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Volatility Information and Derivatives Trading 

 

ABSTRACT 

We investigate the order flows of S&P 500 index and VIX options and find that the volatility 

information generated from directional trades of these two options provides consistently 

effective volatility prediction for the S&P 500 index returns, whereas volatility information 

generated from volatility trades of S&P 500 index options does not. In addition, our results 

show that the volatility information from S&P 500 index options is more useful when the 

options market is dominated by volatility-informed traders, especially after the introduction 

of VIX derivatives, which, in general, weakens the predictive power of the volatility 

information from S&P 500 index options. 
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1. Introduction 

The trading of derivatives is well known to contain forward-looking information of the price 

dynamics of the underlying asset.1 As such, informed traders are likely to initiate their 

realization of private information by trading derivatives.2 A number of studies have explored 

the information content of option-implied information for future price dynamics of the 

underlying asset. While a particularly large body of literature focuses on the association 

between implied volatility and both the future returns and the future volatility of the underlying 

asset prices,3 some studies investigate the informativeness of option trading activities for the 

future price dynamics of the underlying asset.4 These studies generally support the predictive 

ability of option-implied information. In particular, the prediction of volatility from 

option-implied information is especially successful due to the stylized facts of volatility, such 

as persistence and mean-reversion, which make volatility highly predictable.  

Because the price of an option is a function of not only the price of the underlying asset 

but also the volatility of returns, the trading of options can be motivated by an investor’s 

expectation of or information on the price or the volatility. While generating volatility 

                                                 
1 Some studies focus particularly on trading activities. See, for example, Anthony (1988), Pan and Poteshman 

(2006), Roll, Schwartz, and Subrahmanyam (2010), Johnson and So (2012), and Hu (2014). On the other hand, 

some studies focus on derivative prices including Chakravarty, Gulen, and Mayhew (2004), Cremers and 

Weinbaum (2010), Xing, Zhang, and Zhao (2010), and An, Ang, Bali, and Cakici (2014). 
2 See, for example, Manaster and Rendleman (1982), Diamond and Verrecchia (1987), Sheikh and Ronn (1994), 

Amin and Lee (1997), and Easley, O’Hara, and Srinivas (1998).  
3 Classical references include Whaley (2000), Giot (2005), Guo and Whitelaw (2006), and Banerjee, Doran, and 

Peterson (2007) for the prediction of returns, and Canina and Figlewski (1993), Lamoureux and Lastrapes 

(1993), Xu and Taylor (1995), Christensen and Prabhala (1998), Fleming (1998), Blair, Poon, and Taylor (2001), 

Poon and Granger (2003), Jiang and Tian (2005) and Busch, Christensen, and Nielsen (2011) focus on volatility 

forecasting. 
4 In particular, Amin and Lee (1997), Cao, Chen, and Griffin (2005), and Pan and Poteshman (2006) report the 

usefulness of the measures compiled from option trading activities although in different ways. 
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information, such as implied volatility, using the prices of options is fairly straightforward, 

how to properly generate volatility information from the trading activities of options remains 

a very important empirical issue. Because prior research finds that the implied volatility of the 

CBOE VIX index is the best predictor of the volatility of S&P 500 index returns, we focus on 

generating a sensible proxy of volatility information from the order flows of S&P 500 index 

options to enhance the volatility prediction of the index returns.  

Because both call and put prices are positively associated with volatility, investors 

buying (selling) calls and puts benefit from an increase (decrease) in the volatility. If most 

investors trade options due to an expectation of or information on the volatility level of the 

underlying asset returns, we expect the order flows of both buying (selling) calls and puts to 

be linked to an increase (decrease) in future volatility. This direct hypothesis is adopted in 

most of previous studies.5 

By contrast, if most investors trade options based on their expectation of or information 

on the price level of the underlying asset, the order flows of both buying (selling) calls and 

selling (buying) puts result in an increase (decrease) in the price of the underlying asset 

because the call (put) price is positively (negatively) related to the price of the underlying 

asset. However, according to the definition of volatility, both an increase and a decrease in 

price raise volatility. Therefore, we expect the order flows of both buying and selling call or 

                                                 
5 See, for example, Bollen and Whaley (2004), Ni, Pan, and Poteshman (2008), and Fahlenbrach and Sandås 

(2010). 
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put options to be linked to an increase in future volatility. This indirect hypothesis is driven 

by investors’ expectation of or information on future price rather than the volatility level.  

Because each trade requires a buyer and a seller, we use the algorithm proposed by Lee 

and Ready (1991) to identify whether an option transaction is buyer or seller initiated for all 

trades of the S&P 500 index options and then aggregate the numbers of contracts within a day 

for the four categories: namely, buyer- and seller-initiated calls and puts. Using these four 

categories of proxies for the trading activities in the S&P 500 index options market, we 

provide an insightful analysis on how to generate sensible volatility information from the 

options market by investigating their information content for future volatility of the 

underlying asset returns.  

However, for the S&P 500 index, investors can process volatility information by trading 

not only S&P 500 index options but also VIX options, with the latter being a more 

straightforward venue. Wang (2013) shows that the trading volume of both S&P 500 index 

options and VIX options provides useful information for volatility forecasting of the S&P 500 

index returns, with the latter being more informative than the former. Therefore, we revisit 

the predictive power of trading activities of VIX options in terms of order flows and then take 

an additional step to explore the relative usefulness of the trading activities in these two 

options markets to improve the volatility prediction of the S&P 500 index returns. Because 

the underlying asset of VIX options is the VIX index, which is the best predictor for the 
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realized volatility of the S&P 500 index returns, we expect the order flows of buying (selling) 

calls and selling (buying) puts to be positively correlated to the future volatility of the index 

returns. Our expectation follows the same reasoning as the indirect hypothesis of S&P 500 

index options, as previously discussed. 

Our main empirical results are summarized as follows. First, the volatility information 

generated from directional trades of S&P 500 index options results in consistently effective 

volatility forecasting for the S&P 500 index returns, while that generated from volatility 

trades does not. Second, the volatility information compiled from the directional trades of 

VIX options also provides consistently useful information to determine the future volatility of 

S&P 500 index returns. These results suggest that investors should compile the volatility 

information indirectly from directional trades of S&P 500 index options rather than directly 

from volatility trades because S&P 500 index options are more commonly used to trade on 

directional expectation or information, especially after the introduction of VIX derivatives. 

Given that the trading activities of S&P 500 index options are informative for the future 

volatility of index returns, we conduct additional analyses, which result in four main findings. 

First, the volatility information generated from S&P 500 index options provides better 

predictive power for the realized volatility of index returns when volatility-informed traders 

dominate directionally informed traders in the options market. Second, information is 

efficiently transferred between the S&P 500 index and VIX options markets. Third, the 
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introduction of VIX derivatives weakens the predictive power of the volatility information 

generated from S&P 500 index options. Finally, after the introduction of VIX options, the 

volatility information from S&P 500 index options provide useful information for volatility 

forecasting only when volatility-informed traders dominate the options market. 

This study contributes to prior literature on the information content of trading activities 

of derivatives for the future dynamics of the underlying asset price not only by developing an 

effective information proxy from the trading activities of S&P 500 index and VIX options to 

predict the future volatility of S&P 500 index returns but also by providing insights on the 

relative role of the trading activities of S&P 500 index and VIX options in determining the 

future volatility of S&P 500 index returns. 

The remainder of this paper is organized as follows. Section 2 develops the main 

hypotheses for the empirical tests. Section 3 describes the method for the identification of 

transactions, followed by the description of data and empirical models in Section 4. Section 5 

presents the main empirical results. Section 6 provides additional relevant empirical 

discussions, followed by robustness analyses in Section 7. Finally, Section 8 offers 

concluding remarks. 

2. Hypotheses 

Across all option pricing theories, a call price is a positive function of both the price of the 

underlying asset and the volatility of returns, and a put price is a negative function of the 
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price but a positive function of the volatility. Therefore, investors can trade options to make 

profits based on their expectation of or information on the change of the underlying asset 

price or volatility of returns. Although previous research investigates the information content 

of trading activities of options on the future returns of the underlying asset price,6 the 

information role of the trading activities of options on the future volatility of returns has not 

been fully explored.7 

When investors trade options to realize their expectation of or information on future 

volatility of returns based on the positive relation between option prices and the volatility, 

expressed as 

 𝑉𝑒𝑔𝑎(𝐶) =
𝑑𝐶

𝑑𝜎
> 0 & 𝑉𝑒𝑔𝑎(𝑃) =

𝑑𝑃

𝑑𝜎
> 0, (1) 

we expect a positive (negative) relation between the future volatility of returns and the 

trading activities of buying (selling) calls and puts. We refer to this type of transaction as a 

volatility trade. Therefore, we form our first hypothesis as follows: 

Hypothesis 1 (Direct Hypothesis): Volatility trades of options effectively 

generates volatility information of the underlying asset; therefore, trading 

activity related to buying (selling) calls and puts positively (negatively) 

predicts the volatility of returns. 

                                                 
6 Classical literature includes Stephan and Whaley (1990), Amin and Lee (1997), Easley, O'Hara, and Srinivas 

(1998), Chan, Chung, and Fong (2002), and Pan and Poteshman (2006). In recent literature, Roll et al. (2010), 

Johnson and So (2012), and Hu (2014) focus on predicting returns of the underlying asset by option-implied 

trading measures.  
7 See, for example, Ni et al. (2008) and Wang (2013) using the singed and unsigned trading activities to 

investigate the volatility prediction, respectively. 
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Alternatively, when most investors trade options to realize their expectation of or 

information on future returns of the underlying asset based on the positive (negative) relation 

between call (put) prices and the prices of the underlying asset, expressed as  

 𝐷𝑒𝑙𝑡𝑎(𝐶) =
𝑑𝐶

𝑑𝑆
> 0 & 𝐷𝑒𝑙𝑡𝑎(𝑃) =

𝑑𝑃

𝑑𝑆
< 0, (2) 

we expect a positive (negative) relation between the future returns of the underlying asset and 

the trading activities of buying (selling) calls and selling (buying) puts. We refer to this type 

of transaction as a directional trade. Because price changes are a source of volatility and both 

positive and negative changes contribute to the formation of volatility, directional options 

trading affects the volatility of returns. In other words, the trading activities of all types of 

option trades—that is, both buying and selling calls and buying and selling puts—positively 

affects the future volatility of returns. Therefore, we form our second hypothesis as follows: 

Hypothesis 2 (Indirect Hypothesis): The directional trading of options 

effectively generates volatility information of the underlying asset; 

therefore, the trading activities of all types of option trades positively 

predict the volatility of returns. 

3. Identification and Aggregation of Option Transactions 

Because each transaction involves a buyer and a seller, we adopt the procedure proposed by 

Lee and Ready (1991) to identify each transaction as buyer or seller initiated. We implement 

this procedure in two steps. First, we classify transactions occurring above (below) the 
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midpoint of the bid and ask prices of the last efficient quote records as buyer-initiated 

(seller-initiated) transactions. Second, we first classify transactions occurring at the midpoint 

of the bid and ask prices of the last efficient quote records using a tick test that compares the 

last different trade price of the previous transactions. Therefore, we define all transactions 

within one of four categories: buyer-initiated call, seller-initiated call, buyer-initiated put, or 

seller-initiated put. Second, we sum the trading volumes of the transactions day by day for 

each contract with the same category. Specifically, for strike 𝐾𝑖 and maturity 𝑇𝑖 at day t, 

𝐶𝐵𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖), 𝐶𝑆𝑡

𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖), 𝑃𝐵𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖), and 𝑃𝑆𝑡

𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) denote the daily trading 

volumes of the buyer-initiated call, sell-initiated call, buyer-initiated put, and seller-initiated 

put trades, respectively. Following the same procedure for VIX options, we use 

𝐶𝐵𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖), 𝐶𝑆𝑡

𝑉𝐼𝑋(𝐾𝑖 , 𝑇𝑖), 𝑃𝐵𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖), and 𝑃𝑆𝑡

𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖) to denote the daily trading 

volumes of the same four categories, respectively. 

After obtaining the daily order flows for each contract, we use the method suggested by 

Holowczak, Hu, and Wu (2014) to aggregate transactions across contracts for each day. 

Holowczak et al. suggest that an effective method for the information aggregation in option 

transactions must account for each contract’s different exposure to the price and volatility 

movements of the underlying asset. In other words, for the aggregation of transactions to 

extract information about the price movement of the underlying asset, the order flows of 

buying a call (put) and selling a put (call) option must have a positive (negative) weight. 
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Similarly, for the aggregation to extract information about the volatility movement of the 

underlying asset returns, the order flows of buying (selling) both a call and a put option must 

have a positive (negative) weight.  

To test Hypothesis 1 for the S&P 500 index—namely, that volatility trades of the S&P 

500 index options effectively generates volatility information of the S&P 500 index returns—

we construct five variables to proxy for the volatility information as  

 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋 = ∑ 𝑉𝑒𝑔𝑎𝑖,𝑡 ∗ 𝑤𝑡(𝐾𝑖, 𝑇𝑖)(𝐶𝐵𝑡

𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) − 𝐶𝑆𝑡
𝑆𝑃𝑋(𝐾𝑖 , 𝑇𝑖))

𝑁𝑡
𝑖=1  (3) 

 𝑁𝑒𝑡𝑃𝑢𝑡𝑡
𝑆𝑃𝑋 = ∑ 𝑉𝑒𝑔𝑎𝑖,𝑡 ∗ 𝑤𝑡(𝐾𝑖, 𝑇𝑖)(𝑃𝐵𝑡

𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) − 𝑃𝑆𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖))

𝑁𝑡
𝑖=1  (4) 

 𝐵𝑢𝑦𝑡
𝑆𝑃𝑋 = ∑ 𝑉𝑒𝑔𝑎𝑖,𝑡 ∗ 𝑤𝑡(𝐾𝑖, 𝑇𝑖)(𝐶𝐵𝑡

𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) + 𝑃𝐵𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖))

𝑁𝑡
𝑖=1  (5) 

 𝑆𝑒𝑙𝑙𝑡
𝑆𝑃𝑋 = ∑ 𝑉𝑒𝑔𝑎𝑖,𝑡 ∗ 𝑤𝑡(𝐾𝑖, 𝑇𝑖)(𝐶𝑆𝑡

𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) + 𝑃𝑆𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖))

𝑁𝑡
𝑖=1  (6) 

 𝑉𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) = 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡

𝑆𝑃𝑋 + 𝑁𝑒𝑡𝑃𝑢𝑡𝑡
𝑆𝑃𝑋 = 𝐵𝑢𝑦𝑡

𝑆𝑃𝑋 − 𝑆𝑒𝑙𝑙𝑡
𝑆𝑃𝑋 (7) 

where 𝑉𝑒𝑔𝑎𝑖,𝑡 = 𝑛(𝑑𝑖,𝑡)𝑆𝑡√𝑇𝑖, 𝑛(. ) is the density function of a standard normal variable, 

𝑤𝑡(𝐾𝑖, 𝑇𝑖) = 𝑒𝑥𝑝 (−
𝑚𝑖

2

2
− (𝑀𝑖 − 1)2) , 𝑚𝑖 = (

𝐾𝑖

𝑆𝑡
− 1)  measures the moneyness of the 

option contract, 𝑀𝑖 = 𝑚𝑎𝑥 (1, 𝑇𝑖 × 12)  is the maturity in months and at least being 

one-month, 𝑑𝑖,𝑡 =
𝑙𝑛(

𝐹𝑡
𝐾𝑖

)+
1

2
𝜎𝑡

2𝑇𝑖

𝜎√𝑇𝑖
, 𝑆𝑡 is the S&P 500 index at time 𝑡, 𝐹𝑡 is the forward price 

of S&P 500 index at tune 𝑡, and 𝜎𝑡
2 is the average implied volatility of the same contract in 

previous day (𝑡 − 1). These variables take into account not only the exposure to volatility by 

𝑉𝑒𝑔𝑎𝑖,𝑡 but also the weighting system across maturities and moneyness by 𝑤𝑡(𝐾𝑖, 𝑇𝑖) with 

the current month at-the-money contract taking the largest weight. When 𝑤𝑡(𝐾𝑖, 𝑇𝑖) is set 
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to 1, the variables are equally weighted across maturities and strikes. 

We expect both measures of order imbalance, 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋  and 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋 , 

respectively grouped by calls and puts, to positively predict the volatility of S&P 500 index 

returns because the buyers (sellers) of both calls and puts benefit from an increase (decrease) 

in volatility. In addition, we expect 𝐵𝑢𝑦𝑡
𝑆𝑃𝑋 (𝑆𝑒𝑙𝑙𝑡

𝑆𝑃𝑋), grouped by buying (selling), to 

positively (negatively) predict volatility. Finally, combining all trading activities, we expect 

𝑉𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 to positively predict volatility. 

To test Hypothesis 2 for the S&P 500 index—namely, that directional trades of the 

S&P 500 index options effectively generates the volatility information of S&P 500 index 

returns—we construct five variables to proxy for the volatility information as 

 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋 = ∑ 𝑉𝑒𝑔𝑎𝑖,𝑡 ∗ 𝑤𝑡(𝐾𝑖, 𝑇𝑖)|𝐶𝐵𝑡

𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) − 𝐶𝑆𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖)|

𝑁𝑡
𝑖=1  (8) 

 𝐴𝑁𝑒𝑡𝑃𝑢𝑡𝑡
𝑆𝑃𝑋 = ∑ 𝑉𝑒𝑔𝑎𝑖,𝑡 ∗ 𝑤𝑡(𝐾𝑖, 𝑇𝑖)|𝑃𝐵𝑡

𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) − 𝑃𝑆𝑡
𝑆𝑃𝑋(𝐾𝑖 , 𝑇𝑖)|

𝑁𝑡
𝑖=1  (9) 

 𝑈𝑝𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) = ∑ 𝑉𝑒𝑔𝑎𝑖,𝑡 ∗ 𝑤𝑡(𝐾𝑖, 𝑇𝑖)(𝐶𝐵𝑡

𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) + 𝑃𝑆𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖))

𝑁𝑡
𝑖=1  (10) 

 𝐷𝑜𝑤𝑛𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) = ∑ 𝑉𝑒𝑔𝑎𝑖,𝑡 ∗ 𝑤𝑡(𝐾𝑖, 𝑇𝑖)(𝐶𝑆𝑡

𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) + 𝑃𝐵𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖))

𝑁𝑡
𝑖=1  (11) 

 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) = 𝑈𝑝𝑡

𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖) + 𝐷𝑜𝑤𝑛𝑡
𝑆𝑃𝑋(𝐾𝑖, 𝑇𝑖)  (12) 

For directional trades, we expect the positive and negative order imbalance of call (put) 

options to be positively (negatively) and negatively (positively) related to future returns of 

the S&P 500 index, respectively. Because both positive and negative returns contribute to 

the formation of volatility, we use the absolute value of order imbalance to predict volatility. 



13 

 

Therefore, we expect both 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋  and 𝐴𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋  to positively predict the 

volatility of S&P 500 index returns. In addition, we expect 𝑈𝑝𝑡
𝑆𝑃𝑋 (𝐷𝑜𝑤𝑛𝑡

𝑆𝑃𝑋), grouped by 

the expectation of an increase (decrease) in the S&P 500 index level to positively predict 

volatility. Combining all trading activities, we expect 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋  to positively predict 

volatility. 

Following the same rules as previously discussed to compile directional information 

variables from directional trades of the S&P 500 index options, we construct five variables to 

proxy for the volatility information of the S&P 500 index returns from the trading activities 

of VIX options as  

 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖) = ∑ 𝐶𝐷𝑒𝑙𝑡𝑎𝑖,𝑡 ∗ 𝑤𝑡(𝐾𝑖, 𝑇𝑖)(𝐶𝐵𝑡

𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖) − 𝐶𝑆𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖))

𝑁𝑡
𝑖=1  (13) 

 𝑁𝑒𝑡𝑃𝑢𝑡𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖) = ∑ 𝑃𝐷𝑒𝑙𝑡𝑎𝑖,𝑡 ∗ 𝑤𝑡(𝐾𝑖, 𝑇𝑖)(𝑃𝐵𝑡

𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖) − 𝑃𝑆𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖))

𝑁𝑡
𝑖=1  (14) 

𝑈𝑝𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖) = ∑ 𝑤𝑡(𝐾𝑖, 𝑇𝑖) (𝐶𝐷𝑒𝑙𝑡𝑎𝑖,𝑡 ∗ 𝐶𝐵𝑡

𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖) + 𝑃𝐷𝑒𝑙𝑡𝑎𝑖,𝑡 ∗ 𝑃𝑆𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖))

𝑁𝑡
𝑖=1  (15) 

 𝐷𝑜𝑤𝑛𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖) = ∑ 𝑤𝑡(𝐾𝑖, 𝑇𝑖) (𝐶𝐷𝑒𝑙𝑡𝑎𝑖,𝑡 ∗ 𝐶𝑆𝑡

𝑉𝐼𝑋(𝐾𝑖 , 𝑇𝑖) + 𝑃𝐷𝑒𝑙𝑡𝑎𝑖,𝑡 ∗ 𝑃𝐵𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖))

𝑁𝑡
𝑖=1  (16) 

 𝑇𝑜𝑡𝑎𝑙𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖) = 𝑈𝑝𝑡

𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖) − 𝐷𝑜𝑤𝑛𝑡
𝑉𝐼𝑋(𝐾𝑖, 𝑇𝑖) (17) 

where 𝐶𝐷𝑒𝑙𝑡𝑎𝑖,𝑡 = 𝑁(𝑑𝑖,𝑡), 𝑃𝐷𝑒𝑙𝑡𝑎𝑖,𝑡 = 1 − 𝑁(𝑑𝑖,𝑡), 𝑁(. ) is the distribution function of 

a standard normal variable, and the definitions of the other variables are the same as those 

for the S&P 500 index options, replacing the underlying asset with the VIX level. Because 

the underlying asset of VIX options is the VIX index, which is the best predictor of realized 

volatility, we use Delta to measure the exposure to volatility. 
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We expect 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑉𝐼𝑋  ( 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑉𝐼𝑋 ), grouped by calls (puts), to positively 

(negatively) predict the volatility of S&P 500 index returns. We expect 𝑈𝑝𝑡
𝑉𝐼𝑋 (𝐷𝑜𝑤𝑛𝑡

𝑉𝐼𝑋), 

grouped by the expectation of an increase (decrease) in the VIX level, to positively 

(negatively) predict the volatility, respectively. Finally, combining all trading activities, we 

expect 𝑉𝑇𝑜𝑡𝑎𝑙𝑡
𝑉𝐼𝑋 to positively predict volatility. 

4. Data and Empirical Method 

4.1. Data 

To compile the variables to proxy for the volatility information of the S&P 500 index returns 

from the trading activities of S&P 500 index and VIX options, we obtain the tick data of S&P 

500 index and VIX options from the CBOE DataShop. To estimate the realized volatility of 

the S&P 500 index returns, we obtain the intraday data of the S&P 500 index from OlsenData 

and TickData. We follow Andersen, Bollerslev, Diebold, and Ebens (2001) to calculate 

realized volatility as the square root of the sum of the five-minute squared returns. In addition, 

we obtain intraday VIX levels from the CQG Data Factory. The sample period runs from 

January 1, 1998 to April 30, 2016 for all data except VIX options, which does not begin until 

January 1, 2008 due to data availability. 

Following the suggestions of Hu (2014), we exclude the trade records (a) taken before 

8:45 AM Central Standard Time (the first 15 minutes) or after 3:10 PM Central Standard Tim 

(the last 5 minutes) each day, (b) of options with maturity within ten calendar days, and (c) 



15 

 

with trivial errors such as zero strike prices. 

4.2. Empirical Method 

Using the variables of volatility information, we investigate the information content for future 

realized volatility of S&P 500 index returns. Because the prior literature commonly finds that 

the logarithmic realized volatility is approximately normal,8 we implement the regression 

model to tests our hypotheses using the logarithmic form of volatility as 

 𝑙𝑜𝑔𝑅𝑉𝑡+1 = 𝛼 + ∑ 𝛽𝑖𝑋𝑖,𝑡
𝑚
𝑖=1 + ∑ 𝜃𝑗𝑌𝑗,𝑡

𝑛
𝑗=1 + 𝜀𝑡, (18) 

where 𝑅𝑉𝑡 denotes realized volatility, 𝑋𝑖,𝑡 represents the ith proxy of volatility information 

generated, and 𝑌𝑗,𝑡  represents the jth control variable generated at time t. Due to the 

well-reported success in the volatility prediction made by the VIX index and the well-known 

stylized facts of volatility (i.e., volatility persistence), the control variables include the 

logarithms of the current (time t) VIX level and the current and lagged realized volatility 

values of four days. This model allows us to explore the individual, relative, and joint 

performance of the variables of volatility information extracted from the two option markets on 

the volatility prediction of S&P 500 index returns. 

5. Main Empirical Results 

5.1. Volatility Information from Volatility Trades of S&P 500 Index Options 

To test for Hypothesis 1, we run the regression model with the variables of volatility 

                                                 
8 See Andersen, Bollerslev, Diebold, and Labys (2000, 2001), Andersen, Bollerslev, Diebold, and Ebens (2001), 

and Areal and Taylor (2002). 



16 

 

information generated from the volatility trades of S&P 500 index options (i.e., 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋, 

𝑁𝑒𝑡𝑃𝑢𝑡𝑡
𝑆𝑃𝑋, 𝐵𝑢𝑦𝑡

𝑆𝑃𝑋, 𝑆𝑒𝑙𝑙𝑡
𝑆𝑃𝑋, and 𝑉𝑇𝑜𝑡𝑎𝑙𝑡

𝑆𝑃𝑋). Table 1 provides the regression results. 

<Insert Table 1 about here> 

If the trading activity of volatility trades of S&P 500 index options is informative to 

the future volatility of returns, the 𝛽1 coefficients for 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋 and 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋 should 

be significantly positive. However, Models 1 and 2 of Table 1 show that the 𝛽1 coefficients 

of 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋 and 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋 are both negative, which contradicts the prediction by 

Hypothesis 1. 

Similarly, in line with our predictions, the 𝛽1 coefficient for 𝐵𝑢𝑦𝑡
𝑆𝑃𝑋  (𝑆𝑒𝑙𝑙𝑡

𝑆𝑃𝑋 ) 

should be significantly positive (negative). Model 3 of Table 1 show that, consistent with 

Hypothesis 1, the 𝛽1 coefficient of 𝐵𝑢𝑦𝑡
𝑆𝑃𝑋  is significantly positive. However, the 𝛽1 

coefficient for 𝑆𝑒𝑙𝑙𝑡
𝑆𝑃𝑋 is not significantly negative, and thus the result does not support 

Hypothesis 1. Furthermore, the estimate of the 𝛽1 coefficient of 𝑉𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 should be 

positive, but Model 5 shows that the coefficient is negative and thus also not in line with our 

expectations. 

In sum, the empirical results for the variables of volatility information obtained from 

the volatility trades of the S&P 500 index options do not, in general, support Hypothesis 1. 

In other words, the volatility information generated from volatility trades of S&P 500 index 

options do not effectively or reasonably predict the volatility of S&P 500 index returns. 
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5.2. Volatility Information from Directional Trades of S&P 500 Index Options 

To test Hypothesis 2, we run the regression model with the variables of volatility 

information generated from the directional trades of S&P 500 index options (i.e., 

𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋 , 𝐴𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋 , 𝑈𝑝𝑡
𝑆𝑃𝑋 , 𝐷𝑜𝑤𝑛𝑡

𝑆𝑃𝑋 , and 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 ). Table 2 reports the 

regression results with the control variables. 

<Insert Table 2 about here> 

If the trading activity of directional trades of S&P 500 index options is informative to 

the future volatility of returns, the 𝛽1 coefficient for all variables of order flows should be 

significantly positive. Table 2 shows that, in line with the prediction of Hypothesis 2, the 

𝛽1 coefficient is positively significant at the 10% level or less across all models. In addition, 

the results do not depend on how the trading activities are grouped.  

Given the consistent predictive power of the VIX level, which is supported by the 

highly positively significant 𝛾1 coefficient, the variables of volatility information indirectly 

compiled from the directional trades of S&P 500 index options consistently and reasonably 

predict the volatility of the S&P 500 index returns. In other words, our results indicate that, 

in general, investors use S&P 500 index options for directional trading although the use of 

volatility trades is also plausible. Therefore, we conclude that the channel of directional 

trading indirectly affects the impact of trading activity of S&P 500 index options on the 

future volatility of the S&P 500 index returns. 
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5.3. Volatility Information from Directional Trades of VIX Options 

According to our previous results, S&P 500 index options are not an effective venue for 

volatility trades. Because the underlying asset of VIX options is a volatility measure, trading 

VIX options may be a more direct and effective channel to realize investors’ expectation of 

or information on the volatility of S&P 500 index returns. To test this conjecture, we run the 

regression model with the variables of volatility information generated from the directional 

trades of VIX options (i.e., 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑉𝐼𝑋, 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑉𝐼𝑋, 𝑈𝑝𝑡
𝑉𝐼𝑋, 𝐷𝑜𝑤𝑛𝑡

𝑉𝐼𝑋, and 𝑇𝑜𝑡𝑎𝑙𝑡
𝑉𝐼𝑋). 

Table 3 provides the regression results with the control variables. 

<Insert Table 3 about here> 

If the trading activity of directional trades of VIX options is informative to the future 

volatility of S&P 500 index returns, the 𝛽1 coefficients for 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑉𝐼𝑋 , 𝑈𝑝𝑡

𝑉𝐼𝑋 , and 

𝑇𝑜𝑡𝑎𝑙𝑡
𝑉𝐼𝑋  should be significantly positive, and the 𝛽1 coefficient for 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑉𝐼𝑋  and 

𝐷𝑜𝑤𝑛𝑡
𝑉𝐼𝑋 should be significantly negative. Table 3 shows that the signs of all variables are 

consistent with our predictions. With the exception for 𝐷𝑜𝑤𝑛𝑡
𝑉𝐼𝑋, all variables are significant 

at the 10% level or less; of particular note, 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑉𝐼𝑋 and 𝑇𝑜𝑡𝑎𝑙𝑡

𝑉𝐼𝑋 are significant at the 

1% level. 

In sum, the results from the variables compiled from the directional trades of VIX 

options show that trading VIX options is an effective way to realize volatility expectation of 

or information on the volatility of S&P 500 index returns.  
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6. Further Discussions 

According to our main empirical results, investors should generate the volatility information 

of the S&P 500 index returns indirectly from directional trades, instead of the volatility trades 

of S&P 500 index options, although investors can also trade the options to realize their 

expectation of or information on the volatility. Because the underlying asset of VIX options is 

a volatility measure, useful volatility information can be straightforwardly generated from the 

directional trades of VIX options. Given these empirical findings, we next explore associated 

relevant issues. 

6.1. The Impact of Informed Trading 

If the degree of informed trading is higher, the trading of derivatives should be more 

informative to the future dynamics of the underlying asset price. Informed traders can be 

motivated to trade options on both directional (Black, 1975; Diamond & Verrecchia, 1987) 

and volatility information (Back, 1993; Ni et al., 2008). Assuming that informed traders are 

either directionally or volatility informed, Han, Kim, and Byun (2017) extend the analytical 

framework of Easley et al. (1998) to link the predictive power of option-implied information 

for the returns of the underlying asset with the relative dominance of directionally or 

volatility informed traders in the options market. Empirically, they find that the dominance of 

directionally informed traders—proxied by the slope of the implied volatility function (i.e., 

the volatility skew defined as the difference between the implied volatilities of an 
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out-of-the-money [OTM] put and an at-the-money [ATM] call)—strengthens the negative 

relation between options volume and future stock returns.9  

Following Han et al. (2017), we investigate whether the predictive power of volatility 

information compiled from the order flows of S&P 500 index options increases when 

volatility-informed traders dominate directionally informed traders in the options market. To 

do so, we construct a regression model with the variables used to test Hypothesis 2, defined 

as 

 𝑙𝑜𝑔𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑋𝑡 + 𝛽2𝐷1,𝑡𝑋𝑡 + 𝛽3𝐷2,𝑡𝑋𝑡 + ∑ 𝜃𝑖𝑙𝑜𝑔𝑅𝑉𝑡−𝑖
4
𝑖=0 + 𝛾1𝑙𝑜𝑔𝑉𝐼𝑋𝑡 + 𝜀𝑡, (19) 

where 𝑋𝑡  is 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋 , 𝐴𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋 , 𝑈𝑝𝑡
𝑆𝑃𝑋 , 𝐷𝑜𝑤𝑛𝑡

𝑆𝑃𝑋 , or 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 . 𝐷1,𝑡  (𝐷2,𝑡 ) 

equals 1 when the volatility skew of S&P 500 index options is smaller (larger) than the 10% 

(90%) quantile at day t, and zero otherwise. Namely, 𝐷1,𝑡 (𝐷2,𝑡) indicates the dominance of 

volatility (directionally) informed traders in the options market at day t. Table 4 shows the 

regression results. 

<Insert Table 4 about here> 

Table 4 shows that the 𝛽2 coefficient is positively significant at the 1% level across all 

information variables. Given that all variables positively affect future realized volatility, the 

predictive power of the volatility information generated from the S&P 500 index options 

market is stronger when volatility-informed traders dominate directionally informed traders. 

                                                 
9 See Xing et al. (2010). An OTM put option has a moneyness (defined as the strike price divided by the closing 

underlying stock price for a day) lower than and closest to 0.95, and an ATM call option has a moneyness 

between 0.95 and 1.05 and closest to 1.  
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The 𝛽3 coefficient for all information variables is negative, at varying levels of significance. 

Thus, predictive power is lower when directionally informed traders dominate 

volatility-informed traders.  

6.2. The Link between the S&P 500 Index and VIX Options Markets 

In the previous section, we use the trading activities of S&P 500 index options to determine 

the volatility skew as a proxy for the relative dominance of directionally and 

volatility-informed traders. If the interaction between the S&P 500 index and VIX options 

markets is positive, the volatility skew should be associated with the predictive power of the 

volatility information generated from the trading activities of VIX options. To investigate the 

issue, we run the previous regression model with the variables of volatility information 

compiled from the trading of VIX options respectively (i.e., 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑉𝐼𝑋 , 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑉𝐼𝑋 , 

𝑈𝑝𝑡
𝑉𝐼𝑋, 𝐷𝑜𝑤𝑛𝑡

𝑉𝐼𝑋, and 𝑇𝑜𝑡𝑎𝑙𝑡
𝑉𝐼𝑋). Table 5 shows the regression results. 

<Insert Table 5 about here> 

According to the sign of the 𝛽1 coefficient, which represents the direction of the 

volatility information variable, if the two options markets interact, the 𝛽2 (𝛽3) coefficient 

for 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑉𝐼𝑋, 𝑈𝑝𝑡

𝑉𝐼𝑋, and 𝑇𝑜𝑡𝑎𝑙𝑡
𝑉𝐼𝑋 should be significantly positive (negative), and the 

𝛽2  (𝛽3)  coefficient for 𝑁𝑒𝑡𝑃𝑢𝑡𝑡
𝑉𝐼𝑋  and 𝐷𝑜𝑤𝑛𝑡

𝑉𝐼𝑋  should be significantly negative 

(positive). Table 5 shows that, with the exception of 𝑁𝑒𝑡𝑃𝑢𝑡𝑡
𝑉𝐼𝑋 and 𝐷𝑜𝑤𝑛𝑡

𝑉𝐼𝑋 , the signs 

for the 𝛽2 coefficients confirm the existence of a market interaction. In addition, all 𝛽3 
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coefficients support market linkage but are statistically insignificant. 

In sum, our empirical results do not provide overwhelmingly strong evidence of the 

informational link between the S&P 500 index and VIX options markets. However, results 

shows that the two options markets share volatility information to a certain degree.  

6.3. The Introduction of VIX Futures and Options 

Investors can, indirectly, trade on their volatility expectation of or information on the S&P 

500 index returns through S&P 500 index derivatives. The introduction of VIX derivatives 

provides a direct and effective alternative to execute volatility trades because their underlying 

asset is a volatility measure. Therefore, we explore whether the introduction of VIX futures 

and options alter the usefulness of the volatility information generated from the S&P 500 

index options market for volatility forecasting. To do so, we run the following regression with 

the variables used to test for Hypothesis 2: 

 𝑙𝑜𝑔𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑋𝑡 + 𝛽2𝐷1,𝑡𝑋𝑡 + 𝛽3𝐷2,𝑡𝑋𝑡 + ∑ 𝜃𝑖𝑙𝑜𝑔𝑅𝑉𝑡−𝑖
4
𝑖=0 + 𝛾1𝑙𝑜𝑔𝑉𝐼𝑋𝑡 + 𝜀𝑡, (20) 

where 𝑋𝑡  is 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋 , 𝐴𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋 , 𝑈𝑝𝑡
𝑆𝑃𝑋 , 𝐷𝑜𝑤𝑛𝑡

𝑆𝑃𝑋 , or 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 . 𝐷1,𝑡  (𝐷2,𝑡 ) 

equals 1 for the observations post the introduction of VIX futures (options) in January 2004 

(February 2006), and zero otherwise. Table 6 provides the results. 

<Insert Table 6 about here> 

Table 6 reports that the 𝛽2 and 𝛽3 coefficients are negatively significant at the 1% 

level for the information variables 𝑈𝑝𝑡
𝑆𝑃𝑋, 𝐷𝑜𝑤𝑛𝑡

𝑆𝑃𝑋, and 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋. These results indicate 
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that the introduction of VIX futures and options weakens the predictive power of the 

volatility information generated from the S&P 500 index options. Conversely, the variables 

𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋  and 𝐴𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋  provide no significant results. In general, these results 

suggest that the introduction of VIX weakens the informativeness of volatility information 

implied in the S&P 500 index options. 

6.4. Comparison between the Information from S&P 500 index and VIX options 

Our previous findings show that the volatility information generated from the trading 

activities of both the S&P 500 index and VIX options markets are useful for volatility 

forecasting of the S&P 500 index returns and that the VIX options market is an effective 

alternative to trade on the volatility information. Therefore, we next investigate the relative 

roles of the volatility information from these two options markets in the determination of 

future volatility of the index returns. To do so, we select the common sample period of S&P 

500 index and VIX options and run a regression model with 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 and 𝑇𝑜𝑡𝑎𝑙𝑡

𝑉𝐼𝑋 

because prior studies show that these two aggregation variables are highly significant for 

volatility forecasting. We construct the model as 

 𝑙𝑜𝑔𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑇𝑜𝑡𝑎𝑙𝑡
𝑉𝐼𝑋 + 𝛽2𝐷𝑇𝑜𝑡𝑎𝑙𝑡

𝑆𝑃𝑋 + ∑ 𝜃𝑖𝑙𝑜𝑔𝑅𝑉𝑡−𝑖
4
𝑖=0 + 𝛾1𝑙𝑜𝑔𝑉𝐼𝑋𝑡 + 𝜀𝑡, (21) 

Table 7 provides the results. 

<Insert Table 7 about here> 

The results in Model 1 of Table 7 confirm that the predictive power of 𝑇𝑜𝑡𝑎𝑙𝑡
𝑉𝐼𝑋 is 
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highly significantly. However, the 𝛽2 coefficient for 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 in Model 2 is statistically 

insignificant for the sample period after the introduction of VIX options. When we include 

both 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 and 𝑇𝑜𝑡𝑎𝑙𝑡

𝑉𝐼𝑋 in Model 3, the significance of the 𝛽1 coefficient is much 

stronger than that of the 𝛽2 coefficient. In other words, the predictive power of the volatility 

information generated from VIX options dominates that from S&P 500 index options. These 

findings are in line with our previous finding that the predictive power of the volatility 

information generated from S&P 500 index options becomes weaker after the introduction of 

VIX derivatives. 

Next, we examine whether the predictive power of the volatility information generated 

from S&P 500 index options improves when volatility-informed traders dominate 

directionally informed traders in the S&P 500 index options market. We add 

𝛽3𝐷1,𝑡𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 to the regression model, where 𝐷1,𝑡 equals to 1 when the volatility skew 

of S&P 500 index options is smaller than the 10% quantile at day t, and zero otherwise.10 In 

Model 4 of Table 7, the 𝛽2 estimate is 0.52 and statistically insignificant, but the 𝛽3 

estimate is 3.02 and significant at the 1% level. In other words, the volatility information 

generated from S&P 500 index options still plays an important role for volatility forecasting 

when the options market is relatively dominated by volatility-informed traders, even after the 

introduction of VIX derivatives.  

                                                 
10 Previous results indicate that 𝐷1,𝑡 is more informative than 𝐷2,𝑡, which is equals 1 when the volatility skew 

of S&P 500 index options is larger than the 90% quantile. 
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7. Robustness Analysis 

7.1. Weighting Scheme across Option Contracts 

For our main analysis, in addition to taking accounting for the exposure to volatility, we 

adopt a weighting scheme in which the weight is negatively associated with the length of 

maturity and the depth of moneyness. Now we re-examine Hypotheses 1 and 2 with the 

variables compiled with an equally weighting scheme across maturity and moneyness. Table 

8 summarizes the regression results. 

<Insert Table 8 about here> 

Panel A of Table 8 shows that the signs and significance of the 𝛽1 coefficients for 

Hypothesis 1 are insistent with expectations, and Panel B shows that all 𝛽1 coefficients are 

significantly positive for Hypothesis 2. These results are in line with those of our main 

analysis: The volatility information variables generated from the directional trades of S&P 

500 index options consistently produce effective forecasting, while those generated from the 

volatility trades do not.  

7.2. The Effect of Maturity and Moneyness 

Because the OTM options have higher leverage than the ATM and in-the-money options and 

the near-month contracts usually have better liquidity, informed traders may prefer to trade 

the near-month OTM options to realize their private information. Therefore, we re-examine 

Hypotheses 1 and 2 with the variables compiled from the near-month OTM S&P 500 index 
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options.11 Table 9 provides the regression results. 

<Insert Table 9 about here> 

The results in Table 9 are, in general, consistent with our main findings. Specifically, 

the signs and significance of the 𝛽1 coefficients for Hypothesis 1 (Panel A) are inconsistent 

with our expectations, and all 𝛽1 coefficients for Hypothesis 2 (Panel B) are significantly 

positive. In other words, the information content of the variables compiled from near-month 

OTM options is, in general, equivalent to that of the variables compiled from all options.  

8. Concluding Remarks 

We adopt the algorithm proposed by Lee and Ready (1991) to identify each transaction of 

S&P 500 index and VIX options to compile volatility information variables from the order 

flows of these two options. Based on differing trading motivations of S&P 500 index options, 

we form variables of volatility information from directionally and volatility-motivated trades. 

We find that the information generated from directional trades provide consistently effective 

forecasting for the S&P 500 index returns, while the information generated from volatility 

trades does not.  

In addition to our main finding, we provide several other results. First, the dominance 

of volatility-informed traders in the options market increases the predictive power of the 

volatility information generated from S&P 500 index options. Second, information between 

                                                 
11  Contracts are aggregated without the consideration of maturity and moneyness because only the 

current-month OTM options are included. 
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the S&P 500 index and VIX options markets is closely linked, with the order flows of the 

VIX options market also providing useful information to determine the future volatility of the 

index returns. Third, the introduction of VIX derivatives weakens the predictive power of the 

volatility information generated from S&P 500 index options. Finally, even after the 

introduction of VIX derivatives, S&P 500 index options provide useful information for 

volatility forecasting when volatility-informed traders dominate the options market. 
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Table 1  The regression results for the volatility information from the order flows of volatility trades of 

S&P 500 index options 

 

This table presents the results based on the following regression model: 

𝑙𝑜𝑔 𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑋𝑡 + ∑ 𝜃𝑖 𝑙𝑜𝑔 𝑅𝑉𝑡−𝑖
4
𝑖=0 + 𝛾1 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡 + 𝜖𝑡+1, 

where 𝑙𝑜𝑔 𝑅𝑉𝑡  is the logarithmic realized volatility calculated from the five-minute S&P 500 index returns at 

day t; 𝑋𝑡 denotes one of the variables of volatility information generated from the order flows of volatility 

trades of S&P 500 index options (i.e., 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋 , 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋 , 𝐵𝑢𝑦𝑡
𝑆𝑃𝑋 , 𝑆𝑒𝑙𝑙𝑡

𝑆𝑃𝑋 , and 𝑉𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 ); 

𝑙𝑜𝑔 𝑉𝐼𝑋𝑡  is the logarithmic VIX level at day 𝑡. The sample period runs from January 1, 1998 to April 30, 

2016. ***, **, and * indicate the significance at the 1%, 5%, and 10% levels, respectively. 

 

 𝑁𝑒𝑡𝐶𝑎𝑙𝑙 𝑁𝑒𝑡𝑃𝑢𝑡 𝐵𝑢𝑦 𝑆𝑒𝑙𝑙 𝑉𝑇𝑜𝑡𝑎𝑙 

Coeff. \ X  (1) (2) (3) (4) (5) 

𝛽1 –4.56** –0.82 7.29*** 6.96*** –2.70* 

 
(–2.08) (–0.43) (12.03) (12.11) (–1.78) 

𝜃0 0.21*** 0.21*** 0.19*** 0.19*** 0.21*** 

 
(14.38) (14.37) (13.50) (13.42) (14.34) 

𝜃1 0.13*** 0.13*** 0.13*** 0.13*** 0.13*** 

 
(8.96) (8.97) (8.72) (8.71) (8.96) 

𝜃2 0.05*** 0.05*** 0.05*** 0.05*** 0.05*** 

 
(3.43) (3.47) (3.54) (3.39) (3.42) 

𝜃3 0.02 0.02 0.02 0.02 0.02 

 
(1.13) (1.08) (1.07) (1.09) (1.09) 

𝜃4 0.00 0.00 0.00 0.00 0.00 

 
(0.02) (0.04) (0.26) (0.27) (0.05) 

𝛾1 0.73*** 0.73*** 0.74*** 0.74*** 0.73*** 

 
(29.10) (29.07) (29.89) (30.03) (29.13) 

𝛼 –0.63*** –0.63*** –0.67*** –0.68*** –0.63*** 

 
(–16.33) (–16.34) (–17.65) (–17.71) (–16.38) 

 
     

No. of Obs. 4,593 4,593 4,593 4,593 4,593 

Adj. 𝑅2 0.704 0.704 0.713 0.713 0.704 
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Table 2  The regression results for the volatility information from directional trades of S&P 500 index 

options  

 

This table presents the results based on the following regression model: 

𝑙𝑜𝑔 𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑋𝑡 + ∑ 𝜃𝑖 𝑙𝑜𝑔 𝑅𝑉𝑡−𝑖
4
𝑖=0 + 𝛾1 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡 + 𝜖𝑡+1, 

where 𝑙𝑜𝑔 𝑅𝑉𝑡  is the logarithmic realized volatility calculated from the five-minute S&P 500 index returns at 

day t; 𝑋𝑡 denotes one of the variables of volatility information generated from the order flows of directional 

trades of S&P 500 index options (i.e., 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋 , 𝐴𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋 , 𝑈𝑝𝑡
𝑆𝑃𝑋 , 𝐷𝑜𝑤𝑛𝑡

𝑆𝑃𝑋 , and 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 ); 

ad𝑙𝑜𝑔 𝑉𝐼𝑋𝑡  is the logarithmic VIX level at day 𝑡. The sample period runs from January 1, 1998 to April 30, 

2016. ***, **, and * indicate the significance at the 1%, 5%, and 10% levels, respectively. 

 

 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙 𝐴𝑁𝑒𝑡𝑃𝑢𝑡 𝑈𝑝 𝐷𝑜𝑤𝑛 𝐷𝑇𝑜𝑡𝑎𝑙 

Coeff. \ X  (1) (2) (3) (4) (5) 

𝛽1 4.46* 12.16*** 6.85*** 7.26*** 3.70*** 

 
(1.72) (5.04) (11.72) (12.31) (12.32) 

𝜃0 0.21*** 0.21*** 0.19*** 0.19*** 0.19*** 

 
(14.38) (14.29) (13.44) (13.49) (13.42) 

𝜃1 0.13*** 0.13*** 0.13*** 0.13*** 0.13*** 

 
(8.97) (8.88) (8.73) (8.71) (8.71) 

𝜃2 0.05*** 0.05*** 0.05*** 0.05*** 0.05*** 

 
(3.50) (3.45) (3.47) (3.46) (3.46) 

𝜃3 0.02 0.02 0.01 0.02 0.02 

 
(1.07) (1.13) (1.02) (1.15) (1.08) 

𝜃4 –0.00 0.00 0.00 0.00 0.00 

 
(–0.01) (0.07) (0.30) (0.23) (0.28) 

𝛾1 0.73*** 0.73*** 0.74*** 0.74*** 0.74*** 

 
(29.11) (29.24) (29.97) (29.94) (30.00) 

𝛼 –0.64*** –0.65*** –0.68*** –0.67*** –0.68*** 

 
(–16.42) (–16.74) (–17.68) (–17.65) (–17.74) 

 
     

No. of Obs. 4,593 4,593 4,593 4,593 4,593 

Adj. 𝑅2 0.704 0.705 0.712 0.713 0.713 
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Table 3  The regression results for the volatility information from directional trades of VIX options  

 

This table presents the results based on the following regression model: 

𝑙𝑜𝑔 𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑋𝑡 + ∑ 𝜃𝑖 𝑙𝑜𝑔 𝑅𝑉𝑡−𝑖
4
𝑖=0 + 𝛾1 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡 + 𝜖𝑡+1, 

where 𝑙𝑜𝑔 𝑅𝑉𝑡  is the logarithmic realized volatility calculated from the five-minute S&P 500 index returns at 

day t; 𝑋𝑡 denotes one of the variables of volatility information generated from the order flows of directional 

trades of VIX options (𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑉𝐼𝑋, 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑉𝐼𝑋 , 𝑈𝑝𝑡
𝑉𝐼𝑋 , 𝐷𝑜𝑤𝑛𝑡

𝑉𝐼𝑋 , and 𝑇𝑜𝑡𝑎𝑙𝑡
𝑉𝐼𝑋); and 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡  is the 

logarithmic VIX level at day 𝑡. The sample period runs from January 1, 2008 to April 30, 2016. ***, **, and * 

indicate the significance at the 1%, 5%, and 10% levels, respectively. 

 

 𝑁𝑒𝑡𝐶𝑎𝑙𝑙 𝑁𝑒𝑡𝑃𝑢𝑡 𝑈𝑝 𝐷𝑜𝑤𝑛 𝑇𝑜𝑡𝑎𝑙 

Coeff. \ X  (1) (2) (3) (4) (5) 

𝛽1 1.50* –3.48*** 1.18*** 0.45 2.12*** 

 
(1.74) (–3.03) (3.00) (1.14) (3.15) 

𝜃0 0.20*** 0.20*** 0.19*** 0.20*** 0.20*** 

 
(8.73) (8.68) (7.94) (8.43) (8.64) 

𝜃1 0.15*** 0.15*** 0.14*** 0.15*** 0.15*** 

 
(6.51) (6.55) (6.27) (6.37) (6.56) 

𝜃2 0.06** 0.06*** 0.06** 0.06** 0.06** 

 
(2.53) (2.58) (2.48) (2.51) (2.54) 

𝜃3 0.00 –0.00 0.00 0.00 0.00 

 
(0.03) (–0.02) (0.12) (0.00) (0.06) 

𝜃4 –0.01 –0.02 –0.01 –0.01 –0.01 

 
(–0.70) (–0.72) (–0.58) (–0.66) (–0.70) 

𝛾1 0.78*** 0.78*** 0.81*** 0.79*** 0.78*** 

 
(16.76) (16.73) (17.00) (16.53) (16.77) 

𝛼 –2.15*** –2.14*** –2.26*** –2.19*** –2.14*** 

 
(–16.52) (–16.46) (–16.67) (–16.10) (–16.52) 

 
     

No. of Obs. 2,092 2,092 2,092 2,092 2,092 

Adj. 𝑅2 0.698 0.699 0.699 0.698 0.699 
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Table 4  The impact of informed trading 

 

This table presents the results based on the following regression model: 

𝑙𝑜𝑔𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑋𝑡 + 𝛽2𝐷1,𝑡𝑋𝑡 + 𝛽3𝐷2,𝑡𝑋𝑡 + ∑ 𝜃𝑖𝑙𝑜𝑔𝑅𝑉𝑡−𝑖
4
𝑖=0 + 𝛾1𝑙𝑜𝑔𝑉𝐼𝑋𝑡 + 𝜀𝑡, 

where 𝑙𝑜𝑔 𝑅𝑉𝑡  is the logarithmic realized volatility calculated from the five-minute S&P 500 index returns at day t; 𝑋𝑡 denotes one of the variables of volatility 

information generated from the order flows of directional trades of S&P 500 index options (𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋, 𝐴𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋, 𝑈𝑝𝑡
𝑆𝑃𝑋, 𝐷𝑜𝑤𝑛𝑡

𝑆𝑃𝑋, and 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋); 𝐷1,𝑡 (𝐷2,𝑡) 

equals 1 when the volatility skew of S&P 50 index options is smaller (larger) than the 10% (90%) quantile at day t, and zero otherwise; and 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡  is the logarithmic 

VIX level at day 𝑡. The sample period runs from January 1, 1998 to April 30, 2016. ***, **, and * indicate the significance at the 1%, 5%, and 10% levels, respectively. 

 

 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙  𝐴𝑁𝑒𝑡𝑃𝑢𝑡  𝑈𝑝  𝐷𝑜𝑤𝑛  𝐷𝑇𝑜𝑡𝑎𝑙 

Coeff. \ X (1) (2)  (3) (4)  (5) (6)  (7) (8)  (9) (10) 

𝛽1 2.43 24.22***  9.81*** 20.63***  6.24*** 8.02***  6.70*** 9.42***  3.40*** 4.51*** 

 
(0.93) (2.92)  (3.98) (3.25)  (10.42) (6.94)  (11.13) (7.89)  (11.07) (7.60) 

𝛽2 47.65***   31.85***   5.70***   6.19***   2.99***  

 (4.81)   (4.49)   (4.45)   (4.60)   (4.52)  

𝛽3  –21.11**   –9.31   –1.34   –2.46**   –0.92 

  (–2.51)   (–1.44)   (–1.17)   (–2.08)   (–1.57) 

Controls YES YES  YES YES  YES YES  YES YES  YES YES 

𝛼 –0.62*** –0.63***  –0.63*** –0.64***  –0.66*** –0.67***  –0.66*** –0.67***  –0.66*** –0.67*** 

 
(–16.15) (–16.38)  (–16.34) (–16.68)  (–17.09) (–17.59)  (–17.14) (–17.51)  (–17.18) (–17.62) 

 
              

No. of Obs. 4,593 4,593  4,593 4,593  4,593 4,593  4,593 4,593  4,593 4,593 

Adj. 𝑅2 0.705 0.704  0.707 0.706  0.714 0.712  0.715 0.714  0.715 0.713 
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Table 5  The interaction between S&P 500 index and VIX options markets 

 

This table presents the results based on the following regression model: 

𝑙𝑜𝑔𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑋𝑡 + 𝛽2𝐷1,𝑡𝑋𝑡 + 𝛽3𝐷2,𝑡𝑋𝑡 + ∑ 𝜃𝑖𝑙𝑜𝑔𝑅𝑉𝑡−𝑖
4
𝑖=0 + 𝛾1𝑙𝑜𝑔𝑉𝐼𝑋𝑡 + 𝜀𝑡, 

where 𝑙𝑜𝑔 𝑅𝑉𝑡  is the logarithmic realized volatility calculated from the five-minute S&P 500 index returns at day t; 𝑋𝑡 denotes one of the variables of volatility 

information generated from the order flows of directional trades of VIX options (𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑉𝐼𝑋, 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑉𝐼𝑋, 𝑈𝑝𝑡
𝑉𝐼𝑋, 𝐷𝑜𝑤𝑛𝑡

𝑉𝐼𝑋, or 𝑇𝑜𝑡𝑎𝑙𝑡
𝑉𝐼𝑋); 𝐷1,𝑡 (𝐷2,𝑡) equals 1 when the 

volatility skew of S&P 50 index options is smaller (larger) than the 10% (90%) quantile at day t, and zero otherwise; and 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡  is the logarithmic VIX level at day 𝑡. 

The sample period runs from  January 1, 1998 to April 30, 2016. ***, **, and * indicate the significance at the 1%, 5%, and 10% levels, respectively. 

 

 𝑁𝑒𝑡𝐶𝑎𝑙𝑙  𝑁𝑒𝑡𝑃𝑢𝑡  𝑈𝑝  𝐷𝑜𝑤𝑛  𝑇𝑜𝑡𝑎𝑙 

Coeff. \ X (1) (2)  (3) (4)  (5) (6)  (7) (8)  (9) (10) 

𝛽1 1.20 1.74*  –3.98*** –3.83***  0.72* 1.24***  –0.05 0.39  2.06*** 2.36*** 

 
(1.38) (1.90)  (–3.21) (–3.21)  (1.72) (2.94)  (–0.11) (0.94)  (3.03) (3.45) 

𝛽2 9.82**   3.53   2.59***   2.93***   0.47  

 (1.97)   (1.07)   (3.25)   (3.60)   (0.20)  

𝛽3  –2.04   4.73   –0.25   0.36   –2.61 

  (–0.76)   (1.08)   (–0.36)   (0.48)   (–1.21) 

Controls YES YES  YES YES  YES YES  YES YES  YES YES 

𝛼 –2.14*** –2.15***  –2.14*** –2.13***  –2.24*** –2.27***  –2.16*** –2.19***  –2.14*** –2.14*** 

 
(–16.50) (–16.52)  (–16.46) (–16.45)  (–16.46) (–16.67)  (–15.90) (–16.08)  (–16.52) (–16.51) 

 
              

No. of Obs. 2,092 2,092  2,092 2,092  2,092 2,092  2,092 2,092  2,092 2,092 

Adj. 𝑅2 0.698 0.698  0.699 0.699  0.700 0.699  0.700 0.698  0.699 0.699 
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Table 6  The introduction of VIX futures and options 

 

This table presents the results based on the following regression model: 

 𝑙𝑜𝑔𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑋𝑡 + 𝛽2𝐷1,𝑡𝑋𝑡 + 𝛽3𝐷2,𝑡𝑋𝑡 + ∑ 𝜃𝑖𝑙𝑜𝑔𝑅𝑉𝑡−𝑖
4
𝑖=0 + 𝛾1𝑙𝑜𝑔𝑉𝐼𝑋𝑡 + 𝜀𝑡, 

where 𝑙𝑜𝑔 𝑅𝑉𝑡  is the logarithmic realized volatility calculated from the five-minute S&P 500 index returns at day t; 𝑋𝑡 denotes one of the variables of volatility 

information generated from the order flows of directional trades of S&P 500 index options (i.e., 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋, 𝐴𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋, 𝑈𝑝𝑡
𝑆𝑃𝑋, 𝐷𝑜𝑤𝑛𝑡

𝑆𝑃𝑋, and 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋); 𝐷1,𝑡 

(𝐷2,𝑡) equals 1 for the observations post the introduction of VIX futures (options) in January 2004 (February 2006), and zero otherwise; and 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡  is the logarithmic VIX 

level at day 𝑡. The sample period runs from  January 1, 1998 to April 30, 2016. ***, **, and * indicate the significance at the 1%, 5%, and 10% levels, respectively. 

 

 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙  𝐴𝑁𝑒𝑡𝑃𝑢𝑡  𝑈𝑝  𝐷𝑜𝑤𝑛  𝑇𝑜𝑡𝑎𝑙 

Coeff. \ X (1) (2)  (3) (4)  (5) (6)  (7) (8)  (9) (10) 

𝛽1 –11.16 3.00  –1.45 12.39***  33.73*** 32.64***  42.11*** 34.96***  22.23*** 18.73*** 

 
(–0.91) (1.07)  (–0.12) (5.00)  (7.87) (13.10)  (9.59) (14.02)  (9.65) (14.44) 

𝛽2 15.73   13.38   –24.81***   –32.20***   –17.01***  

 (1.31)   (1.13)   (–6.33)   (–8.01)   (–8.11)  

𝛽3  –3.27   0.82   –23.28***   –25.06***   –13.48*** 

  (–1.33)   (0.40)   (–10.64)   (–11.42)   (–11.90) 

Controls YES YES  YES YES  YES YES  YES YES  YES YES 

𝛼 –0.64*** –0.63***  –0.65*** –0.65***  –0.62*** –0.77***  –0.59*** –0.76***  –0.59*** –0.78*** 

 
(–16.42) (–16.37)  (–16.65) (–16.72)  (–15.68) (–19.77)  (–14.96) (–19.88)  (–15.05) (–20.20) 

 
              

No. of Obs. 4,593 4,593  4,593 4,593  4,593 4,593  4,593 4,593  4,593 4,593 

Adj. 𝑅2 0.704 0.704  0.705 0.705  0.715 0.719  0.717 0.721  0.717 0.722 
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Table 7  Comparison between S&P 500 index and VIX options 

 

This table presents the results based on the following regression model: 

𝑙𝑜𝑔𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑇𝑜𝑡𝑎𝑙𝑡
𝑉𝐼𝑋 + 𝛽2𝐷𝑇𝑜𝑡𝑎𝑙𝑡

𝑆𝑃𝑋 + 𝛽3𝐷1,𝑡𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 + ∑ 𝜃𝑖𝑙𝑜𝑔𝑅𝑉𝑡−𝑖

4
𝑖=0 + 𝛾1𝑙𝑜𝑔𝑉𝐼𝑋𝑡 + 𝜀𝑡, 

where 𝑙𝑜𝑔 𝑅𝑉𝑡  is the logarithmic realized volatility calculated from the five-minute S&P 500 index returns at 

day t; 𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 and 𝑇𝑜𝑡𝑎𝑙𝑡

𝑉𝐼𝑋, respectively, denote the variables of volatility information generated from the 

order flows of S&P 500 index and VIX options; 𝐷1,𝑡 equals 1 when the volatility skew of S&P 50 index 

options is smaller than the 10% quantile at day t, and zero otherwise; and 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡  is the logarithmic VIX level 

at day 𝑡. The sample period runs from January 1, 2008 to 30 April 2016. ***, **, and * indicate the significance 

at the 1%, 5%, and 10% levels, respectively. 

 

Coeff. (1) (2) (3) (4) 

𝛽1 2.12***  2.18*** 2.06*** 

 
(3.15)  (3.23) (3.06) 

𝛽2  1.06 1.16* 0.52 

  (1.55) (1.71) (0.74) 

𝛽3    3.02*** 

    (4.35) 

Controls YES YES YES YES 

𝛼 –2.14*** –2.18*** –2.18*** –2.15*** 

 
(–16.52) (–16.42) (–16.48) (–16.33) 

 
    

No. of Obs. 2,092 2,090 2,090 2,090 

Adj. 𝑅2 0.699 0.698 0.699 0.702 
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Table 8  The regression results for the variables compiled with an alternative weighting scheme 

 

This table presents the results based on the following regression model: 

𝑙𝑜𝑔 𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑋𝑡 + ∑ 𝜃𝑖 𝑙𝑜𝑔 𝑅𝑉𝑡−𝑖
4
𝑖=0 + 𝛾1 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡 + 𝜖𝑡+1, 

where 𝑙𝑜𝑔 𝑅𝑉𝑡  is the logarithmic realized volatility calculated from the five-minute S&P 500 index returns at 

day t; 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡  is the logarithmic VIX level at day 𝑡 . 𝑋𝑡  denotes one of the variables of volatility 

information generated from the order flows of S&P 500 index options: 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋, 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋, 𝐵𝑢𝑦𝑡
𝑆𝑃𝑋, 

𝑆𝑒𝑙𝑙𝑡
𝑆𝑃𝑋, and 𝑉𝑇𝑜𝑡𝑎𝑙𝑡

𝑆𝑃𝑋for Hypothesis 1 (Panel A) and 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋, 𝐴𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋, 𝑈𝑝𝑡
𝑆𝑃𝑋, 𝐷𝑜𝑤𝑛𝑡

𝑆𝑃𝑋, and 

𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 for Hypothesis 2 (Panel B). The sample period runs from January 1, 1998 to April 30, 2016. ***, **, 

and * indicate the significance at the 1%, 5%, and 10% levels, respectively. 

 

Panel A: Hypothesis 1 

Coeff. \ X 𝑁𝑒𝑡𝐶𝑎𝑙𝑙 𝑁𝑒𝑡𝑃𝑢𝑡 𝐵𝑢𝑦 𝑆𝑒𝑙𝑙 𝑉𝑇𝑜𝑡𝑎𝑙 

 (1) (2) (3) (4) (5) 

𝛽1 –3.66** –0.98 4.13*** 4.04*** –2.27** 

 
(–2.40) (–0.80) (12.34) (12.59) (–2.25) 

Panel B: Hypothesis 2 

Coeff. \ X 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙 𝐴𝑁𝑒𝑡𝑃𝑢𝑡 𝑈𝑝 𝐷𝑜𝑤𝑛 𝐷𝑇𝑜𝑡𝑎𝑙 

 (1) (2) (3) (4) (5) 

𝛽1 4.62** 7.53*** 3.94*** 4.18*** 2.10*** 

 
(2.44) (4.76) (12.16) (12.69) (12.64) 
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Table 9  The regression results for the variables compiled with OTM options 

 

This table presents the results based on the following regression model: 

𝑙𝑜𝑔 𝑅𝑉𝑡+1 = 𝛼 + 𝛽1𝑋𝑡 + ∑ 𝜃𝑖 𝑙𝑜𝑔 𝑅𝑉𝑡−𝑖
4
𝑖=0 + 𝛾1 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡 + 𝜖𝑡+1, 

where 𝑙𝑜𝑔 𝑅𝑉𝑡  is the logarithmic realized volatility calculated from the five-minute S&P 500 index returns at 

day t; 𝑙𝑜𝑔 𝑉𝐼𝑋𝑡  is the logarithmic VIX level at day 𝑡 . 𝑋𝑡  denotes one of the variables of volatility 

information generated from the order flows of S&P 500 index options: 𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋, 𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋, 𝐵𝑢𝑦𝑡
𝑆𝑃𝑋, 

𝑆𝑒𝑙𝑙𝑡
𝑆𝑃𝑋, and 𝑉𝑇𝑜𝑡𝑎𝑙𝑡

𝑆𝑃𝑋for Hypothesis 1 (Panel A) and 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙𝑡
𝑆𝑃𝑋, 𝐴𝑁𝑒𝑡𝑃𝑢𝑡𝑡

𝑆𝑃𝑋, 𝑈𝑝𝑡
𝑆𝑃𝑋, 𝐷𝑜𝑤𝑛𝑡

𝑆𝑃𝑋, and 

𝐷𝑇𝑜𝑡𝑎𝑙𝑡
𝑆𝑃𝑋 for Hypothesis 2 (Panel B). All variables are compiled from out-of-the-money options only. The 

sample period runs from January 1, 1998 to April 30, 2016. ***, **, and * indicate the significance at the 1%, 

5%, and 10% levels, respectively. 

 

Panel A: Hypothesis 1 

Coeff. \ X 𝑁𝑒𝑡𝐶𝑎𝑙𝑙 𝑁𝑒𝑡𝑃𝑢𝑡 𝐵𝑢𝑦 𝑆𝑒𝑙𝑙 𝑉𝑇𝑜𝑡𝑎𝑙 

 (1) (2) (3) (4) (5) 

𝛽1 –4.77*** –1.32 2.85*** 2.92*** –2.13*** 

 
(–3.09) (–1.57) (7.85) (8.64) (–2.87) 

Panel B: Hypothesis 2 

Coeff. \ X 𝐴𝑁𝑒𝑡𝐶𝑎𝑙𝑙 𝐴𝑁𝑒𝑡𝑃𝑢𝑡 𝑈𝑝 𝐷𝑜𝑤𝑛 𝐷𝑇𝑜𝑡𝑎𝑙 

 (1) (2) (3) (4) (5) 

𝛽1 5.68*** 4.56*** 2.86*** 2.91*** 1.53*** 

 
(3.30) (4.72) (8.20) (8.30) (8.50) 

 


