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Abstract

It is well-known that individual stock returns often exhibit large discrete movements, or

jumps. In addition, it is documented that jump risk is necessary to explain observed

equity options prices. However, very little is known about the source of jumps and its

premium, perhaps due to the latent nature of jumps. I propose to identify jumps using

a comprehensive news dataset from Factiva. This enables me to model the time-varying

probability of jumps and it allows me to impose flexible risk premiums showing how the

uncertainty of news arrivals is priced. When estimating a continuous-time stochastic

volatility jump diffusion model on individual equity options with news arrivals driving

the jump dynamics, I find that (1) the arrival of news itself is positively priced and

(2) the size of jumps due to news arrival carries a significantly negative risk premium.

The results are consistent with previous theories highlighting both positive and negative

effects of public news arrival.
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1 Introduction

One of the first empirical puzzles found in the financial literature is the leptokurtic distribution

of stock returns. Earlier research tried to explain the puzzle by the so called Mixture of

Distributions Hypothesis (MDH) (e.g., Clark (1973), Epps and Epps (1976), Tauchen and

Pitts (1983)). MDH conjectures that trading activities are triggered by randomly spaced

arrivals from a latent information process. However, the biggest problem with the empirical

testing of MDH lies in the latent nature of the information process. The literature has thus

largely focused on testing the implications of MDH, namely the volume-volatility relationship.

Instead of relying on the implications of the hypothesis, in this paper, I directly test the role

of specific information process, the firm-specific public news arrival, and how the uncertainty

of its arrival is priced in the market.

To construct a measure of public news arrival, I use one of the most widely used database,

Factiva. For each of the 20 firms in my sample, I construct two measures of public news arrival.

The first is a simple count of the daily number of news articles appearing in the database while

the second measures the news tone associated with individual article by applying the textual

analysis technique developed in Loughran and McDonald (2011).

Large amounts of public news arrival coincides with large discrete movements in daily stock

returns. For example, Microsoft’s stock price dropped by 14.47% on Apr 3rd, 2000 following

a judge’s ruling that Microsoft had violated antitrust laws. Of course, the day came with

excessive amount of news articles, 348 news articles in my sample compared to the average

news articles per day of 71, reporting the judge’s ruling. On the theoretical side, Andersen

(1996) proposes a modified Mixture of Distributions Hypothesis where the information arrival

induces Poisson-type jumps in returns and finds strong empirical support. Along these lines,

I conjecture that public news arrivals are related to the stock return jumps, rather than its

continuous movements, and I find supporting empirical evidences.

Detecting jumps in stock returns has been one of the most active research area in financial
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econometrics in last decade.1 I employ the method developed in Lee and Mykland (2008)

to identify individual daily stock returns as jump or no jump days. Using the identified

jump days, I find strong evidence linking public news count with the probability of jumps.

In particular, the news tone that measures the tone of each news article, does not have a

significant relationship to the occurrence of jumps, but it is strongly correlated with the size

of a jump conditional on its occurrence. This evidence is consistent with Tetlock (2007) who

has found the correlation between pessimistic tones extracted from the Wall Street Journal

and large negative returns. I also find additional evidence from the equity options market

using the slope of the implied volatility surface. Both news counts and news tones are shown

to be related with the IV-SKEW that proxies for the embedded risk-adjusted jump risk.

I then use the findings from the daily returns as a guidance to build a continuous time

stochastic-volatility jump-diffusion model of daily returns, with the goal to study the market

price of risk associated with the public news arrival. The major innovation of the model is to

feature a time-varying jump-intensity where its variation solely depends on the observed public

news arrival. By fitting the model to the daily returns, news arrivals, and equity options prices,

I find a significant positive risk premium associated with the public news innovation while the

actual jump size due to the news carries a large negative risk premium. This suggests that

a public news arrival is not viewed as redundant, but rather viewed as something investors

prefer to have. Through this public news interpretation, I am able to both reconcile and

explain the previously documented puzzling positive jump-timing risk premium.

There are mainly two channels for public news and its contents to cause stock returns

to jump. The first channel is by influencing the beliefs of either noise or liquidity traders.

The seminal paper by De Long, Shleifer, Summers, and Waldmann (1990) studies how noise

trader risk can explain various empirical puzzles, while Campbell, Grossman, and Wang (1993)

focuses on how sudden changes in liquidity traders can affect short-term returns. Tetlock

(2007) provides empirical evidence consistent with these theoretical models. On the other

1For reference, see Huang and Tauchen (2005) and Gilder, Shackleton, and Taylor (2014) for concise
summary.
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hand, public news arrival can be viewed as a resolution of information asymmetry. If the

public news articles do contain information that was only know to a group of privately informed

investors, the arrival of such news instantaneously resolves the information asymmetry, thus

causing the stock price to jump.

Furthermore, it is not clear how the public information should be priced in the market. If

the noise trading effect is true, then public information is nothing more than exogenous shocks

that cause short-term market movements that in turn quickly revert to the fundamental, hence

should carry a negative risk premium. On the other hand, if the public information indeed

resolves the information asymmetry, then it should carry a positive risk premium as shown in

Easley and O’hara (2004). My findings suggest that, at least when using Factiva based news

counts and contents as a proxy for public information, both theories co-exist in the market.

Specifically, the positive jump-timing risk premium can be viewed as evidence of resolution of

information asymmetry via a public news arrival story. On the other hand, the significantly

negative jump-size premium can be viewed as a negative risk premium associated with risk

aversion against the effect of noise trading induced price jumps. Thus, I conclude that public

news arrival is an important economic factor that is strongly priced in the market, and the

resulting evidences are consistent with both views from the previous theories.

This paper is perhaps most closely related to the work by Engle, Hansen, and Lunde

(2012). They use the same news dataset from Factiva and study whether the news information

can improve the forecasting power of daily realized volatility. In contrast, I emphasize the

contemporaneous relationship between news arrival and stock return jumps. Also, I focus on

using news arrivals as an exogenous observable to extract the risk premium associated with

it instead of forecasting. In this respect, Lee (2012)’s work serves as good evidence why I

focus on jumps. Lee (2012) finds that there is a higher chance of observing intra-day jumps in

returns during scheduled firm-specific news announcement times. I follow the same intuition,

with the notable difference that I study the impact of a daily time-series of news arrival instead

of focusing on specific events. In other words, I am specifically interested in the role played

by the unexpected and mostly unscheduled component of public news arrival.
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There exists an extensive amount of literature studying the time-varying jump-intensity in

returns and options prices.2 The typical approach, mostly taken for its analytical tractability,

is to assume an affine functional form for the jump-intensity in the latent variance process.3

However, this approach does not allow for separate interpretations of the diffusive variance risk

premium and jump-timing risk premium because two come from the same source. Particularly,

two risk premiums are forced to have the same sign, which is not a required restriction. Perhaps

due to this analytical complexity, the jump-timing premium has been mostly neglected and

assumed away from in most studies. My model contributes to this literature by proposing to

bypass this issue by allowing a purely public news dependent process that enters the jump-

intensity equation, thus allowing one to identify the two premiums separately.

In terms of methodology, my paper is also related to the literature on explaining derivatives

prices using economic co-variates. Usage of stochastic co-variates has been a popular approach

in the credit derivatives literature.4 There are way fewer studies linking economic co-variates

to the pricing of options, perhaps due to the different modeling approach and difficulties

associated with assigning appropriate co-variates. I contribute to this literature by proposing

an observed news process as a possible candidate for an economic co-variate.

The remainder of the paper is organized as follows. Section 2 describes the dataset used for

the analysis and provides preliminary non-parametric evidence from both equity and options

markets. In Section 3, I develop the structural model that builds on the findings from Section

2 and discuss the estimation strategy. Section 4 focuses on the resulting implications from the

estimated parameters and its properties. Section 5 concludes.

2Too cite few, see Maheu and McCurdy (2004), Maheu, McCurdy, and Zhao (2013), Andersen, Benzoni, and
Lund (2002), Eraker (2004), Broadie, Chernov, and Johannes (2007a), Christoffersen, Jacobs, and Ornthanalai
(2012), Ornthanalai (2014), and Andersen, Fusari, and Todorov (2015).

3Santa-Clara and Yan (2010) is a notable exception where the jump-intensity process is modeled as a
separate latent process.

4See Altman (1968), Shumway (2001), Duffie, Saita, and Wang (2007), etc.
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2 Data and Non-Parametric Analysis

In this section, I first describe the data sets used in the paper. I then perform non-parametric

analysis to look for the evidence that links firm-specific news arrivals to jumps in returns.5

The result non only indicates that firm-specific news arrival is related to return jumps but

also provides good intuition on how the parametric models should be structured.

2.1 Data

The main variable of interest is firm-specific news arrival. The focus of this paper is placed on

the role played by the daily arrival of firm-specific news instead of specific corporate events

with large news flows, including both scheduled and unscheduled. Therefore, I require a

comprehensive database that contains as many firm-specific news articles as possible. In this

regard, I use Factiva database to search for comprehensive list of news articles.6 Due to the

technological advances such as Internet, the number of daily news articles have dramatically

increased since the early 2000s. For this reason, I start my sample period at January, 2000

and ends at July, 2012 to avoid issues with obvious trend in news data.

Factiva database conveniently identifies each news article by its own ticker, which allows

me to easily merge CRSP database with Factive news articles at daily level by its unique

ticker. I identify 20 firms with the most amount of news articles for this study as the firms

with smaller variation in its amount of daily news flow would not provide as much reliable

conclusions as the firms with large amount of news flows. For each firm, I simply count the

number of news articles with its ticker that appears in the Factiva database.7 Table 1 shows

descriptive statistics of daily news counts for 20 selected firms. The mean number of news

articles observed each day is around 44 while median number is 32, indicating significant

amount of weight is placed on the large news counts out-lier. Table 1 also shows that daily

5The author would like to acknowledge that dataset and most of non-parametric analysis in this section
are taken from Jeon, McCurdy, and Zhao (2016).

6Bajgrowicz and Scaillet (2011) and Engle, Hansen, and Lunde (2012) also use Factiva database.
7Ederington and Lee (1993), Mitchell and Mulherin (1994), and Berry and Howe (1994) show that simple

count of number of news articles is a good measure of public information arrival.
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news counts are highly volatile. Standard deviation of each firm is is very large, sometime

being much bigger than the mean, indicating that there are significant variation associated

with the amount of news flowing into the equity market.

Besides the absolute number of news articles, its individual content might be also very

relevant for investors. To quantify the individual content, I rely on the recent development in

textual analysis (Cite papers) to measure the tone of each individual news articles. Due to

the limitation of computing power and resources, I only download the first paragraph of each

article. Then, I count the number of positive and negative words used in the first paragraph

using the words list provided by Loughran and McDonald (2011). The final measure of news

tone of each individual article is simply the difference between the percentage of positive and

negative words. To ensure that longer articles carry more weight, I value-weight them by the

number of words in each article to the daily level. Table 2 shows descriptive statistics of daily

news tones for 20 selected firms. News tone measure of 0 thus corresponds to the neutral news

tone day that had equal amount of positive and negative wordings. The news tone is negative

in average with an exception of IBM and Cisco. Like the news counts reported in Table 1,

the news tones are also highly volatile.

2.2 Evidences from Daily Jump Detection

In this section, I show preliminary evidence on the relationship between firm-specific news

arrivals and daily return jumps. In order to classify each day as jump day or no jump day,

I rely on the non-parametric method developed in Lee and Mykland (2008). It normalizes

each return observation by the non-parametric spot variance estimator then compares it to

the specific quantiles provided by the limiting distributions of interest.8 To be conservative, I

consider four different statistics that differ in its significance level and asymptotic distributions.

Specifically, J99 and J95 denote the jumps detected at 99% and 95% significance level using

Gumbel distribution as in Lemma 1 of Lee and Mykland (2008), while J099 and J095 denote

8I have used the corrections pointed out by Gilder, Shackleton, and Taylor (2014) in deriving the quantiles
of the asymptotic distribution.
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the jumps detected at 99% and 95% significance level using more relaxed normal distribution

as in Theorem 1 of Lee and Mykland (2008).9

Having identified the jumps at daily level for individual securities, I first run the following

pooled logit regression to test whether the jumps are more likely to occur on days with more

news arrivals. NewsCount and NewsTone denote the daily count and tone of news articles

described in the previous section, where I standardize them to have same mean and standard

deviation across 20 firms.

logit(pit) = a+ b1 × NewsCountit + b2 × NewsToneit + b3 × reti,t−1 + εit (1)

Table 3 reports the pooled logit regression result for four different threshold of detecting

jumps. Same findings hold across all four cases: more news counts are associated with higher

probability of having jump while news tone does not have statistically significant relationship

to the probability of jump. The result shows that jumps are more likely to occur when

excessive amount of information flows regardless of its actual content.

Next, I further explore the role of news tone given that it does not affect the occurrence

of jumps itself. Tetlock (2007) shows the level of news pessimism extracted from Wall Street

Journal is related to the downward pressure on market prices. In other words, the news tone

is linked to the size of the market price movements, or jumps. Motivated by this, I run the

following regression to test whether the news tone matters for the size of jumps conditional

on having jumps.

rit|Jump = a+ b1 × NewsCountit + b2 × NewsToneit + εit (2)

For each of four jump detection statistics, I first take subsamples classified as jump days

only. Then, I assume the entire daily return of those days are due to the jump component. Ta-

9Each of four statistics {J99, J95, J099, J095} thus identifies the jump day if the absolute value of daily
return is above {5.1024, 4.4881, 3.2283, 2.4565} times of the daily spot volatility.
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ble 4 reports the OLS regression result. First panel provides the estimates of coefficients when

entire subsample of jump days are used. Again, no qualitative differences are found among

four different jump detection statistics. NewsTone variable shows statistically significant pos-

itive coefficient, meaning negative NewsTone comes with negative jump returns, consistent

with Tetlock (2007). Coefficients estimates for NewsCount shows much weaker statistical sig-

nificance and even has a negative sign. The potential issue with NewsCount variable is that

it can take only positive values while the dependent variable, size of jump return, can be both

positive and negative. Thus, I further divide the jump days into two subsamples, one with

positive jump returns and other with negative jump returns.

Middle panel reports the result for positive jumps only subsample. First and most inter-

estingly, the significance associated with NewsTone variable disappears and the sign becomes

negative. In other words, the actual content of news matters less for positive jump returns

and actually it even reduces the size of jumps, given that NewsTone will be in general positive

on those days. Second, NewsCount is now strongly related with the size of jumps, carrying a

statistically significant positive coefficient.

Bottom panel shows the coefficient estimates on negative jumps only subsample. In this

case, all coefficients for both NewsTone and NewsCount are statistically significant at 1% level.

The signs of estimated coefficients for NewsTone and NewsCount are positive and negative,

respectively, indicating that pessimistic news tone and more number of negative news come

with larger negative returns. Looking at the size of the coefficients, NewsTone dominates the

NewsCount in its impact on the jump returns. Using the estimated coefficients from the J99

statistic in column (1), one standard deviation decrease in NewsTone decreases jump size by

1.47% while one standard deviation increase in NewsCount decreases jump size by 0.66%.

The subsample results are largely consistent with the findings by Chen and Ghysels (2011).

Using intra-day returns as the sign of news, they find that moderately good-news actually

reduces the volatility while bad news and very good news increase volatility. News tone result

implies the same conclusion that negative news tone increases volatility via having larger jump

sizes while positive news actually reduces, or does not impact, volatility.
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2.3 Evidences from Implied Volatility

Having established the linkage between news measures and jumps in the previous section, I

now move on to find evidences from the options market. Options market reflects investor’s

risk-adjusted expectation, thus reveals forward-looking information. The most well-known

pattern of implied volatility is perhaps around the scheduled earnings announcement (Rogers,

Skinner, and Buskirk (2009)). Empirically, implied volatility spikes a day before the earnings

announcement, then shows a slight drop on the announcement date followed by sudden drops.

One way to think about earnings announcement is to classify it as a day with large information

arrival, as the number of news counts is excessively high around the earnings announcement

date. However, there is a fundamental difference between earnings announcement date and

other dates with large news flows. That is, the timing of earnings announcements are known

in advance, while other large news flows come at surprise without fixed date in advance.

Figure 2 compares the behavior of implied volatility in [-5,+5] days window around sched-

uled earnings announcement date and unscheduled large news flow dates. The top panel plots

the average one-month maturity at-the-money (ATM) implied volatility within 5 days window

around the quarterly earnings announcement dates. Similarly, in the bottom panel, I plot the

average ATM implied volatilities four dates each year with largest news count that does not

belong to within 5 days of quarterly earnings announcement dates. First, top panel reveals

consistent pattern with what was reported in the literature, both peak a day before and sud-

den drop afterwards, around the scheduled earnings announcement dates. On the other hand,

bottom panel shows very different pattern. The level of average implied volatility now peaks

on the day of large news flow instead of the day before. Also, there is no sudden drop in

average implied volatility afterwards, but it rather persists. With this interesting differences

between the impact of scheduled and unscheduled news in mind, I move on to study how the

jump risk component in equity options is related to the public news arrival.

To measure perceived jump risk embedded in equity options prices, I choose the steepness

of volatility smirk, or implied volatility skew (IV-SKEW), as the measure of investor’s risk
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aversion to expected negative jumps. This measure was explored in Xing, Zhang, and Zhao

(2010) where they show the predictability of cross-sectional returns using IV-SKEW. I closely

follow their definition of IV-SKEW where I use Black-Schole delta as the definition of money-

ness where Xing, Zhang, and Zhao (2010) uses the ratio of the strike price to the stock price.

To construct IV-SKEW measure, I first obtain end-of-day option prices and implied volatility

as well as Black-Scholes delta from IVY OptionMetrics database for 20 firms in my sample.

The sample period is again from Jan, 2000 to Jul, 2012. Then, for each day with options

traded, I choose OTM puts with maturity being closest to 30 days and BS-delta value being

closest to -0.25. Similarly, I choose ATM calls by looking for options having maturity closest

to 30 days and BS-delta closest to 0.5. The final daily measure of IV-SKEW is computed as

the difference between the implied volatilities of average OTM puts and ATM calls selected.

IV-SKEWit = IVOTMP
it − IVATMC

it (3)

The famous volatility smirk puzzle basically translates to this measure of IV-SKEW being

positive. I also find this in my sample where the average daily IV-SKEW is 3.86%. Larger

IV-SKEW reflects larger risk-adjusted expected jump risk for investors. Hence, I next run

the simple linear regression of news variables from the previous section on the IV-SKEW. To

avoid noise associated with daily measure of IV-SKEW, I average them at monthly level as

well as all explanatory variables. Following equation summarizes the regression model used.

IV-SKEWit = a+ b1NewsCountit + b2NewsToneit + b3ATM IV + εit (4)

Table 5 summarizes the result where column (1), (2), and (3) report different combinations

while column (4) reports the full model result. The resulting estimates of coefficients are all

statistically significant in all models and generally agrees with the results from Table 4. For

instance, NewsCount is positively related with the IV-SKEW, meaning that more news comes

with steeper smirk. Also note that sign for NewsTone variable is negative, indicating pes-
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simistic news content also makes IV smirk steeper. In terms of its magnitude, one standard

deviation increase in NewsCount will increase IV-SKEW by 0.17% while one standard devia-

tion decrease in NewsTone will increase IV-SKEW by 0.61%. Given that IV-SKEW embeds

both information about the occurrence and size of jumps, where it is hard to disentangle them

non-parametrically under the risk-neutral measure, the results are largely consistent with the

findings from Table 3 and Table 4.

Having all preliminary evidences above established, I next move on to build a reduced-form

model that features findings of this section. The goal of reduced-form study is to identify the

prices associated with the inherent news arrival process, which is shown to be related to stock

return jumps.

3 Reduced-Form Model of News and Jumps

In this section, I build a reduced-form model of stock price process that features the empirical

findings of the previous section. Specifically, I embed the news process, to be filtered from the

observed information from daily news counts and news tones, in the standard affine stochastic

volatility jump-diffusion model. Then, I discuss the risk-neutralization of the process that

delivers closed-form option pricing formula. Lastly, I outline the two-step filtering process

used to estimate parameters and infer the latent states of the proposed dynamics from the

observable data.

3.1 Reduced-Form Model of Stock Price Dynamics

I begin by specifying the process governing the log stock variance, spot variance, and news

under the physical measure (P). I use St, Vt, and It to denote stock price, spot variance, and

spot news at time t. The following dynamics fully describe the process of three factors under

the physical measure P:
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d log(St) = (µ− 1

2
Vt − ξλt)dt+

√
Vt(

√
1− ρ2dW 1

t + ρdW 2
t ) + qtdNt (5)

dVt = κ(θ − Vt)dt+ σ
√
VtdW

2
t (6)

dIt = κI(θI − It)dt+ σI
√
ItdW

3
t (7)

where µ denotes the return drift of individual equity. For simplicity, I treat µ as a constant

and fix it at the sample average of daily returns throughout the paper. All Brownian motions

dW i
t , i = 1 to 3 are assumed to be independent to each other.

I assume standard square-root process for the variance and news process, Vt and It, as in

Heston (1993). The log stock price log(St) also follows standard jump-diffusion process with

qtdNt representing the compound Poisson distributed jump process with time-varying intensity

λt. Each individual jump is assumed to be independent and identically distributed normal

distribution with mean jump size η and jump standard deviation δ. The jump compensation

term ξ is set to be equal to e(η+ 1
2
δ2) − 1 to ensure log stock price is a martingale process.

What is new to the model is the specification of jump intensity, λt, dynamics. Standard

assumptions made in the literature is to define it as either a constant or an affine function

of spot variance Vt.
10 In this paper, I take different approach to use observed firm-specific

news flow to anchor the jump intensity in contrast to using latent process Vt. The empirical

findings of the previous section ensures the validity of this specification which I re-confirm in

the reduced-form estimation later. To keep the model within affine class for the analytical

tractability, I impose the following affine functional form of jump intensity:

λt = γ0 + γ1It (8)

where γ0 is a constant term that captures the residual of jump-intensity not explained by

the news process It. This specification belongs to the two-factor affine stochastic volatility

10For example, see Pan (2002) and Bates (2006).
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jump-diffusion framework and thus the option pricing can be done analytically using the

general result of Duffie, Pan, and Singleton (2000).

Note that I only model the dynamics of individual firm’s returns, thus abstracting away

from the potential factor structure in returns.11 I do so because the paper focuses on firm-

level dynamics and risk premium only, instead of at portfolio level. Thus, the loss by not

considering the potential factor structure is rather minimal while the gain from analytical

tractability is huge.

3.2 Risk Neutralization

The model has three sources of diffusive risk represented by Brownian increments and one

source of jump risk. I impose linear form of price of risk for three diffusive Brownian motions

to preserve same square-root functional form under the risk-neutral measure as in Heston

(1993). As discussed in Pan (2002), the pricing kernel for jump risk under the incomplete

market can take virtually any arbitrary form by allowing it to change its entire distribution.

In this paper, I only consider two sources of jump risk premium, namely jump-timing

and jump-size premium. Because the jump intensity λt is driven by the news process that is

independent of the diffusive variance process Vt, the risk premium imposed on the Brownian

motion dW 3
t , denoted by λI , effectively controls the jump-timing premium by allowing risk-

neutral jump-intensity to differ from its physical counterpart. Lastly, jump-size premium

is introduced by simply shifting the mean of normally distributed individual jumps by the

amount of ηQ − η. Below summarizes the change of measure where λV and λI denote the

diffusive risk premium placed on variance and news, respectively.

11The factor structure and pricing of idiosyncratic risk in equity options markets have been started to gain
attention only recently. See Christoffersen, Fournier, and Jacobs (2015), Gourier (2016), and Bégin, Dorion,
and Gauthier (2016) for the recent development in this subject.
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dW 2,Q
t = dW 2

t + λV σ
√
Vtdt (9)

dW 3,Q
t = dW 3

t + λIσI
√
Itdt (10)

ηQ = η + (ηQ − η) (11)

I do not specify the risk premium associated with the Brownian motion dW 1
t associated

with log stock price as it has to be fixed to have risk-neutral drift equal to the risk-free rate

r. Under this change of measure, the risk-neutral dynamics preserves the following same

functional form:

d log(St) = (r − 1

2
Vt − ξQλt)dt+

√
Vt(

√
1− ρ2dW 1,Q

t + ρdW 2,Q
t ) + qQt dNt (12)

dVt = κ∗(θ∗ − Vt)dt+ σ
√
VtdW

2,Q
t (13)

dIt = κ∗I(θ
∗
I − It)dt+ σI

√
ItdW

3,Q
t (14)

where the mapping between physical and risk-neutral parameters are given by:

κ∗ = κ+ λV σ (15)

κ∗I = κI + λIσI (16)

θ∗ =
κθ

κ∗
(17)

θ∗I =
κIθI
κ∗I

(18)

3.3 Filtering and Estimation

As all latent state continuous models do, my model also needs to jointly estimate the param-

eters and filter the latent states. Given that my focus is on identifying the risk premiums

associated with news process, I follow the approach from Christoffersen, Heston, and Ja-
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cobs (2013) and perform a sequential estimation.12 Specifically, the estimation procedure is

divided into two steps. The first step identifies all parameters and spot states under the phys-

ical measure only using the daily returns and observed news data. Then, I take the physical

parameters and states as given in the second step and only estimates the risk premium pa-

rameters using equity options data. Pros of this approach is that I can avoid the difficulty

of weighting the likelihood between physical and risk-neutral counterparts. Meanwhile, the

obvious cons of this approach is that it is not statistically efficient as the joint estimation

procedure. Since my focus is placed heavily on the qualitative outcome of resulting pricing

kernel estimates rather than exactly quantifying the risks, I argue that sequential estimation

procedure is better-suited for my model.

3.3.1 Estimated under the Physical Measure

I first define the state-space system by discretizing P-measure equations (5), (6), and (7) using

Euler scheme at daily interval. The discretized state-space equations are written as below:

rt+1 = (µ− 1

2
Vt − ξλt)∆t+

√
∆tVt(

√
1− ρ2ε1t+1 + ρε2t+1) +

Nt+1∑
j=0

yj,t+1 (19)

Vt+1 = Vt + κ(θ − Vt)∆t+ σ
√

∆tVtε
2
t+1 (20)

It+1 = It + κI(θI − It)∆t+ σI
√

∆tItε
3
t+1 (21)

Nt+1 ∼ Poisson(γ0 + γ1It) (22)

where the innovation terms εit+1 for i = 1 to 3 are i.i.d. standard normal random variables,

the counting process Nt+1 denotes the number of jumps between time t and t+1 = t+∆t, and

individual jump terms yj,t+1 are i.i.d. normally distributed random variables with mean η and

standard deviation δ. I set the daily time interval to ∆t to be 1/252 so that all parameters

are expressed in annual terms.

12Christoffersen, Fournier, and Jacobs (2015) and Andersen, Fusari, and Todorov (2015) take the opposite
approach by starting from the risk-neutral measure and sequentially estimate risk premium parameters by
matching it to the physical measure.
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Under the physical probability measure, I have three observables, namely daily returns,

news count, and news tone. In order to simplify the filtering procedure while maintaining the

empirical findings from the previous section, I first construct the tone-adjusted news count

measure as follows:

Ĩt = NewsCount× exp(−NewsTone) (23)

The intuition behind this measure is as follows. It was shown that negative news tones

emphasize the size of jumps where positive news tones reduces the size of jumps (although

statistically less significant) in Table 4. Since the size of individual jumps is fixed to be

constant, η, in the model, I effectively embed the effect of news tone on the jump size into

the news count measure by the above adjustment. The negative news tone thus results in

higher tone-adjusted news count Ĩt as exp(−NewsTone) is greater than 1 when NewsTone is

negative, and positive news tone will lower the tone-adjusted news count in the same fashion.

After the adjustment, I end up with two observables under the physical probability mea-

sure, daily log-returns rt+1 and tone-adjusted news count Ĩt. They are linked to the state

equation by the simple measurement relationship that the daily log-returns are observed with-

out an error and the news process It is observed with normally distributed measurement error

(Ĩt = It + εmt ). Then, I estimate the physical parameters and filter the latent states at the

same time by maximizing the likelihood of observing daily log-returns and tone-adjusted news

count via Particle Filtering (PF) algorithm.

3.3.2 Pricing Kernel Parameter Estimation

Given the estimated physical parameters and latent states from the previous section, I next

estimate parameters associated with pricing kernel where I treat all else being fixed. The end-

of-day options prices for 20 firms in the sample are obtained from OptionMetrics database. I

follow literature and pick only Wednesday prices in order to avoid potential issues using daily
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data.13 Commonly-used option data filters, such as strictly positive volume and in-violation

of put-call parity, are applied to raw data. For each day, I pick options with maturity between

15 and 250 calendar days to ensure only liquid options are considered. Lastly, I pick six strike

prices with the highest trading volume for each fixed maturity every Wednesday.

Since I am dealing with the individual equity options that are American, I follow Broadie,

Chernov, and Johannes (2007b) and convert them into the corresponding European options

prices.14 All put options are converted into corresponding call options via put-call parity

for the ease of implementation later. This leaves us with a total of 191,625 options for 20

individual firms.

The pricing kernel equations defined in (9), (10), and (11) mean that there are only

three extra parameters to be estimated once physical parameters and states are fixed. The

estimation is performed by minimizing vega-weighted root mean squared error (VWRMSE)

proposed by Trolle and Schwartz (2009). It is based on simplifying assumption that vega-

weighted option errors are i.i.d. normally distributed. Thus, I estimate three parameters

ΘQ = {λV , λI , ηQ − η} by minimizing the following VWRMSE-based likelihood:

Θ̃Q = arg min
Θ
−1

2

N∑
i=1

[log(VWRMSE2) + e2
i /VWRMSE2] (24)

VWRMSE =

√√√√ 1

N

N∑
i=1

e2
j =

√√√√ 1

N

N∑
i=1

((CMkt
i − CMod

i (Θ))/BSV Mkt
i )2 (25)

where CMkt
i , CMod

i , and BSViMkt denote market price of call option, model-implied price

of call option, and market-implied Black-Scholes Vega, respectively.

The option pricing formula is available in closed-form up to the Fourier transform, as

the model falls into the class of affine stochastic-volatility jump-diffusion model. The follow-

ing proposition summarizes the characteristic function of the log-spot stock price under the

13I use the previous business day if Wednesday turns out to be holiday. See Dumas, Fleming, and Whaley
(1998) for more detailed description of advantage using Wednesday options data.

14OptionMetrics provides implied volatility computed using CRR binomial-tree model, zero-rates, and ex-
post divided rates that are sufficient for this conversion.

17



physical measure. Since the model preserves identical functional form under the risk-neutral

measure, the same formula is applied with the appropriate parameter mappings.

Proposition 1 Denote the risk-neutral characteristic function of log-spot price by

Et[exp(iu log(St+τ )])] = Siut f(u, τ, Vt, It). Then function f is given by

f(u, τ, Vt, Lt) = exp(A(u, τ) +B1(u, τ)Vt +B2(u, τ)It)

A,B1, and B2 are given as the solution to the following Ricatti ODE with the initial conditions

A(0) = B1(0) = B2(0) = 0.

dA

dτ
= (r − ξγ0)iu+ γ0θu + κθB1 + κIθIB2 (26)

dB1

dτ
= −1

2
u(i+ u)− (κ− ρσiu)B1 +

1

2
σ2B2

1 (27)

dB2

dτ
= γ1θu − γ1ξiu− κIB2 +

1

2
σ2
IB

2
2 (28)

where θu = exp(θiu− 1
2
δ2u2)− 1. All three ODEs have closed-form analytical solution similar

to the Heston (1993)’s expression.

Proof. Direct application of Duffie, Pan, and Singleton (2000) result.

Once the characteristic function is available in the closed-form, European call options can

be valued using the following formula following Heston (1993).

Ct = StP1 −Ke−rτP2 (29)

where the P1 and P2 probabilities are computed using Fourier inversion:

P1 =
1

2
+

1

π

∫ ∞
0

Re[
eiu log(

St
K

)f(u+ 1, τ, Vt, It)

iuSterτ
]du (30)

P2 =
1

2
+

1

π

∫ ∞
0

Re[
eiu log(

St
K )f(u, τ, Vt, It)

iu
]du (31)
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The integrands in the above expression vanish quickly and can be computed effectively using

a numerical integration scheme such as quadrature.

4 Estimation Results

4.1 Physical Parameter Estimates

Table 6 reports parameter estimates for 20 firms in the sample. For brevity, I omit the

parameter estimates associated with the information process It.

The speed of mean-reversion parameter κ for the diffusive variance Vt has average of 1.90

in average. Cisco has the slowest mean-reversion speed having estimated κ equal to 0.10 while

Pfizer mean-reverts the fastest with κ being equal to 3.99. The magnitudes are in general

consistent with those reported in the prior literature. The long-run mean level of diffusive

variance θ has average estimate of 0.084, or 28.98% of annual volatility. Overall, estimates for

diffusive variance process are mostly consistent with previous studies.

The estimates of individual jump-distribution parameters are summarized by its mean η

and standard deviation σ. Average estimate of η is 0.3% where it varies from -5.2% of Merck

& Co. to 8.1% of Amazon. In average, it is consistent with the previous findings that positive

and negative jumps are equally likely for individual equity returns. Note that my model does

not feature separate positive and negative sized jumps, hence the estimated average jump-size

is close to 0. Along the same intuition, the expected standard deviation of individual jumps

must be large. This is indeed the case, the average estimated δ is 8.2%, enormously larger

than the mean.

The parameters of focus in this paper are γ1 that measures the relationship between the

news process It and jump-intensity λt. Estimated parameter γ1 is positive in all 20 firms

which is consistent with the previous non-parametric findings that more information comes

with higher probability of jumps. In terms of magnitude, the average γ1 is 0.072. Given

that average It in the entire sample is 47.45, this roughly translates to 3.4 jumps per year
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explained by the news process It. The average total number of jumps per year is then given

by γ0, which is 1.11 in average, plus news induced jumps. Thus, news process carries the first-

order importance in explaining jumps in which roughly 75% of the time-varying jump-intensity

is captured by the news.

Overall, physical parameter estimates emphasize the benefit of having news process, which

is filtered from observable public news arrival data, in capturing time-varying jump-intensity

just using physical observables. Having established the estimates and states, I next discuss

the pricing kernel estimates, which is the central findings of this paper.

4.2 Pricing Kernel Parameter Estimates

Table 7 reports estimates of three pricing kernel parameters defined in equation (9), (10), and

(11) for 20 firms in the sample. Three parameters λV , λI , and ηQ − η each represents the

diffusive variance risk premium, news risk premium, and jump-size risk premium.

The variance risk premium (VRP) is arguably one of the most actively researched topic in

recent finance literature. The significantly negative variance risk premium, often measured by

the difference between physical realized volatility and risk-neutral volatility such as VIX, is

found in index options market. However, relatively little is known about the VRP at individual

firm levels. Existing studies such as Carr and Wu (2009) and Drissen, Maenhout, and Vilkov

(2009) have found much smaller amount of VRP in individual firm levels that are sometimes

indistinguishable from being zero. In this paper, rather than trying to pin down the exact

mechanisms behind why individual variance risk premiums are smaller, I focus on extracting

risk premium components involving news process and studies its further implications.

The estimated diffusive variance risk premium parameter λV is in mostly negative with an

average value of -0.119. This value is much smaller than what was estimated for index options

market in the prior literature.15 It is also consistent with the prior non-parametric findings

documenting much smaller magnitude of variance risk premium in individual equity options.

15For example, Christoffersen, Fournier, and Jacobs (2015) reports estimated λV to be -1.48 without jumps
in the index returns process.
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Overall, the estimated diffusive variance risk premium is consistent with the prior findings.

Recall that there are two distinct risk premiums associated with the jump component,

namely jump-timing risk premium λI and jump-size premium ηQ − η. The unique feature

of my model is that estimated pricing kernel jointly identifies these two parameters. The

estimated jump-timing risk premium λI is mostly positive with a single exception of Wal

Mart, averaging to the value of 1.951 across 20 firms. What this means is that instead of

having a negative risk premium on the jump-timing, there is a large positive risk premium

associated with the jump-timing. In other words, risk-neutral world has higher probability

weight on the state of the world with smaller number of jumps. This is highly counter-

intuitive, because risk-averse investors do not like jumps. Instead, estimated result implies

that risk-averse investors favor having more jumps.

This puzzling finding was acknowledged in the prior literature that studied index options.

For instance, in her seminal paper, Pan (2002) (Section 5.2) found that jump-intensity es-

timates become smaller when it was allowed to vary. Aı̈t-Sahalia, Karaman, and Mancini

(2015) (Section 5.3), using OTC variance swap data, has also found this positive jump-timing

premium and concluded it as an evidence of limited ability of estimating flexible change of

measure. My result, although estimated using individual equity options, is consistent with

their findings. In particular, I used observed news process as an exogenous identifier of jump-

intensity in order to circumvent the problem of limited ability in estimating general pricing

kernel.

In order to explain the positive jump-timing premium, I rely on two arguments. First,

my pricing kernel jointly identifies the jump-timing and jump-size premium. Looking at the

estimated jump-size risk premium parameter ηQ − η, it is found to be largely negative with a

single exception of Cisco. The average jump-size premium is very large being -5.4% where the

average jump-size under the physical measure was found to be only 0.3% in Table 6. Thus,

aggregated jump-risk premium still remains negative once both timing and size premiums are

considered. Therefore, I interpret the result as a decomposition of individual equity jump

risk premium, rather than an evidence of positive jump risk premium. Second, recall that the
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source of jump-timing, or jump-intensity, in my model solely comes from the news process

It. Thus, resulting estimates of the jump premiums have a direct interpretation in terms of

how investors view news uncertainty. The fact that jump-timing being positive implies that

investors prefers the state of the world with more news arrivals. On other hand, the negative

jump-size premium implies that investors are really afraid of having large negative jumps in

returns due to the news arrival. Putting these together, I conclude that news is viewed as

preferable to investors once the negative impact is accounted for.

To engage economic interpretation of the findings, I consider two channels for public news

to cause jumps in equity returns. The first channel argues that sudden arrival of massive

amount of public information triggers the rapid increase in the noise or liquidity trading

activity via distorting their belief. Other possible channel is that the arrival of public infor-

mation comes together with the resolution of information asymmetry, thus resulting in sudden

movements in the equity price. Both channels have same implications that public news arrival

is related with return jumps, but have opposite interpretation in terms of risk premium. If

the public information merely serves as a channel to increase noise trading activity, it should

be negatively priced as it only increases potential jump risk faced by investors. On the other

hand, if it indeed resolved the information asymmetry between privately informed and un-

informed investors, it should be positively priced. Indeed, Easley and O’hara (2004)’s noisy

rational expectations equilibrium model implies that firms facing higher information asymme-

try requires higher return. Empirically, Zhao (Forthcoming) shows this is true by measuring

firm’s information intensity by its form 8-K filing frequency.

My findings are consistent with both theories. The somewhat puzzling positive jump-

timing risk premium associated with the positive estimates of λI can be explained by the

resolution of information asymmetry story. Investors seek to have more public information,

although it can cause prices to jump, because it resolves the potential information asymmetry.

On the other hand, they do not like public information to increase the noise trading activity

and cause returns to jump, especially negatively signed jumps, thus placing more subjective

probability weight on the state of the world with large negative jumps in returns. Therefore,
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the estimated jump-size risk premium parameter ηQ − η is largely negative. In recent article,

Han, Tang, and Yang (2016) theoretically studies conflicting role of public information and

shows that public information improves market liquidity but at the same time can harm price

efficiency. Thus, their result is perhaps most closely related to my results that document both

positive and negative implications of public information arrival.

Overall, the findings of this section highlights the importance of separating the precise

source of jump risk premium. In future research, it would be interesting to study the quanti-

tative implications of the estimated parameters in the context of noisy rational expectations

equilibrium model featuring both positive and negative effect of public news arrival.

5 Conclusion

I first study the role of firm-specific public news arrival on equity return jumps. Using compre-

hensive news data from Factiva database, I find news to be strongly related with jumps in both

physical and risk-neutral measure. I then estimate a continuous-time model with stochastic

volatility and news driven jump-intensity. In particular, the variation in probability of jump

is driven by the observable news process instead of latent state variables. The model is es-

timated in sequential fashion to ensure the clean identification of risk premium parameters

associated with news. Resulting estimates reveal an important finding: jump-timing risk is

positively priced while jump-size risk is significantly negatively priced. I interpret this result

as investor’s preference for having more public news arrivals while disliking the potential large

negative returns news can induce. Thus, public news is not redundant and it carries significant

risk premium. The question of exact source of news arrival risk premium is left unresolved

and is left as a venue for future research.
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Ornthanalai, C., 2014, “Lévy Jump Risk: Evidence from Options and Returns,” Journal of

Financial Economics, 112(1), 69–90.

Pan, J., 2002, “The Jump-Risk Premia Implicit in Options: Evidence from an Integrated

Time-Series Study,” Journal of Financial Economics, 63, 3–50.

Rogers, J. L., D. J. Skinner, and A. V. Buskirk, 2009, “Earnings guidance and market uncer-

tainty,” Journal of Accounting and Economics, 48(1), 90 – 109.

Santa-Clara, P., and S. Yan, 2010, “Crashes, Volatility, and the Equity Premium: Lessons

from S&P 500 Options,” Review of Economics and Statistics, 92(2), 435–451.

26



Shumway, T., 2001, “Forecasting Bankruptcy More Accurately: A Simple Hazard Model,”

The Journal of Business, 74(1), 101–124.

Tauchen, G. E., and M. Pitts, 1983, “The Price Variability-Volume Relationship on Specula-

tive Markets,” Econometrica, 51(2), 485–505.

Tetlock, P. C., 2007, “Giving Content to Investor Sentiment: The Role of Media in the Stock

Market,” The Journal of Finance, 62(3), 1139–1168.

Trolle, A. B., and E. S. Schwartz, 2009, “Unspanned Stochastic Volatility and the Pricing of

Commodity Derivatives,” Review of Financial Studies, 22(11), 4423–4461.

Xing, Y., X. Zhang, and R. Zhao, 2010, “What Does the Individual Option Volatility Smirk

Tell Us About Future Equity Returns?,” Journal of Financial and Quantitative Analysis,

45(3), 641–662.

Zhao, X., Forthcoming, “Does Information Intensity Matter for Stock Returns? Evidence

from Form 8-K Filings,” Management Science, 0(0), null.

27



Table 1: Summary Statistics of News Counts. 2000-2012

Summary Statistics

Company Name Total Mean Median Std. Dev.

Microsoft 325,150 71.0 92 53.4

GE 265,302 57.9 72 82.9

IBM 165,213 36.3 45 31.2

Chevron 106,356 23.7 29 21.8

UTC 53,809 12.6 14 13.1

Pfizer 111,363 24.7 29 26.5

Johnson & Johnson 103,271 23.3 26 26.5

Merck & Co. 51,170 12.3 12 26.2

Disney 160,245 34.9 41 15.5

JP Morgan 232,971 51.2 63 48.2

WalMart 165,220 36.0 43 100.4

American Express 54,216 12.3 13 83.6

Intel 171,146 37.8 41 17.5

Bank of America 202,898 44.9 45 86.0

Verizon 159,291 35.8 42 113.6

AT&T 139,631 31.0 37 99.3

Cisco 113,818 25.4 29 78.4

Yahoo 85,902 19.6 20 30.9

Amazon 60,519 13.6 14 17.5

Ebay 73,672 16.5 19 18.3

Total 3,303,317 44.3 32 67.9

This table reports summary statistics of daily news counts downloaded from the Factiva

database. The first column reports the total number of news articles for each firm during the

sample period. The last three columns report the daily mean, median, and standard deviation

of news counts for each firm. The sample period is from January 2000 to July 2012.
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Table 2: Summary Statistics of Daily News Tones. 2000-2012

Summary Statistics

Company Name Mean Std. Dev. 25 Prctile Median 75 Prctile

Microsoft -5.33 13.67 -11.79 -3.06 3.35

GE -2.32 11.32 -7.78 -1.72 3.39

IBM 4.32 12.98 -2.18 5.01 11.68

Chevron -7.21 17.58 -15.68 -6.96 0.23

UTC -2.93 18.91 -11.08 -0.78 6.28

Pfizer -6.96 16.99 -15.27 -5.90 1.74

Johnson & Johnson -3.32 16.26 -10.03 -1.61 4.36

Merck & Co. -4.53 23.91 -12.75 -0.44 5.47

Disney -1.46 13.02 -7.84 -0.49 5.65

JP Morgan -9.39 12.79 -16.11 -7.40 -1.39

WalMart -10.30 13.61 -17.31 -8.99 -1.84

Americal Express -2.19 21.48 -12.42 -0.37 8.20

Intel -0.16 15.08 -7.48 1.10 8.58

Bank of America -10.67 15.07 -17.78 -9.51 -1.71

Verizon -6.16 15.57 -13.15 -4.70 2.33

AT&T -5.64 14.88 -12.73 -4.39 2.59

Cisco 3.71 16.29 -5.01 4.34 12.78

Yahoo -2.52 18.21 -11.48 -1.28 7.77

Amazon -0.76 19.65 -9.93 0.00 9.68

Ebay -4.85 20.06 -13.53 -3.27 4.88

Total -3.92 17.13 -12.05 -2.67 4.93

This table reports the summary statistics of daily news tones (in percentage). The daily news

tone variable is constructed by analyzing the first paragraph of each news article. I search for

the percentage of positive and negative words using the list from Loughran and McDonald

(2011). Then, tones from each individual articles are aggregated to the daily level using the

total number of words in each article as a weight. The sample period is from January 2000 to

July 2012.
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Table 3: Effect of News Counts on the Probability of a Daily Jump. 2000-2012

(1) (2) (3) (4)

J99 J95 J099 J095

Intercept −4.9743∗∗∗ −4.5062∗∗∗ −3.3069∗∗∗ −2.4112∗∗∗

(0.0847) (0.0596) (0.0282) (0.0131)

NewsCount 0.1944∗∗∗ 0.1885∗∗∗ 0.1747∗∗∗ 0.1579∗∗∗

(0.0452) (0.0443) (0.0405) (0.0328)

NewsTone -0.0710 -0.0693 -0.0062 -0.0061

(0.0495) (0.0427) (0.0233) (0.0164)

Rett−1 -1.8709 -2.6763 −2.7729∗∗ −3.6652∗∗∗

(2.6206) (1.8715) (1.1521) (0.8004)

This table reports the coefficients from the pooled logit regression of daily news count, news

tone, and lagged return on the daily jump indicator defined using Lee and Mykland (2008).

The explanatory variables are the total number of news reported on Factiva database each day

and its news tone, standardized to have same mean and standard deviation across firms, and

lagged daily returns. News tone measure is constructed first at each individual article level

by counting the number of positive and negative words from Loughran and McDonald (2011),

they are then aggregated by a value-weighting scheme using the total number of words in

the article. The daily return jump indicator is identified using 4 different statistics. J99 and

J95 indicators use Lee and Mykland (2008)’s Lemma 1 statistic at 99% and 95% significance,

respectively. I use the correction term from Gilder, Shackleton, and Taylor (2014). The J099

and J095 indicators use looser bound from the normal distribution as in Theorem 1 of Lee and

Mykland (2008). Each of four statistics {J99, J95, J099, J095} thus identifies the jump day if

the absolute value of daily return is above {5.1024, 4.4881, 3.2283, 2.4565} times of the daily

spot volatility. The sample period is from January 2000 to July 2012. Statistical significance

levels of 1%, 5%, and 10% are indicated with ***, **, and *, respectively. Standard errors

clustered at individual firm levels are reported in parentheses.
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Table 4: Effect of News Counts and Tones on Daily Jump Size. 2000-2012

(1) (2) (3) (4)
J99 J95 J099 J095

Intercept 0.0148∗∗∗ 0.0117∗∗∗ 0.0100∗∗∗ 0.0063∗∗∗

(0.0047) (0.0034) (0.0014) (0.0009)
NewsCount -0.0006 -0.0007 -0.0008 -0.0008

(0.0021) (0.0017) (0.0010) (0.1074)
NewsTone 1.8468∗∗∗ 1.4412∗∗∗ 0.8202∗∗∗ 0.5045∗∗∗

(0.2355) (0.1721) (0.0786) (0.0432)

N 452 713 2267 5243
R2 12.65% 9.33% 4.72% 2.61%

(1) (2) (3) (4)
Positive Jumps Only J99 J95 J099 J095

Intercept 0.0609∗∗∗ 0.0583∗∗∗ 0.0485∗∗∗ 0.0414∗∗∗

(0.0044) (0.0032) (0.0013) (0.0007)
NewsCount 0.0168∗∗∗ 0.0127∗∗∗ 0.0086∗∗∗ 0.0053∗∗∗

(0.0025) (0.0019) (0.0011) (0.0006)
NewsTone -0.2758 -0.1853 -0.0793 −0.0899∗∗

(0.2418) (0.1823) (0.0794) (0.0429)

N 241 374 1256 2816
R2 16.96% 10.42% 4.75% 2.57%

(1) (2) (3) (4)
Negative Jumps Only J99 J95 J099 J095

Intercept −0.0553∗∗∗ −0.0514∗∗∗ −0.0429∗∗∗ −0.0371∗∗∗

(0.0037) (0.0026) (0.0012) (0.0007)
NewsCount −0.0066∗∗∗ −0.0073∗∗∗ −0.0064∗∗∗ −0.0046∗∗∗

(0.0013) (0.0011) (0.0007) (0.0004)
NewsTone 0.8593∗∗∗ 0.7561∗∗∗ 0.5142∗∗∗ 0.3807∗∗∗

(0.1736) (0.1264) (0.0607) (0.0342)

N 211 339 1011 2427
R2 25.85% 24.20% 15.55% 9.75%

This table reports the coefficients from the linear regression of daily news counts and news tones on the daily

jump size. I assume the entire daily return is due to the jump component on the jump days detected using

Lee and Mykland (2008). NewsCount measures the absolute number of news articles appeared in the Factiva

database per each day. The NewsTone measure is constructed first at each individual article level by counting

the number of positive and negative words from Loughran and McDonald (2011), then they are aggregated

by a value-weighting scheme using total number of words in the article. The daily return jump indicator is

identified using 4 different statistics. J99 and J95 indicator uses Lee and Mykland (2008)’s Lemma 1 statistic

at 99% and 95% significance, respectively. We use the correction term from Gilder, Shackleton, and Taylor

(2014). J099 and J095 indicator uses looser bound from the normal distribution as in Theorem 1 of Lee and

Mykland (2008). Each of the four statistics {J99, J95, J099, J095} thus identifies the jump day if the absolute

value of daily return is above {5.1024, 4.4881, 3.2283, 2.4565} times the daily spot volatility. The sample period

is from January 2000 to July 2012. Statistical significance levels of 1%, 5%, and 10% are indicated with ***,

**, and *, respectively. Standard errors are reported in parentheses.
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Table 5: Effect of News Counts and Tones on IV-SKEW. 2000-2012

(1) (2) (3) (4)

Intercept −0.0065∗∗∗ 0.0070∗∗∗ −0.0067∗∗∗ −0.0073∗∗∗

(0.0011) (0.0011) (0.0011) (0.0011)

NewsCount 0.0018∗∗ 0.0017∗∗

(0.0008) (0.0008)

NewsTone −0.3563∗∗∗ −0.3547∗∗∗

(0.0548) (0.0548)

ATM IV 0.2035∗∗∗ 0.1996∗∗∗ 0.2047∗∗∗ 0.2008∗∗∗

(0.0044) (0.0044) (0.0044) (0.0045)

N 3020 3020 3020 3020

R2 41.29% 42.10% 41.38% 42.18%

This table reports the coefficients from the linear regression of monthly average news counts

and news tones on the monthly average IV-SKEW. IV-SKEW is defined as the difference

between the implied volatility of the call option having Black-Scholes delta closest to 0.5 and

put option having delta closest to -0.25. Both options are chosen to have maturity as close as

possible to 30 days. NewsCount measures the absolute number of news articles that appeared

in Factiva database during each month. The NewsTone measure is constructed first at each

individual article level by counting the number of positive and negative words from Loughran

and McDonald (2011), then they are aggregated by value-weighting scheme using total number

of words in the article. Statistical significance levels of 1%, 5%, and 10% are indicated with

***, **, and *, respectively. Standard errors are reported in parentheses.
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Table 6: Model Parameter Estimates under the Physical Measure

Estimated Parameters

Company Name κ θ σ η δ γ0 γ1 ρ

Microsoft 2.46 0.045 0.53 0.015 0.105 0.42 0.035 -0.43

GE 1.36 0.074 0.45 0.004 0.075 0.89 0.036 -0.49

IBM 2.56 0.057 0.56 0.012 0.066 1.00 0.037 -0.50

Chevron 2.51 0.074 0.31 0.005 0.074 1.00 0.012 -0.50

UTC 2.60 0.091 0.31 0.007 0.050 0.95 0.091 -0.49

Pfizer 3.99 0.049 0.44 -0.011 0.065 1.07 0.064 -0.45

Johnson & Johnson 3.20 0.032 0.45 0.004 0.046 1.14 0.130 -0.42

Merck & Co. 0.45 0.049 0.53 -0.052 0.087 1.02 0.173 -0.45

Disney 0.60 0.058 0.48 0.014 0.053 1.15 0.056 -0.60

JP Morgan 1.25 0.274 0.90 -0.002 0.086 0.70 0.047 -0.38

Wal Mart 2.53 0.050 0.45 0.015 0.043 1.18 0.043 -0.38

Americal Express 1.40 0.114 0.60 0.003 0.085 0.96 0.178 -0.30

Intel 1.61 0.138 0.48 -0.039 0.084 0.96 0.058 -0.35

Bank of America 0.64 0.048 0.55 -0.010 0.147 0.51 0.024 -0.50

Verizon 1.87 0.047 0.49 0.002 0.051 1.25 0.049 -0.50

AT&T 1.69 0.075 0.43 0.006 0.067 1.01 0.054 -0.48

Cisco 0.10 0.161 0.56 0.002 0.082 1.03 0.056 -0.49

Yahoo 1.93 0.064 0.64 -0.003 0.184 3.56 0.007 -0.26

Amazon 1.97 0.130 0.65 0.081 0.165 1.00 0.214 -0.50

Ebay 3.19 0.050 0.52 -0.001 0.032 1.49 0.073 -0.47

Average 1.90 0.084 0.52 0.003 0.082 1.11 0.072 -0.45

This table reports the estimated model parameters under the physical measure using daily

returns and news counts from Jan, 2000 to Jul, 2012 for 20 individual equities. A Particle

Filtering (PF) algorithm was used to estimate the parameters by maximizing the likelihood

of observing daily returns and tone-adjusted news counts. The tone-adjusted news counts is

defined as below:

Ĩt = NewsCount× exp(−NewsTone)
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Table 7: Pricing Kernel Parameter Estimates

Estimated Parameters

Company Name λV λI ηQ − η

Microsoft -0.888 1.629 -0.088

GE -0.623 1.626 -0.074

IBM -0.509 0.167 -0.051

Chevron -0.353 1.799 -0.139

UTC -1.842 1.008 -0.028

Pfizer 0.060 0.033 -0.059

Johnson & Johnson 0.007 0.007 -0.035

Merck & Co. 0.000 0.000 -0.009

Disney 0.002 1.398 -0.032

JP Morgan 0.497 1.027 -0.021

Wal Mart -0.042 -0.006 -0.026

Americal Express -0.384 2.647 -0.099

Intel 0.448 6.528 -0.079

Bank of America 0.202 0.787 -0.057

Verizon -0.191 0.358 -0.041

AT&T -0.073 0.096 -0.033

Cisco 0.087 0.064 0.007

Yahoo 1.282 18.222 -0.025

Amazon -0.015 1.609 -0.147

Ebay -0.039 0.017 -0.041

Average -0.119 1.951 -0.054

This table reports the pricing kernel parameters estimated by minimizing Vega-weighted root

mean squared error (VWRMSE). Estimation was performed first by fixing the physical dy-

namics parameters and spot variances filtered from Table 6, then only allowing the pricing

kernel parameters to vary. Three pricing kernel parameters λV , λI , and ηQ − η each repre-

sents the diffusive variance risk premium, news risk premium, and jump size risk premium,

respectively.
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Figure 1: Time-series Plot of Daily News Counts for Selected Firms. 2000-2012
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This figure plots the time-series of daily news counts of four selected firms. The sample begins

in Jan, 2000 and ends Jul, 2012. Y-axis represents absolute counts of news articles that appear

in Factiva database each day.
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Figure 2: Implied Volatility Around Scheduled vs. Unscheduled Dates
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This figure plots the behavior of the average implied volatility around scheduled vs. unsched-

uled news dates. The top panel plots the average implied volatility in the [-5,5]-day window

around the scheduled quarterly earnings announcement dates. The bottom panel plots the

average implied volatility in the [-5,5]-day window around the dates in top 2% range of news

counts that are not within 5 days from the earnings announcement date. Both panels plot

the average implied volatility of all 20 firms in the sample from Jan, 2000 to Jul, 2012.
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Appendix

A Benchmark Model

In this section, I provide a result comparing the performance of my model to the benchmark

model. Benchmark model considered is the plain stochastic-volatility jump-diffusion (SVJ)

model with constant jump-intensity, thus serves as a special case of my model. Specifically, it

corresponds to the case γ1 = 0.

Table A.1 reports the estimated parameter for the benchmark model. The estimated pa-

rameters are mostly similar to the full news model estimates reported in Table 6. To compare

the performance of two models, Table A.2 provides the negative log-likelihood of observing

daily returns as well as model-implied number of expected jumps per year. Improvement in

return likelihood is observed in virtually all 20 firms in-sample, with varying degree of the

differences between two. News model implies mostly more expected number of jumps, average

being 3.72 jumps per year compared to 3.17 of the benchmark model case.

B Variance Risk Premium

So far, I have focused on the implications of point estimates of each parameters, and thus

have not quantified model-implied risk premiums for individual firms. Given the parameter

estimates and the affine structure of the model, it is straightforward to extract the relevant

measures.

First, the model-implied variance risk premium is computed as the difference between the

unconditional variance of log-returns under the risk-neutral and physical probability measures.

As the model features two sources of risks, diffusive and jump, the resulting functional form

for variance risk premium has also two component stemming from each of two. The following

proposition provides an expression for the variance risk premium.

Proposition 2 The unconditional variance risk premium is given by

VRP = (θ∗ − θ)︸ ︷︷ ︸
Diffusive

+ [(γ0 + γ1θ
∗
I )((η

Q)2 + δ2)− (γ0 + γ1θI)(η
2 + δ2)]︸ ︷︷ ︸

Jump

(32)

Table A.3 reports the model-implied variance risk premiums. The first three columns

report diffusive, jump, and total variance risk premiums, respectively. Consistent with the

previous literature, the resulting variance risk premium is very small. Also, diffusive and jump

components have similar magnitude of contribution on average to total variance risk premium.
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To convert the numbers into more conventional definition of variance risk premium that uses

the difference between annualized volatility, the last column reports the following expression.

VRP in Vol. =
√
θ∗ + (γ0 + γ1θ∗I )((η

Q)2 + δ2)−
√
θ + (γ0 + γ1θI)(η2 + δ2) (33)

Again, the average variance risk premium is very small, being only -0.36% in annualized

volatility terms.
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Table A.1: Benchmark Model Parameter Estimates under the Physical Measure

Estimated Parameters

Company Name κ θ σ η δ λ ρ

Microsoft 2.51 0.057 0.45 0.013 0.084 2.74 -0.48

GE 2.36 0.052 0.39 0.007 0.061 2.73 -0.18

IBM 2.56 0.057 0.56 0.012 0.066 2.70 -0.24

Chevron 2.54 0.075 0.30 0.005 0.073 1.42 -0.52

UTC 2.57 0.089 0.31 0.007 0.050 2.62 -0.51

Pfizer 2.59 0.077 0.32 -0.013 0.058 2.48 -0.49

Johnson & Johnson 2.62 0.045 0.31 0.005 0.041 3.82 -0.49

Merck & Co. 0.44 0.050 0.51 -0.051 0.085 4.78 -0.09

Disney 2.61 0.113 0.33 0.012 0.076 2.50 -0.49

JP Morgan 0.49 0.100 0.59 0.010 0.163 4.55 -0.50

Wal Mart 2.58 0.067 0.32 0.011 0.042 2.95 -0.49

Americal Express 1.64 0.074 0.50 0.003 0.081 2.78 -0.17

Intel 2.58 0.071 0.45 -0.029 0.082 2.19 -0.41

Bank of America 0.64 0.047 0.53 -0.010 0.149 2.70 -0.50

Verizon 1.29 0.076 0.39 0.002 0.065 2.49 -0.47

AT&T 2.09 0.056 0.39 0.006 0.089 2.00 -0.40

Cisco 0.10 0.156 0.55 0.002 0.079 4.83 -0.43

Yahoo 1.93 0.064 0.64 -0.003 0.176 3.56 -0.26

Amazon 1.97 0.129 0.62 0.081 0.165 6.55 -0.37

Ebay 1.50 0.060 0.50 -0.001 0.036 3.00 -0.41

Average 1.88 0.076 0.45 0.003 0.086 3.17 -0.40

This table reports the estimated benchmark model parameters under the physical measure

using daily returns from Jan, 2000 to Jul, 2012 for 20 individual firms. Particle Filtering (PF)

algorithm was used to estimate the parameters by maximizing the likelihood of observing

daily returns.
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Table A.2: Comparison between Benchmark Model and News Model

Benchmark News Model Benchmark News Model

Company Name Likelihood Likelihood λ E[λ]

Microsoft -8402.44 -8418.78 2.74 4.30

GE -8481.90 -8488.88 2.73 3.95

IBM -8920.27 -8921.26 2.70 2.88

Chevron -8822.36 -8824.40 1.42 1.44

UTC -8595.54 -8602.05 2.62 2.54

Pfizer -8705.53 -8730.83 2.48 3.50

Johnson & Johnson -9887.53 -9931.67 3.82 5.56

Merck & Co. -8583.35 -8593.89 4.78 4.01

Disney -8179.39 -8231.86 2.50 4.05

JP Morgan -7830.30 -7845.75 4.55 4.61

Wal Mart -9080.98 -9114.28 2.95 3.71

Americal Express -8044.31 -8048.48 2.78 4.13

Intel -7595.94 -7629.32 2.19 4.18

Bank of America -8010.00 -8024.50 2.70 2.32

Verizon -8949.93 -8952.91 2.49 3.95

AT&T -8822.86 -8826.19 2.00 3.55

Cisco -7459.82 -7459.40 4.83 3.33

Yahoo -6744.76 -6745.92 3.56 3.76

Amazon -6574.41 -6604.12 6.55 5.22

Ebay -8749.92 -8750.22 3.00 3.31

Average -8322.08 -8337.23 3.17 3.72

This table compares the return likelihood and estimated unconditional number of jumps per

year between the benchmark model and the news model. In the benchmark model, parameter

λ represents unconditional number of jumps per year. In the news model, the annual jump-

intensity is equal to γ0 + γ1It, thus E[λ] = γ0 + γ1E[It], where E[It] is computed as the

in-sample average of filtered sates It.
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Table A.3: Variance Risk Premium implied by Model Parameters

Company Name Diffusive VRP Jump VRP Total VRP VRP in Vol.

Microsoft 0.0107 -0.0125 -0.0019 -0.31%

GE 0.0191 0.0006 0.0198 3.04%

IBM 0.0071 0.0030 0.0102 1.86%

Chevron 0.0034 0.0206 0.0240 3.92%

UTC 0.0255 -0.0004 0.0251 3.79%

Pfizer -0.0003 0.0167 0.0164 3.05%

Johnson & Johnson 0.0000 0.0049 0.0049 1.13%

Merck & Co. 0.0000 0.0040 0.0040 0.67%

Disney -0.0001 -0.0034 -0.0035 -0.66%

JP Morgan -0.0720 -0.0174 -0.0894 -8.72%

Wal Mart 0.0004 -0.0004 0.0000 -0.01%

Americal Express 0.0224 0.0049 0.0273 3.44%

Intel -0.0163 -0.0062 -0.0225 -2.79%

Bank of America -0.0070 -0.0032 -0.0102 -1.69%

Verizon 0.0025 0.0032 0.0057 1.16%

AT&T 0.0014 0.0006 0.0020 0.32%

Cisco -0.0514 -0.0013 -0.0528 -6.64%

Yahoo -0.0191 -0.0036 -0.0226 -2.67%

Amazon 0.0006 -0.0775 -0.0768 -7.46%

Ebay 0.0003 0.0059 0.0062 1.32%

Average -0.0036 -0.0031 -0.0067 -0.36%

This table reports the variance risk premium implied by the estimated model parameters. The

first three columns report diffusive, jump, and total variance risk premium, respectively, com-

puted using the expression given in the equation (32). The last column (VRP in Vol.) reports

the total variance risk premium computed as the difference between annualized volatility un-

der the risk-neutral and physical measure. The exact expression is given in the equation (33),

also shown below.

VRP in Vol. =
√
θ∗ + (γ0 + γ1θ∗I )((η

Q)2 + δ2)−
√
θ + (γ0 + γ1θI)(η2 + δ2)
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