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Abstract

This paper offers a novel approach in identifying the relationship between the
option prices and market risk premium using functional predictive regression. We
provide an evidence that the predictability of the aggregate market return can
be greatly improved by utilizing the linkage between the cross-section of option
prices and the underlying asset returns. Applying our framework into the option
panel data on S&P500 and the realized returns of S&P500 over our sample period
from January 1996 to December 2015, we achieve a remarkable performance in
predicting S&P500 index monthly returns, yielding 4.702% (6.198%) of in-sample
(out-of-sample) R?. We examine the relation between the information in risk-

neutral density dynamics and that in the popular return predictors.
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1 Introduction

According to a tail in Aristotle’s ‘Politics’, Thales monetized his forecast on the olive
price through forward contracts on the exclusive use of the olive-presses. Since the
adoption of modern financial market where firms’ ownerships are publicly traded, many
traders as well as academics have been fascinated by the topic of forecasting stock
returns. From practitioners’ viewpoint, it is necessary to exploit real-time forecasts of
stock returns for successful investment performance. Hence, it is quite natural that
finance practitioners eagerly employ various variables and adopt novel methodologies
for the purpose of forecasting stock returns. From academics’ perspective, by analyzing
the nature of stock return forecastability, we can deepen our understanding on the
market participants’ assessment of risks and their aversion towards the risks.

This paper proposes a novel methodology of predicting market risk premium by
relating the risk-neutral density extracted from a cross section of option prices to the
physical density observed from realized market returns. Our approach stands on two
theoretical claims in finance: (i) the cross-sectional option prices contain the information
on the risk-neutral density of the underlying asset (See Ross (1976), Banz and Miller
(1978) and Breeden and Litzenberger (1978)) and (ii) the risk-neutral density and the
physical density are equivalent (See Harrison and Kreps (1979)) and an asset pricing
model can be interpreted as the change of measure between the two measures (See
Hansen and Richard (1987)). For exploiting (i), many researchers have proposed various
methods to find risk-neutral density from the cross-section of option prices.! We adopt
the method by Ait-Sahalia and Duarte (2003) which imposes no-arbitrage restrictions
nonparametrically and measure the risk-neutral density of S&P500 index after a month
from a cross-section of SPX prices which expire after a month. Resorting to (ii), we
attempt to identify the relation between the physical and risk-neutral densities. To
this end, we do not take a stance on a particular asset pricing model but utilize the
functional regression developed by Park and Qian (2012). In particular, we construct
the physical density of S&P500 index monthly returns from bootstrapping S&P500
index daily returns in a given month and regress the physical density on the risk-
neutral density estimated as of the previous month end. From this, we identify the

relation between the two pairs of distribution and predict the physical density over the

1See Bliss and Panigirtzoglou (2002) and Jackwerth (2004) for comprehensive review on this topic.



following month through the observed risk-neutral density.

Given the theoretical association between risk-neutral and physical densities, we
find that the risk-neutral density shows strong predictive power in explaining the phys-
ical density of the S&P500 index. The functional predictive regression of the risk-
neutral density at time t — 1 on the physical density at time t exhibits significant
predictability with in-sample R?statistics ranging from 4.375% to 4.720%, which out-
performs the performance of conventional predictors such as dividend yield, earnings-
price ratio, and other variables by Welch and Goyal (2008). While out-of-sample es-
timation of Welch and Goyal (2008) casts doubt about predictability, it is noteworthy
that our approach delivers even stronger predictive power in out-of-sample prediction
than in-sample prediction. Following out-of-sample forecast assessment of Campbell
and Thompson (2008), our prediction model achieves 6.198% of the out-of-sample R?
statistics. We believe that the aforementioned strong out-of-sample performance is due
to the theoretical linkage between risk-neutral and physical densities.

This paper lies at the intersection of two literatures: return predictability and op-
tions. The academic history of predicting stock returns goes back to Cowles (1933)
and Cowles and Jones (1937). In the early literature, the return predictability was
interpreted against the market efficiency (Fama (1965), Fama (1970) and Samuelson
(1965)). However, Fama (1991) harmonizes the empirical findings of return predictabil-
ity with the market efficiency. Over the past decades, researchers have proposed var-
ious models featuring return predictability: external habits (Campbell and Cochrane
(1999)), dynamic risk-sharing opportunities among heterogeneous agents (Lustig and
Nieuwerburgh (2005)), long-run risks (Bansal and Yaron (2004), Bansal et al. (2010)),
time-varying disaster risks (Gabaix (2012)). Furthermore, advanced methodologies
are widely pursued: structural VAR (Cochrane (2008), Van Binsbergen and Koijen
(2010)), model combination (Rapach, Strauss, and Zhou (2010) and Dangl and Halling
(2012)), structural breaks (Guidolin and Timmermann (2007), Henkel, Martin, and
Nardari (2011)). Also, given the inherent kinship between Q-density and option prices
(Ross (1976), Banz and Miller (1978) and Breeden and Litzenberger (1978)), researchers
have been proposing various methods to recover such relation (Jackwerth and Rubin-
stein (1996), Ait-Sahalia and Lo (1998), Ait-Sahalia and Duarte (2003)). Furthermore,
Rosenberg and Engle (2002) and Jackwerth (2000, 2004) show how we can learn about

the risk aversion of investors by jointly observing option markets and returns dynamics



of the underlying market. As recent endeavors in this line of research, Ross (2015)
and Carr and Yu (2012) propose how to recover both of @- and P- densities only from
option panels under certain restrictions.

This paper contributes to the literature in two-fold. First, we highlight the valuable
information dormant in option panels for predicting market returns. Recall that the
transition between risk-neutral density and physical density is pinned down by the risk
preference of pricing agents (Hansen and Jagannathan (1991)). Then, a rather mild
assumption of enduring preference naturally implies a stable relation between between
risk-neutral density and physical densities. As far as we know, this is the first paper
aiming to predict the market return exploiting such relation. Second, we introduce a
novel prediction method which handle predictors in a high-dimensional space, such as
risk-neutral density function. Given that the size of relevant data such as SNS postings,
household-level consumption or demographic changes is exceedingly growing, the ability
to extract the relevant information from Big Data becomes crucial. The methodology
that we use to connect two densities can be easily applied to connect any two objects.

This paper is organized as follows. In Section 2, we explain the data that we use
for our empirical analysis. Section 3 describes our prediction methodology. Empirical

results are reported in Section 4. Section 5 concludes.

2 Data

We explain the data source and filters. In extracting a risk-neutral density from option
prices, we obtain the data on S&P500 index options over January 1996 to December
2015 from Option Metrics Database. In particular, we collect data on implied volatility,
strike prices, expiration dates, dividend yields, the price of underlying asset (S&P500
index) of the options, and the risk-free rate data. We filter out each option contract
with zero trading volume, zero open interest, or zero or missing implied volatility data.
We also eliminate options with the average of the bid and ask quotes less than $3/8.
We work with only put option data.

We describe how we select the observation date and the corresponding time-to-
maturity. From the filtered option data, we use the options whose remaining days
until their expiration are close to 30 days so that a horizon of return predictability

analysis is a monthly basis. Figure 2 shows on which date we collect option data with



certain time-to-maturity and how we aggregate market return data for our analysis.
For example, when the expiration date of the index options is January 17th 2016, we
collect the option data observed on 18th December 2015 whose time to expiration date
are 30 days.? In this example, the observation date of the option data is December 18th
2015, and the ezpiration date of the options is January 17th 2016. Similar adjustments
are made to the dividend yield and risk-free rate data. That is, we interpolate the
dividend yields and risk-free rate data provided by Option Metrics to obtain 30-day
dividend yield and risk-free rate on the observation date.

When observation and expiration dates of options do not correspond to the first
or last date of a month, we make an analogous adjustment constructing the data on
market return. Recall that our main objective is to investigate the predictability of a
risk-neutral density obtained from options data on the physical density of stock market
returns. Hence, we examine whether the risk-neutral density extracted from options
data on the observation date has the predictability in explaining the stock market
return realized over the observation date to the expiration date of the options used in
prediction. To this end, we collect daily returns of S&P index from the observation to
expiration dates and use bootstrap method to construct the physical density of monthly
returns. Subsection 3.1 and 3.2 provide detailed descriptions on P- and ()-density
construction, respectively.

Table 1 provides descriptive statistics for option data used in our main analysis. The
second column of Table 1 provides annual and overall averages of the S&P500 index,
and the next column shows the number of put options used in our analysis exhibiting a
dramatic increase in recent years. The next four and last four columns display informa-
tion on strike prices and implied volatility of the put options, respectively. Similarly,
the range of strike prices and implied volatility exhibits wide dispersion in the second

half of the sample period, compared to the first half.

2If there are no options whose days to expiration are exactly 30 days, we collect options whose time
to expiration is closest to 30 days.



3 Methodology

3.1 ()-density construction

This subsection describes our approach to extract a risk-neutral distribution from panel
data of option prices. The value of an option contract is the expected payoff on the
expiration date discounted back to the present. Under risk-neutrality, the value of a

call option at time ¢ can be written as

Co= [ e T0(Sy = K)q(T)dSr, 1

where K is a strike price, ry is a risk-free rate, T is date of expiration, Sris the price
of an underlying asset, and ¢(-) and risk-neutral density, respectively. Breeden and
Litzenberger (1978) and Banz and Miller (1978)show that, from Equation (1), the risk-
neutral density can be obtained by taking a second order derivative with respect to

strike price. That is,

02C,
T—t) t

A practical application of the above approach to extract a risk-neutral density has
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several empirical challenges. First, we observe only limited number of option contracts
with discrete prices. Second, an option contract is traded based on bid and ask prices
with microstructure noise. Third, there is a limited range of available strike prices.
These issues make data on option prices coarse and noisy. Furthermore, the problem
gets worsen as we take the second order derivative, which is our main objective of
interest.

In this paper, we obtain a risk-neutral density by applying monotonicity and con-
vexity of call option prices following Ait-Sahalia and Duarte (2003). In particular, from
the positivity of the density and its integrability to one, two constraints can be written

as follows.
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In particular, following Ait-Sahalia and Duarte (2003), a risk-neutral density is obtained
using constrained least square regression with locally polynomial kernel smoothing ap-
proach. Using option panel data described in Section 1, we measure the risk-neutral
density of S&P500 index after a month from a cross-section of prices of options on
S&P500 (SPX) which expire in a month. The top two plots in Figure 1 display our esti-
mated @-density (left) and demeaned @Q-density (right). As we apply theory-motivated
constraints in extracting risk-neutral density from option panel data, the estimated

(Q-density function is well-behaved.

3.2 P-density construction

In this subsection, we describe a bootstrap method to construct the physical density
of S&P500 index monthly returns. Recall that we aim to predict a physical density
of S&P500 index return of a given month using a risk-neutral density of option prices
observed at the end of a previous month. In particular, we collect daily returns of
S&P500 index over the period between observation date to the expiration date described
in Figure 2, which corresponds with the lifetime of option contracts used to construct
the risk-neutral density.

Suppose, as of observation date t, that there are N number of days until expiration
date t + 1. That is, a cross-section of prices of options on S&P500 index is observed
at month ¢, and these options expire at month ¢ + 1. N denotes a number of days
between time ¢t and ¢t + 1. Then, a realized monthly return of a given month ¢ is
written as r; = Hf;l(l + r;;) — 1, where r;,is a daily return in day ¢ of month t.
So, we collect daily returns in a given month, {ry;, ra¢, - 7i¢, -+ ,7nep. From this
set of daily returns, we construct a series of bootstrapped {r{t,r%,t, e Tf’t, e ,rfvjt},
where 7 = 1,--- , B and B is the number of bootstrapped samples. Using bootstrapped
samples, monthly returns are simulated as r] = N+ vat) —1lforj=1,---,B.
Thus, as we set B = 10,000 in our main analysis, 10,000 simulated monthly returns
are generated for a given month and used to construct a physical density function of
S&P500 index. The bottom two plots in Figure 1 show our physical density of S&P500
index (left) estimated using the bootstrap method and its demeaned density (right).



3.3 Projection of P-density on ()-density

Finally, we explain how we can relate the two densities described in the previous two
subsections. Recall that Xy is the set of 1024 potential one-month horizon S&P500
returns used for ()-density and P-density estimation. Let q; : Xz — R denote the
Q-density function mapping the one-month horizon S&P500 returns from the end of
month ¢ to the end of month ¢+41 to a real number, which is constructed using one-month
horizon option prices observed at time ¢ as in Section 3.1. Let p;11 : Xz — R denote the
P-density function mapping the one-month horizon S&P500 returns from month ¢ to
t+1 to a real number, which is constructed using realized daily returns from the end of
month ¢ to the end of month ¢+ 1 as in Section 3.2. For practical convenience, we work
with the demeaned versions of the density functions, dp;+1 and dq; corresponding to
pi+1 and q, respectively. For in-sample (out of sample) estimation, we use the densities
over the whole (previous) time-series to compute the mean densities.

We consider the function regression as follows:
dpir1 = Adg: + €441, (3)

where A is a mapping from a space of real-valued functions to itself. We assume all
technical conditions in Park and Qian (2012). Because our main interest lies in out
of sample prediction, we will describe the estimation procedures as we perform out of

sample prediction.

Step 1. We transform the vectors of dj 541, dqs into the vectors of wp o1, Wq s
through wavelet for s < t.

Step 2. Find the first K eigenvalues and eigenvectors from the matrix W Wg,
where Wy = [Wq1 Wq2 -+ Wqi1). Let A\; and e, denote the k-th eigenvalue and
eigenvectors, respectively, for k < K.

Step 3. Using the regularized regressors from Step 2, we find
Kw = (Z Wp,s—i—lwg,s) (Z Alzleke;c) :
s<t k<K

Step 4. From the estimated mapping in Step 3, we make a prediction wWp 41 =

A, Wq. in the wavelet space



Step 5. Transform the estimated function wy ;41 in the wavelet space to ap7t+1 by
reversing the procedures in Step 1.

Step 6. Add back the historical mean to &p,m to obtain py;y1 = amH —i—% ZZ;}) Psi1-

The intuition of the suggested procedures follows. Steps 1-3 stabilize the estimation
outcomes. Recall that our target of A is a high-dimensional object. Hence, a brute-
force regression approach is highly unstable. Instead, we propose an alternative route.
We transform a real-value vector to a vector of elements corresponding to wavelet-basis
in Step 1 and summarize the information in the regressor by the most important K
components in Step 2. As a result of these regularization, the estimator in Step 3
does not suffer from the ill-conditioning problem. Steps 4 and 5 simply reverse the

pre-treatments.

4 Empirical Results

Over the sample period from January 1996 to December 2015, we use the functional
regression framework of Park and Qian (2012) to predict the realized returns of the

S&P500 index. Panel A of Table 2 reports R? statistics, which is measured as following:

Sy (re — 74)?
Z;[:l(rt — )2 7

where 7is the predicted mean of our physical density obtained using our functional

RP=1- (4)

predictive regression, and r = T S I 7. We provide the R? statistics of the predictive
functional regression for different numbers of eigenvalues (and corresponding eigenvec-
tors) used in the estimation. The in-sample estimation exhibits significant predictability
of the risk-neutral distribution extracted option prices on S&P500 index return, ranging
from 4.375% to 4.720% of R? statistics.

Existing literature has documented, that even in the in-sample prediction, most of
well-known predictors have poor predictability in explaining the market risk premium
(see, among many others, Welch and Goyal (2008), Campbell and Thompson (2008),
and Rapach et al. (2010)). To compare the performance of our approach to existing

predictors in the literature, we also compute the in-sample R? statistics of the well-



known predictors used in Welch and Goyal (2008).3 In particular, we obtain the R?

statistics from the following time-series regression:

re = o+ X1 + ey, (5)

where r; is the excess return on the S&P500 index of period ¢, X;_1 is a set of predictors
observed in period t — 1, and &; is an error term. Panel B of Table 2 provides the in-
sample R? from using 13 monthly variables by Welch and Goyal (2008) as the predictor.
The estimated R? statistics range from the lowest 0.001% of Treasury Bill rate to the
highest 2.084% of stock variance. As already well known, when we include all 13
variables in the regression (“Kitchen sink”), the in-sample R? obviously increases as
much as 11.55%. However, the stability of this finding will be investigated in the
next subsection. Overall, the result provided in Table 2 suggests that our approach
using information embedded in option prices to predict market return shows impressive
performance in the prediction compared to the existing and well-known predictors in

the financial market.

4.1 Out-of-sample prediction

Even though numerous economic variables have been proposed as predictors of stock
returns, including valuation ratios and other variables as in Welch and Goyal (2008),
the existence of out-of-sample predictability has still been controversial. In this subsec-
tion, we provide the performance of our approach in predicting stock return using the
functional predictive regression with the ()-measure extracted from options data.

In out-of-sample prediction, we run the functional predictive regression (Equa-
tion(x.x)) using the expanding window. For each estimation, we generate out-of-sample
forecast of stock market return and compare the forecast with a realized stock market
return. Following Campbell and Thompson (2008) and Welch and Goyal (2008), we
use the historical average of S&P500 returns () as a natural benchmark model.

We use the out-of-sample R? suggested by Campbell and Thompson (2008) to com-
pare the forecast from the functional regression (7;,1) and the forecast using the his-
torical average of stock market returns (7;,;). The out-of-sample R? of Campbell and

Thompson (2008) is computed as follows:

3The data are available from Amit Goyal’s homepage: http://www.hec.unil.ch/agoyal/
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Yoy (e — 7)?

ST (e —)?

where 7, is the fitted value from the functional regression estimated through period ¢

RQOOS =1

(6)

in an out-of-sample manner, and 7, is the historical average of stock market returns
through period t. To estimate the historical average of stock returns, we use the long
historical data on S&P500 index returns starting from 1927, giving the historical average
advantage of data availability.

Table 3 provides the out-of-sample R? statistics of our proposed approach (Panel A)
and predictors used in Welch and Goyal (2008) (Panel B). Our prediction model achieves
6.198% (6.102%) of the out-of-sample R? when using five (three) eigenvalues and cor-
responding eigenvectors in the predictive functional regression. As well documented
in the existing literature, 13 predictors exhibit very poor performance in predicting
stock market return in out-of-sample, even with negative out-of-sample R? statistics.
Consistent with other papers, the kitchen sink regression using all 13 variables deliv-
ers a significantly negative out-of-sample R? of -3.422%. Overall, our approach using
the functional regression in predicting stock market returns with option data provides

unprecedentedly high predictability, even in out-of-sample analysis.

4.2 LASSO analysis

In this subsection, we examine the relationship between information embedded in the
option panel data that we used to predict stock market return and conventional predic-
tors which have been frequently used in the return predictability literature. In doing
so, we use LASSO method (Tibshirani (1996)). Aiming to identify a linkage between
risk-neutral distribution and widely used predictors in the literature, we start from 13
variables used in Welch and Goyal (2008), stacked in X;. Using risk-neutral density we
extracted from option panel, we construct the factor, f¥, on k-th principal component
in the dynamics of risk-neutral density. With X; and fF, we estimate the following

LASSO problem to identify variables which have significant effects on fF:

T
iy (S0 = = 802181 ). @)
BoB \i=1

where ) is a non-negative regularization parameter, and ||-|| is the standard ¢'-norm.
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Table 4 provides the result for the LASSO analysis. Among well-known predictors
used in Welch and Goyal (2008), the result suggest that dividend yield spread and stock
variance are most strongly associated with all three factors of the risk-neutral density
dynamics. In addition, inflation, net equity expansion, and book-to-market ratio are
the next three important variables in explaining the first factor, while term spread,
long-term yield, and net equity expansion have significant association with the second

and the third factor of the risk-neutral density.

5 Conclusion

We This paper offers a novel approach in identifying the relationship between the option
prices and market risk premium using functional predictive regression. We provide an
evidence that the predictability of the aggregate market return can be greatly improved
by utilizing the linkage between the cross-section of option prices and the underlying
asset returns. Applying our framework into the option panel data on S&P500 and the
realized returns of S&P500 over our sample period from January 1996 to December
2015, we achieve a remarkable performance in predicting S&P500 index monthly re-
turns, yielding 4.702% (6.198%) of in-sample (out-of-sample) R?. We examine that the
information in risk-neutral density which contributes to this stark improvement in the
predictability is not spanned by the information in the popular return predictors.

We propose new methodology to predict the market returns in a real time, exploiting
the cross-section of option prices. Our methodology combines the risk-neutral density
extraction by Ait-Sahalia and Duarte (2003) and the functional regression by Park and
Qian (2012). Applying the proposed method to a large panel of option data, we find
a stark improvement in predicting S&P500 index monthly returns, 6.198% of out-of-
sample R?, over existing studies.

We see a number of avenues for future research. A natural next step is to exam-
ine the predictability of other macro variables such as interest rate or exchange rate
using the data of the option markets, the underlyings of which are those macro vari-
ables. Moreover, investigating the qualitative feature in the risk-neutral density, such as

investor sentiment or slow price reaction, is also a possible direction for future research.

12
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Figure 1: Estimated () and P densities from sample data

(1) Q-density
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The plots above display estimated ) density (top) and P density (bottom) from our
sample data. @ density is estimated by following Ait-Sahalia and Duarte (2003) which
is described in Subsection 3.1. P density is obtained using daily returns of S&P500
index as described in Subsection 3.2. In each top and bottom sections, we provided
estimated () and P densities along with their demeaned densities which are used in our
main predictive analysis in Section 4.
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Figure 2: Time Matching and Aggregation of Option and Market Return Data

Observation Expiration Observation Expiration
date date date date
i — k— — time
bt 30 days T b2 30 days Ty

The timeline above displays how observation date and expiration date of option data
are coordinated and how market return data are aggregated accordingly. Option data
are collected on observation dates, which are 30 days before the option expiration dates.
That is, the collected S&P500 index options have 30-days of time-to-maturity. Once
these observation and expiration dates are specified, daily returns on S&P500 from the
observation and expiration dates are collected.
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Table 2: In-Sample Prediction Results

Panel A. Functional Regression

Number of

Eigenvalues In-Sample R?
K =23 4.375%

K =4 4.487%
K=5 4.720%

Panel B. Predictors in Goyal and Welch (2008)

Variable In-Sample R?
Dividend-Price Ratio 1.113%
Dividend Yield 1.437%
Earnings-Price Ratio 0.246%
Dividend Payout Ratio 0.004%
Stock Variance 2.084%
Book-to-Market Ratio 0.174%
Net Equity Expansion 1.840%
Treasury Bill Rate 0.001%
Long-Term Yield 0.068%
Long-Term Return 0.134%
Term Spread 0.098%
Default Yield Spread 0.606%
Inflation 0.126%
All (Kitchen sink) 11.552%

The table reports the R? statistics from the functional predictive regression provided in Section
3 and R? statistics of variables used in Welch and Goyal (2008). In Panel A, the in-sample R?
statistics from the functional predictive regression is computed using Equation (HERE Functional
Regression Eq) and Equation (4) in Subsection ??. The value of K in the first column represents
the number of eigenvalues and corresponding eigenvectors used in the estimation of the functional
regression. In Panel B, the in-sample R? statistics for variables of Welch and Goyal (2008) are
computed from the predictive regression of Equation (5). The sample period of estimation spans
from January 1996 to December 2015.
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Table 3: Out-of-Sample Prediction Results

Panel A. Functional Regression

Number of

Eigenvalues Out-of-Sample R?
K=3 6.012%

K =4 5.749%
K=5 6.198%

Panel B. Predictors in Goyal and Welch (2008)

Variable Out-of-Sample R?
Dividend-Price Ratio 2.431%
Dividend Yield 2.273%
Earnings-Price Ratio 0.269%
Dividend Payout Ratio -0.723%
Stock Variance 1.910%
Book-to-Market Ratio -0.249%
Net Equity Expansion -4.420%
Treasury Bill Rate -2.050%
Long-Term Yield -2.456%
Long-Term Return -1.297%
Term Spread -0.554%
Default Yield Spread -1.828%
Inflation -1.585%
All (Kitchen sink) -3.422%

The table reports the out-of-sample R? statistics from the functional predictive regression approach
provided in Section 3. The out-of-sample R? statistics is computed following by Campbell and
Thompson (2008)as Equation (6). The period of the out-of-sample prediction is over the last
5 years of our sample period, starting from January 2010. The value of K in the first column
represents the number of eigenvalues and corresponding eigenvectors used in the estimation of the
functional regression. The sample period spans from January 1996 to December 2015.

20



Table 4: Selected Variables for the First Factor of Risk-Neutral Density

1st Factor 2nd Factor 3th Factor
Default Yield Spread Stock Variance Stock Variance
Stock Variance Default Yield Spread Default Yield Spread
Inflation Term Spread Term Spread
Net Equity Expansion Long Term Yield Long Term Yield
Book to Market Ratio Net Equity Expansion Net Equity Expansion

This table represents selected variables in explaining the first three principal components extracted
from the dynamics of risk-neutral density. A complete set of predictors used in the LASSO analysis
includes 13 variables used in Welch and Goyal (2008). Among all 13 predictors, the table reports
the most significant five variables for three principal components in each column.
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