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Abstract 

This paper develops a present-value framework that factors in expectations of future market 

illiquidity. In our framework, an implied liquidity premium is a function of prices, dividends, 

illiquidity costs, and returns. We find that the liquidity premium for the CRSP market portfolio 

is significantly priced over short horizons, but its long-horizon evidence is not evident. This 

finding implies that an illiquidity shock is so transient that even its big variation in the first place 

could not build up over horizons. At its core, market liquidity risk should be second-order in the 

long run. We reconcile our findings with some theoretical debate over the importance of the 

liquidity premium on asset pricing. 
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1. Introduction 

A perfect market assumes no trade impediments. Standard asset pricing theory (e.g., the Capital 

Asset Pricing Model) says that all securities are commonly affected by a systematic risk factor. 

In financial markets, therefore, investors want to be compensated for holding risky securities, 

which is determined solely by the common systematic risk (i.e., market beta). 

In reality, however, we encounter various kinds of market imperfections that can bring 

other sources of premia.1 For instance, one imperfection is transaction costs. Due to the risk of 

incurring high costs in liquidating portfolios in the future, investors demand a liquidity 

premium to compensate for potential losses. Therefore, the deep understanding of the liquidity 

premium is essential for investors to especially forming investment decisions.  

The starting point of this article is to acknowledge that it is hard to detect the liquidity 

premium empirically. The big obstacle of estimating the hard-to-detect actual premium 

motivates us to come up with another way of inference. In this paper, we challenge to identify 

the implied market liquidity premium caused by market liquidity risk,2 which is inferred from 

a new present-value relationship we propose. With the implied premium in place, our purpose 

is to examine whether the liquidity premium is a crucial source of price variation.  

To the point, we go on to tackle some theoretical debate over the importance of the 

liquidity premium on asset pricing. On the one side, Amihud and Mendelson (1986) and Lynch 

and Tan (2011) claim that asset returns carry a substantial size of the liquidity premium. On 

the other side, Constantinides (1986) and Vayanos (1998) argue that the liquidity premium 

should be only second-order because investors want to reduce the trading frequency in the 

presence of transaction costs. To see the debate clearly, suppose that market liquidity risk is so 

                                                 
1 Vayanos and Wang (2013) provide an extensive review for market imperfections. 
2 Apart from market liquidity risk, investors with leveraged positions (e.g., a hedge fund) can want funding 
liquidity risk compensation. This funding liquidity risk can interact with the market liquidity risk, which jointly 
affects required returns (Pedersen, 2015). In this paper, our focus is on market liquidity risk.  
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second-order that its cumulative effect on prices is not significant. When such shocks come up, 

investors are likely to adjust more myopic demand than intertemporal hedging demand. 

This paper finds new results reconciling the aforementioned theoretical debate. It turns out 

that market liquidity risk just matters in the short run. In the long run, however, investors do 

not seem to mind it seriously since the liquidity risk is not expected to last for a long time. The 

implication is that if you are planning to sell the market portfolio somewhere in the far future, 

in fact, the liquidity risk is not relevant to you. Hence, you hardly ask for a market liquidity 

risk premium because market liquidity risk is basically second-order. 

To explain these ideas precisely, Section 2 presents a new present-value framework that 

incorporates illiquidity costs beyond the conventional price–dividend one. We define their 

linear combination as log liquidity-adjusted price-dividend ratio (hereafter, pdl ratio). 

Motivated by the fact that asset prices should equal expected discounted cash flows, illiquidity 

costs—referred to as negative dividends (Jones, 2002; Acharya and Pedersen, 2005)—can be 

another priced factor in a present-value context (henceforth, “illiquidity costs”, “negative 

dividends”, and “(il)liquidity” are interchangeably used for convenience).  

It is important to note that we leverage price-based illiquidity as a mirror image of (positive) 

dividends, which are nonstationary, I(1). This premise is the most challenging because the 

conventional studies have usually employed return-based illiquidity.3 Simple evidence is that 

such illiquidity can strongly predict one-period stock returns. Thus, it seems straightforward 

that it should have a first-order effect on prices, since market illiquidity is pretty persistent 

enough to last for a long time (i.e., the first-order autocorrelation is high).  

No matter which illiquidity concept you use, the conventional literature also overlooks one 

crucial norm that such illiquidity cannot affect asset prices independently. For example, 

                                                 
3 See Amihud and Mendelson (1986), Amihud (2002), Jones (2002), Pástor and Stambaugh (2003), Acharya and 
Pedersen (2005), Bekaert et al. (2007), Korajczyk and Sadka (2008), Ben-Rephael et al (2015), and among others. 
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Amihud (2002), Jones (2002), and Bekaert et al. (2007) assume that market illiquidity is not 

affected by aggregate dividends. Notably, our price–dividend–cost relationship can present the 

counter example in which market illiquidity must interact with other information sources such 

as prices and dividends. Going deep, the conventional price–dividend relationship says that 

return predictability is evident due to the lack of dividend growth forecastability (Cochrane, 

2008). As such, our price–dividend–cost relationship can address similar questions: How 

stronger liquidity-premium forecastability is than the others?  

For empirical analysis, Section 3 uses the Amihud’s (2002) illiquidity measure to estimate 

the pdl ratios (we will elaborate on a full exposition of our proxy choice later). By using annual 

Center for Research in Security Prices (CRSP) index data from 1926 to 2017, Figure 1 graphs 

the pdl ratios along with the market price–dividend ratios (henceforth, pd ratio). 

 [INSERT FIGURE 1 HERE] 

The wedge between the two series offers a great deal of intuition that market illiquidity 

provides a good estimate of the trend in prices. Technically speaking, such negative dividends 

are nearly a random walk so that illiquidity growth is almost a white noise (or i.i.d.). The 

rationale behind this is that the pdl ratio looks like a trend-adjusted series of the pd ratio by our 

cost proxy. As you will see, such intuition is key in understanding our main results. If market-

illiquidity variation deviated away from the trend substantially, prices should embody a large 

fraction of the long-term liquidity premia in favor of liquidity-premium forecastability.  

Such trend implication is analogous to the dividend implication of Cochrane (1994). In 

short, shocks to dividend growth are so transient that they cannot have a persistent effect on 

price variation (Cochrane, 2011). In the similar fashion, shocks to illiquidity growth works. 

This is possibly because investors are likely reluctant to increase the trading frequency, 

incurring high costs. More to the point, negative dividends cannot still help to attenuate the 
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excess price volatility that is not fully explained by subsequent changes in positive dividends 

(Shiller, 2014). If market illiquidity was by far first-order, it should take more of the excess 

volatility recognized as pricing errors not justified by subsequent expected cash flows.  

In Section 4, we depart from simple predictive regressions and then hypothesize a 

constant-expected-liquidity-premium model. We find that the pdl ratios strongly forecast one-

period implied liquidity premia inferred from our price–dividend–cost relationship, but hardly 

do the long-term liquidity premia inherent in prices. What this means is that even a big but less 

persistent variation in expected liquidity premia cannot lead to a big price change. Thus, market 

liquidity risk is essentially second-order. Our findings suggest that investors take great care of 

unexpected illiquidity news in the first place, but do not care much in the long run.  

Why do investors react to market illiquidity separately over both horizons? The main 

answer is due to the transient nature of market illiquidity. To explore this, Section 5 conducts 

impulse response functions. By design, we formulate a liquidity-premium shock only generated 

by one rise of market illiquidity with no information-source changes. As expected, we confirm 

that prices, dividends, and market illiquidity stay put at the point of the shock onward.  

Its transient nature gives us deep understanding of market illiquidity. For example, one 

conventional norm is that shocks to illiquidity can lead to a rise in expected future illiquidity, 

which in turn raises expected returns and thus lower current prices. As for the aggregate market 

at least, the transient illiquidity shock merely lowers prices, little relying on the two 

intermediate channels. Relatedly, the fact that illiquidity growth is rarely forecastable so that 

market illiquidity is nearly a random walk supports our conclusion. 

There are two points to discern the extant literature. First, one of the benefits of our 

framework is that it provides a restrictive structure to identify our price–dividend–cost 

relationship uniquely. With this unique relationship in mind, note that all proportions of our 

information sources must add up to the whole volatility of the pdl ratios in an accounting 
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sense.4 In contrast, Jones (2002) analyzes the ad-hoc interplay between the pd ratios and 

illiquidity, which could induce misleading outcomes, because it does not obey the accounting 

identity.  

Second, the explanatory proportions of information sources must be evaluated relatively 

within each information set. As an example, the share of pizza (i.e., the decomposition of prices) 

depends entirely on the number of participants (i.e., the number of information sources). One 

might doubt that the trend-adjusted illiquidity effect seems quite large (Figure 1). But keep in 

mind that our whole story must be limited within our information set. If further incorporating 

another source (e.g., share repurchase), it is not surprising that the share of information sources 

should change quantitatively in the relative sense. Nevertheless, we contend that the trend 

implication of market illiquidity should be intact qualitatively, as shown in Figure 1.  

Finally, Section 6 concludes the paper. Admittedly, our conclusion relies on which proxies 

are used. To mitigate the concern, we also use the log quarterly bid-ask spread in Appendix B, 

but our conclusion is invariant. Indeed, market liquidity risk should be second-order. 

2. Theoretical framework 

First, we build upon the cross-sectional identity that stock prices and dividends are linked to 

illiquidity costs. This linkage can be rewritten as a natural log of net return, 𝑟𝑟𝑡𝑡+1∗ , measured at 

the end of time 𝑡𝑡 + 1: 

 𝑟𝑟𝑡𝑡+1∗ = log �𝑃𝑃𝑡𝑡+1+𝐷𝐷𝑡𝑡+1−𝐶𝐶𝑡𝑡+1
𝑃𝑃𝑡𝑡

� = log �1 + 𝐷𝐷𝑡𝑡+1
𝑃𝑃𝑡𝑡+1

− 𝐶𝐶𝑡𝑡+1
𝑃𝑃𝑡𝑡+1

� + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡, (1) 

where 𝑃𝑃𝑡𝑡 is the real price of a stock, measured at the end of time period 𝑡𝑡; 𝐷𝐷𝑡𝑡 is the real dividend 

during period 𝑡𝑡; and 𝐶𝐶𝑡𝑡 denotes the illiquidity cost during period 𝑡𝑡. Here, we assume that 𝐶𝐶𝑡𝑡 is 

                                                 
4 For example, those of expected returns and dividend growth account for 100% of the volatility of the pd ratios. 
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nonstationary, and use the convention that logs of variables are denoted by lowercase letters, 

i.e., 𝑝𝑝𝑡𝑡 ≡ log (𝑃𝑃𝑡𝑡).  

We then rewrite log net return (1) as 

 𝑟𝑟𝑡𝑡+1∗ = log(1 + exp (𝑑𝑑𝑝𝑝𝑡𝑡+1) − exp (𝑐𝑐𝑐𝑐𝑡𝑡+1)) + 𝑝𝑝𝑡𝑡+1 − 𝑝𝑝𝑡𝑡, (2) 

where 𝑑𝑑𝑑𝑑𝑡𝑡 ≡ 𝑑𝑑𝑡𝑡 − 𝑝𝑝𝑡𝑡 is the log dividend-price ratio with sample mean of 𝑑𝑑𝑑𝑑����, and 𝑐𝑐𝑐𝑐𝑡𝑡 ≡ 𝑐𝑐𝑡𝑡 −

𝑝𝑝𝑡𝑡 is the log liquidity-price ratio with sample mean of 𝑐𝑐𝑐𝑐���. In log net return (2), the first term 

on the right-hand-side (RHS) is a nonlinear function of 𝑑𝑑𝑑𝑑𝑡𝑡+1 and 𝑐𝑐𝑐𝑐𝑡𝑡+1. The two ratios will 

be linearized to derive a new price–dividend–cost relationship.  

Second, we apply a first-order Taylor expansion to the nonlinear function above:  

log(1 + exp(𝑑𝑑𝑝𝑝𝑡𝑡+1) − exp(𝑐𝑐𝑐𝑐𝑡𝑡+1)) ≈, 

 𝑘𝑘𝑙𝑙 + (𝜌𝜌𝑙𝑙 − 1)𝑝𝑝𝑡𝑡+1 + 𝜌𝜌𝑙𝑙(1/𝜌𝜌 − 1)𝑑𝑑𝑡𝑡+1 − 𝜌𝜌𝑙𝑙(1/𝜌𝜌 − 1/𝜌𝜌𝑙𝑙)𝑐𝑐𝑡𝑡+1, (3) 

where 𝜌𝜌𝑙𝑙 and 𝜌𝜌 are log-linear discount factors (𝜌𝜌𝑙𝑙 > 𝜌𝜌), and 𝑘𝑘𝑙𝑙 is a log-linear coefficient (see 

Appendix A for more technical details). Substituting (3) into (2) yields the linear difference 

equation of the log net return:  

 𝑟𝑟𝑡𝑡+1∗ ≈ 𝑘𝑘𝑙𝑙 + 𝜌𝜌𝑙𝑙 ⋅ 𝑝𝑝𝑡𝑡+1 + 𝜌𝜌𝑙𝑙(1/𝜌𝜌 − 1)𝑑𝑑𝑡𝑡+1 − 𝜌𝜌𝑙𝑙(1/𝜌𝜌 − 1/𝜌𝜌𝑙𝑙)𝑐𝑐𝑡𝑡+1 − 𝑝𝑝𝑡𝑡. (4) 

Third, we solve difference equation (4) forward with a terminal condition that rules out 

rational bubbles: lim
𝑗𝑗→∞

(𝜌𝜌𝑙𝑙)𝑗𝑗𝑝𝑝𝑡𝑡+1+𝑗𝑗 = 0. We then obtain the following present-value identity 

without a constant term 𝑘𝑘𝑙𝑙/(1 − 𝜌𝜌𝑙𝑙) in the form of log prices: 

        𝑝𝑝𝑡𝑡 ≈ ∑ (𝜌𝜌𝑙𝑙)𝑗𝑗 �𝜌𝜌𝑙𝑙 ��
1
𝜌𝜌
− 1� 𝑑𝑑𝑡𝑡+1+𝑗𝑗 − �1

𝜌𝜌
− 1

𝜌𝜌𝑙𝑙
� 𝑐𝑐𝑡𝑡+1+𝑗𝑗� − 𝑟𝑟𝑡𝑡+1+𝑗𝑗∗ �∞

𝑗𝑗=0 . 

≈ ∑ (𝜌𝜌𝑙𝑙)𝑗𝑗 �𝜌𝜌𝑙𝑙 ��
1
𝜌𝜌
− 1� 𝑑𝑑𝑡𝑡+1+𝑗𝑗 − �1

𝜌𝜌
− 1

𝜌𝜌𝑙𝑙
� 𝑐𝑐𝑡𝑡+1+𝑗𝑗� − (𝑟𝑟𝑡𝑡+1+𝑗𝑗 − 𝑙𝑙𝑙𝑙𝑡𝑡+1+𝑗𝑗)�∞

𝑗𝑗=0 ,  (5) 
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provided that the state variables on the RHS are observable ex-post. In non-stationary present-

value form (5), we further impose an ex-post liquidity premium 𝑙𝑙𝑙𝑙𝑡𝑡 such that the following 

accounting identity holds:   

 𝑟𝑟𝑡𝑡∗ = 𝑟𝑟𝑡𝑡 − 𝑙𝑙𝑙𝑙𝑡𝑡. (6) 

This new accounting identity means that investors can gain liquidity-adjusted profit 𝑟𝑟𝑡𝑡∗ at the 

expense of the liquidity premium; large liquidity premium 𝑙𝑙𝑙𝑙𝑡𝑡 reduces net profit 𝑟𝑟𝑡𝑡∗.  

Fourth, we take an expectation 𝐸𝐸[⋅|ℋ𝑡𝑡] (or 𝐸𝐸𝑡𝑡[⋅]) conditional on a new information set ℋ𝑡𝑡 

available at time 𝑡𝑡. This corresponds to the following ex-ante (expected) present-value identity:  

 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 ≈ 𝐸𝐸�∑ (𝜌𝜌𝑙𝑙)𝑗𝑗�𝛽𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1+𝑗𝑗 − 𝛽𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1+𝑗𝑗 − 𝑟𝑟𝑡𝑡+1+𝑗𝑗 + 𝑙𝑙𝑙𝑙𝑡𝑡+1+𝑗𝑗��∞
𝑗𝑗=0 ℋ𝑡𝑡�, (7) 

where 𝛥𝛥 denotes the first difference operator (e.g., 𝛥𝛥𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑡𝑡 − 𝑑𝑑𝑡𝑡−1),  𝛽𝛽1 = 𝜌𝜌𝑙𝑙(1−𝜌𝜌)
𝜌𝜌(1−𝜌𝜌𝑙𝑙)

= 1
1−𝐶𝐶̅/𝐷𝐷�

>

1 because 𝜌𝜌𝑙𝑙 > 𝜌𝜌, 𝛽𝛽2 = 𝜌𝜌𝑙𝑙−𝜌𝜌
𝜌𝜌(1−𝜌𝜌𝑙𝑙)

= 𝐶𝐶̅/𝐷𝐷�

1−𝐶𝐶̅/𝐷𝐷�
> 0, and 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙 ≡ 𝑝𝑝𝑡𝑡 − 𝛽𝛽1𝑑𝑑𝑡𝑡 + 𝛽𝛽2𝑐𝑐𝑡𝑡 is the log liquidity-

adjusted price–dividend ratio. Importantly, present-value identity (7) provides a restrictive 

structure to identify the unique cointegration relationship as below. 

 

PROPOSITION 1: Cointegration restriction 

If log prices share a common trend with log dividends and log illiquidity costs, their linear 

combination must satisfy 

1 − 𝛽𝛽1 + 𝛽𝛽2 = 0, 

given that expected dividend growth, illiquidity growth, real returns, and liquidity premia are 

stationary.  

Proof: It is straightforward to show Proposition 1 from 𝛽𝛽1 = 1
1−𝐶𝐶̅/𝐷𝐷�

 and 𝛽𝛽2 = 𝐶𝐶̅/𝐷𝐷�

1−𝐶𝐶̅/𝐷𝐷�
. 
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The key premise here is that the illiquidity cost is referred to as a negative dividend (Jones 

2002; Acharya and Pedersen 2005). Hence, the total weights of positive and negative dividends 

can add up to one: 𝛽𝛽1 − 𝛽𝛽2 = 1. The cointegrating vector between log prices and log total 

dividends becomes [1,−(𝛽𝛽1 − 𝛽𝛽2)]′ = [1,−1]′, as in price–dividend ratio 𝑝𝑝𝑝𝑝𝑡𝑡 ≡ 𝑝𝑝𝑡𝑡 − 𝑑𝑑𝑡𝑡.  

Suppose that Proposition 1 holds with data. Then high prices relative to total dividends 

(i.e., 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙) signal high expected dividend growth, low expected illiquidity growth, low expected 

returns, and high expected liquidity premia in the future. At a technical level, the inclusion of 

negative dividends gives rise to two additional expectations of (a) illiquidity growth and (b) 

liquidity premia. Notably, these additional sources have an offsetting effect on prices.  

To ease of grasp, let us interpret the costs due to illiquidity as 𝑐𝑐𝑡𝑡 and inversely the ‘gains’ 

due to liquidity as −𝑐𝑐𝑡𝑡. For example, a price rise indicates an increase in expected ‘liquidity’ 

(i.e., −𝑐𝑐𝑡𝑡 − 𝐸𝐸𝑡𝑡�∑ (𝜌𝜌𝑙𝑙)𝑗𝑗𝛽𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1+𝑗𝑗∞
𝑗𝑗=0 � ). At the same moment, the price rise also signals a 

decline in expected ‘liquidity’ premia (i.e., −𝐸𝐸𝑡𝑡�∑ (𝜌𝜌𝑙𝑙)𝑗𝑗(−𝑙𝑙𝑝𝑝𝑡𝑡+1+𝑗𝑗)∞
𝑗𝑗=0 � ), implying lower 

compensation for bearing market liquidity risk in the future. We will use this conversion with 

single quotation marks when interpreting our results to avoid confusion (e.g., high liquidity is 

easier to interpret than low illiquidity). 

In sum, our present-value identity provides a unified framework to link the conventional 

literature (e.g., Campbell and Shiller, 1988; Amihud and Mendelson, 1986). Interested readers 

are referred to Appendix A. 

3. Data and Estimation 

3.1. A proxy for stock liquidity 

We have one serious obstacle: stock liquidity is hard to define and measure. In fact, the 

“legitimate” illiquidity costs defined in Section 2 comprise several components (Jones, 2002; 
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Vayanos and Wang, 2013): the brokerage cost, the bid-ask spread, the price impact, the 

opportunity cost, and so forth. Practically speaking, it is almost impossible to combine all the 

components. Although the bid-ask spread is widely used, it alone is not the representative and 

also does not cover a sufficiently long interval.5 Indeed, numerous liquidity measures used in 

the literature are literally proxies, not the legitimate illiquidity costs themselves.  

To impliment empirical analysis, we want to narrow down the scope of cost 𝑐𝑐𝑡𝑡  to the 

annual value of Amihud’s (2002) measure 𝑐𝑐𝑡𝑡∗ . This proxy has a couple of merits. First, Amihud 

(2002) shows that 𝑐𝑐𝑡𝑡∗ is an effective measure of the price impact referred to as the concept of 

Kyle’s (1985) lambda. Second, Hasbrouck (2009) shows that 𝑐𝑐𝑡𝑡∗ is most strongly correlated 

with the price impact coefficient of high-frequency Trade and Quote (TAQ) data. Third, 

Goyenko et al. (2009) show that 𝑐𝑐𝑡𝑡∗ provides a good measure of the high-frequency data, even 

in the decimals regime.  

Concretely, we construct the annual Amihud measure 𝐶𝐶𝑡𝑡∗ from the daily CRSP data from 

1926 to 2017. First, we single out ordinary common shares listed on the New York Stock 

Exchange (NYSE), the American Stock Exchange (AMEX), and the Nasdaq Stock Market 

(NASDAQ). Moreover, each firm 𝑖𝑖 with more than 200 days of transactions in year 𝑡𝑡 must 

have the last trading price at the end of the year. Second, we average out the daily Amihud 

measures for each filtered share in year 𝑡𝑡 in the way of 

 𝐶𝐶𝑡𝑡𝑖𝑖 ≡
1
𝑁𝑁𝑡𝑡
𝑖𝑖 ∑

�𝑅𝑅𝑑𝑑,𝑡𝑡
𝑖𝑖 �

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑,𝑡𝑡
𝑖𝑖

𝑁𝑁𝑡𝑡
𝑖𝑖

𝑑𝑑=1 × 106,  

where 𝑁𝑁𝑡𝑡𝑖𝑖 is the number of trading days in year 𝑡𝑡, |𝑅𝑅𝑑𝑑,𝑡𝑡
𝑖𝑖 | is the absolute daily rate of return on 

day 𝑑𝑑 in year 𝑡𝑡, and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑,𝑡𝑡
𝑖𝑖  is dollar volume (i.e., trading volume × price). Note that a high 

value of 𝑐𝑐𝑡𝑡𝑖𝑖 means high illiquidity, which occus when high price variation goes along with low 

                                                 
5 The U.S. markets transaction data are only available since 1983 (Goyenko et al., 2009).  
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trading volume. Third, we winsorize all individual cross-section measures in year 𝑡𝑡 over the 

range of [1%, 99%] to remove outliers.  

It is important to note that when aggregating all the cross-section measures into market-

wide illiquidity 𝐶𝐶𝑡𝑡∗, we use the median in year 𝑡𝑡 throughout the paper:  

 𝐶𝐶𝑡𝑡∗ = median(𝐶𝐶𝑡𝑡𝑖𝑖) (8) 

for all the filtered firms 𝑖𝑖. In contrast, most of the conventional literature has tended to use the 

arithmetic average. We contend that a median reflects a better central tendency for cross-

section data than does an average, especially when the data likely suffer from lots of extreme 

outliers. For ease of grasp, Figure 2 plots the natural logarithms of the cross-section median 

and average in year 𝑡𝑡.  

[INSERT FIGURE 2 HERE] 

Both median and average tend to move in tandem (Figure 2). The apparent downward 

slope, primarily driven by an increase in dollar volume (denominator), can point to an increase 

in liquidity due to technological innovations, changes in regulation, and changes in stock 

market participation (Chordia et al., 2000; Hasbrouck and Seppi, 2001; Jones, 2002; Chordia 

et al., 2008; Lettau and Nieuwerburgh, 2008). Some spikes are associated with market turmoil, 

for example, in the recent financial crisis.  

Due to the increase in dollar volume over past decades, both series appear to be 

nonstationary.6A large volume of the literature (e.g., Amihud and Mendelson, 1986; Chordia 

et al., 2001; Jones 2002; Acharya and Pedersen, 2005; among other cross-sectional studies) 

tends to use either the proportional transaction cost proxies or the first difference in a return 

measure context. Doing so even manifests nonstationary nature inherent in the liquidity data. 

                                                 
6 The first-order autocorrelation of the average is about 0.95, while that of the median is 1.01. 
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Hence, we want to keep up the intrinsic feature in a price measure context to accord with our 

cost definition (Section 2).  

Next, let us turn to the difference between the two series. Since the early 1990s, their gap 

has been widening in the way that the means are larger than the medians. We give great 

attention to the period when prices move substantially relative to dividends. The gap can widen 

because highly illiquid outliers of small size firms increase in number. In other words, small- 

and medium-cap firms since then likely have a massive influence on market illiquidity. This 

finding is related to that of Ben-Rephael et al. (2015), who show that liquidity is significantly 

priced among NASDAQ stocks in the recent period. 

Such a trend-like pattern also has supportable evidence. Acharya and Pedersen (2005) 

document that the Amihud measure itself is not stationary. Hasbrouck (2009) also reveals that 

the distributions of the TAQ and CRSP/Gibbs measures do not seem to be stationary. Ben-

Rephael et al. (2015) illustrate several liquidity measures including the Amihud proxy, which 

also exhibit the observed trend pattern.  

3.2. Liquidity-adjusted price–dividend ratios 

Direct calculation of pdl ratio 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  through Proposition 1 is a difficult task for the following 

reasons. First, we have to resort to price impact proxy 𝑐𝑐𝑡𝑡∗ , not actual legitimate cost 𝑐𝑐𝑡𝑡. Second, 

even though 𝑐𝑐𝑡𝑡∗ is assumed to be the perfect proxy, its unit differs from log price 𝑝𝑝𝑡𝑡 and log 

dividend 𝑑𝑑𝑡𝑡, because 𝑐𝑐𝑡𝑡∗ is measured in percent per dollar.  

To handle this difficulty, we assume that liquidity measure 𝐶𝐶𝑡𝑡∗ is proportional to illiquidity 

cost 𝐶𝐶𝑡𝑡: 𝐶𝐶𝑡𝑡∗ = 𝐴𝐴 ⋅ 𝐶𝐶𝑡𝑡 as in Bekaert et al. (2007). The logarithm permits 𝑐𝑐𝑡𝑡∗ = log𝐶𝐶𝑡𝑡∗ to divide 

into 𝑐𝑐𝑡𝑡 and proportional constant 𝑎𝑎 = log𝐴𝐴: constant 𝑎𝑎 has nothing to do with any stochastic 

behavior. We then put a restriction on 𝛽̂𝛽2 = 𝛽̂𝛽1 − 1 through Proposition 1 and estimate 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙 =

𝑝𝑝𝑡𝑡 − 𝛽̂𝛽1𝑑𝑑𝑡𝑡 + 𝛽̂𝛽2𝑐𝑐𝑡𝑡∗ through OLS in the Engle-Granger way of 
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𝑝𝑝𝑡𝑡 = 𝛽̂𝛽0 + 𝛽̂𝛽1𝑑𝑑𝑡𝑡 − 𝛽̂𝛽2𝑐𝑐𝑡𝑡∗ + 𝜖𝜖𝑡𝑡, 

where 𝛽̂𝛽0 is an intercept; 𝛽̂𝛽1 and 𝛽̂𝛽2 are estimates of 𝛽𝛽1 and 𝛽𝛽2, respectively; and 𝜖𝜖𝑡𝑡 denotes the 

cointegrating-equation error. Thus, 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  can be expressed as 𝛽̂𝛽0 + 𝜖𝜖𝑡𝑡. In the rest of the paper, 

we use a hat notation to distinguish such prior estimation from our main analysis in Sections 4 

and 5. 

To implement this precisely, we use 𝑃𝑃𝑡𝑡 from the annual CRSP value-weighted index from 

1926 to 2017 at the end (December) of year 𝑡𝑡. We also recover dividend 𝐷𝐷𝑡𝑡 from the CRSP 

value-weighted returns with and without dividends via  

𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡
𝑃𝑃𝑡𝑡

× 𝑃𝑃𝑡𝑡 = � 𝑅𝑅𝑡𝑡
𝑅𝑅𝑥𝑥𝑡𝑡

− 1� × 𝑃𝑃𝑡𝑡, 

where 𝑅𝑅𝑡𝑡  denotes CRSP value-weighted gross return with dividends, and 𝑅𝑅𝑥𝑥𝑡𝑡  denotes the 

CRSP value-weighted return without dividends (see Appendix A.2 of Cochrane (2011) for 

details). All three series (e.g., 𝑃𝑃𝑡𝑡 , 𝐷𝐷𝑡𝑡 , and 𝐶𝐶𝑡𝑡∗ ) are deflated by the Consumer Price Index 

(CPIIND) in December of year 𝑡𝑡.7 Another merit of using the annual frequency is that we can 

avoid strong seasonality in dividend payments.  

With these series in hand, we generate the estimates of the shared trend as 

 𝑝𝑝𝑡𝑡 = 𝛽̂𝛽0 + 𝛽̂𝛽1 ⋅ 𝑑𝑑𝑡𝑡 − 𝛽̂𝛽2 ⋅ 𝑐𝑐𝑡𝑡∗ = 3.156 + 1.084 ⋅ 𝑑𝑑𝑡𝑡 − 0.084 ⋅ 𝑐𝑐𝑡𝑡∗.8 (9) 

All three estimates are significant at the 5% level under the Newey and West’s (1987) t-statics. 

The estimates of 𝛽̂𝛽1 = 1
1−𝐶𝐶̅/𝐷𝐷�

 and 𝛽̂𝛽2 = 𝐶𝐶̅/𝐷𝐷�

1−𝐶𝐶/𝐷𝐷������� (Section 2) suggest that the historical amount of 

                                                 
7 In fact, Amihud measure 𝑐𝑐𝑡𝑡∗ is not perfectly inflation-adjusted. To attain this, one should apply the daily inflation 
adjustment to individual instruments’ measures, even though CPIIND in CRSP is released on a monthly basis. 
One can use interpolation to obtain daily CPIINDs with monthly CPIINDs, but even doing so does not eschew 
data processing. For simplicity of calculation, we ignore the precise construction in the paper.  
8 We notice that the estimation result is quite robust. In particular, dynamic least squares yield 𝑝𝑝𝑡𝑡 = 3.182 +
1.072 ⋅ 𝑑𝑑𝑡𝑡 − 0.088 ⋅ 𝑐𝑐𝑡𝑡∗, and fully-modified least squares deliver 𝑝𝑝𝑡𝑡 = 3.208 + 1.055 ⋅ 𝑑𝑑𝑡𝑡 − 0.096 ⋅ 𝑐𝑐𝑡𝑡∗. 



14 
 

negative dividends (contingent on price impact 𝑐𝑐𝑡𝑡∗)  is roughly 7.7% of positive dividends on 

average: 𝐶𝐶̅/𝐷𝐷� = 𝛽̂𝛽2/𝛽̂𝛽1 during our sample.  

There are three reasons why Proposition 1 must hold in estimating cointegrating regression 

(9). First, doing so ensures that pdl ratio 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  is a sole representation of present-value identity 

(7). Second, the sole representation also alleviates a probable concern for log-linear 

approximation errors.9 Third, when estimating pd ratio 𝑝𝑝𝑑𝑑𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑑𝑑𝑡𝑡  in practice, even log 

price 𝑝𝑝𝑡𝑡 and log dividend 𝑑𝑑𝑡𝑡 do not have the theoretical trend relationship of [1,−1] precisely. 

What this means is that conducting the direct estimation of 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  does not ensure the 

cointegration relationship of 𝑝𝑝𝑡𝑡 −  𝛽̂𝛽1𝑑𝑑𝑡𝑡 + �𝛽̂𝛽1 − 1�𝑐𝑐𝑡𝑡∗ where 𝛽̂𝛽2 = 𝛽̂𝛽1 − 1. 

The estimates of 𝛽̂𝛽1 = 𝜌𝜌�𝑙𝑙(1−𝜌𝜌�)
𝜌𝜌�(1−𝜌𝜌�𝑙𝑙)

= 1.084 and 𝛽̂𝛽1 = 𝜌𝜌�𝑙𝑙−𝜌𝜌�
𝜌𝜌�(1−𝜌𝜌�𝑙𝑙)

= 0.084 also allow for guessing 

a discount factor 𝜌𝜌�𝑙𝑙  as the estimate of 𝜌𝜌𝑙𝑙 . Specifically, we first calculate 𝜌𝜌� = 1/(1 +

exp�𝑑𝑑𝑑𝑑�����) ≈ 0.966 based on the Campbell and Shiller’s present-value identity and then back 

𝜌𝜌�𝑙𝑙 ≈ 0.969 out of the two beta formulas. The fact of 𝜌𝜌�𝑙𝑙 > 𝜌𝜌 also grants the validity of present-

value identity (7) (Section 2). To sum up, our proxy-dependent expression is 

 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 ≈ 𝐸𝐸�∑ (𝜌𝜌�𝑙𝑙)𝑗𝑗�𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1+𝑗𝑗 − 𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1+𝑗𝑗∗ − 𝑟𝑟𝑡𝑡+1+𝑗𝑗 + 𝑙𝑙𝑙𝑙𝑡𝑡+1+𝑗𝑗�∞
𝑗𝑗=0 �ℋ𝑡𝑡�. (10) 

Table 1 reports summary statistics for the variables used in the rest of our analysis.  

[INSERT TABLE 1 HERE] 

The summary statistics show that 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  embodies distinct information from 𝑝𝑝𝑑𝑑𝑡𝑡  as also 

displayed in Figure 1. In Panel A, the standard deviation of 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  (0.269) is less volatile than 

that of 𝑝𝑝𝑝𝑝𝑡𝑡 (0.433). In Panel B, the correlation between 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  and 𝑝𝑝𝑝𝑝𝑡𝑡 is 0.621. In Panel C, 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  

                                                 
9 If Proposition 1 does not hold with 𝛽̂𝛽2 ≠  𝛽̂𝛽1 − 1, doing so can create an unidentifiable error 𝜍𝜍𝑡𝑡: 

𝑟𝑟𝑡𝑡+1 ≈ 𝜌𝜌�𝑙𝑙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 + 𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1 − 𝛽̂𝛽2𝛥𝛥𝛥𝛥𝑡𝑡+1∗ − 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙 + 𝑙𝑙𝑙𝑙𝑡𝑡+1 + 𝜍𝜍𝑡𝑡+1. 
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gives more stationary evidence than 𝑝𝑝𝑑𝑑𝑡𝑡 , although 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙  delivers somewhat controversial 

interpretations for unit root.10  

4. Empirical analysis 

Predictive analysis by present-value logic (10) is another way of representing how much of 

each information source accounts for pdl ratio 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 . The stronger predictability is, the more 

share each information source has. In contrast, the extant literature usually confines the 

forecastable relationship between returns and illiquidity exclusively without the present-value 

structure (e.g., Amihud, 2003; Jones, 2002, Bekaert et al., 2007).  

Such forecastable evidence should also be comprehensively considered in the accounting 

sense. As for price–dividend ratios, Cochrane (2008) shows that return predictability is evident 

due to the lack of dividend growth forecastability because return forecastability is a flip side of 

cash flow forecastability in light of the conventional information set. As such, we can address 

a similar question: How much of illiquidity-growth forecastability by 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙  is more predictable 

than the others?  

In the conventional price–dividend relationship, it is worth noting that return 

forecastability occurs from cyclical price fluctuations relative to dividend ones (Cochrane, 

1994). From this standpoint, we cast doubt on forecastable evidence of proportional transaction 

cost proxies (say, price–cost ratios) popularly used in the extant literature: Does the 

forecastable evidence come from either negative dividends or prices? This unclear question 

spotlights the strength of our approach that it can distinguish the cause of forecastability. 

                                                 
10 In particular, 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  appears to be nonstationary in the Phillips-Perron (PP) test but stationary in the Kwiatkowski, 
Phillips, Schmidt, and Shin (KPSS) test. However, it is well known that unit root tests such as the PP test lack the 
power to reject the null hypothesis (Campbell, 2003). 
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4.1. Simple forecasting regression 

We start from four kinds of simple forecasting regressions: 

 𝛥𝛥𝑑𝑑𝑡𝑡+1 = 𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑑𝑑 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1𝑑𝑑 , (11) 

 𝛥𝛥𝑐𝑐𝑡𝑡+1∗ = 𝑎𝑎𝑐𝑐∗ + 𝑏𝑏𝑐𝑐∗ ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1𝑐𝑐∗ , (12) 

 𝑟𝑟𝑡𝑡+1 = 𝑎𝑎𝑟𝑟 + 𝑏𝑏𝑟𝑟 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1𝑟𝑟 , (13) 

 𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 = 𝑎𝑎𝜙𝜙 + 𝜙𝜙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1
𝑝𝑝𝑝𝑝𝑝𝑝 , (14) 

where 𝜀𝜀𝑡𝑡+1𝑑𝑑  denotes a dividend shock, 𝜀𝜀𝑡𝑡+1𝑐𝑐∗  denotes an illiquidity shock, 𝜀𝜀𝑡𝑡+1𝑟𝑟  denotes a return 

shock, and 𝜀𝜀𝑡𝑡+1
𝑝𝑝𝑝𝑝𝑝𝑝  denotes a pdl shock. The first four rows of Table 2 present estimation results 

in regressions (11)–(14), respectively. For robustness, the results on pd ratio 𝑝𝑝𝑑𝑑𝑡𝑡 are reported 

in the last three rows of Table 2. 

[INSERT TABLE 2 HERE] 

Overall, short-term forecastable evidence is not clear. As mentioned in Stambaugh (1999), 

it could be argued that our regressor 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙  on the RHS is still persistent (Panel C, Table 1), so 

its inherent near unit root might cause biased estimates (𝑏𝑏𝑥𝑥) and t-statistics. Simply put, the 

autocorrelations 𝜙𝜙 of 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙  in regression (14) (0.866; 4th row) and 𝑝𝑝𝑑𝑑𝑡𝑡 (0.942; 7th row) do not 

differ from each other at the conventional levels.  

Besides, dividend-growth regression coefficient 𝑏𝑏𝑑𝑑 is not statistically significant, and R2 

(1.1%) is also quite low (1st row). Even so, the sign of 𝑏𝑏𝑑𝑑 turns out to be negative as opposed 

to the positive sign by present-value logic (10). However, the forecasting regression of 

dividend growth 𝛥𝛥𝑑𝑑𝑡𝑡+1 on pd ratio 𝑝𝑝𝑑𝑑𝑡𝑡 (5th row) also delivers the opposite direction as shown 

in Cochrane (2008). Similarly, log illiquidity growth 𝛥𝛥𝑐𝑐𝑡𝑡+1∗  exhibits the opposite sign of 𝑏𝑏𝑐𝑐∗ =

 0.126 with the R2 of 0.68% (2nd row).  
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A key finding is that one-period return coefficient 𝑏𝑏𝑟𝑟 of the pdl ratio (3rd row) is more than 

twice as large as that of the pd ratio (6th row) in an absolute sense. In particular, our return 

coefficient 𝑏𝑏𝑟𝑟 = 0.205 can be strongly supported by the t-statistic of −3.214, despite the small 

R2 of 7.77% and the standard deviation 5.5% of the fitted value (i.e., 𝜎𝜎(𝑎𝑎𝑟𝑟 + 𝑏𝑏𝑟𝑟 ⋅ 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙)). In 

contrast, the return regression on 𝑝𝑝𝑑𝑑𝑡𝑡 yields  𝑏𝑏𝑟𝑟 = −0.085 with the t-statistic of −1.894, the R2 

of 3.49%, and the standard deviation 3.69%. This conclusion is analogous to that of Cochrane 

(2008). 

Why does 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙  look like a better return predictor than 𝑝𝑝𝑑𝑑𝑡𝑡? The main answer is that market 

illiquidity can adjust a price trend (Figure 2). To see this , Figure 3 graphs one-period real 

return 𝑟𝑟𝑡𝑡+1, the one-period return forecast on 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  (i.e., 𝑎𝑎𝑟𝑟 + 𝑏𝑏𝑟𝑟 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 ; see (13)), and the one-

period return forecast on 𝑝𝑝𝑑𝑑𝑡𝑡.  

[INSERT FIGURE 3 HERE] 

Clearly, the return forecast of 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙  better helps to trace the return behavior than does the 

forecast of 𝑝𝑝𝑝𝑝𝑡𝑡. To highlight the illiquidity effect merely, we also plot the return forecast on 

the scaled pd ratio given by 𝑝𝑝𝑡𝑡 − 𝛽̂𝛽1𝑑𝑑𝑡𝑡, but it cannot outperform the pdl forecast. 

Does it mean that 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙  forecasts more returns than does 𝑝𝑝𝑑𝑑𝑡𝑡? No, because the two ratios 

underlie different information sets, especially with respect to market illiquidity. To say the least, 

such illiquidity should carry another information so that it can make the radical difference. For 

example, illiquidity uncertainty can give rise to the additional liquidity premium not covered 

by the conventional information set (see Appendix A). From the next section, we will devote 

special attention to the liquidity premium.  

4.2. Short-term liquidity premium 

We start off by restating present-value identity (10) in a short period: 



18 
 

 𝑙𝑙𝑝𝑝𝑡𝑡+1 = −𝜌𝜌�𝑙𝑙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 − 𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1 + 𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1∗ + 𝑟𝑟𝑡𝑡+1 + 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 . (15) 

Here, we assume no serious approximation errors forced by 1 − 𝛽̂𝛽1 + 𝛽̂𝛽2 = 0 (Proposition 1) 

and then link forecasting regressions (11)–(14) to implied liquidity premium 𝑙𝑙𝑝𝑝𝑡𝑡+1 in (15). 

Following Cochrane (2008), we regress both sides of (15) on pdl ratio 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 . In brief, the 

LHS of (15) can be expresses as 

 𝑙𝑙𝑝𝑝𝑡𝑡+1 = 𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑙𝑙𝑙𝑙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1
𝑙𝑙𝑙𝑙 , (16) 

where 𝜀𝜀𝑡𝑡+1
𝑙𝑙𝑙𝑙  denotes a liquidity-premium shock. The RHS respectively yields the following 

forecast and error identities: 

 𝑏𝑏𝑙𝑙𝑙𝑙 = 1 − 𝜌𝜌�𝑙𝑙 ⋅ 𝜙𝜙 − 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑 + 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑐𝑐∗ + 𝑏𝑏𝑟𝑟, (17) 

 𝜀𝜀𝑡𝑡+1
𝑙𝑙𝑙𝑙 = −𝜌𝜌�𝑙𝑙 ⋅ 𝜀𝜀𝑡𝑡+1

𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛽̂𝛽1 ⋅ 𝜀𝜀𝑡𝑡+1𝑑𝑑 + 𝛽̂𝛽2 ⋅ 𝜀𝜀𝑡𝑡+1𝑐𝑐∗ + 𝜀𝜀𝑡𝑡+1𝑟𝑟 . (18) 

The two identities in (17)–(18) make it clear that the implied liquidity premium is connected 

to the other four sources of information (i.e., 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝, 𝜀𝜀𝑑𝑑, 𝜀𝜀𝑐𝑐∗, 𝜀𝜀𝑟𝑟) in the present-value context.  

With the regression coefficients in Table 2 in hand, forecast identity (17) produces 𝑏𝑏𝑙𝑙𝑙𝑙 = 

0.027, and error identity (18) delivers the 0.4% standard deviation: 𝜎𝜎(𝜀𝜀𝑙𝑙𝑙𝑙) ≈ 0.42%. From the 

‘liquidity’ perspective (Section 2), the converted coefficient (i.e., −𝑏𝑏𝑙𝑙𝑙𝑙 = −0.027) implies that 

investors need lower compensation for market liquidity risk in response to the observation that 

high prices relative to total (positive plus negative) dividends today (i.e., a pdl rise).  

To understand this concretely, suppose that investors observe that prices are low relative 

to total dividends (i.e., a pdl drop) in the event of market turmoil when market liquidity dries 

up. In this turmoil, investors want a high premium, thereby corresponding to an increase in 

expected returns: 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1] ≈ 𝑏𝑏𝑟𝑟 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 = 0.205, where 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 = −1 for example. Additionally, 

the liquidity dry-up should be compensated for taking the risk of high transaction costs; 
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therefore, expected net returns should be far higher than expected returns: 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1∗ ] =

𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1 − 𝑙𝑙𝑝𝑝𝑡𝑡+1] ≈ �𝑏𝑏𝑟𝑟 − 𝑏𝑏𝑙𝑙𝑙𝑙� ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 = 0.205 + 0.027 = 0.232 by accounting identity (6). As 

a result, prices drop more sharply due to market liquidity risk.  

In fact, the unusual signs of 𝑏𝑏𝑑𝑑 and 𝑏𝑏𝑐𝑐∗ (Subsection 4.1) might raise attention because they 

distort the innate attributes of the implied liquidity premium. In Appendix B where we use the 

quarterly bid-ask spread after 1983, however, we confirm the correct signs of log dividend 

growth and spread growth. Despite the different time frequencies and proxies, the liquidity-

premium coefficient in Appendix B turns out to be positive: 𝑏𝑏𝑙𝑙𝑙𝑙 = 0.005. 

Now, we go on to address the empirical question, “Is the liquidity premium of the CRSP 

market portfolio predictable?” Putting all regression results into perspective, our null 

hypothesis, the constant-expected-liquidity-premium model, has the following form: 

 H0: 𝑏𝑏𝑙𝑙𝑙𝑙 = 1 − 𝜌𝜌�𝑙𝑙 ⋅ 𝜙𝜙 − 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑 + 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑐𝑐∗ + 𝑏𝑏𝑟𝑟 = 0. (19) 

As a result, linear Wald test (19) delivers that 𝑏𝑏𝑙𝑙𝑙𝑙 = 0.027 is substantially far away from the 

null at the conventional levels; the 𝜒𝜒2-statistic is over 200. This evidence points out that 

liquidity premium 𝑙𝑙𝑝𝑝𝑡𝑡+1 is strongly predictable by pdl ratio 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙  over short horizons. It should 

thus be priced in a short period, implying that investors myopically worry about paying high 

transaction costs. Hence, current prices should be cheaper due to market liquidity risk. 

Does this strong evidence naturally impart a substantive contribution of long-run liquidity 

premia to prices? In other words, do investors want compensation for taking market liquidity 

risk in the long run? We do not know the concrete answer yet, which essentially hinges on the 

long-run predictable relationship among prices, dividends, illiquidity, and returns as will be 

discussed in the next section.  
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4.3. Long-term liquidity premium 

Following Cochrane (2008), we first divide both sides of short-term forecast identity (17) by 

1 − 𝜌𝜌�𝑙𝑙 ⋅ 𝜙𝜙 and then rearrange it as 

 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 − 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑐𝑐∗
𝑙𝑙𝑙𝑙 − 𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1, (20) 

where 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑑𝑑 (1 − 𝜌𝜌�𝑙𝑙 ⋅ 𝜙𝜙⁄ ) , 𝑏𝑏𝑐𝑐∗
𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑐𝑐∗ (1 − 𝜌𝜌�𝑙𝑙 ⋅ 𝜙𝜙⁄ ) ,  𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑟𝑟 (1 − 𝜌𝜌�𝑙𝑙 ⋅ 𝜙𝜙⁄ ) , and 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =

𝑏𝑏𝑙𝑙𝑙𝑙 (1 − 𝜌𝜌�𝑙𝑙 ⋅ 𝜙𝜙⁄ ). In basic, each component of long-term forecast identity (20) stands for the 

variance fraction of a set of information [𝛥𝛥𝑑𝑑𝑡𝑡,𝛥𝛥𝛥𝛥𝑡𝑡∗, 𝑟𝑟𝑡𝑡, 𝑙𝑙𝑙𝑙𝑡𝑡] on the LHS, so that they add up to 

the variance of pdl ratio 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  (100%) on the RHS. For example, we rewrite the following ex-

post identity: 

 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 = ∑ (𝜌𝜌�𝑙𝑙)𝑗𝑗�𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1+𝑗𝑗 − 𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1+𝑗𝑗∗ − 𝑟𝑟𝑡𝑡+1+𝑗𝑗 + 𝑙𝑙𝑙𝑙𝑡𝑡+1+𝑗𝑗�∞
𝑗𝑗=0 . (21) 

For example, 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
Cov�∑ (𝜌𝜌�𝑙𝑙)𝑗𝑗∞

𝑗𝑗=0 𝑙𝑙𝑝𝑝𝑡𝑡+1+𝑗𝑗,   𝑝𝑝𝑑𝑑𝑡𝑡
𝑙𝑙�

Var�𝑝𝑝𝑝𝑝𝑡𝑡
𝑙𝑙�

 refers to the regression coefficient of long-run 

liquidity premia ∑ (𝜌𝜌�𝑙𝑙)𝑗𝑗∞
𝑗𝑗=0 𝑙𝑙𝑝𝑝𝑡𝑡+1+𝑗𝑗 on 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙  in (21). An easy way of computing such long-run 

estimates is to infer them from the results of the simple forecasting regressions (Table 2). Table 

3 reports the first three long-run estimates of 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 , 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑐𝑐∗
𝑙𝑙𝑙𝑙, and  𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙 and standard errors 

calculated from the standard delta method. 

[INSERT TABLE 3 HERE] 

First, we examine long-run dividend growth forecast 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 = −0.377. As mentioned 

before, its sign is unintuitive, which is totally misled by short-term dividend estimate 𝑏𝑏𝑑𝑑 =

 −0.056  (Table 2). The t-statistic of 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 = −0.377  (−0.958 ) also narrates that the 

subsequent dividend variation barely accounts for the price volatility. In the similar sense, 
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long-run illiquidity growth forecast 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑐𝑐∗
𝑙𝑙𝑙𝑙 = 0.066 is of little economic significance; the t-

statistic is 0.168.  

Next, we turn to long-run return estimate 𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙 = −1.276 with the t-statistic of −2.932.11 

This number gives a strong indication for return forecastability, which is analogous to the 

implication of the pd ratios as shown in Cochrane (2008). When using simple excess return 

forecast 𝑏𝑏𝑒𝑒𝑒𝑒 where 𝑒𝑒𝑟𝑟𝑡𝑡+1 = 𝑎𝑎𝑒𝑒𝑒𝑒 + 𝑏𝑏𝑒𝑒𝑒𝑒 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1𝑒𝑒𝑒𝑒 , 𝑏𝑏𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙 = −1.262 with the t-statistic (−2.785) 

delivers the similar result (last column).12 

All long-horizon results suggest that market illiquidity (i.e., 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑐𝑐∗
𝑙𝑙𝑙𝑙) cannot fully help to 

attenuate the excess volatility (i.e., 𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙) inherent in prices because it merely provides a natural 

price trend. If its variation was so first-order as to deviate away from the trend a lot, the excess 

volatility referred to as pricing errors should in return be substantially reduced. The 

interpretation along with the cointegration concept is that when investors observe variation in 

pdl ratios, almost all mean reverting behavior arises from changes in expected returns, not from 

changes in positive and negative dividends; this conclusion does not differ from that of pd 

ratios (Cochrane, 2008). 

Now, we move on to address our central question, “Are long-run liquidity premia for the 

CRSP market portfolio a main source of price variation?” Do investors care about such premia 

in a long-term perspective? Algebraically, long-term forecast identity (20) leads to 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  1 −

�𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 − 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑐𝑐∗
𝑙𝑙𝑙𝑙 − 𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙� = 0.167, implying that about 16.7% of the price volatility comes 

from changes in expected liquidity premia.  

                                                 
11 Note that all the information sources are not orthogonal. That is why the return estimate over 100% can arise. 
12 To calculate 𝑏𝑏𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙 = −1.262, we use the following identity: 

𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙 = 𝐸𝐸𝑡𝑡 �� (𝜌𝜌�𝑙𝑙)𝑗𝑗�𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1+𝑗𝑗 − 𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1+𝑗𝑗∗ − 𝑒𝑒𝑟𝑟𝑡𝑡+1+𝑗𝑗 − 𝑟𝑟𝑡𝑡+1+𝑗𝑗
𝑓𝑓 + 𝑙𝑙𝑝𝑝𝑡𝑡+1+𝑗𝑗�

∞

𝑗𝑗=0
�, 

where 𝑟𝑟𝑡𝑡
𝑓𝑓 is the three-month T bill rate such that 𝑒𝑒𝑒𝑒𝑡𝑡 = 𝑟𝑟𝑡𝑡 − 𝑟𝑟𝑡𝑡

𝑓𝑓. 
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To assess its economic significance, we hypothesize the constant-expected-liquidity-

premium model as 

 H0: 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1 − 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 + 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑐𝑐∗
𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙 = 0. (22) 

More precisely, we adopt the non-linear Wald test statistic in Eq. (22):  

𝜆𝜆′�𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ′ 𝜃𝜃 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ �
−1
𝜆𝜆, 

where 𝜆𝜆 = 1 − 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 + 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑐𝑐∗
𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙 is defined as the scalar of deviations imposed by (22); 

𝛾𝛾 = [𝑏𝑏𝑑𝑑 , 𝑏𝑏𝑐𝑐∗ , 𝑏𝑏𝑟𝑟 ,𝜙𝜙]′  is the vector of the short-term estimates; 𝜃𝜃  is the estimated variance- 

covariance matrix in regressions (11)–(14); and 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  is the partial derivative with respect to 

estimate vector 𝛾𝛾. The Wald-test statistic follows a 𝜒𝜒2 distribution with degrees of freedom 𝑛𝑛 

equal to the number of observable variables: 𝑛𝑛 = 4 in our case. The 𝜒𝜒2-statistic for H0: 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =

0 is about 2.09, which is close to the null at the conventional levels: the p-value is about 72.0%. 

In sum, the liquidity premium is not a main source of price variation, suggesting that investors 

are not attentive to market illiquidity with great care in forming their long-term strategies.  

5. Impulse response functions 

Why do investors exhibit the different responses to illiquidity in market index returns over both 

horizons, respectively? To answer this, we go on to investigate how expected liquidity premia 

move forward through time. We thus display impulse response functions proposed by 

Cochrane (2011) in the present-value context with reference to a set of error shocks, 

[𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 , 𝜀𝜀𝑑𝑑 , 𝜀𝜀𝑐𝑐∗ , 𝜀𝜀𝑟𝑟 , 𝜀𝜀𝑙𝑙𝑙𝑙].  
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5.1. Error standard deviations and correlations 

Before jumping into impulse response functions, it is important to scrutinize the empirical 

relationship between the error shocks [𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝, 𝜀𝜀𝑑𝑑, 𝜀𝜀𝑐𝑐∗ , 𝜀𝜀𝑟𝑟 , 𝜀𝜀𝑙𝑙𝑝𝑝]′. Panel A of Table 4 presents error 

standard deviations on the diagonal and correlations on the off-diagonal for the error shocks.  

[INSERT TABLE 4 HERE] 

We find two outstanding observations. First, pdl shock 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 is strongly correlated with 

return shock 𝜀𝜀𝑟𝑟 : Corr(𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝, 𝜀𝜀𝑟𝑟) ≈ 50.3%. This feature accords well with that of pd ratios 

(Cochrane, 2008); our sample reveals Corr(𝜀𝜀𝑝𝑝𝑝𝑝, 𝜀𝜀𝑟𝑟) ≈  68.4%. Of course, 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 never comes 

out independently without dividend shock 𝜀𝜀𝑑𝑑  and illiquidity shock 𝜀𝜀𝑐𝑐∗ : Corr(𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝, 𝜀𝜀𝑑𝑑) ≈

−31.0% and Corr�𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 , 𝜀𝜀𝑐𝑐∗� ≈ −22.5%. Putting all correlation sizes into perspective, we find 

that return shock 𝜀𝜀𝑟𝑟 is a more dominant factor tied to pdl shock 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 than the other shocks. 

Second, liquidity-premium shock 𝜀𝜀𝑙𝑙𝑙𝑙  is almost perfectly and positively correlated with pdl 

shock 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 . The strong correlation reveals that the pdl ratio could be a good proxy for the 

liquidity premium. For robustness check, we also use the quarterly bid-ask spreads in Appendix 

B and also find the strong correlation (0.932). 

With the second observation in mind, Figure 2 describes that the liquidity premium was 

high from the last 1990s to the early 2000s, implying that at that time investors took great care 

of liquidating their portfolios in the near future. In the recent global crisis, however, it was 

relatively low, suggesting that market liquidity risk was not a main culprit of the hard time.  

5.2 Impulse-response functions 

In fact, there are four sources of giving rise to liquidity premia, since by design the implied 

liquidity premium is inferred from prices, dividends, illiquidity costs, and returns (Section 4). 
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Among these sources, we draw great attention to an illiquidity-driven shock throughout the 

analysis. To understand this simply, let us express the gross net-return relationship: 

 𝑅𝑅𝑡𝑡+1∗ = 𝑅𝑅𝑡𝑡+1 − 𝐿𝐿𝐿𝐿𝑡𝑡+1 = 𝑃𝑃𝑡𝑡+1+𝐷𝐷𝑡𝑡+1
𝑃𝑃𝑡𝑡

− 𝐶𝐶𝑡𝑡+1
𝑃𝑃𝑡𝑡

.  (23) 

As can be seen in (23), in principle, a rise in market illiquidity (𝐶𝐶𝑡𝑡+1 ↑) with no other changes 

is a primary driver of raising liquidity premia (𝐿𝐿𝐿𝐿𝑡𝑡+1 ↑). When market illiquidity is not a source 

of price variation at all, it is important to note that our price–dividend–cost relationship must 

shrink to the conventional price–dividend one.13 

Our focal point is to examine whether illiquidity shock 𝜀𝜀𝑐𝑐∗ is so transient that investors 

could become less insensitive to market illiquidity in the long run. To conduct the examination, 

we design the illiquidity shock with no current changes in pdl ratio, dividend, and return: 

 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 = 0,        𝜀𝜀𝑑𝑑 = 0,        𝜀𝜀𝑐𝑐∗ = 1,        𝜀𝜀𝑟𝑟 = 0,         𝜀𝜀𝑙𝑙𝑙𝑙 = 𝛽̂𝛽2. (24) 

Such a shock identification follows a first-order VAR system:14 

                                                 
13 For example, the variance decomposition of present-value identity (21) yields 

var(𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙) = cov �𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 ,�(𝜌𝜌�𝑙𝑙)𝑗𝑗𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1+𝑗𝑗

∞

𝑗𝑗=0

� − cov �𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 ,�(𝜌𝜌�𝑙𝑙)𝑗𝑗𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1+𝑗𝑗∗
∞

𝑗𝑗=0

� − cov �𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 ,�(𝜌𝜌�𝑙𝑙)𝑗𝑗𝑟𝑟𝑡𝑡+1+𝑗𝑗

∞

𝑗𝑗=0

�

+ cov �𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 ,�(𝜌𝜌�𝑙𝑙)𝑗𝑗𝑙𝑙𝑙𝑙𝑡𝑡+1+𝑗𝑗

∞

𝑗𝑗=0

�. 

When market illiquidity is not a priced factor (see Appendix A), it should shrink to 

var(𝑝𝑝𝑑𝑑𝑡𝑡) = cov �𝑝𝑝𝑑𝑑𝑡𝑡 ,�(𝜌𝜌)𝑗𝑗𝛥𝛥𝑑𝑑𝑡𝑡+1+𝑗𝑗

∞

𝑗𝑗=0

� − cov �𝑝𝑝𝑑𝑑𝑡𝑡 ,�(𝜌𝜌)𝑗𝑗𝑟𝑟𝑡𝑡+1+𝑗𝑗

∞

𝑗𝑗=0

�. 

14 One can add lags into a higher-order VAR system, but we want to keep the parsimonious VAR in the interest 
of brevity. We admit that such a shock definition might be oversimplification, but it also has a merit of facilitating 
the analysis simply. 
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⎣
⎢
⎢
⎢
⎡𝑝𝑝𝑝𝑝𝑡𝑡+1

𝑙𝑙

𝛥𝛥𝑑𝑑𝑡𝑡+1
𝛥𝛥𝑐𝑐𝑡𝑡+1∗

𝑟𝑟𝑡𝑡+1
𝑙𝑙𝑝𝑝𝑡𝑡+1 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

 

𝜙𝜙
𝑏𝑏𝑑𝑑
𝑏𝑏𝑐𝑐∗
𝑏𝑏𝑟𝑟

1 − 𝜌𝜌�𝑙𝑙 ⋅ 𝜙𝜙 − 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑 + 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑐𝑐∗ + 𝑏𝑏𝑟𝑟⎦
⎥
⎥
⎥
⎤

⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 +

⎣
⎢
⎢
⎢
⎢
⎡

 

𝜀𝜀𝑡𝑡+1
𝑝𝑝𝑝𝑝𝑝𝑝

𝜀𝜀𝑡𝑡+1𝑑𝑑

𝜀𝜀𝑡𝑡+1𝑐𝑐∗

𝜀𝜀𝑡𝑡+1𝑟𝑟

−𝜌𝜌�𝑙𝑙 ⋅ 𝜀𝜀𝑡𝑡+1
𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛽̂𝛽1 ⋅ 𝜀𝜀𝑡𝑡+1𝑑𝑑 + 𝛽̂𝛽2 ⋅ 𝜀𝜀𝑡𝑡+1𝑐𝑐∗ + 𝜀𝜀𝑡𝑡+1𝑟𝑟 ⎦

⎥
⎥
⎥
⎥
⎤

.

  (25) 

We also express a cumulative response of prices as 𝑝𝑝𝑡𝑡 = ∑ 𝛥𝛥𝑝𝑝𝑗𝑗𝑡𝑡
𝑗𝑗=1  and represent the others as 

𝛽̂𝛽1𝑑𝑑𝑡𝑡 = ∑ 𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑗𝑗𝑡𝑡
𝑗𝑗=1 , and 𝛽̂𝛽2𝑐𝑐𝑡𝑡∗ = ∑ 𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑗𝑗∗𝑡𝑡

𝑗𝑗=1  in the spirit of present-value identity (21). 15 

Figure 4 plots the impulse response functions in (24). 

[INSERT FIGURE 4 HERE] 

You find easily that the illiquidity shock is essentially transient (Figure 4). Concretely, the 

illiquidity shock (𝜀𝜀𝑐𝑐∗ = 1) in (23) leads to a price rise, no dividend move, and a illiquidity drop 

at the point of the shock spot (time 1; 2nd panel). At this point onward, they stay there with no 

subsequent moves. Clearly, this stay-put evidence highlights the transient nature of market 

illiquidity. To the point, even a big but transient change in illiquidity (strong short-term 

evidence in Subsection 4.2) can end up with a small price variation (week long-term evidence 

in Subsection 4.3).  

Our results disprove one common fallacy that a positive shock to illiquidity corresponds 

to (i) a rise in expected illiquidity, (ii) a rise in expected returns, and (iii) a drop in prices today, 

as stated in Acharya and Pedersen (2005). The transient illiquidity shock allows the first two 

premises (i) and (ii) hardly to happen, but directly comes to the last outcome (iii). The reason 

crystalizes again that market illiquidity just provides a natural trend for prices so that its cyclical 

                                                 
15 we write a change in prices with first-order VAR (25) as 
          𝛥𝛥𝑝𝑝𝑡𝑡+1 = 𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 + 𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1 −   𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1∗ − 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  
                      = �𝜙𝜙 + 𝛽̂𝛽1𝑏𝑏𝑑𝑑 − 𝛽̂𝛽2𝑏𝑏𝑐𝑐∗ − 1����������������

= 𝑏𝑏𝑝𝑝

⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + �𝜀𝜀𝑡𝑡+1
𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽̂𝛽1𝜀𝜀𝑡𝑡+1𝑑𝑑 − 𝛽̂𝛽2𝜀𝜀𝑡𝑡+1𝑐𝑐∗ ������������������

= 𝜀𝜀𝑡𝑡+1
𝑝𝑝

,  

where 𝑏𝑏𝑝𝑝 = 𝜙𝜙 + 𝛽̂𝛽1𝑏𝑏𝑑𝑑 − 𝛽̂𝛽2𝑏𝑏𝑐𝑐∗ − 1, and 𝜀𝜀𝑡𝑡+1
𝑝𝑝 = 𝜀𝜀𝑡𝑡+1

𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽̂𝛽1𝜀𝜀𝑡𝑡+1𝑑𝑑 − 𝛽̂𝛽2𝜀𝜀𝑡𝑡+1𝑐𝑐∗  denotes a price shock. 
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variation does not affect prices a lot. Another way of interpreting this technically is that it is 

nearly a random walk so that its cyclical variation could be roughly a white noise (or i.i.d.). 

Therefore, market liquidity risk should be second-order.  

Suppose that market illiquidity has the excess volatility relative to prices and dividends. 

In this case, the cyclical variation in the pdl ratios should arise largely from the excess 

illiquidity fluctuations in favor of illiquidity-growth predictability. In doing so, we are 

supposed to reject the constant-expected-liquidity-premium model (Section 4), implying that 

market liquidity risk should be first-order.  

In sum, the whole story above seems similar to that of the pd ratios (Cochrane, 2011) 

despite additional information (e.g., market illiquidity). Evidence is that 𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑟𝑟
1−𝜌𝜌�𝑙𝑙𝜙𝜙

=

−1.276 is compelling in terms of the size and the significance (Subsection 4.3), implying that 

a small but persistent expected return change (week short-term evidence) builds up with 

horizons toward a huge price variation (strong long-term evidence). At its core, the fact that 

illiquidity shock 𝜀𝜀𝑐𝑐∗—additional source of information—should be transient is why there is 

hardly a big difference between the two ratios. If the illiquidity shock was persistent as long as 

return shock 𝜀𝜀𝑟𝑟, it should take more of the expected return shares referred to as pricing errors 

not justified by subsequent expected cash flows.  

6. Conclusion 

This study sheds new light on the long-horizon interplay between market illiquidity and prices. 

The key finding is that the illiquidity shock is so transient that its cumulative effect does not 

likely matter for price behavior in the long run. Indeed, investors are sensitive to current 

unexpected liquidity news, but seem not to consider it with great care in forming long-term 

portfolio decisions.  
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An important unanswered question is that improvement in liquidity can also cause a rise 

in a trading frequency. This causation likely incurs large effective transaction costs and high 

compensation as a result. Although we cannot present such evidence here, our trend implication 

suggests that investors should also be reluctant to entail the risk of the effective costs. 

One may argue that small- and medium-cap. securities are of greater importance for 

liquidity pricing than our aggregate example. In this paper, our purpose is to offer an illiquidity 

pricing channel through present-value logic, not to deny the economic significance across asset 

classes. Even so, our new present-value identity can be applicable to such small- and medium-

cap. securities as well. We leave it for future work. 

We also open up a new venue of how to gauge the hard-to-detect liquidity premium, which 

is a function of prices, dividends, costs, and returns. One can attempt different measures of 

illiquidity costs to distill the implied liquidity premium and then compare which proxy is the 

essence of price variation. The last thing to remind is that the CRSP dividend series involves 

all distribution payments to investors, including cash mergers, liquidations, actual dividends, 

and so forth (Cochrane, 2008). Hence, one can further dissect such an inclusive series to find 

out which individual component is at its core for price variation. One of the good candidates 

may be share repurchases and issuances, as shown in Larrain and Yogo (2008). We also leave 

them for future research.   

APPENDIX A: Derivation of log-linear approximation 

For an arbitrary nonlinear function 𝑓𝑓(𝑥𝑥,𝑦𝑦), it can be approximated around 𝑥̅𝑥 and 𝑦𝑦� as 

𝑓𝑓(𝑥𝑥,𝑦𝑦) ≈ 𝑓𝑓(𝑥̅𝑥,𝑦𝑦�) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑥𝑥=𝑥̅𝑥,𝑦𝑦=𝑦𝑦�

(𝑥𝑥 − 𝑥̅𝑥) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑥𝑥=𝑥̅𝑥,𝑦𝑦=𝑦𝑦�

(𝑦𝑦 − 𝑦𝑦�). 

Using this first-order Taylor expansion yields Eq. (3): 

log(1 + exp(𝑑𝑑𝑝𝑝𝑡𝑡+1) − exp(𝑐𝑐𝑐𝑐𝑡𝑡+1)) = −log (𝜌𝜌𝑙𝑙) + exp(𝑑𝑑𝑑𝑑����)
1+exp(𝑑𝑑𝑑𝑑����)−exp(𝑐𝑐𝑐𝑐����) �𝑑𝑑𝑝𝑝𝑡𝑡+1 − 𝑑𝑑𝑑𝑑�����. 
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                                                                                   − exp (𝑐𝑐𝑐𝑐����)
1+exp (𝑑𝑑𝑑𝑑����)−exp (𝑐𝑐𝑐𝑐����)

(𝑐𝑐𝑝𝑝𝑡𝑡+1 − 𝑐𝑐𝑐𝑐���), 

where 𝜌𝜌𝑙𝑙 = 1
1+exp (𝑑𝑑𝑑𝑑����)−exp ( 𝑐𝑐𝑐𝑐����)

= 𝑃𝑃�

𝑃𝑃�+𝐷𝐷�−𝐶𝐶̅
> 𝜌𝜌 = 1

1+exp (𝑑𝑑𝑑𝑑����)
= 𝑃𝑃�

𝑃𝑃�+𝐷𝐷�
, exp(𝑑𝑑𝑑𝑑����)
1+exp(𝑑𝑑𝑑𝑑����)−exp(𝑐𝑐𝑐𝑐����)  = 𝜌𝜌𝑙𝑙(1/

𝜌𝜌 − 1) , exp (𝑐𝑐𝑐𝑐����)
1+exp(𝑑𝑑𝑑𝑑����)−exp(𝑐𝑐𝑐𝑐����) = 𝜌𝜌𝑙𝑙(1/𝜌𝜌 − 1/𝜌𝜌𝑙𝑙) , 𝑑𝑑𝑑𝑑���� = log(1/𝜌𝜌 − 1) , 𝑐𝑐𝑐𝑐��� = log(1/𝜌𝜌 − 1/𝜌𝜌𝑙𝑙) , 

and 

𝑘𝑘𝑙𝑙 = − log(𝜌𝜌𝑙𝑙) −
exp(𝑑𝑑𝑑𝑑����)

1+exp(𝑑𝑑𝑑𝑑����)−exp(𝑐𝑐𝑐𝑐����) ⋅ 𝑑𝑑𝑑𝑑
���� + exp(𝑐𝑐𝑐𝑐����)

1+exp(𝑑𝑑𝑑𝑑����)−exp(𝑐𝑐𝑐𝑐����) ⋅ 𝑐𝑐𝑐𝑐���. 

     = − log(𝜌𝜌𝑙𝑙) − 𝜌𝜌𝑙𝑙(1/𝜌𝜌 − 1)log(1/𝜌𝜌 − 1) + 𝜌𝜌𝑙𝑙(1/𝜌𝜌 − 1/𝜌𝜌𝑙𝑙)log(1/𝜌𝜌 − 1/𝜌𝜌𝑙𝑙). 

Substituting the Taylor expansion into Eq. (2) delivers the linear difference equation of 

the log net return: 

 𝑟𝑟𝑡𝑡+1∗ ≈ 𝑘𝑘𝑙𝑙 + 𝜌𝜌𝑙𝑙 ⋅ 𝑝𝑝𝑡𝑡+1 + 𝜌𝜌𝑙𝑙(1/𝜌𝜌 − 1)𝑑𝑑𝑡𝑡+1 − 𝜌𝜌𝑙𝑙(1/𝜌𝜌 − 1/𝜌𝜌𝑙𝑙)𝑐𝑐𝑡𝑡+1 − 𝑝𝑝𝑡𝑡.  

Proposition 1 carries 

𝑟𝑟𝑡𝑡+1∗ ≈ 𝑘𝑘𝑙𝑙 + 𝜌𝜌𝑙𝑙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 + 𝛽𝛽1Δ𝑑𝑑𝑡𝑡+1 + 𝛽𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1 − 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 . 

When illiquidity is not a source of price variation, 𝜌𝜌𝑙𝑙 = 𝜌𝜌  and 𝑘𝑘𝑙𝑙 = 𝑘𝑘 , where 𝑘𝑘 =

− log(𝜌𝜌) − (1 − 𝜌𝜌)log (1/𝜌𝜌 − 1) is the log-linear coefficient of log real return (Campbell and 

Shiller, 1988). In this case, Eq. (4) corresponds to the conventional difference equation of the 

real return: 

𝑟𝑟𝑡𝑡+1 ≈ 𝑘𝑘 + 𝜌𝜌 ⋅ 𝑝𝑝𝑡𝑡+1 + (1 − 𝜌𝜌)𝑑𝑑𝑡𝑡+1 − 𝑝𝑝𝑡𝑡 = 𝑘𝑘 + 𝜌𝜌 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡+1 + 𝛥𝛥𝑑𝑑𝑡𝑡+1 − 𝑝𝑝𝑝𝑝𝑡𝑡,  

where 𝑝𝑝𝑝𝑝𝑡𝑡 ≡ 𝑝𝑝𝑡𝑡 − 𝑑𝑑𝑡𝑡 is log price–dividend ratio.  

Some may argue that our framework requires stationary 𝑑𝑑𝑑𝑑𝑡𝑡+1 and 𝑐𝑐𝑐𝑐𝑡𝑡+1 in Eq. (3) to 

apply the first-order Taylor expansion. If Proposition 1 holds in the real data, we contend that 

the stationary property for 𝑑𝑑𝑝𝑝𝑡𝑡+1 and 𝑐𝑐𝑐𝑐𝑡𝑡+1 is not necessary. For example, suppose that exp(𝑧𝑧) 
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is given by exp(𝑥𝑥) − exp (𝑦𝑦). An arbitrary nonlinear function 𝑓𝑓(𝑧𝑧) = log (1 + exp(𝑧𝑧)) can be 

approximated by the first-order Taylor expansion around 𝑧𝑧̅:  

𝑓𝑓(𝑧𝑧) ≈ log (1 + exp(𝑧𝑧̅)) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑧𝑧=𝑧̅𝑧

(𝑧𝑧 − 𝑧𝑧̅). 

When 𝑥𝑥  and 𝑦𝑦  are restricted by 1 − 𝛽𝛽1 + 𝛽𝛽2 = 0 and approximation errors are not serious 

enough to affect our derivation, Eq. (3) can be rewritten with the one state variable: 

− log(𝜌𝜌𝑙𝑙) −
exp(𝑑𝑑𝑑𝑑����)−exp (𝑐𝑐𝑐𝑐����)

1+exp(𝑑𝑑𝑑𝑑����)−exp (𝑐𝑐𝑐𝑐����)
�𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 − 𝑝𝑝𝑑𝑑𝑙𝑙������, 

where exp(𝑑𝑑𝑑𝑑����)−exp (𝑐𝑐𝑐𝑐����)
1+exp(𝑑𝑑𝑑𝑑����)−exp (𝑐𝑐𝑐𝑐����)

= 1 − 𝜌𝜌𝑙𝑙 , 𝑝𝑝𝑑𝑑𝑙𝑙����� = −𝛽𝛽1𝑑𝑑𝑑𝑑���� + 𝛽𝛽2𝑐𝑐𝑐𝑐���, and − log(𝜌𝜌𝑙𝑙) + (1 − 𝜌𝜌𝑙𝑙)𝑝𝑝𝑑𝑑𝑙𝑙����� = 𝑘𝑘𝑙𝑙 . 

This formula leads to the same representation as Eq. (7). 

Eq. (7) represents a unified framework to link the conventional studies as well. First, we 

allow for negative dividends, which Campbell and Shiller (1988) do not consider. For example, 

suppose that liquidity is not a source of price variation. In this case, 𝛽𝛽1 = 1 and 𝛽𝛽2 = 0 as a 

result of 𝜌𝜌𝑙𝑙 = 𝜌𝜌 and 𝑘𝑘𝑙𝑙 = 𝑘𝑘. This assumption corresponds to the conventional Campbell and 

Shiller’s (1988) present-value identity: 

𝑝𝑝𝑝𝑝𝑡𝑡 ≈
𝑘𝑘

1−𝜌𝜌
+ 𝐸𝐸�∑ 𝜌𝜌𝑗𝑗�𝛥𝛥𝑑𝑑𝑡𝑡+1+𝑗𝑗 − 𝑟𝑟𝑡𝑡+1+𝑗𝑗��∞

𝑗𝑗=0 Ω𝑡𝑡�, 

where Ω𝑡𝑡 is the conventional information set generated by the joint history of 𝛥𝛥𝑑𝑑𝑡𝑡 and 𝑟𝑟𝑡𝑡.  

Second, we consider that investment opportunities vary over time, whereas Amihud and 

Mendelson (1986) do not. Constant variations in expected returns and liquidity premia can 

allow our present-value identity to be analogous to Amihud and Mendelson’s (1986) 

framework over a holding period. Our framework also supports the conclusion of Amihud and 

Mendelson (1986), who show that prices decrease with the expected relative bid-ask spreads.  
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APPENDIX B: Robustness test 

For robustness, we use log bid-ask spread 𝑠𝑠𝑡𝑡 displayed in Figure B.1 as another liquidity proxy. 

To measure price-based illiquidity, we do not normalize bid-ask spreads by price levels. Also, 

it should be noted that the bid-ask spread is available since 1983. Hence, we proceed with the 

median of all the quarterly cross-section bid-ask spreads to enlarge the number of samples until 

the fourth quarter of 2017. The construction is almost the same as stated in Subsection 3.1 with 

the exception of one condition that each security must have at least 40 trading days over a 

quarter. 

[INSERT FIGURE B.1 HERE] 

Proposition 1 allows for estimating pdl ratio 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 = 𝑝𝑝𝑡𝑡 − 𝛽̂𝛽1𝑑𝑑𝑡𝑡 + 𝛽̂𝛽2𝑠𝑠𝑡𝑡 displayed in Figure 

B.2: 

 𝑝𝑝𝑡𝑡 = 3.291 + 1.060 ⋅ 𝑑𝑑𝑡𝑡 − 0.060 ⋅ 𝑠𝑠𝑡𝑡. (B.1) 

All of them are significant at the conventional levels. These numbers give a sense that the 

amount of bid-ask spreads is about 5.7% (= 𝛽̂𝛽2/𝛽̂𝛽1) of that of dividends over the sample; the 

autocorrelation of 𝑠𝑠𝑡𝑡 is about one in line with the price-based illiquidity. 

[INSERT FIGURE B.2 HERE] 

Figure B.2 also shows clearly that the bid-ask spread provides a natural price trend. For this 

reason, we notice that subsequent qualitative implications are almost similar. Therefore, we do 

not repeat the details to conserve space and instead devote attention to a couple of primary 

points.  

Our present-value identity has the form: 

 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 ≈ 𝐸𝐸�∑ (𝜌𝜌�𝑙𝑙)𝑗𝑗�𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1+𝑗𝑗 − 𝛽̂𝛽2𝛥𝛥𝑠𝑠𝑡𝑡+1+𝑗𝑗 − 𝑟𝑟𝑡𝑡+1+𝑗𝑗 + 𝑙𝑙𝑙𝑙𝑡𝑡+1+𝑗𝑗�∞
𝑗𝑗=0 �ℋ𝑡𝑡�. (B-2) 
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We set 𝜌𝜌�𝑙𝑙 to 0.995. To obtain this number, we first compute the annual value of 𝜌𝜌� = 1/(1 +

exp (𝑑𝑑𝑑𝑑����)) = 0.977 from 1983 to 2017 and then transform it into the quarterly value of 𝜌𝜌� =

√0.9774 = 0.994. With the resulting 𝜌𝜌� = 0.994 in effect, we can back the value of 𝜌𝜌�𝑙𝑙 out of 

the beta formulas in Proposition 1.  

[INSERT TABLE B.1 HERE] 

Table B.1 calculates the results of simple predictive regressions. Likewise, the short-term 

forecastable evidence is not reliable because the autocorrelation of 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙  is about 0.91 close to 

unit root. Noteworthy are the signs of 𝑏𝑏𝑑𝑑 = 0.044 and 𝑏𝑏𝑠𝑠 = −0.076, which show the expected 

signs as shown in Eq. (B-2). The forecast identity brings us to compute liquidity premium 

coefficient 𝑏𝑏𝑙𝑙𝑙𝑙 as 

𝑏𝑏𝑙𝑙𝑙𝑙 = 1 − 𝜌𝜌�𝑙𝑙 ⋅ 𝜙𝜙 − 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑 + 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑠𝑠 + 𝑏𝑏𝑟𝑟 = 0.005. 

The linear Wald test for H0: 𝑏𝑏𝑙𝑙𝑙𝑙 = 0 says that 𝑏𝑏𝑙𝑙𝑙𝑙 = 0.005 is far away from the null at the 

conventional levels, confirming that the liquidity premium should be price on a short-term 

basis. Next, we move on to the long-run forecasting estimates reported in Table B.2, all of 

which are calculated based on the short-run coefficients. 

[INSERT TABLE B.2 HERE] 

One thing to note is that dividends present a dominant share to explain the price volatility: 

𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 = 47.2% . This share is even larger than 𝑏𝑏𝑟𝑟 = −42.9% and 𝑏𝑏𝑒𝑒𝑒𝑒 = −42.7% in an 

absolute sense. Given that the CRSP dividends contain all payments to shareholders, the 

popularity of share repurchases since 1983 might cause such a result; the enactment of Rule 

10b-18 in November 1982 has permitted firms to buy back a predetermined fraction of their 

shares under strict supervision. Nevertheless, the shares of 𝑏𝑏𝑟𝑟 = −42.9% and 𝑏𝑏𝑒𝑒𝑒𝑒 = −42.7% 
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are evidence in favor of return predictability. With 𝑏𝑏𝑟𝑟  in place, we calculate the long-term 

liquidity premium estimate as 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1 − 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 + 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑠𝑠𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙 = 0.052 . The non-linear 

Wald test for H0: 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0 shows that its time variability is not economically significant; the p-

value is about 92.0%. Likewise, the resulting liquidity premium is not significantly priced in 

the long run because it is just associated with the price trend, not with its cyclical fluctuations.  

[INSERT TABLE B.3 HERE] 

Let us see the error correlations and standard deviations reported in Table B.3 and compare 

them with those of Table 4. The common feature is that liquidity-premium shock 𝜀𝜀𝑙𝑙𝑙𝑙 exhibits 

a strong correlation with pdl shock 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 (0.932). Conversely, we discover in Table B.3 that pdl 

shock 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 and dividend shock  𝜀𝜀𝑑𝑑 are strongly and negatively correlated (−0.800), indicating 

that the pdl shock can be a large fraction of expected cash flow news since 1983, whereas Table 

4 illustrates that a pdl move is almost expected return news. Even so, it is still intact that market 

liquidity risk is essentially second-order. 

[INSERT FIGURE B.3 HERE] 

To see this, illiquidity shock 𝜀𝜀𝑠𝑠 is designed to be solely accompanied by liquidity-premium 

shock 𝜀𝜀𝑙𝑙𝑙𝑙: 

 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 = 0,        𝜀𝜀𝑑𝑑 = ,        𝜀𝜀𝑠𝑠 = 1,        𝜀𝜀𝑟𝑟 = 0,         𝜀𝜀𝑙𝑙𝑙𝑙 = 𝛽̂𝛽2 = 0.06. (B-3) 

In Figure B.3, you confirm stay-put moves shown in Figure 4. 

APPENDIX C: Over-identifying restriction on a GMM 

In Appendix C, all endogenous variables are redefined as deviations from their sample means. 

This change is justifiable because constant terms do not affect any stochastic behavior. Doing 



33 
 

so has another advantage of increasing one degree of freedom (see Hypothesis C). 

Our empirical question here is, how much expected net return 𝑟𝑟∗ accounts for expected 

return 𝑟𝑟? To conduct the investigation, unlike the previous ex-post identity of 𝑟𝑟𝑡𝑡∗ = 𝑟𝑟𝑡𝑡 − 𝑙𝑙𝑝𝑝𝑡𝑡, 

we replace net return 𝑟𝑟𝑡𝑡∗ = 𝑟𝑟𝑡𝑡 − 𝑙𝑙𝑝𝑝𝑡𝑡  with actual real return 𝑟𝑟𝑡𝑡  by 𝑟𝑟𝑡𝑡∗ = 𝜔𝜔 ⋅ 𝑟𝑟𝑡𝑡 , where 𝜔𝜔 is the 

proportion of the net return to the real return. This proportion can be estimated through tests of 

over-identifying restriction on a GMM.  

 

HYPOTHESIS C: 𝐇𝐇𝟎𝟎: 𝑬𝑬[𝒗𝒗𝒕𝒕+𝟏𝟏|𝓗𝓗𝐭𝐭] = 𝑬𝑬�𝒗𝒗𝒕𝒕+𝟏𝟏 ⋅ 𝑰𝑰𝒕𝒕𝓗𝓗� = 𝟎𝟎 

We have the following forward-looking moment equation by 𝑟𝑟𝑡𝑡∗ = 𝜔𝜔 ⋅ 𝑟𝑟𝑡𝑡:  

𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 = 𝜌𝜌�𝑙𝑙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 + 𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1 − 𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1∗ − 𝜔𝜔 ⋅ 𝑟𝑟𝑡𝑡+1 + 𝑣𝑣𝑡𝑡+1. 

By redefining the variables discussed above, we do not need to estimate the intercept in the 

forward moment equation above. Residual 𝑣𝑣𝑡𝑡+1 should be orthogonal to instrumental variables 

𝐼𝐼𝑡𝑡ℋ in information set ℋ𝑡𝑡 = [𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 ,𝛥𝛥𝑑𝑑𝑡𝑡 ,𝛥𝛥𝑐𝑐𝑡𝑡∗, 𝑟𝑟𝑡𝑡]′: 

𝐸𝐸 ��𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 − �𝜌𝜌�𝑙𝑙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 + 𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1 − 𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1∗ − 𝜔𝜔 ⋅ 𝑟𝑟𝑡𝑡+1�� ⋅ 𝐼𝐼𝑡𝑡ℋ� = 0. 

 

Table C.1 presents the results of over-identifying restriction on a GMM. Note that the 

number of the instrumental variables (simply, rank) can be up to five due to ℋ𝑡𝑡 =

[𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 ,𝛥𝛥𝑑𝑑𝑡𝑡,𝛥𝛥𝑐𝑐𝑡𝑡∗, 𝑟𝑟𝑡𝑡]′ including a constant. To conserve space, we report three simple cases (a) 

just-identification with rank 1, ℋ𝑡𝑡 = [𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙]′, (b) over-identification with rank 2, ℋ𝑡𝑡 = [𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙]′ 

and a constant, and (c) over-identification with full rank 5. 

[INSERT TABLE C.1 HERE] 
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As a result, the proportion 𝜔𝜔 spans from about 1.118 (rank 5) to 1.131 (rank 1), all of 

which are statistically different from one. This finding gives another evidence in favor of 

liquidity premium predictability over short horizons; otherwise, 𝜔𝜔 should not be far from one. 

The number 𝜔𝜔  such that 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1∗ ] = 𝜔𝜔𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1]  also suggests that the one-period expected 

return hovers around 88% (=1/1.131) – 89% (=1/1.118) of the one-period net return from 1926 

to 2017 for the market portfolio. The remaining 10-11% thus come from the variability of the 

liquidity premium to fill the void in constituting the net return. 

The GMM results can pertain to our main findings in Subsection 4.2. The fact that 𝑏𝑏𝑟𝑟 =

−0.205 and 𝑏𝑏𝑙𝑙𝑙𝑙 = 0.027 can lead roughly to 𝑏𝑏𝑟𝑟∗ ≈ 𝑏𝑏𝑟𝑟 − 𝑏𝑏𝑙𝑙𝑙𝑙 = −0.232 by accounting identity 

(6). With these numbers in place, the resulting proportion 𝜔𝜔 is about 88% (= 0.205/0.232), 

implying that about 12% (= 1 − 𝜔𝜔) of the net return is accounted for by the liquidity premium. 
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Table 1. Summary statistics 

Panel A: Means and standard deviations from 1927 to 2017 
 𝛥𝛥𝑑𝑑𝑡𝑡 𝛥𝛥𝑐𝑐𝑡𝑡∗ 𝑟𝑟𝑡𝑡 𝑒𝑒𝑒𝑒𝑡𝑡 𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  

Mean 0.054 −0.081 0.065 0.057 3.365 3.156 
Standard deviation 0.143 0.410 0.197 0.199 0.433 0.269 

Panel B: Contemporaneous correlations from 1927 to 2017 
 𝛥𝛥𝑑𝑑𝑡𝑡 𝛥𝛥𝑐𝑐𝑡𝑡∗ 𝑟𝑟𝑡𝑡 𝑒𝑒𝑒𝑒𝑡𝑡 𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  

𝛥𝛥𝑑𝑑𝑡𝑡 1.000      
𝛥𝛥𝑐𝑐𝑡𝑡∗ −0.344 1.000     
𝑟𝑟𝑡𝑡 0.652 −0.613 1.000    
𝑒𝑒𝑒𝑒𝑡𝑡 0.649 −0.671 0.980 1.000   
𝑝𝑝𝑝𝑝𝑡𝑡 −0.115 −0.214 0.054 0.038 1.000  
𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  −0.246 −0.041 0.002 −0.013 0.621 1.000 

Panel C: Unit root tests from 1927 to 2017 
 𝛥𝛥𝑑𝑑𝑡𝑡 𝛥𝛥𝑐𝑐𝑡𝑡∗ 𝑟𝑟𝑡𝑡 𝑒𝑒𝑒𝑒𝑡𝑡 𝑝𝑝𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙  

PP −11.314 −5.925 −9.261 −8.852 −1.593 −2.503 
KPSS 0.055 0.313 0.056 0.069 0.869 0.067 

NOTE: 𝛥𝛥𝑑𝑑𝑡𝑡 is log real dividend growth, 𝛥𝛥𝑐𝑐𝑡𝑡∗ is log illiquidity growth contingent on Amihud (2002) 
price impact proxy 𝑐𝑐𝑡𝑡∗  (see Figure 2), 𝑟𝑟𝑡𝑡  is log real return, 𝑒𝑒𝑟𝑟𝑡𝑡  is log excess return, 𝑝𝑝𝑑𝑑𝑡𝑡  is the 
conventional price–dividend ratio, and 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 = 𝑝𝑝𝑡𝑡 − 𝛽̂𝛽1𝑑𝑑𝑡𝑡 + 𝛽̂𝛽2𝑐𝑐𝑡𝑡∗  is the liquidity-adjusted price–
dividend ratio, where 𝛽̂𝛽1 = 1.084 and 𝛽̂𝛽2 = 0.084 in Eq. (9). The PP test has the null that a variable 
has a unit root, and the KPSS test has the null that a variable is stationary. We allow for an intercept 
and select an optimal lag in each test equation, based on the SC. We report adjusted t-statistics in the 
PP test and Lagrange Multiplier (LM) statistics in the KPSS test, respectively. Significant statistics at 
the 5% level are highlighted in bold face. 
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Table 2. Forecasting regressions 

Regression 𝑏𝑏𝑥𝑥 or 𝜙𝜙 
(S.E.) t-statistic R2 

(%) 
𝜎𝜎(𝑏𝑏𝑏𝑏) 

(%) 

𝛥𝛥𝛥𝛥𝑡𝑡+1 = 𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑑𝑑 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1𝑑𝑑  −0.056 
(0.062) −0.899 1.10 1.50 

𝛥𝛥𝑐𝑐𝑡𝑡+1∗ = 𝑎𝑎𝑐𝑐∗ + 𝑏𝑏𝑐𝑐∗ ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1𝑐𝑐∗  0.126 
(0.123) 1.023 0.68 3.39 

𝑟𝑟𝑡𝑡+1 = 𝑎𝑎𝑟𝑟 + 𝑏𝑏𝑟𝑟 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1𝑟𝑟  −0.205 
(0.064) −3.214 7.77 5.50 

𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 = 𝑎𝑎𝜙𝜙 + 𝜙𝜙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1
𝑝𝑝𝑝𝑝𝑝𝑝  0.866 

(0.056) 15.394 74.73 23.25 

𝛥𝛥𝛥𝛥𝑡𝑡+1 = 𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑑𝑑 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡 + 𝜀𝜀𝑡𝑡+1𝑑𝑑  −0.027 
(0.038) −0.724 0.69 1.19 

𝑟𝑟𝑡𝑡+1 = 𝑎𝑎𝑟𝑟 + 𝑏𝑏𝑟𝑟 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡 + 𝜀𝜀𝑡𝑡+1𝑟𝑟  −0.085 
(0.045) −1.894 3.49 3.69 

𝑝𝑝𝑑𝑑𝑡𝑡+1 = 𝑎𝑎𝜙𝜙 + 𝜙𝜙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡 + 𝜀𝜀𝑡𝑡+1
𝑝𝑝𝑝𝑝  0.942 

(0.039) 24.106 88.31 40.69 

NOTE: We report slope estimate 𝑏𝑏𝑥𝑥 or 𝜙𝜙 with respect to each forecasting regression (1st column) for 
state variable 𝑥𝑥 and its standard errors in parentheses. The t-statistic estimated from a GMM method is 
corrected for heteroscedasticity.  
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Table 3. Long-run implications 

 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑐𝑐∗𝑙𝑙𝑙𝑙 𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙 𝑏𝑏𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙  
Long-run estimate 

(S.E.) 
−0.377 
(0.394) 

0.066 
(0.968) 

−1.276 
(0.435) 

−1.262 
(0.453) 

t-statistic −0.958 0.168 −2.932 −2.785 
NOTE: We report the long-run slope coefficient calculated as 𝑏𝑏𝑥𝑥𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑥𝑥/(1− 𝜌𝜌�𝑙𝑙𝜙𝜙) in long-run forecast 
identity (20). Here, 𝑏𝑏𝑥𝑥 and 𝜙𝜙 is the one-period regression coefficient in Table 2, and 𝜌𝜌�𝑙𝑙 is set to 0.969. 
We use 𝛽̂𝛽1 = 1.084 and 𝛽̂𝛽2 = 0.084 in Eq. (9). The t-statistic is calculated through the standard delta 
method.  
 
  



39 
 

Table 4. Error standard deviations and correlations 

 𝜀𝜀𝑑𝑑 𝜀𝜀𝑐𝑐∗ 𝜀𝜀𝑟𝑟 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 𝜀𝜀𝑙𝑙𝑙𝑙 
𝜀𝜀𝑑𝑑 14.2 −33.8 65.2 −31.0 −31.0 
𝜀𝜀𝑐𝑐∗  −33.8 40.8 −61.6 −22.5 −22.5 
𝜀𝜀𝑟𝑟 65.2 −61.6 18.9 50.3 50.3 
𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 −31.0 −22.5 50.3 13.5 100 
𝜀𝜀𝑙𝑙𝑙𝑙 −31.0 −22.5 50.3 100 0.4 

NOTE: Each number stands for error standard deviations on the diagonal (%) and correlation on the 
off-diagonal (%). The error shocks are dividend shock 𝜀𝜀𝑑𝑑, illiquidity shock 𝜀𝜀𝑐𝑐∗ subject to Amihud’s 
(2002) illiquidity proxy in Eq. (8), return shock 𝜀𝜀𝑟𝑟 , pdl shock 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 , and implied liquidity-premium 
shock 𝜀𝜀𝑙𝑙𝑙𝑙 by error identity (18). 
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Table B. 1. Forecasting regressions and error standard deviations 

Regression 𝑏𝑏𝑥𝑥 or 𝜙𝜙 
(S.E.) t-statistic R2 

(%) 
𝜎𝜎(𝑏𝑏𝑏𝑏) 

(%) 

𝛥𝛥𝛥𝛥𝑡𝑡+1 = 𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑑𝑑 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1𝑑𝑑  0.044 
(0.030) 1.448 1.45 1.4 

𝛥𝛥𝑠𝑠𝑡𝑡+1 = 𝑎𝑎𝑠𝑠 + 𝑏𝑏𝑠𝑠 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1𝑠𝑠  −0.076 
(0.030) −2.546 5.75 2.5 

𝑟𝑟𝑡𝑡+1 = 𝑎𝑎𝑟𝑟 + 𝑏𝑏𝑟𝑟 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1𝑟𝑟  −0.042 
(0.024) −1.791 2.81 1.4 

𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 = 𝑎𝑎𝜙𝜙 + 𝜙𝜙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 + 𝜀𝜀𝑡𝑡+1
𝑝𝑝𝑝𝑝𝑝𝑝  0.906 

(0.035) 26.019 83.71 29.5 

NOTE: We report slope estimate 𝑏𝑏𝑥𝑥 or 𝜙𝜙 with respect to each forecasting regression (1st column) for 
state variable 𝑥𝑥 and its standard errors in parentheses. The t-statistic estimated from a GMM method is 
corrected for heteroscedasticity.  
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Table B. 2. Long-run implications 

 𝛽̂𝛽1 ⋅ 𝑏𝑏𝑑𝑑𝑙𝑙𝑙𝑙 𝛽̂𝛽2 ⋅ 𝑏𝑏𝑠𝑠𝑙𝑙𝑙𝑙 𝑏𝑏𝑟𝑟𝑙𝑙𝑙𝑙 𝑏𝑏𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙  
Long-run estimate 

(S.E.) 
0.472 

(0.223) 
−0.047 
(0.209) 

−0.429 
(0.209) 

−0.427 
(0.204) 

t-statistic 2.120 −0.209 −2.056 −2.091 
NOTE: We report the long-run slope coefficient calculated as 𝑏𝑏𝑥𝑥𝑙𝑙𝑙𝑙 = 𝑏𝑏𝑥𝑥/(1− 𝜌𝜌�𝑙𝑙𝜙𝜙) in long-run forecast 
identity (20). Here, 𝑏𝑏𝑥𝑥 and 𝜙𝜙 is the one-period regression coefficient in Table B. 1, and 𝜌𝜌�𝑙𝑙 is set to 0.995. 
We use 𝛽̂𝛽1 = 1.060 and 𝛽̂𝛽2 = 0.060 in Eq. (B-1). The t-statistic is calculated through the standard delta 
method.  
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Table B. 3. Error standard deviations and correlations 

 𝜀𝜀𝑑𝑑 𝜀𝜀𝑠𝑠 𝜀𝜀𝑟𝑟 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 𝜀𝜀𝑙𝑙𝑙𝑙 
𝜀𝜀𝑑𝑑 11.8 11.0 24.9 −80.0 −62.5 
𝜀𝜀𝑠𝑠 11.0 10.0 −9.2 −11.5 −39.8 
𝜀𝜀𝑟𝑟 24.9 −9.2 8.1 37.9 56.4 
𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 −80.0 −11.5 37.9 13.0 93.2 
𝜀𝜀𝑙𝑙𝑙𝑙 −62.5 −39.8 56.4 93.2 0.1 

NOTE: Each number stands for error standard deviations on the diagonal (%) and correlation on the 
off-diagonal (%). The error shocks are dividend shock 𝜀𝜀𝑑𝑑, illiquidity shock 𝜀𝜀𝑠𝑠 subject to bid-ask spread 
proxy in Eq. (B-1), return shock 𝜀𝜀𝑟𝑟, pdl shock 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝, and implied liquidity-premium shock 𝜀𝜀𝑙𝑙𝑙𝑙 by error 
identity: 𝜀𝜀𝑙𝑙𝑙𝑙 = −𝜌𝜌�𝑙𝑙 ⋅ 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛽̂𝛽1 ⋅ 𝜀𝜀𝑑𝑑 + 𝛽̂𝛽2 ⋅ 𝜀𝜀𝑠𝑠 + 𝜀𝜀𝑟𝑟, where 𝜌𝜌�𝑙𝑙 = 0.995, 𝛽̂𝛽1 = 1.060, and 𝛽̂𝛽2 = 0.060. 
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Table C. 1. GMM test 

𝐼𝐼𝑡𝑡ℋ  
(rank, identification) Implications of GMM Significance level for 

J test 
𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙   

(1, just) 
𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 = 𝜌𝜌�𝑙𝑙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 + 𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1 − 𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1∗ − 1.131 ⋅ 𝑟𝑟𝑡𝑡+1 + 𝜈𝜈𝑡𝑡+1 

                                                      (0.049) 
− 

𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙  and constant 
(2, over) 

𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 = 𝜌𝜌�𝑙𝑙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 + 𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1 − 𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1∗ − 1.126 ⋅ 𝑟𝑟𝑡𝑡+1 + 𝜈𝜈𝑡𝑡+1 
                                                      (0.043) 

0.830 

[𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 ,𝛥𝛥𝛥𝛥,𝛥𝛥𝑐𝑐𝑡𝑡∗, 𝑟𝑟𝑡𝑡]′  
and constant 

(5, over) 

𝑝𝑝𝑑𝑑𝑡𝑡𝑙𝑙 = 𝜌𝜌�𝑙𝑙 ⋅ 𝑝𝑝𝑑𝑑𝑡𝑡+1𝑙𝑙 + 𝛽̂𝛽1𝛥𝛥𝑑𝑑𝑡𝑡+1 − 𝛽̂𝛽2𝛥𝛥𝑐𝑐𝑡𝑡+1∗ − 1.118 ⋅ 𝑟𝑟𝑡𝑡+1 + 𝜈𝜈𝑡𝑡+1 
                                                      (0.034) 

0.583 

NOTE: The table reports the results of over-identifying restrictions on the GMM through continuous 
updating. Here, 𝐼𝐼𝑡𝑡ℋ denotes the instrumental variable, and the rank is the number of the instrumental 
variables. The last column presents p-values for H0: 𝐸𝐸�𝑣𝑣𝑡𝑡+1 ⋅ 𝐼𝐼𝑡𝑡ℋ� = 0 in terms of the J-statistics. 
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Figure 1. Price–dividend and liquidity-adjusted price–dividend ratios. The two ratios are plotted 
from 1926 to 2017. They are redefined as deviations from their sample means. 
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Figure 2. Log Amihud (2002) illiquidity ratio 𝒄𝒄𝒕𝒕∗. See Subsection 3.1 for calculation. In particular, 𝑐𝑐𝑡𝑡∗ 
is deflated the CPI provided by CRSP at the end of month in year 𝑡𝑡. We also redefine 𝑐𝑐𝑡𝑡∗ as deviations 
from its sample mean from 1926 to 2017.  
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Figure 3. Forecast and one-period ex-post returns. The figure plots one-period real return 𝑟𝑟𝑡𝑡+1 and 
the fitted regression values of simple forecasting regressions in Subsection 4.1 on pdl ratio 𝑝𝑝𝑝𝑝𝑡𝑡𝑙𝑙 = 𝑝𝑝𝑡𝑡 −
𝛽̂𝛽1𝑑𝑑𝑡𝑡 + 𝛽̂𝛽2 𝑐𝑐𝑡𝑡∗, pd ratio 𝑝𝑝𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑑𝑑𝑡𝑡, and scaled pd ratio 𝑝𝑝𝑡𝑡 − 𝛽̂𝛽1𝑑𝑑𝑡𝑡: i.e., 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥 × regressor.  
 
  

-.4

-.2

.0

.2

.4

.6

.8

1930 1940 1950 1960 1970 1980 1990 2000 2010

One-period real return
Return forecast using liquidity-adjusted price-dividend ratio
Return forecast using price-dividend ratio
Return forecast using scaled price-dividend ratio

Year



47 
 

 
Figure 4. Impulse response to illiquidity shock with no moves in pdl ratio, dividend, and return. 
The impulse response functions are plotted based on the first-order VAR (25). The first panel uses the 
five error shocks, [𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 , 𝜀𝜀𝑑𝑑 , 𝜀𝜀𝑐𝑐∗ , 𝜀𝜀𝑟𝑟 , 𝜀𝜀𝑙𝑙𝑙𝑙], where liquidity-premium shock 𝜀𝜀𝑙𝑙𝑙𝑙  is inferred from error 
identity (18): 𝜀𝜀𝑙𝑙𝑙𝑙 = −𝜌𝜌�𝑙𝑙 ⋅ 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛽̂𝛽1 ⋅ 𝜀𝜀𝑑𝑑 + 𝛽̂𝛽2 ⋅ 𝜀𝜀𝑐𝑐

∗ + 𝜀𝜀𝑟𝑟 , where 𝜌𝜌�𝑙𝑙 = 0.969 , 𝛽̂𝛽1 = 1.084, and 𝛽̂𝛽2 =
0.084. The second panel further uses the price shock 𝜀𝜀𝑝𝑝 = 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽̂𝛽1 ⋅ 𝜀𝜀𝑑𝑑 − 𝛽̂𝛽2 ⋅ 𝜀𝜀𝑐𝑐

∗ in footnote 15. We 
identify the illiquidity shock as �𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 , 𝜀𝜀𝑑𝑑 , 𝜀𝜀𝑐𝑐∗ , 𝜀𝜀𝑟𝑟 , 𝜀𝜀𝑙𝑙𝑙𝑙� = [0,0,1,0, 𝛽̂𝛽2]  in Eq. (24). The vertical dashed 
line represents the starting time of the shock. 
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Figure B. 1 Log bid-ask spread 𝒔𝒔𝒕𝒕. We plot both median and mean of all the cross-sectional spreads 
from the first quarter of 1983 (1983Q1) to the fourth quarter of 2017 (2017Q4). Both of them are 
redefined as deviations from its sample means and deflated the CPI provided by CRSP at the end of 
month in quarter 𝑡𝑡. Shaded areas represent the NBER recessions for the period following the peak 
through the trough. 
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Figure B. 2 Price–dividend and liquidity-adjusted price–dividend ratios. The two ratios are plotted 
over the period from 1983Q1 to 2017Q4. They are redefined as deviations from their sample means. 
Shaded areas represent the NBER recessions for the period following the peak through the trough. 
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Figure B. 3. Impulse response to illiquidity shock with no moves in pdl ratio, dividend, and return. 
The impulse response functions are plotted based on the similar form of the first-order VAR (25). The 
first panel uses the five error shocks, [𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 , 𝜀𝜀𝑑𝑑 , 𝜀𝜀𝑠𝑠, 𝜀𝜀𝑟𝑟 , 𝜀𝜀𝑙𝑙𝑙𝑙 ], where liquidity-premium shock 𝜀𝜀𝑙𝑙𝑙𝑙  is 
inferred from the error identity: 𝜀𝜀𝑙𝑙𝑙𝑙 = −𝜌𝜌�𝑙𝑙 ⋅ 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛽̂𝛽1 ⋅ 𝜀𝜀𝑑𝑑 + 𝛽̂𝛽2 ⋅ 𝜀𝜀𝑠𝑠 + 𝜀𝜀𝑟𝑟 , where 𝜌𝜌�𝑙𝑙 = 0.995, 𝛽̂𝛽1 =
1.060, and  𝛽̂𝛽2 = 0.060 in Eq. (B-1). The second panel further uses the price shock: 𝜀𝜀𝑝𝑝 = 𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛽̂𝛽1 ⋅
𝜀𝜀𝑑𝑑 − 𝛽̂𝛽2 ⋅ 𝜀𝜀𝑠𝑠. We identify the pdl shock as [𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝 , 𝜀𝜀𝑑𝑑 , 𝜀𝜀𝑠𝑠, 𝜀𝜀𝑟𝑟 , 𝜀𝜀𝑙𝑙𝑙𝑙] = [0,0,1,0, 𝛽̂𝛽2]. The vertical dashed 
line represents the starting time of the shock. 
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