) risk management in
fast markets. Sudden extreme price dislocations (“Flash Crashes”)1 coupled with
super-human trading speeds could have systemic consequences. If traders are un-
able to deliver on their trades, then CCPs become liable for their losses. The
(initial) margins posted by these traders might not be sufficient in which case
losses are effectively mutualized. A recent example is the 2018 failure of a Nas-
daq clearing member where losses swallowed up two-thirds of the default fund.2

Such mutualized loss might itself trigger further defaults in which case the event
becomes systematic.

State of the art risk management at CCPs therefore becomes of first order
importance. CPMI-IOSCO (2017) emphasizes the need for monitoring intraday
CCP exposure and suggests possible sources of its changes (p. 32):

Adverse price movements, as well as participants building larger po-
sitions through new trading (and settlement of maturing trades), can
rapidly increase a CCP’s exposures to its participants. This exposure
can relate to intraday changes in both prices and positions. For the
purposes of addressing these and other forms of risk that may arise
intraday, a CCP should address and monitor on an ongoing basis. . .

In this paper we propose a way for CCPs to monitor their exposure in real-
time with a focus on stressed markets. In such markets, trading is likely to be
fast paced and data therefore streams at extreme speeds. The approach should be
able to cope with such “big data” challenges. More importantly, the monitoring
should yield valuable economic insights that generate an understanding of “what
just happened”, and potentially guide interventions. This leads us to the second
desirable property of a useful approach: exposure levels or changes should be
accompanied by a meaningful decomposition.

We turn to the academic literature on sudden price dislocations and intense
trading to find what decomposition is desirable. Several studies have identified

1On February 5, 2018, VIX futures jumped 20 points, which is the largest daily increase since
the 1987 stock market crash. On October 7, 2016, the British pound dropped by almost ten percent
in just eight minutes. On January 15, 2015, the Swiss franc rose by about 20% against the euro
within five minutes after the Swiss central bank announced that it abandoned its peg against the
euro as per immediately.

2On September 10, 2018, the Nordic-German power spread increased by more than 17 times
the average daily change which triggered the trader’s default.
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a fire-sale channel as the root cause of price dislocations. The narrative is as
follows. In normal times, arbitrageurs smooth prices by trading against pricing
errors (thereby essentially engaging in market making). Suppose that at some
point a critical mass of them crowds on a single risk factor. That is, their portfolio
positions are very similar, say long a book-to-market or size based portfolio.3 If
this position suddenly experiences a significant loss then arbitrageurs face high
variation-margin calls (to mark to market their position). If the arbitrageurs are
capital constrained then they might be forced to free up capital by selling some
of their position. This sell pressure might trigger trades at fire-sale prices, thus
leading to more losses, triggering further selling, etc. (Shleifer and Vishny, 1997;
Gromb and Vayanos, 2002; Brunnermeier and Pedersen, 2009). Perhaps the most
prominent example of such dynamic is the “Quant Meltdown” where the arbi-
trageurs were hedge funds and the portfolios were indeed factor-based portfolios
(Khandani and Lo, 2007, 2011).

With these motivations let us now discuss in more detail what we do in the re-
mainder of the paper. We develop an approach for tracking and decomposing CCP
exposure in real time, or more precisely in trade time The CCP exposure mea-
sure is based on the tail risk of losses in an oncoming period, aggregated across
all clearing members (Duffie and Zhu, 2011; Menkveld, 2017).4 The motivation
behind is that a CCP essentially insures the losses in its members’ portfolios and
thus its exposure is commensurate to aggregate loss in the trader community.5 The
measure relies on analytic results that are all easy to compute. It further allows
for decomposition across clearing members or securities.

We will implement the monitoring approach on a sample of high-frequency
CCP data. We define a stressed market for a CCP by comparing the tails to the
full sample.6 The three questions we focus on are:

3Wagner (2011) clarifies that these arbitrageurs could hold diversified portfolios, yet be ex-
posed to the fire-sale channel. It is position diversity that is the driving force here, not the level of
diversification.

4Menkveld (2017) extends Duffie and Zhu (2011) to focus on the tail risk in losses as opposed
to mean losses.

5The positions that a CCP observes for all its clearing members is in the securities it clears. It
does not see their net positions as there could be partially offsetting positions in securities that it
does not clear or non-traded risk that is being hedged. A prudential CCP will have to assume no
offsetting positions.

6One could argue that the tails are not riskier to a CCP because higher exposures against clear-
ing members are insured by the latter posting higher margins with the CCP. While this is true, it
is also true that if there are losses that exceed the margin, they exceed by a larger amount in the
tail (i.e., loss given default is likely to be larger). A deeper analysis of risk net of margin and other
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1. Are sudden extreme increases in CCP exposure driven by the same factors
as regular exposure changes? Or does one see, for example, elevated crowd-
ing?

2. Is the same true for extreme levels as opposed to extreme changes? Again,
is crowding a larger part of it?

3. Finally, at these extreme levels is the relative contribution of clearing-member
house accounts larger than their for-client accounts? If so, then this is wor-
risome as clearing members are typically highly leveraged financial inter-
mediaries and therefore have less ability to absorb large shocks.

The answers are based on a high-frequency analysis of a 2009-2010 sample of
a European CCP. Time runs in volume buckets of about fifteen minutes. The CCP
was the largest equity CCP in Europe and later merged with DTCC in the US to
become the world’s largest equity CCP. Counterparty risk arises in equity CCPs as
settlement of a trade typically occurs three days after a trade is concluded. A trade
therefore is like a three-day forward contract between the two sides to a trade.
Counterparty risk then pertains to one side defaulting in this period. Admittedly,
analysis of a CCP that insures credit-default swaps or interest-rate swaps would
have been more relevant in terms of systemic risk, but disaggregated CCP data is
extremely hard to come by (see literature review below). The application to actual
CCP data could therefore in and of itself be considered a contribution.

The key empirical findings are several. First, while average CCP exposure
changes are almost entirely driven by position changes of clearing members, when
zooming in on the extreme exposure changes, security volatility and position
crowding start to contribute substantially. For the top 100 changes they collec-
tively contribute about 20%, rising to almost 50% for the top 10 changes. In the
latter case, volatility contributes about 30% and crowding about 20%.

Second, a similar finding pertains when decomposing CCP exposures and
comparing extreme levels of CCP exposure to the rest of the sample. There turns
out to be more crowding at these times too. More specifically, CCP exposure
starts to concentrate with a few clearing members on a smaller set of risk factors.
Comparing the full sample with the top one percent in terms of exposure level, the
contribution of the largest five members increases from 29% to 47%. The con-
tribution of the largest principal component across all risk factors increases from
7% to 42%.

forms of collateralization (e.g., the default fund) are beyond the scope of this study.
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Third, it is not true that relative more of the CCP exposure resides in house
accounts at extreme levels. There is only a modest increase from 67% to 70%
when comparing the full sample to the top 1%. However, it is true that this total
contribution resides with fewer clearing members. In other words, CCP exposure
concentrates on fewer clearing members’ house accounts which in of itself is a
cause of concern. If there is an adverse price shock in this case, the CCP needs to
impose extreme variation-margin calls on a few highly-leveraged institutions.

In sum, the findings collectively suggest that there is concentration of risk both
for rapid exposure increases and at extreme exposure levels. In the latter case,
the crowding is driven both by fewer clearing members taking larger position on
fewer risk factors. The same is observed if one zooms in on house-accounts only,
more concentration. This elevated crowding on all these dimensions raises the risk
of negative price spirals potentially triggering multiple defaults as emphasized in
fire-sale literature.

One additional finding worth emphasizing here is that idiosyncratic events can
have large effects on CCP exposure. An example in our sample is a disappointing
earnings announcement by Nokia at noon on April 22, 2010, which caused its
share price to fall by about 15% in the minutes after and volume jumped and
stayed at an elevated levels throughout the afternoon. Real-time exposure analysis
reveals that the immediate steep exposure jump was due to volatility. This jump
however was only a relatively small part of the extremely large CCP exposure
increase that day. Most of it was due to rapid position expansion through lots
of trading that afternoon. (Note that this is a non-trivial finding as the heavy
volume could have been due to traders reducing their positions after observing
elevated volatility.7) Finally, the contribution of the crowding component that day
is positive — not surprisingly the crowding that day was in the Nokia stock. In
summary, a CCP risk manager should be focused not only on macro news, but
also on security-specific news as it can trigger active position taking (potentially
speculation) which is potentially toxic when combined with a volatility spike and
position crowding.

Our paper contributes to a rapidly expanding empirical literature on central
clearing. CCP trade data disaggregated across members are scarce. Proprietary
daily data have been used to compare CCP exposure to the margins that were
collected (Jones and Perignon, 2013; Menkveld, 2017; Cruz Lopez et al., 2016).

7Bignon and Vuillemey (2016, Fig. 3 and A1) do a forensic analysis on the Paris commodity
futures CCP that failed in 1974. They, for example, find that there was elevated activity (in terms
of transactions) in the half year before failure, but open positions declined (measured in 1000 tons
sugur).
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Duffie, Scheicher, and Vuillemey (2015) analyze a snapshot of bilateral exposures
on uncleared credit default swaps to assess the netting efficiency potential of cen-
tral clearing. Event studies on CCP introductions yield insight in how trading is
affected (Loon and Zhong, 2014, 2016; Menkveld, Pagnotta, and Zoican, 2015;
Benos, Payne, and Vasios, 2016). We contribute to this literature by proposing a
feasible approach to CCP exposure changes in real time and offers an economi-
cally meaningful decomposition.

The paper further contributes to a nascent literature on CCP systemic risk.
Capponi, Cheng, and Rajan (2014) analyze the endogenous build-up of asset con-
centration due to central clearing. Amini, Filipović, and Minca (2015) investi-
gate partial netting for a subset of liabilities in a network setting that accounts
for knock-on effects and asset liquidation effects. Glasserman, Moallemi, and
Yuan (2015) compare margining in dealer markets and a centrally cleared market.
Menkveld (2016) endogenizes the fire sale premium that a CCP will have to pay in
the catastrophic state that a critical mass of members default and liquidity supply
is thus impaired.8

The rest of the paper is organized as follows. Section 2 formalizes and moti-
vates the three overriding hypotheses. Section 3 presents the approach to monitor-
ing and decomposing CCP exposure. Section 4 describes the data and discusses
implementation issues. Section 5 presents the empirical results of testing the three
hypotheses. Section 6 concludes.

2 Hypotheses
This section develops three hypotheses that will be taken to the data. Each hy-
pothesis is stated formally and then followed by a motivation.

Hypothesis 1. The drivers of CCP exposure changes are different in the (right)
tail.

CCP exposure changes can be driven by a variety of factors that are either price
related (e.g., volatility or correlation) or trade related (i.e., trade causes member
positions to change). We expect the latter to dominate CCP exposure changes at
normal times. However, we conjecture that turbulent periods are characterized by
elevated volatility and lots of trading. The strong positive correlation of volatility

8A related set of papers does not focus on concentration and systemic risk but rather on incen-
tives and economic efficiency Koeppl, Monnet, and Temzelides (2012); Fontaine, Perez-Saiz, and
Slive (2014); Acharya and Bisin (2014); Biais, Heider, and Hoerova (2016); Huang (2019).
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and transaction rate is a well-known stylized fact in the microstructure literature
(e.g., Jones, Kaul, and Lipson, 1994).

The intense trading at times of extremely high volatility does not necessarily
imply that CCP exposure increases rapidly. A sudden volatility increase might
actually trigger traders to reduce their recently established positions to contain
risk. Such trading benefits a CCP as it dampens its exposure increase or could
even reduce it in extreme cases.

On the other hand, such volatility shock might lead to (more) speculation in
which case traders increase their positions in magnitude. A heterogeneity in be-
liefs or signals might generate such stronger position taking (e.g., Kim and Ver-
recchia, 1994). Or, in a more recent paper, Crego (2019) proposes a channel by
which risk-averse traders strategically wait with trading on their private signal un-
til after the arrival of a public signal that removes significant uncertainty. Either
way, member positions would increase in magnitude and CCP exposure rapidly
increases as a result.

An even more worrisome channel that could cause high volatility and fast trad-
ing is what, in the literature, is often called a self-reinforcing fire-sale channel. For
example, financially constrained arbitrageurs (hedge funds, sell-side banks, etc.)
hit by adverse-price shocks might have to quickly liquidate their large positions
and thereby cause transitory price shocks (Shleifer and Vishny, 1997; Gromb and
Vayanos, 2002; Brunnermeier and Pedersen, 2009). It would not be a concern if
their positions were diverse (Wagner, 2011). However, arbitrageurs might have
followed similar trading strategies and entered into the same positions (Stein,
2009). As a result, their portfolio returns will be high correlated since the po-
sitions to be liquidated crowd on a single risk factor (e.g., a security or a par-
ticular portfolio). In this case, there might not be enough cash-in-the-market in
which case markets have to clear at fire-sale prices. A prominent example is the
“Quant Meltdown” of 2007 when quantitative equity market-neutral hedge funds
crowded on similar trading strategies and made record losses (Khandani and Lo,
2007, 2011). This risk that the CCP finds itself in this scenario is particularly high
when there is substantial crowding in clearing members’ portfolios.

In sum, testing the hypothesis in the data requires one to decompose CCP ex-
posure changes into, at the minimum, price- and trade-related components whereby
one of the trade-related components should be crowding across clearing members.
It will then be possible to study whether or not members engage relatively more
in expanding their positions and crowding on a particular risk factor.

Hypothesis 2. The structure of CCP exposure levels is different in the (right) tail.
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Hypothesis 2 restates Hypothesis 1 but this time in terms of levels instead of
changes. The reason to also study whether there is, for example, elevated crowd-
ing for extreme levels is derived from studies on historical CCP failures. Bignon
and Vuillemey (2016) study the 1974 failure of the Paris Commodity Clearing
House. They show that in a year starting from November 1973 the position of
the largest clearing member rose from 9% of the total open position in sugar fu-
tures to 56% of it. Another example is the 1987 failure of the Hong Kong Futures
Guarantee Corporation where at the point of failure the largest five members had
accumulated 80% of the short position in all contracts (IMF, 2010).

To fully understand the source of crowding the monitoring approach should
allow for both decomposing the exposure level across clearing members, but also
across risk factors. The reason is that strong crowding could occur because out-
standing positions are held by only a few clearing members. The CCP failures in
Paris and Hong Kong are examples of such crowding. There is however a more
opaque way for there to be elevated crowding. In the extreme case, all clearing
members share an equal position but they crowd on a single risk factor, for exam-
ple one security or a particular portfolio. The 2007 Quant Crisis is an example of
position crowding. Let us turn to a simple example to clarify the difference.

Suppose there are four clearing members and two equal assets with orthogonal
payoff. First consider the baseline case of member 1 and member 2 having traded
asset A and therefore have open and opposite positions in this asset. Suppose
the same holds for member 3 and 4 in asset B. In this baseline case there is no
crowding. Let us now consider the two polar cases of crowding. An example of
perfect member crowding is one where member 1 and 2 trade as in the baseline
case, but member 3 and 4 refrain from trading. An example of perfect position
crowding is again the baseline case, but now member 3 and 4 also trade asset A.
Note that in this case all clearing members have an equal position, yet there is
perfect crowding.

When testing the second hypothesis, it is desirable to not only measure the
level of crowding but also identify whether it is member or position crowding.
These properties will be discussed in more detail when presenting the monitoring
approach in Section 3.3.

Hypothesis 3. The relative contribution of house accounts to CCP exposure in-
creases in the (right) tail.

The third hypothesis is focused on distinguishing clearing-member house and
client accounts. House accounts capture the trading that clearing members do for
their own books whereas in client accounts they register their trading on behalf of
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clients. It is worth decomposing CCP exposure across these two types of accounts
as one could argue that CCP exposure to house accounts carries more risk. Clear-
ing members are often highly leveraged financial intermediaries whose trading is
unlikely to be pure hedging. For example, they often engage in market making to
absorb temporary order imbalance. Therefore relatively more exposure to house
accounts at times of high CCP exposure is likely to be worrisome. Testing the
third hypothesis will show whether or not this is the case.

3 Approach
This section presents an approach to monitoring CCP exposure in real time. It
is based on the framework proposed by Duffie and Zhu (2011) and extended by
Menkveld (2017) to include tail risk and crowding. CCP exposure is essentially a
measure that is based on the distribution of losses in clearing member accounts for
the oncoming period. We study the Value at Risk (VaR) for these losses following
Menkveld (2017).9 We first present the exposure measure in detail, then show how
one could decompose exposure changes needed for testing the first hypothesis,
and finally present exposure level decompositions needed for the second and third
hypothesis.

3.1 The CCP exposure measure: A VaR of aggregate loss
Consider the case of a single CCP, I securities, and J clearing members (or traders,
the two are used interchangeably below). Pt is an I×1 vector consisting of current
security prices and Rt is an I×1 vector that contains next period’s security returns.
Rt is assumed to be normally distributed10: Rt ∼ N(0,Ωt) where Ωt is the I × I
covariance matrix of security returns. Let n j,t be an I × 1 vector that captures a
member’s current dollar positions. The dollar portfolio return for a member in the
next period is then a scalar X j,t where X j,t = n′j,tRt.

Collect all n j,t into an I × J matrix Nt which thus becomes the dollar position
matrix of all members. Collect all X j,t into the J×1 vector Xt which thus becomes
the future return vector for all members, where Xt = N′t Rt. Since Xt is linear in Rt,

9Duffie and Zhu (2011) study the mean loss which is invariant to the level of crowding — the
VaR loss is not.

10The normality assumption yields analytic results and complete level decompositions. To stay
close to normality in the data, the clock will runs in transaction time. Details are in Section 4.2.
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Xt is normally distributed: Xt ∼ N(0,Σt) where Σt = N′t ΩtNt is the J×J covariance
matrix of portfolio returns.

As a CCP is exposed to losses, define

L j,t = −min
(
0, X j,t

)
(1)

as the loss in member j’s portfolio. Then the aggregate loss A in the member
community is:

At =
∑

j

L j,t. (2)

Duffie and Zhu (2011) propose to base CCP exposure on the mean aggregate
loss:

E (At) (3)

and derive an analytical expression for it, which suffices for their analysis of net-
ting efficiency, Menkveld (2017) considers the VaR of aggregate loss a better
measure for CCP risk management and coins it as ExpCCP which is the mea-
sure we will use as well. Following standard practice and to maintain tractability,
Menkveld uses the delta-normal method to compute VaR:

ExpCCPt ≡ VaR(At) = E(At) + αvar(At)
1
2 (4)

where α is a parameter to needs to be calibrated (as will be done in Section 4.2).
Let Lt be the J × 1 vector that stacks all L j,t. Since At =

∑
j L j,t, one needs to

compute E(Lt) and var(Lt) to evaluate (4). Following Menkveld (2017, Proposi-
tion 1) yields the following two results:

E(Lt) = µt, µ j,t =

√
1

2π
σ j,t,

var(Lt) = Ψt, ψi j,t =
π − 1

2π
σi,tσ j,tM

(
ρi j,t

)
,

(5)

where σi j,t is the (i, j)-th element of the covariance matrix of member portfolio

returns Σt, σi,t is short for σ
1
2
ii,t, and ρi j,t = σi j,t/σi,tσ j,t. The function

M(ρ) =

[(
1
2
π + arcsin (ρ)

)
ρ +

√
1 − ρ2 − 1

]
/ (π − 1) (6)

maps portfolio return correlations into portfolio loss correlations. Detailed proofs
are in Menkveld (2017). ExpCCP can now be written explicitly as:

ExpCCPt =
∑

j

√
1

2π
σ j,t + α

∑
i

∑
j

π − 1
2π

σi,tσ j,tM
(
ρi j,t

)
1
2

. (7)
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3.2 Decomposition of CCP exposure change
The first hypothesis states that the drivers of CCP exposure changes are different
in the tail. As discussed in the hypothesis section, sudden extreme CCP exposure
increases might be driven by volatility shocks and crowding in addition to position
changes. To test such hypothesis one needs to decompose exposure changes and
verify to what extent volatility and crowding contribute a larger part in the tail.

We propose to decompose exposure changes based on a relatively straightfor-
ward one-factor-at-a-time (OFAT) analysis (Daniel, 1973). The underlying fac-
tors will consist of price-related factors such as security volatility, correlation, and
price levels and trade-related factors such as member positions per se and crowd-
ing in positions across members. The remainder of this subsection describes the
approach in detail.

Let us start by writing ExpCCPt as defined in (4) as a function of the underly-
ing variables:

ExpCCPt = f (Σt) . (8)

To arrive at a meaningful decomposition across factors we use the following two
insights:

1. Following the financial econometrics literature we decompose covariance
matrices into their diagonal and off-diagonal components as follows (Boller-
slev, 1990; Engle, 2002):

Ψt = DΨtRΨt DΨt , (9)

where DΨt is a diagonal matrix with ψii,t as the i-th diagonal element and
RΨt is the correlation matrix associated with the covariance matrix Ψt. This
decomposition will turn out to be useful to identify correlation effects in
security returns and crowding in portfolio positions.

2. Σt is itself a function of “deeper” variables:

ExpCCPt = f (Σt)
= f

(
NtΩtN′t

)
= f

(
Ωt, Pt, Ñt

) (10)

where the variables are: the covariance matrix of security returns Ωt, the
price level Pt, and the member portfolio holdings’ matrix Ñt expressed in
terms of the number of securities (as opposed to Nt which is expressed in
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dollars). The reason for using Ñt is to be able to pull out a price-level effect
when considering the change from Nt−1 to Nt.

Combining (9) and (10) yields:

ExpCCPt = f (Σt)
= f

(
DΣtRΣt DΣt

)
= f

(
DΣt

(
DΩt ,RΩt , Pt, Ñt

)
,RΣt

(
DΩt ,RΩt , Pt, Ñt

))
,

(11)

which expresses ExpCCPt in terms of price-related variables (DΩt , RΩt , Pt) and
trade-related variables (Ñt). The OFAT decomposition changes these variables
sequentially from their t − 1 value to their value at t. The sequencing matters and
we pick the baseline sequencing according to the following principles:

• Price variables change first, followed by trade variables. The reason for this
sequencing is that it identifies a “pure” price effect. In other words, the price
components communicate what CCP exposure change would have been had
member portfolio not changed.

• Changes in idiosyncratic volatilities precede changes in correlations. In
other words, we first consider changes in the diagonal and then changes in
the off-diagonal of a covariance matrix. This approach makes interpretation
of the components straightforward: Changes in variances become pure in
the sense that they are evaluated keeping correlations constant. Interaction
effects due to correlation-changes all enter the correlations component.

These principles therefore suggest the following baseline OFAT decomposition

∆ExpCCPt = f
(
DΣ

(
1

DΩt ,
2

RΩt ,
3
Pt,

4

Ñt

)
,RΣ

(
1

DΩt ,
2

RΩt ,
3
Pt,

5

Ñt

))
− f

(
DΣ

(
DΩt−1 ,RΩt−1 , Pt−1, Ñt−1

)
,RΣ

(
DΩt−1 ,RΩt−1 , Pt−1, Ñt−1

))
.

(12)

where the sequencing is illustrated by the (red) numbers on top of the various
variables.11 The decomposition yields five components. For example, the first

11As a robustness check, we consider 24 different sequential orders in total (see Section 5.1 and
Appendix D.1).
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component RetVolat is computed as:12

RetVolat = f
(
DΣ

(
DΩt ,RΩt−1 , Pt−1, Ñt−1

)
,RΣ

(
DΩt ,RΩt−1 , Pt−1, Ñt−1

))
− f

(
DΣ

(
DΩt−1 ,RΩt−1 , Pt−1, Ñt−1

)
,RΣ

(
DΩt−1 ,RΩt−1 , Pt−1, Ñt−1

))
.

(13)

which captures the contribution of volatility change.
We list the five components below and discuss each of them in detail. Note

that the numbering corresponds to the red numbers in (12)):

Price components.

1. RetVola: The impact of the change in the volatility security returns on CCP
exposure change. This effect captures the well-known empirical fact that
volatility is time-varying (commonly referred to as “GARCH” or “stochas-
tic volatility” in the financial econometrics literature).

2. RetCorr: The additional impact of a change in the correlations of security
returns on CCP exposure change. The time-varying nature of such cor-
relations is another well known empirical fact and can be identified, for
instance, through a dynamic conditional correlation (DCC) model (Engle,
2002). The impact of changing correlations is particularly important for
sudden steep drops in security prices. Not only does volatility increase in
such events, correlations also tend to increase (Preis et al., 2012). This in-
teraction effect is, by first considering volatilities and then correlations in
the decomposition, completely assigned to RetCorr.

3. PrLevel: The additional impact of a change in the price level of securities.
This effect is entirely due to covariance matrices being defined in relative
terms (i.e., it is based on percentage returns as opposed to dollar returns).
For example, a covariance matrix might not have changed in the interval,
but if price levels dropped, then CCP exposure dropped because the latter is
defined in terms of dollars. Such effect is picked up by PrLevel.

Trade components.

4. TrPosition: The additional impact of new trades that arrived in the interval.
These trades might expand or reduce traders’ legacy positions. CCP expo-
sure therefore does not necessarily increase after new trades. It declines if
their overriding effect was to reduce traders’ positions.

12We include explicit formulas for all five components in Appendix A for completeness.
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5. TrCrowding: The additional effect due to a change in the extent to which
the returns in member portfolios correlate. If such correlations increased
as a result of the new trades, then CCP exposure increased. This effect is
referred to as crowding as increased correlations imply that the new trades
tilted member portfolios towards common risk factors.

In Appendix B we illustrate the decomposition of exposure changes by presenting
a simple example. We discuss how the various components change when changing
either price- or trade-related variables.

3.3 Decomposition of CCP exposure level
Testing the second and third hypothesis requires a decomposition of CCP exposure
level (as opposed to exposure change). To test whether there is more crowding
at higher exposure levels, it is desirable to decompose CCP exposure level across
members and across securities. If one finds more concentration either across mem-
bers or across securities, then there is elevated crowding as discussed in Section 2.

Homogeneity of degree one suggests a natural decomposition of level both
across members and across securities. Let us focus on the decomposition across
members (Menkveld, 2017, Section 1.5). As ExpCCP is homogeneous in risk of
individual members (i.e., σ j), applying Euler’s homogeneous function theorem
yields:13

ExpCCP =
∑

j

σ j

(
∂

∂σ j
ExpCCP

)
. (14)

The contribution of member j therefore is:14

ExpCCP j = σ j

(
∂

∂σ j
ExpCCP

)
=

√
1

2π
σ j +

∑
i∈{J}

α

stdA

(
π − 1

2π

)
σiσ jM(ρi j),

(15)

where

M′
(
ρi j

)
=

1
2π + arcsin

(
ρi j

)
π − 1

. (16)

13Time subscripts are suppressed here for the sake of brevity.
14This equation corresponds to Menkveld (2017, equation (27)). Note that there is typo in (27)

as
√

1/(2π) should have been multiplied by σ j instead of σ2
j . This typo has been corrected in (15)

below.
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Verbally this results suggest that member j’s contribution to ExpCCP is equal to
its level of risk (i.e., σ j) multiplied by the (marginal) price of such risk in terms
of CCP exposure (i.e., ∂

∂σ j
ExpCCP).

A decomposition across securities is derived analogously where the risk units
are ωk instead of σ j. The detailed derivation is included as Appendix C.

4 Application
This intermezzo section presents the data and discusses various implementation
issues. These issues include whether returns are normally distributed (needed for
ExpCCP), estimating the return covariance matrix, and picking the parameter α in
the delta-normal VaR to arrive at a standard 1% exceedance rate.

The data sample used in the application was made available to us by the Eu-
ropean Multilateral Clearing Facility (EMCF). EMCF, now merged with DTCC
in the U.S. to become EuroCCP, is an equity CCP for Nordic stock markets, in-
cluding Denmark, Finland, and Sweden. The sample consists of trade reports
with time stamp, size, price, anonymous counterparty ID and whether the trade
was done on a member’s house account or a client account. A trade done on a
house account is for a clearing member’s own book whereas a client account is
trade done for clients.15 The data sample runs from October 19, 2009, through
September 10, 2010, and includes trades on almost all exchanges: NASDAQ-
OMX, Chi-X, Bats, Burgundy, and Quote MTF. The only exchange whose Nordic
trades it did not clear was Turquoise. Turquoise, however, had a market share of
less than 1% at the time.

An equity CCP insures counterparty risk for equity trades in the period that
starts when a trade is concluded and ends when it settles. When an exchange
concludes a trade, the money and the securities are not immediately transferred.
Such transfer happens three days later in our sample. Should one side to the
trade default in this period, the CCP inherits its position and the trade will follow
through all the way to settlement.

A three-day deferred settlement is conceptually similar to a three-day forward
contract between the two sides of the trade. To fix language, we therefore refer to
yet to settle trades as “positions.” Note that these positions change overnight ab-
sent any trade. This change is simply due to settlement of legacy trades and these

15The new post-crisis EMIR regulation in Europe requires a CCP to segregate trades on house
accounts from those on client accounts as of 2013. Our data sample precedes this date but EMCF
had already implemented such segregation.
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Table 1: Summary statistics. This table presents various summary statistics for the CCP
data sample. Trades on house accounts are for a clearing members’ own book, whereas
client accounts refer to trading they do for clients.

Panel A: General information

Number of trading days 228
Number of stocks 242

Number of members
House accounts 87
Client accounts 139
Total 226

Panel B: Trade information across stocks

Mean Std. Dev. Median
Mean of daily number of trades 590 1,056 102
Mean of daily volume (shares) 398,922 1,074,108 33,143
Mean of daily volume (euro) 4,521,293 9,767,987 371,674

Panel C: Trade information across clearing members (by account type)

All accounts House accounts Client accounts
Mean of daily volume (shares) 1,207,610 1,577,985 819,003
Std of daily volume (shares) 2,259,359 2,747,832 1,497,918
Within member std of daily volume (shares) 879,348 1,261,212 627,665

Mean of end-of-day position (euro) 0 -11,237 11,567
Std of end-of-day position (euro) 1,535,067 1,880,137 1,069,244
Within member std of end-of-day position (euro) 619,105 988,685 387,785

trades are therefore removed from traders’ positions. In other words, if a trader
does not trade for three consecutive days, his position in all equities becomes zero
as all his earlier trades settled. Finally, we refer to a trader’s set of open positions
at any point in time as his portfolio. We emphasize that this is not be confused
with a trader’s portfolio in terms of the equity he is holding. It simply refers to
the yet to settle trades as these are relevant for CCP exposure since it is for these
open positions that the CCP insures counterparty risk.

4.1 Data
Summary statistics. Table 1 introduces the sample by presenting various sum-
mary statistics. The sample captures trading in 242 stocks on 228 days. It contains
226 trading accounts, 87 of which are house accounts and the other 139 are client
accounts.

Disaggregating trades across securities shows that the stocks are reasonably
actively traded. On average a stock trades 590 times per day generating an average
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volume of 4.5 million euro. The corresponding standard deviations are 1,056
and 9.8 million, respectively, thus showing there is considerable variations in the
sample.

Disaggregating trades and positions across member-house and member-client
accounts yields the following insights. For all accounts, the average daily volume
is 1.2 million shares, with a standard deviation of 2.3 million shares. The overall
average position is zero because for every buyer there is a seller. The overall
standard deviation of position is e1.5 million. The within (account) standard
deviation of both volume and position is relatively modest. In other words, most
variation of volume and position is across accounts, but there also is substantial
through-time variation in accounts (at least a third of overall variation).

Separating house and client accounts, one observes that house accounts trade
more actively than client accounts. The average daily volume on house accounts
is 1.6 million shares, twice as large as volume on client accounts. The standard
deviation of house volume is 2.7 million shares, again substantially higher than the
standard deviation of client volume which is 1.5 million shares. House accounts
also have larger variation in terms of position. The standard deviation of house
position is e1.9 million whereas the standard deviation of client position is e1.1
million.

4.2 Implementation issues
Volume clock with aim to recover normally distributed returns. It is well
known that financial returns are not normally distributed when measured on a
wall clock. Returns exhibit negative skewness and excess kurtosis, especially at
high frequencies. However, the financial-econometrics/microstructure literature
has shown that normality of security returns can be recovered when time is mea-
sured on a volume-clock as opposed to the wall-clock (Clark (1973); Ané and Ge-
man (2000); Easley, López de Prado, and O’Hara (2012)). When using a volume
clock security prices are sampled each time a pre-specified amount of volume has
been traded. It turns out that taking log differences of such prices is much closer
to normal with less negative skewness and excess kurtosis.

As normally distributed portfolio returns are important for computing ExpCCP,
we will use a volume-clock in our application inspired by Easley, López de Prado,
and O’Hara (2012).16 We pick the average number of volume bins per day to

16More specifically, the conversion of portfolio-return correlations to portfolio-loss correlations
is done with the M function in (16) which relies on normality.

16



be equal to 34. This corresponds to a 15-minute frequency on the wall clock as
the market is open from 9:00 to 17:30. The bin size therefore is picked to be the
average daily market volume in terms of shares divided by 34. The choice for a
15-minute frequency is common in the microstructure literature as it strikes a bal-
ance between sample size and microstructure noise (Hansen and Lunde, 2006).
As a robustness check, we consider other frequencies as well (see Section 5.1 and
Appendix D.3).

Our implementation follows the extant volume-clock literature except for two
notable differences. First, instead of creating a clock security by security based on
security-specific trading, we group all securities together and implement the clock
on the group. Suppose the clock starts now, then the latest prices known now are
stacked into a vector. If the volume bin is one million shares, then we wait until
one million shares were traded across all securities, and then again stack the latest
prices of all securities into a vector. Returns then are obtained through standard
log differencing. The benefit of this approach is that we have a unified (market)
volume-clock.

Second, ideally trades should be grouped only by volume, completely ignor-
ing wall-clock time. However, in order to accommodate the settlement of legacy
trades at the end of each day, we group trades intra-daily for each day separately.17

To assess whether the volume-clock delivers closer to normally distributed
returns than the wall-clock, we compute both based on member portfolio dollar
returns. Wall-clock returns are based on 15-minute intervals. Table 2 presents
skewness of returns, their excess kurtosis, and the Jarque-Bera statistic which
includes both skewness and kurtosis. Under the null of normality, these statistics
are all zero in expectation. Return statistics are presented individually for the
largest five clearing members in terms of volume, for all them pooled, and for all
members pooled.

The results show strong evidence in favor of the volume-clock when returns
are required to be normal. All three statistics are substantially smaller in mag-
nitude for all five members. When pooled, skewness drops from 0.96 to 0.07,
kurtosis drops from 46.13 to 3.15, and the Jarque-Bera statistic drops from 92.11
to 0.69. For all clearing members pooled, skewness decreases in magnitude from
-0.61 to -0.21, kurtosis drops from 199.91 to 31.86, and Jarque-Bera drops from
1709.43 to 32.25. These statistics suggest that non-normality is much less of an
issue for the volume-clock consistent with earlier literature.

17In case of any residual trades due to imperfect grouping, they are included in the last bin of
each day.

17



Table 2: Statistics on member portfolio returns: Wall- versus volume-clock. This
table presents various statistics on realized dollar returns on member portfolios. These
statistics are presented for wall-clock and volume-clock returns to assess to what extent
the returns are normally distributed. The statistics include skewness, excess kurtosis,
and the Jarque-Bera statistic. The latter combines the former to and is computed as
(S 2 + K2/4)/6, where S is the skewness and K is the excess kurtosis. The clock runs
in 15-minute intervals for the wall-clock and for a bin size that, on average, makes a vol-
ume bin last 15 minutes. Statistics are presented for the largest five members in terms of
volume, for them pooled, and for all members pooled.

Skewness Kurtosis Jarque-Bera
Member Wall-clock Volume-clock Wall-clock Volume-clock Wall-clock Volume-clock

Largest -0.29 -0.15 8.69 3.23 3.16 0.44
2nd largest 1.47 0.00 30.04 4.75 37.96 0.94
3rd largest 1.76 0.11 107.78 2.24 484.52 0.21
4th largest -0.46 0.10 15.73 1.33 10.35 0.08
5th largest 1.97 0.28 46.85 4.04 92.11 0.69
Largest 5 pooled 0.96 0.07 46.13 3.15 88.82 0.41
All pooled -0.61 -0.21 202.55 27.82 1709.43 32.25

Estimate the time-varying return covariance matrix. To account for time-
varying volatility in returns, we estimate Ωt as the exponentially weighted moving
average (EWMA) of the outer product of returns. This follows standard practice
(e.g., RiskMetrics and EMCF) and corresponds to estimating an IGARCH(1,1).

What remains is to pick the EWMA decay parameter. RiskMetrics uses 0.94
when implementing their estimate on their highest frequency: daily data. As
round-the-clock variance is 47 times the intraday 15-minute variance18 we pick
the decay parameter to be 0.9987 as 0.998747 = 0.94. Ωt is therefore calculated
recursively as:19

Ωt = (1 − 0.9987)Rt−1R′t−1 + 0.9987Ωt−1. (17)

The sample we use for analyzing CCP exposure starts on December 7, 2009, but
we use data as of October 19 that year to have a burn-in period for Ωt. We start
the recursion off with the zero matrix, but given that 0.94 corresponds to a half-
life of 11 days, the effect of this choice is negligible by the time we arrive at

18Note that as the trading period contains 34 15-minute intervals, this implies that the variance
of overnight returns corresponds to about the variance of 47-34=13 intraday 15 minute intervals.

19Given that the overnight period in terms of volatility corresponds to five 15-minute inter-
vals, we update the covariance matrix when encountering an overnight return Rt−1 by Ωt =

(1 − 0.99875)R̃t−1R̃′t−1 + 0.99875Ωt−1 where R̃t−1 = Rt−1/
√

5.
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December 7, 2009. As robustness check, we use a rolling-window estimate of the
covariance matrix and the results do not change qualitatively (see Section 5.1 and
Appendix D.2).

Pick α to make ExpCCP a 99% VaR. CPMI-IOSCO (2012) recommends that
a CCP use a 99% VaR to set margins. We follow this lead and calibrate the alpha
parameter in our delta-normal VaR to 2.5 to achieve an exceedance rate of 1%.20

5 Results
This section starts with presenting the time series of CCP exposure levels and
changes. Several salient spikes will be discussed. It is followed by three subsec-
tions in which the three hypotheses of Section 2 are tested.

Figure 1 plots the CCP exposure measure ExpCCP for all volume bins in
the sample. The top graph plots its level throughout the sample and reveals one
salient large spike in May 2010. This turns out to be the peak month in the Greek
sovereign wealth crisis.21 ExpCCP reached e8 million which is the 99% VaR of
losses across all members in the oncoming volume bin. Although such level is
about triple the average level, it still is a relatively moderate amount and will not
cause a systemic crisis in and of itself. As stated in the introduction, equity CCPs
are unlikely to be systemic but as CCP data is extremely scarce we are blessed to
have such data. We believe it is interesting to study the dynamics (which is what
we do in the remainder of the section) to test several hypotheses. We hope future
research will benefit from derivative CCP data.

High levels of CCP exposure in Nordic equity markets during the Greek sovereign
debt crisis might sound surprising. It is however not that surprising given the liter-
ature on this crisis. For example, Mink and De Haan (2013) find that news about
the Greek bailout generally led to abnormal stock returns for European (including
Nordic) banks: Positive returns for regulatory initiatives that favor banks, negative

20Note that aggregate loss is not normal since it is the sum of truncated normals and therefore
not normal.

21A review of the main events in this month is as follows. On May 5 mass protests erupted
in Greece against the imposed austerity measures, with three deaths reported. This social unrest
led to concerns that it could jeopardize the rescue package proposed by the European Union and
the International Monetary Fund on May 2. To fund this intervention and future ones, the Euro-
pean Commission created the European Financial Stabilisation Mechanism on May 9 (EC, 2010).
On May 10, the European Central Bank announced the Securities Markets Program to address
“dysfunctional” securities markets (ECB, 2010).
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Figure 1: CCP exposure level and change. This figure plots CCP exposure ExpCCP for
all volume bins in the sample. Each volume bin corresponds to a 15 minutes on the wall
clock on average. Panel (a) plots exposure level defined as the 99% VaR of aggregate
loss in member accounts for the oncoming period (i.e., volume bin). Panel (b) plots the
first difference of this series. Each shaded area corresponds to one month and wider areas
therefore reflect more trading volume during the month.
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returns otherwise. Bhanot et al. (2014) find that Greek yield spread increases are
associated with negative abnormal returns on financial stocks throughout Europe.
Beetsma et al. (2013) document spillover effects from the Greek yield spread to
those of other European counties and Candelon, Sy, and Arezki (2011) find sim-
ilar evidence when studying credit default swaps (CDS) on sovereign debt. We
will return to this event when decomposing ExpCCP in Section 5.2. The bottom
graph of Figure 1 plots exposure changes instead of levels. It shows that periods
with high levels do not necessarily correspond to periods with disproportionate
intraday increases. It is the latter that CPMI-IOSCO (2017) is particularly wor-
ried about when presenting its latest guidance on CCP risk management. The two
peaks correspond to the following two idiosyncratic events:

1. At noon on April 22, 2010, Nokia announced earnings that were far be-
low analyst expectations. Its share price dropped by about 15% in subse-
quent minutes. Volume jumped and remained high throughout the after-
noon, 400% above what volume was in the morning of that day.

2. Shortly after market open on August 18, 2010, the world No.1 wind turbine
maker Vestas posted a surprise second-quarter loss and unexpectedly cut
its 2010 earnings outlook. The share price dropped by 21% in subsequent
minutes on highly elevated volume.

We revisit the “Nokia event” when decomposing ∆ExpCCP in Section 5.1.

5.1 H1: The drivers of CCP exposure changes are different in
the (right) tail.

Hypothesis 5.1 states essentially states that extremely large sudden increases in
CCP exposure are different in nature than regular changes. As discussed in the
hypothesis development section (Section 2), they are likely to reflect a jump in
volatility and elevated trading. There might also be crowding if members all tilt
their portfolio to the single risk factor at the heart of the turbulence (in the later
part of the section, we explore a Nokia event to illustrate). These stand in contrast
to “average” changes in CCP exposure that we conjecture mostly reflect member
position changes due to trade.

To test the hypothesis, we decompose CCP exposure changes into various
components for the full sample, for the top 100 increase, and for the top 10 in-
creases (See Section 3.2 for details on the decomposition approach). Table 3
presents the decomposition results and yields the following insights. First, for the
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Table 3: Decomposition of changes in CCP exposure. This table presents the com-
position of CCP exposure change for all changes and separately for the top 100 and top
10 changes. Panel A presents the decomposition in euro. Panel B presents the same de-
composition but in percentages. The five components capture changes in security return
volatilities (RetVola), security return correlations (RetCorr), the pricing level (PrLevel),
outstanding member positions (TrPosition), and the extent of overlap in member positions
(TrCrowding).

Full sample Top 100 ∆ExpCCP Top 10 ∆ExpCCP

Panel A : CCP exposure change decomposition in euro
RetVola -636 6,056 45,920
RetCorr -102 823 -2,899
PrLevel -143 6,167 -6,091
TrPosition 19,734 58,247 82,307
TrCrowding 685 10,731 23,295
∆ExpCCP 19,538 82,023 142,532

Panel B: CCP exposure change decomposition in percentage
RetVola -3.3% 7.4% 32.3%
RetCorr -0.5% 1.0% -2.0%
PrLevel -0.7% 7.5% -4.3%
TrPosition 101.0% 71.0% 57.7%
TrCrowding 3.5% 13.1% 16.3%
∆ExpCCP 100.0% 100.0% 100.0%

full sample indeed member positions is the only component that explains position
changes.

Second, when zooming in on the top 100 and top 10 changes, a different pic-
ture emerges. While position drops to 71.0% and 57.7% respectively, two other
components, volatility and crowding, grow much more important. The volatility
component makes up only -3.3% of the exposure change for the full sample but
jumps to 7.4% and 32.2% for the top 100 and top 10 increases, respectively.22 The
crowding component is only 3.5% of the exposure changes for the full sample but
jumps 13.1% and 16.3% the top 100 and top 10 increases, respectively.

Third, the price and correlation component remain small in the two subsam-
ples. Overall, all of these findings support the hypothesis that extreme increases
in CCP exposure are different in nature than overall average changes. Specifically,
while average CCP exposure changes are close to completely driven by member
position changes, extreme ones exhibit substantial contributions from volatility
changes and increased position crowding across members.

In Appendix D we show that these findings are robust to changing the com-

22Note that percentages in this analysis can turn negative since they simply represent a compo-
nent’s contribution scaled by total changes in CCP exposure.
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ponent sequencing, the estimate of the time-varying return covariance, and the
sampling frequency. One notable result worth mentioning here is that for lower
frequencies the difference between the full sample and the top 10 gets attenuated.
This highlights the importance of monitoring changes in CCP exposure at high
frequencies.23

To illustrate these general findings, we zoom in one of the two largest two
CCP exposure increases and provide a diagnostic analysis. Panel (a) of Figure 2
graphically decomposes the exposure jump immediate following Nokia’s disap-
pointing announcement. A couple of features stand out. First, return volatility is
by far the largest component: e0.37 million. Its effect is moderated some by the
price-level component being negative: e-0.10 million. In other words, volatility
spikes due to a large and immediate negative return on Nokia of about -15%, but
relative volatility operates at a lower price level because of the negative return.
It is the latter effect that is subsumed by the price-level component. Finally, the
trade components all add to CCP exposure implying that on average traders are
expanding their positions and their position-taking leads to more crowding. All
these trade component however are dwarfed by the volatility component.

Panel (b) of Figure 2 zooms out and shows how CCP exposure built up through-
out the day of the Nokia event. Its most salient feature is that while the volatility
spike dominates exposure change in the volume bin after the event, it is only
about a fifth of that day’s exposure change. The reason is that volatility is a neg-
ligible component (i.e., no further strong changes in volatility) in the hours after
the event, but trade components contribute a lot to CCP exposure changes in the
afternoon.

Elevated volume in the afternoon turns out to be of the nature that traders ex-
pand their positions in the aftermath of the event, they do not reduce them. This
might be due to diverging beliefs on how the Nokia events affects the company’s
fundamental value. There is also substantial crowding. Finally, there does not
seem to be substantial position-taking ahead of the announcement as all compo-
nents only start to contribute substantially after the announcement.

Perhaps the most important message of these Nokia results is that firm-specific
shocks can have systemic impact through heightened CCP exposure. News that
strikes like lightning causes volatility to spike and, more importantly, makes traders
expand their position in such a way that there more concentration in their portfo-

23For completeness we also did these robustness analyses for the empirical results on the second
and third hypothesis. Again, the results do not change qualitatively. To conserve space we decided
to only provide these robustness results upon request.
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Figure 2: Decomposition of an extreme CCP exposure increases: Nokia. At noon on
April 22, Nokia announced disappointing earnings which caused the stock price to drop
by 15% on elevated trading. CCP exposure rose steeply in the volume bin just after, being
one of the two extreme exposure increases in the sample. Panel (a) decomposes this ex-
posure change into five components: security return volatilities (RetVola), security return
correlations (RetCorr), the pricing level (PrLevel), outstanding member positions (TrPo-
sition), and the extent of overlap in member positions (TrCrowding). Panel (b) bottom
panel zooms out and cumulates these components for the full day.

lios (i.e., crowding).
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Table 4: Decomposition of CCP exposure across members and across stocks. This ta-
ble presents the results of decomposing CCP exposures across members and across stocks,
for the full sample and for subsamples with high levels. Various concentration measures
are reported: the share of the member with the highest level, the five highest levels, and
the 10 highest levels. The table further reports the Herfindahl-Hirschman Index.

Full sample Top 10% ExpCCP Top 1% ExpCCP

Panel A: Decomposition of CCP exposure across traders
Top 1 member 9.5% 14.8% 26.3%
Top 5 members 28.5% 35.2% 47.3%
Top 10 members 42.5% 48.6% 57.3%
Herfindahl-Hirschman Index (HHI) 0.031 0.048 0.088

Panel B: Decomposition of CCP exposure across stocks
Top 1 stock 17.4% 22.2% 14.8%
Top 5 stocks 42.6% 44.1% 39.1%
Top 10 stocks 59.4% 59.4% 56.7%
Herfindahl-Hirschman Index (HHI) 0.075 0.124 0.048

5.2 H2: The structure of CCP exposure levels is different in the
(right) tail.

The second hypothesis focuses on extremely large exposure levels as opposed to
changes. Does one see evidence of elevated exposure concentration (i.e., crowd-
ing) either across members, across (combination of) stocks, or across both? Such
finding would raise concerns about market conditions that are potentially prone to
fire-sale dynamics. The analysis we perform in this subsection measure concen-
tration in the tail and compares it to overall average levels. If there is such elevated
concentration the decomposition across members and stocks will highlight where
it originates.

To verify whether the structure of CCP exposure is different in the tail, we
decompose exposure for the full sample and for the subsamples of the top 10%
and the top 1% CCP exposure levels (see Section 3.3 for details on the decom-
position).24 The decomposition is done both across members and across stocks.
We the compute the Herfindahl-Hirschman Index (HHI) along with shares of the
largest 1, 5, and 10 contributors to measure the concentration level.

Table 4 reveals that indeed concentration seems elevated in the tail but only

24The reason for picking the top 10% here instead of the top 100 used in the previous subsection
is that CCP exposure levels are very persistent as compared to exposure changes. The top 100
subsample is smaller than the top 10% one and, therefore, when used in the level analysis it would
essentially point to the same period of time. The same argument applies to picking top 1% instead
of top 10.
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Table 5: Principal component analysis of member portfolio returns. This table uses
principal component analysis to characterize the commonality in member portfolio returns
for the full sample and for subsamples where either CCP exposure levels or changes are
extreme. It reports the size of the first, the second, and the third principal component
along with the sum of these three.

Full sample Top 10% ExpCCP Top 1% ExpCCP

PC1 7.1% 20.3% 41.7%
PC2 5.0% 9.3% 8.3%
PC3 2.7% 5.6% 5.3%
PC1+PC2+PC3 14.8% 35.3% 55.4%

for members, not for individual stocks. For all three share measures (i.e., share
of the top 1, 5, and 10 members) the concentration increases substantially from
the full sample to the top 1% sample. For example, the share of the largest five
members increases from 28.5% to 35.2% and 47.3% for the top 10% and top
1%, respectively. The HHI index shows a similar trend and increases from 0.031
to 0.048 and 0.088, respectively. There is no such trend in the corresponding
numbers for the decomposition across individual stocks. The share of the top five
members, for example, stays rather flat. It changes from 42.6% to 44.1% and
39.1% for the top 10% and top 1% exposure level, respectively.

The unchanged concentration for the decomposition across stocks does not
preclude crowding in a particular portfolio of stocks. To study whether this is the
case, we apply principal component analysis (PCA) on member portfolio returns
for the full sample and both subsamples. Table 5 shows that there does appear to
be elevated crowding when comparing the full sample with the two subsamples.
It is strongest for the first principal component whose share in total variance in-
creases from 7.1% in the full sample to 20.3% for the top 10% sample and 41.7%
for the top 1% sample. As the extreme CCP exposures occur mostly in the Greek
crisis period, it is likely that this components captures this macro event. To ver-
ify, we compute the correlation of PC1 with the local market index and find its
correlation to be 0.41, 0.85, and 0.97 for the full sample and the two consecutive
subsamples. Indeed, in these times of elevated exposure members appear to trade
mostly the plain-vanilla market portfolio. The table further shows that there is a
monotonic increase for PC2 and PC3 as well, but those increases are much more
moderate in size.

Finally, to illustrate these results graphically Figure 3 plots the Herfindahl-
Hirschman index for both cross-member and cross-stock decompositions (see Ta-
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(b) Herfindahl-Hirschman Index (HHI) of decomposition across stocks

Figure 3: CCP exposure dispersion across members and across stocks. This figure
plots the Herfindahl-Hirschman Index (HHI) of CCP exposure decomposed across mem-
bers in Panel (a), and across stocks in Panel (b). It therefore tracks the level of concentra-
tion across time. The plots also plot CCP exposure levels (right y-axis).
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Table 6: Decompositions CCP exposure across house and client accounts. Panel A
decomposes CCP exposure across house and client accounts. Panel B shows the concen-
tration of CCP exposure within each account type by means of the Herfindahl-Hirschman
Index (HHI). Both panels consider the full sample and subsamples of the top 10% and the
top 1% CCP exposure levels.

Full sample Top 10% Top 1%

Panel A: Decomposition CCP exposure across account type
Contribution by house accounts (%) 67.2% 67.6% 70.3%
Contribution by client accounts (%) 32.8% 32.4% 29.7%

Panel B: Concentration CCP exposure within account type
Herfindahl-Hirschman Index (HHI) within house accounts 0.052 0.085 0.163
Herfindahl-Hirschman Index (HHI) within client accounts 0.070 0.077 0.085

ble 4). Panel (a) plots the cross-member index in solid red and overlays the CCP
exposure level in dashed blue (using the second y-axis). It illustrates that high-
est concentrations are occur mostly in the Greek crisis period. Panel (b) plots
the cross-stock index and, as expected, it stays rather flat at times where CCP
exposure peaks, but interestingly it does exhibit peaks but these appear to occur
at times of extreme level increases as analyzed in the previous subsection. The
Nokia and Vestas events correspond with the salient peaks. Upon further inspec-
tion we unsurprisingly find that the concentration manifests itself in the stocks of
Nokia and Vestas, respectively.

5.3 H3: The relative contribution of house accounts increases
in the (right) tail.

The third hypothesis states that the relative contribution of house accounts is
higher for extreme CCP exposure levels. This is potentially worrisome as clearing
members are highly leveraged financial institutions.

Table 6 presents evidence largely rejecting the third hypothesis. The decom-
position across house and client accounts in Panel A shows that house accounts
contribute 67.2% to CCP exposure in the full sample. This contribution however
almost does not change in top 10% subsample and increases only mildly to 70.3%
in the top 1% subsample.

Panel B shows that in spite of the relative contribution of all house accounts
combined being rather flat across subsamples, there is concentration within house
accounts. The Herfindahl-Hirschman index computed based on each member’s
house account’s share in total house accounts increases from 0.052 for the full
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sample to 0.085 for the top 10% and 0.163 for the top 1%. The results suggest that
in stressed markets the positions in the books of some clearing members expand
while the positions of others shrink. This causes their total contribution to CCP
exposure to remain unchanged, yet there is more concentration within the set of
clearing members.

There appears to be no such pattern for client accounts whose collective con-
tribution remains flat across the three samples but also the within-client concentra-
tion remains largely unchanged. The Herfindahl-Hirschman index is 0.070 for the
full sample, 0.077 for the top 10% subsample, and 0.085 for the top 1% sample.

In sum, the significantly higher concentration within house accounts is po-
tentially worrisome. Most clearing members are highly leveraged sell-side banks
who, if trading for speculative reasons, might default on their position if they turn
out to be on the wrong side of the bet. Given that they seem to crowd on the
same (set of) risk factors, there might be multiple that are heavily under water on
their bets at the same time. Admittedly, it is unlikely that they default on their
equity trades, but if the same pattern holds true for CCPs that clear interest rate
derivatives or CDS contracts, then such dynamic does become a systemic worry.

6 Conclusion
In summary, we test three hypotheses about the exposure a CCP has vis-à-vis its
clearing members. All three hypotheses focus on tail events and whether or not
the nature of CCP exposure changes in such cases. The academic literature has
emphasized elevated concentration (i.e., crowding) in such stressed markets with
a risk of fire-sale price dynamics.

We develop an approach for monitoring CCP exposure whereby both expo-
sure level and exposure changes can be decomposed to identify the relative con-
tribution of various factors. The empirical results confirm the hypothesized dif-
ferences when comparing extreme CCP exposure levels or changes to the full
sample. There indeed is more crowding in the tails. The hypothesized higher con-
tribution by clearing member house accounts as opposed to client accounts did
not find empirical support. However, within house accounts there is more concen-
tration with few clearing members contributing a disproportionate amount of total
house-account exposure.

Our findings suggest that CCP executives and regulators should monitor at
high frequency with particular focus on tail events. Whether or not contingency
planning is needed and if so, in what form, is for future research. We however
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believe that the approach we developed is useful for monitoring CCP exposure at
high frequencies. The decompositions allow for immediate diagnostic analysis.
As all results are analytic thus avoiding heavy-duty simulations, the approach can
be implemented in real-time. This we believe is an asset in today’s extremely fast
markets.
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Appendix

A Decomposition of CCP exposure change
This section presents the various components that add up to CCP exposure change
from t − 1 to t:

∆ExpCCPt = RetVolat + RetCorrt + PrLevelt︸                                   ︷︷                                   ︸
Price components

+ TrPositiont + TrCrowdingt︸                            ︷︷                            ︸
Trade components

.
(18)

Price components. The three price components are:
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Trade components. The two trade components are:

TrPositiont = f
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B Example of CCP exposure change analysis
Table 7 summarily presents the insights a decomposition of CCP exposure changes
can generate based on a very simple example. Suppose there are four agents (A1,
A2, A3, A4) and two securities (S1 and S2) that trade at a price of one with returns
that are standard normal and mutually independent at least at the beginning of
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time. All agents start with a zero position in the securities. To illustrate real-time
CCP exposure monitoring, we consider a sequence of events occurring in subse-
quent periods. We compute CCP exposure change for each period and present
its decomposition. This controlled setting serves to familiarize with the approach
before implementing it on real data.

The first two columns describe the sequence of events. CCP exposure is com-
puted at each snapshot based on the loss distribution for the oncoming period. In
some cases, events are illustrated by horizontal arrows that correspond to posi-
tions in the first security. Arrows that point right denote long positions. Arrows
left denote short positions. Vertical arrows correspond to positions in the second
security. Arrows up denote long positions. Arrows down denote short positions.
The remaining columns present CCP exposure, its change over the period just
ended, and the decomposition into the five factors. These changes and decompo-
sitions are discussed below.

• t = 0. CCP exposure is 0 for the simple reason that none of agents has a
position.

• t = 1. A1 has entered a one unit long position on S1 and A2 is on the
opposite side of that trade. CCP exposure becomes 2.3. The decomposition
shows that 2.9 is due to expanded positions (TrPosition) and the crowding
component is -0.6 (TrCrowding). The reason for this negative crowding
term is simply that in this case the members have taken the opposite site
of the same trade and their portfolio returns are thus perfectly negatively
correlated.

• t = 2. A3 has entered a one unit long position in S2 with A4 has taken
the short side. CCP exposure increases by 1.4 units to 3.7. The decom-
position shows a positive TrPosition of 1.8 and a negative TrCrowding of
-0.4. The positive position risk is because the new trade leads to larger posi-
tions. Furthermore, the new trade between A3 and A4 is in S2 and therefore
orthogonal to the positions between A1 and A2. In other words, the new
trade between A3 and A4 lowers the correlations between member portfolio
returns. Hence, there is less crowding now than before.

• t = 3. The return volatility of S1 has increased from 1 to 2. CCP expo-
sure increases by 2.0 to 5.7. The decomposition indeed attributes it to the
volatility component (RetVola).
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Table 7: Simple example to illustrate the decomposition of CCP exposure changes.
This example illustrates how the OFAT decomposition approach identifies the different
components in CCP exposure changes. There are four agents (A1, A2, A3, A4) and two
securities (S1, S2). Arrows denote positions in these securities. Arrows right and left
illustrate long and short positions in S1, arrows up and down illustrate long and short po-
sitions in S2. Red dashed arrows correspond to new trades in the interval. CCP exposures
are computed with α = 2.5, which is the calibrated value based on our real-world sample
(see Section 4.2).

t Trades/changes ExpCCPt ∆ExpCCPt =RetVolat+RetCorrt+PrLevelt+TrPositiont+TrCrowdingt

0
σ1 = σ2 = 1, ρ = 0,

p1 = p2 = 1. 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 A2 A1 2.3 2.3 0.0 0.0 0.0 2.9 -0.6

2

A3

A4

A2 A1

3.7 1.4 0.0 0.0 0.0 1.8 -0.4

3
Volatility changes

from σ1 = σ2 = 1 to
σ1 = 2, σ2 = 1.

5.7 2.0 2.0 0.0 0.0 0.0 0.0

4
Return correlation

changes from ρ = 0 to
ρ = 0.5.

6,0 0.3 0.0 0.3 0.0 0.0 0.0

5
Price level changes
from p1 = p2 = 1 to

p1 = 0.5, p2 = 1.
3.9 -2.1 0.0 0.0 -2.1 0.0 0.0

6

A3

A4

A4 A3

A2 A1

6.7 2.8 0.0 0.0 0.0 1.5 1.3

7

A3

A4

A4 A3

A2 A1

A4

A3

4.6 -2.1 0.0 0.0 0.0 -2.0 -0.1
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• t = 4. The correlation between the returns of S1 and S2 increases from 0 to
0.5. CCP exposure increases by 0.3 to 6.0. The decomposition assigns it to
the correlations component (RetCorr).

• t = 5. The price of S1 drops from 1 to 0.5. CCP exposure drops by 2.1
which is completely assigned to the price level (PrLevel). This is simply
the result of volatility being defined in relative terms. If it does not change,
but the price level drops then the VaR expressed in dollars drops.

• t = 6. A3 trades again with A4 but this time he enters a one-unit long posi-
tion in S1 where A4 takes the short side. CCP exposure increases by 2.8 to
6.7. Positions now crowd on the risk factor S1. The decompositions assigns
1.3 of the increase to TrCrowding and the remaining 1.5 to TrPosition.

• t = 7. A3 and A4 effectively undo their first trade by entering a reverse
trade. In this reverse trade A3 is long one unit of S2 and A4 is short one
unit. CCP exposure declines by 2.1 to 4.6. The decomposition shows that
most of the decrease is due to a reduction in outstanding (net) positions (i.e.,
the drop is largely assigned to TrPosition). This event shows that trade does
not necessarily imply more exposure, it could reduce exposure when, after
the trade, positions shrink. Note that combining t = 6 and t = 7 the size
of trade positions have not changed — members are long or short the same
amount of risk — but CCP exposure has increased due position crowding.

In summary, decomposition of CCP exposure changes generates insight into
the drivers of these changes. TrPosition picks up whether new trades extend or
reverse legacy positions. TrCrowding captures the correlation of member portfolio
returns. RetVola, RetCorr, and PrLevel identify exposure changes due to changes
in the volatility of returns, their correlations, and price levels, respectively.

C Decomposition of CCP exposure across securities
ExpCCP being homogeneous of degree one in ωk, k = 1, 2, . . . , I yields:

ExpCCP =
∑

i

ωk

(
∂

∂ωk
ExpCCP

)
. (24)
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The contribution of security k therefore is:
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where
Bi j = n′i

∂Ω

∂ωk
n j. (26)

Note that each element ωi j of the covariance matrix Ω can be written as ρi jωiω j

where ρi j denotes the elements of the accompanying correlation matrix. This
should clarify what the result of the partial derivative ∂Ω

∂ωk
is.

D Robustness checks

D.1 Alternative sequencing in exposure change decomposition
The decomposition of CCP exposure change presented in Table 3 and discussed
in Section 5.1 critically depends on the sequencing of the various components.
To verify how robust the decomposition results are to alternative sequences, we
redo the analysis across all possible alternatives. As the components sort into
two groups that are naturally preserved in the ordering, we end up with doing the
decomposition for 2 × 3! × 2! = 24 possible sequences.

The results in Table 8 show that the decomposition results appear robust. The
table reports the mean, the lower and the upper bound of each component’s contri-
bution across all 24 sequences. The distance between the lower and upper bounds
seems small as it only a few percentage points for the relative shares reported in
Panel B, never exceeding six points. The key observations in the main text all hold
up: The position component dominates all other for the full sample, but volatility
and crowding become progressively more important when considering only the
top-100 and top-10 exposure changes.
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Table 8: Decomposition of exposure change for alternative component sequences.
This table presents the mean and, in brackets, the lower and the upper bound of the (rel-
ative) share of components across alternative sequences of the various components. It
serves as a robustness check for Table 3 which is based on a particularly economically
motivated sequence. The price and trade variables are kept together as a group so the
number of sequences considered is 2 × 3! × 2! = 24.

Full sample Top 100 ∆ExpCCP Top 10 ∆ExpCCP

Panel A : CCP exposure change decomposition in euro
RetVola -637 5,995 45,054

(-646, -628) (5,586, 6,415) (4,1252, 4,8940)
RetCorr -102 864 -2,649

(-105, -99) (809, 917) (-3,216, -2,107)
PrLevel -143 6,335 -4,335

(-150, -136) (6,098, 6,564) (-6,632, -2,094)
TrPosition 20,301 59,325 83,879

(19737, 20,865) (58,033, 60,631) (80,707, 87,171)
TrCrowding 118 9,504 20,584

(-446, 683) (8,298, 10,723) (18,009, 23,280)
∆ExpCCP 19,538 82,023 142,532

Panel B: CCP exposure change decomposition in percentage
RetVola -3.3% 7.3% 31.6%

(-3.3%, -3.2%) (6.8%, 7.8%) (28.9%, 34.3%)
RetCorr -0.5% 1.1% -1.9%

(-0.5%, -0.5%) (1.0%, 1.1%) (-2.3%, -1.5%)
PrLevel -0.7% 7.7% -3.0%

(-0.8%, -0.7%) (7.4%, 8.0%) (-4.7%, -1.5%)
TrPosition 103.9% 72.3% 58.8%

(101%, 106.8%) (70.8%, 73.9%) (56.6%, 61.2%)
TrCrowding 0.6% 11.6% 14.4%

(-2.3%, 3.5%) (10.1%, 13.1%) (12.6%, 16.3%)
∆ExpCCP 100.0% 100.0% 100.0%
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Table 9: Decomposition of exposure change for rolling-window estimate of return co-
variance. This table repeats the baseline exposure change decomposition result reported
in Table 3 and adds the decomposition result when, instead of an EWMA estimate of the
return covariance, one uses a rolling-window estimate based on 50 days (same as burn-in
period used for EWMA).

EWMA estimate of Cov(R) Rolling-window estimate of Cov(R)

Full sample Top 100 Top10 Full sample Top 100 Top10

Panel A : CCP exposure change decomposition in euro
RetVola -636 6,056 45,920 -429 3,911 30,171
RetCorr -102 823 -2,899 12 496 -922
PrLevel -143 6,167 -6,091 -145 5,455 -2,255
TrPosition 19,734 58,247 82,307 19,705 58,676 76,311
TrCrowding 685 10,731 23,295 684 11,737 20,423
∆ExpCCP 19,538 82,023 142,532 19,826 80,276 123,728

Panel B: CCP exposure change decomposition in percentage
RetVola -3.3% 7.4% 32.2% -2.2% 4.9% 24.4%
RetCorr -0.5% 1.0% -2.0% 0.1% 0.6% -0.7%
PrLevel -0.7% 7.5% -4.3% -0.7% 6.8% -1.8%
TrPosition 101.0% 71.0% 57.7% 99.4% 73.1% 61.7%
TrCrowding 3.5% 13.1% 16.3% 3.4% 14.6% 16.5%
∆ExpCCP 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

D.2 Covariance matrix
The exposure change decomposition analysis presented in Table 3 relies on a
EWMA estimate of the covariance matrix of returns. To verify whether the re-
sults are robust we redo the analysis with a rolling-window estimate of return
covariance. For the length of the window we picked the burn-in period used for
EWMA (i.e., 50 days). We have considered other alternatives such as parametric
estimation of the time-varying covariance matrix. The most natural candidate is
multivariate GARCH but implementation is infeasible given the large covariance
matrix that needs to be estimated: 242 × 242. We therefore stick to a parameter-
free rolling-window estimate.

Table 9 repeats results Table 3 and adds the ones based on a rolling-window
estimate of the covariance of returns. The results are very similar. Importantly, the
key observations in the main text all hold up: The position component dominates
all other for the full sample, but volatility and crowding become progressively
more important when considering only the top-100 and top-10 exposure changes.
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Table 10: Decomposition of exposure change for different frequencies. This table
repeats the decomposition of CCP exposure change presented Table 3 and adds the same
results but for different frequencies. The baseline result is based on having, on average,
34 volume bins per day which corresponds to 15-minute intervals. The added frequencies
are 17 and 8 and therefore correspond to 30-minute and 1-hour intervals, respectively.

Baseline: 34 bins per day 17 bins per day 8 days per day
(∼15-minute intervals) (∼30 minutes intervals) (∼1 hour intervals)

Full sample Top 10 Full sample Top 10 Full sample Top 10

Panel A : CCP exposure change decomposition in euro
RetVola -636 45,920 -1,734 67,879 -4,933 180,877
RetCorr -102 -2,899 -138 9,580 -94 17,106
PrLevel -143 -6,091 -395 -1,769 -1,627 -46,388
TrPosition 19,734 82,307 55,947 211,300 178,057 539,365
TrCrowding 685 23,295 2,016 38,341 7,696 113,184
∆ExpCCP 19,538 142,532 55,695 325,333 179,100 804,145

Panel B: CCP exposure change decomposition in percentage
RetVola -3.3% 32.3% -3.1% 20.9% -2.8% 22.5%
RetCorr -0.5% -2.0% -0.2% 2.9% -0.1% 2.1%
PrLevel -0.7% -4.3% -0.7% -0.5% -0.9% -5.8%
TrPosition 101.0% 57.7% 100.5% 64.9% 99.4% 67.1%
TrCrowding 3.5% 16.3% 3.6% 11.8% 4.3% 14.1%
∆ExpCCP 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

D.3 Frequencies
Is high-frequency analysis important for the decomposition results presented in
Table 3? Note that the volume bins were chosen such that, on average, they span
fifteen minutes. A higher frequency is computationally feasible but economically
impossible as “microstructure noise” start to bias return covariance estimates (An-
dersen et al., 2003). Lower frequency, however, is possible and in this section we
redo the decomposition based on volume bins that, on average, span 30 minutes
or a full hour.

Table 10 presents the results but only reports full-sample and top-10 decom-
positions for space considerations. The table shows that the main takeaway of this
analysis remains unaffected: the position component dominates in the full sample,
but volatility and crowding become important in top 10 subsample. These results
however become attenuated when the analysis is done at lower frequencies. The
contribution of volatility and crowding drops in the top 10 subsample. This result
testifies to the importance of high frequency analysis of CCP exposure changes.
Market turbulence caused by a sudden volatility spike and concurrent trading that
leads to crowding occur in short-lived periods in today’s fast markets.
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