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Abstract

Using a search-based trading model, we show that either an illiquidity price premium or discount
can arise between two assets with identical fundamentals. Liquidity between the two assets
diverges endogenously in a self-reinforcing manner as trading is concentrated in the more liquid
asset. When buyers are marginal investors, prices are determined by buyers’ tradeoff between
immediacy and trading gains, generating the illiquidity price discount wherein the liquid asset
is more expensive than the illiquid asset. When there is strong selling pressure, however, sellers
become marginal investors and the illiquidity price premium arises, because they demand a
higher selling price for the illiquid asset by trading off immediacy for trading gains. Using an
identification strategy that exploits same-issuer bonds but with differing liquidity, we confirm
these theoretical predictions by showing that illiquid bonds have higher prices than liquid bonds

during fire-sale episodes, while liquid bonds carry higher prices in normal periods.
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1 Introduction

How does illiquidity affect asset prices in over-the-counter (OTC) markets? According to clas-
sical theories, holding illiquid assets require higher compensation and, therefore, they should be
cheaper than their counterparts with higher liquidity.! That is, price differentials between liquid
and illiquid assets (henceforth, “liquidity spreads”) are generally positive. Although many empir-
ical studies agree with such theoretical predictions, some recent studies also document that liquid
assets experience bigger price declines in times of market distress than illiquid assets so that the
liquidity spreads can be narrower.? These findings can run counter to the usual intuition of flight
to liquidity: investors will prefer liquid assets more in distress times and their price declines should
be smaller. In this paper, we provide a search-based theoretical model to explain this seemingly-
counter-intuitive empirical phenomenon and further show that not only price declines are higher for
liquid assets but also their price levels can be lower than those of illiquid assets. We also confirm
our theoretical predictions by showing that in the U.S. corporate bond market illiquid bonds can
have higher prices than liquid bonds with identical cash flows, using an identification strategy that
compares same-issuer bonds with differing illiquidity.

We provide a simple yet powerful mechanism based on search frictions that intuitively explains
negative liquidity spreads. We argue that liquidity spreads can flip signs depending on market-wide
sell pressure. When buyers are marginal investors, their valuation determines asset prices. They
need to be compensated through illiquidity discount (i.e. higher profit) for sacrificing immediacy
in trading. Consequently, illiquid assets should generally be less expensive than liquid assets when
buyers are marginal investors. When selling pressure is stronger, however, sellers become marginal
investors whose risk premium will mainly determine asset prices. Sellers also consider tradeoff
between immediacy and trading profits, but the effect of their valuation on asset prices is the
opposite of that of buyers. Sellers have higher disutility of holding assets as a result of holding costs
and choose which assets to liquidate based on the tradeoff. They want to be compensated by high
profits (i.e. high sale prices) for sacrificing immediacy from trading illiquid securities. Therefore,
illiquid assets become more expensive than liquid assets when sellers dominate the market. Figure 1
illustrates this.

To formalize the aforementioned idea, we study a search-based trading model with two types
of assets in an infinite horizon, traded in two markets with identical search frictions. In each
market, only one type of assets is traded. Both types of assets have identical cash flows and have
random maturities. There is a continuum of risk-neutral investors who enter the markets from an
outsider investor pool, either as a buyer or a seller. A buyer, who does not own any asset but has

higher valuation, will search for a counterparty to buy from. A seller, who already owns an asset

!See Duffie, Garleanu, and Pedersen (2005), Duffie, Garleanu, and Pedersen (2007), Vayanos and Wang (2007),
Vayanos and Weill (2008), Weill (2008), Lagos and Rocheteau (2009), Lagos, Rocheteau, and Weill (2011), among
many others

2In the sovereign bond market, Boudoukh, Brooks, Richardson, and Xu (2019) show the relative discount of
illiquid bonds becomes smaller in periods of widening credit spreads.
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Figure 1. Liquidity Spreads under Different Price Pressure

but has lower valuation, will also search for a counterparty to sell to. When a buyer and a seller
meets from a successful search, they trade by bargaining. When a buyer obtains an asset from the
bargaining, she becomes an inactive owner because holding an asset is optimal. An inactive owner
may become a seller in case she receives a low preference shock (which is interpreted as a liquidity
shock.) A seller who sells his holding exits the market and goes back to the outside investor pool.
An important assumption is that there are local buyers and sellers who enters exclusively into only
one market, while there are also discretionary buyers and discretionary sellers who can choose to
enter one of the two markets. The intensity of arrival of discretionary buyers and discretionary
sellers are interpreted as market-wide buying pressure and selling pressure, respectively.

We show that there exists a symmetric steady-state equilibrium where prices are identical
between two markets. In that case, liquidity between the two markets are also identical. There
also exists an asymmetric steady-state equilibrium where liquid assets are more expensive than
illiquid assets when market-wide buying pressure is stronger than market-wide selling pressure.
More importantly, we also show the existence of an asymmetric steady-state equilibrium where
illiquid assets are more expensive than liquid assets when market-wide selling pressure is stronger
than market-wide buying pressure. Those two types of asymmetric equilibria are exclusive of each
other, meaning that they do not co-exist. Therefore, market-wide buying or selling pressure can
tilt the market in one way or the other, thereby changing the sign of liquidity spreads.

Why does such an asymmetric equilibrium arise? This is the result of the feedback mechanism
between market liquidity and concentration of investors. Investors seek to join more liquid market
ceteris paribus, but, as more investors join one market, liquidity increases further in that market
whereas liquidity deteriorates in the other market. An archetype example of our result is the reversal
of liquidity spreads during the time of distress. A severe liquidity shock to investors in bad times can

make them want to liquidate their holdings aggressively, causing market-wide selling pressure which



dominates buying-pressure. Sellers initially start selling liquid assets because the liquid market is
more preferable in terms of both immediacy and trading profits. When this happens, discretionary
buyers all gather into the more liquid market to benefit from higher liquidity when they need
to liquidate in the future. Because this makes the illiquid market even less attractive to sellers,
the difference in liquidity between the two markets intensifies further and sellers require higher
compensation through higher selling prices. Consequently, illiquid assets become more expensive
than liquid assets unless the market restores in the future the original level balance between buying
and selling pressure. This mechanism demonstrates how endogenous liquidity can greatly amplify
the price impact of a liquidity shock and can reverse the spread of liquidity premia between liquid
and illiquid assets.

We then examine the empirical implications of the model using corporate bond data from the
Trade Reporting and Compliance Engine (TRACE) for the period from 2005 through 2017. We
find that yields of more liquid bonds increase more than less liquid bonds with almost identical
cash flows following fire sale events, and more interestingly, the liquidity spread becomes negative.
We focus on the following events in our empirical results: the recent financial crisis period following
2008, the period when funding liquidity measured by the TED Spreads is low, the events of large
investor redemption requests in corporate bond mutual funds (CBMFs), and the credit rating
downgrade events of corporate bond issuers. Our key idea of the empirical strategy is to find a pair
of bonds that have (almost) identical cash flows but differing liquidity. To this end, we match a
bond to another bond that is issued by the same issuer and have same maturities and credit rating
but different bond age, following the identification method in Choi et al. (2019). We examine the
yield spreads of these matched pairs between old and young bonds (liquidity spreads henceforth).
To the extent that young bonds are more liquid (i.e. on-the-run) than old bonds (i.e. off-the-run),
this empirical strategy allows us to compare the pricing effect of liquidity on two bonds with the
same cash flows.

Using these matched bond pairs, we provide four key results that support our theoretical model.
First, we show that liquidity spreads become significantly negative following the liquidity events that
we consider. For example, the average liquidity spread falls to -0.4% following the announcement of
Lehman Brothers’ bankruptcy, suggesting that liquid bonds were in fact cheaper than illiquid bonds
during the time of distress. Our evidence also suggests that the negative liquidity spreads are more
likely where the relative search friction of illiquid bond to liquid bond is higher and the arbitrage
is more difficult to be implemented. Second, we find that the relationship between market liquidity
and bond prices are positive on average but becomes negative when funding liquidity (measured
by the TED spreads) is low or market-wide outflows from CBMFs are large. Third, we find that
the prices of liquid bonds become significantly lower than those of the matched illiquid bond after
credit rating downgrades. These results are all consistent with the model’s implication that the
price of more liquid bonds can be lower when the sellers are the marginal investors.

Note that we do not argue that our mechanism is the only economic force at work. There

are other potential explanations. Boudoukh, Brooks, Richardson, and Xu (2019), for example,



argue the liquidity spread narrows (but is still positive) because of price pressure arising from flight
from low-quality sovereign bonds. Chaderina, Miirmann, and Scheuch (2018) document that liquid
price declines are greater following rating downgrades because of coordination failure in insurance
companies’ bond liquidation. Lou and Sadka (2011) show that liquid stock returns are lower
during financial crisis because they are more sensitive to market wide returns. Our view is that
these explanations including ours are not necessarily mutually exclusive. Certainly, a more realistic
view is that all these forces can even have amplifying effects on the pricing impact of illiquidity.

We also want to emphasize, however, that our study differs from these studies in the following
important ways. We provide a full-scale dynamic equilibrium model to show how search frictions
can explain our empirical findings. More importantly, we show how the liquidity spread can become
negative: not only price declines are greater, but the price levels of liquid assets are lower than
those of illiquid assets. As our model shows, incorporating search friction is crucial in generating
this effect. In a trading venue like exchanges where search frictions are minimal, we do not expect
to see such an inversion of liquid versus illiquid prices. Our empirical findings also differ from those
previous papers that focus on time-series price declines of liquid and illiquid bonds. Our novel
results are that illiquid bond prices can in fact be higher than liquid bond prices, which we show
using the identification strategy exploiting the same issuer bonds with different liquidity.

The paper is organized as follows. In Section 2, we discuss related literature. In Section 3,
we illustrate the main intuition using a simple model. In Section 4, we describe the main model.
In Section 5, we solve for the equilibrium of the model and discuss the theoretical predictions. In
Section 6, we describe the empirical setup. In Section 7, we discuss our empirical findings. In

Section 8, we conclude.

2 Literature Review

Our paper is related to the literature on search-based asset pricing models. In their seminal work,
Duffie, Garleanu, and Pedersen (2005) show that liquidity premium arises due to search frictions
using an OTC market setup with a single asset. Duffie, Garleanu, and Pedersen (2005) further
extend this framework with risk averse investors to study asset pricing implications in OTC markets.
More closely-related works to our paper include search-based models with multiple assets such as
Vayanos and Wang (2007) and Weill (2008), and Vayanos and Weill (2008). Vayanos and Wang
(2007) and Weill (2008) show that buyers’ market choice can create cross-sectional variations in
prices due to endogenous liquidity difference. In these models, however, sellers do not have market
choices. On the other hand, Vayanos and Weill (2008) feature short sellers who can choose markets.
They show that cross-sectional variations in prices can arise due to endogenous liquidity difference
short sellers face when covering their short positions. One common feature among the existing
OTC market models with multiple markets is that sellers are never marginal investors who drive

cross-sectional variations. As a result, liquid assets are generally more expensive whenever there



are cross-sectional variations.? Our paper differs from this line of literature because we allow sellers
become marginal investors instead of buyers, which is the key mechanism which generate negative
liquidity spread between liquid and illiquid assets.

Our paper is also related to the limits-to-arbitrage literature. This line of literature often focuses
on the feedback between capital constraint and mispricing. In time series, the violation of the law
of one price arises due to the intertemporal linkage of mispricing wedge when investors are capital-
constrained (Shleifer and Vishny (1997), Gromb and Vayanos (2002), Brunnermeier and Pedersen
(2009), Kondor (2009), Dow, Han, and Sangiorgi (2019)). In cross-section, mispricing wedge can be
larger for more illiquid assets than liquid assets because investors have be compensated with higher
profits for illiquid investment (Shleifer and Vishny (1990)). Our model differs from those papers in
that we explicitly model liquidity using search frictions. We contribute to this line of literature by
providing a mechanism of the violation of the law of one price where the sign of relative mispricing
flips cross-sectionally due to changes in marginal investors.

There is a growing theoretical literature that studies investors’ endogenous market choice among
multiple trading venues— for identical or correlated assets with same or different trading mecha-
nisms. A strand of literature studies incentives to choose a counterparty and endogenize over-the-
counter networks (Zhu (2012), Hugonnier, Lester, and Weill (2016), Babus and Parlatore (2019)).
Observing that some assets are often available in both over-the-counter markets and centralized
exchanges, several authors have explored choices between these two trading venues: such as default,
search friction, price impacts, and information asymmetry between sellers and buyers (Kirilenko
(2000), Viswanathana and Wang (2002), Praz (2015), Bolton, Santos, and Scheinkman (2016),
Yoon (2016), Lee and Wang (2019), and Dugast, Uslii, and Weill (2019)). Our paper contributes
to this line of literature by explaining how cross-market liquidity difference and asset prices are
formed by market choices under search frictions.

Our paper contributes to the literature on price pressures in bond markets (Greenwood and
Vayanos (2014), Ellul, Jotikasthira, and Lundblad (2011a), Feldhiitter (2012), Manconi, Massa, and
Yasuda (2012), D’Amico and King (2013), Goldstein, Jiang, and Ng (2017), Boudoukh, Brooks,
Richardson, and Xu (2019), Choi, Hoseinzade, Shin, and Tehranian (2019), Helwege and Wang
(2019)). Especially, our paper provides the mechanism and rationale behind recent findings of
Boudoukh, Brooks, Richardson, and Xu (2019) that liquid government bonds become cheaper
during times of distress.

Our paper also contributes to the literature on the pricing of liquidity (Amihud and Mendelson
(1988), Acharya and Pedersen (2005)), the liquidity premium of corporate bonds (Chen, Lesmond,
and Wei (2007), Lin, Wang, and Wu (2011), De Jong and Driessen (2012), Acharya, Amihud, and
Bharath (2013)), and that of sovereign bonds (Cornell and Shapiro (1989), Amihud and Mendelson
(1991), Longstaff, Neis, and Mithal (2005), Pasquariello and Vega (2009), Favero, Pagano, and
Von Thadden (2010), Goyenko, Subrahmanyam, and Ukhov (2011), among many others) by docu-

3Most of the existing papers with multiple assets also have generic symmetric equilibria where there is no cross-
sectional variation.



menting the seemingly counter-intuitive situation in relative prices of liquid securities during times

of flight from liquidity.

3 An Illustration with a Simple Model

We first demonstrate the main mechanism using a simple stylized model. Consider two identical
assets (asset 1 and asset 2) which pay one unit of consumption good in the next period. The
discount rate is fixed to zero. Asset 1 is traded in market 1, and asset 2 is traded in market 2. Due
to search frictions, an investor is able to trade if the investor is matched with a counterparty. An
investor choosing market k£ = 1,2 is matched successfully with probability f;. We assume f; > fo
so that that market 1 is more liquid than market 2.

Consider a risk-neutral buyer who can choose to trade in either of the two markets. With a
successful match in market k, the buyer acquire asset k by paying price p;. Otherwise, the buyer

keeps the reservation utility of zero. The buyer’s value of trading in market k is given by
Vi = Pr(Success) x Trading gains + Pr(Fail) x Reservation value = f;(1 — p;)

If the buyer is indifferent between the two markets, the expected value of choosing each market

should be the same:

fi(1 = p1) = fo(1 — p2)

Because the probability of a successful buying trade is higher for asset 1 (i.e., f1 > f2), the trading
gain of the buyer should be smaller for the asset (i.e., 1 — p; < 1 — po.) That is, the price of asset
1 should be higher than that of asset 2. The liquidity spread between asset 1 and 2 is positive
because

o _h-h
P1— D2 f1

(1—p2)>0

Therefore, when buyers are marginal investors, it has to be the case that liquid assets should be
more expensive.

Now, we consider the case of a seller who can choose between the two markets. We assume that
the seller has a lower valuation of the asset than the buyer; he has to pay a holding cost of § if he

does not sell it immediately. The seller’s value of trading in market & is given by
Vi=fipi+ (1 —fi)1-06)=filpi—1+6)+1-0

If the seller is indifferent between the two markets, the expected value of choosing each market



should be the same:

filpr —1+9) = fa(pa — 1 +0)

Because the probability of a successful selling trade is higher for asset 1 (i.e., fi > f2), the trading
gain of the seller should be smaller for the asset (i.e., p1 —1 40 < p2 — 1+ 4.) That is, the price of
asset 1 should be lower than that of asset 2. The liquidity spread between asset 1 and 2 is negative
because

pl—m:fQ—fl (p1—146)<0
fi

Therefore, when sellers are marginal investors, it has to be the case that liquid assets should be

cheaper.
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Figure 2. Liquidity Premia under Different Marginal Investors

Fixing liquidity as an exogenous input, this simple model illustrates the relation between lig-
uidity and asset prices in two different cases by setting marginal investors differently. When there
are sufficiently large number of buyers relative to that of sellers, buyers become marginal investors,
in which case asset prices are set by the trade-off between liquidity and trading gains in terms of
buyers’ valuations. In this case, sellers strictly prefer trading in liquid market. On the other hand,
when there are sufficiently large number of sellers relative to that of buyers, an opposite situation
arises. This is illustrated in Figure 2. To fully investigate this question, however, one should solve a
dynamic equilibrium model which endogenizes liquidity by incorporating all investors’ choices into

the equilibrium solution. We study this in the next section.



4 Model

4.1 Description

We consider a multi-market dynamic trading model with search frictions. The risk-free rate is
exogenously given by r. There are two assets labeled as asset 1 and 2. In each market 1 and 2,
investors trade asset 1 and 2, respectively. Both assets pay a unit of consumption good per a unit
of time, and there is no final payoff. Each unit of asset matures with a Poisson intensity of x. The
assumption of staggered maturities is for technical convenience; as it will become clear in the laws
of motion, this assumption keeps the mass of supplied assets in the market stable.* We further
assume that assets are traded by one unit which is indivisible, and no short sales are allowed.

All investors are risk-neutral and infinitely-lived, with preference defined by a discount rate of
r. Investors enter the market as buyers or sellers from an outside investor pool depending on their
trading needs.

Buyers initially do not hold any position, and can hold at most one unit of assets. There are
“local buyers” who can buy only in one market, and “discretionary buyers” who can buy in any
of the two markets. Local buyers who can trade in only one market enter at the rate of ¢’ in
each market, and discretionary buyers enter at the rate of ¢g. Upon the entrance, discretionary
buyers choose to buy in either of the two markets. Buyers become “inactive owner” once they
own a position because buyers do not have any holding cost. Inactive owners are subject to an
idiosyncratic preference shock (or liquidity shock) with a Poisson intensity x which gives them a
holding cost of § per unit of time. Those shocked inactive owners become sellers. Upon selling
their positions, they exit the market and go back to the outside investor pool.

Unlike buyers, some investors enter the market as sellers because they already hold a position
when they enter the market. There are “local sellers” who hold one unit of either asset 1 or 2,
and “discretionary sellers” who hold one unit of both assets. Local sellers who can trade in only
one market enter at the rate of ¢° in each market, and discretionary sellers enter at the rate of
¢33 Upon the entrance, discretionary sellers choose to sell in either of the two markets. Both local
sellers and discretionary sellers have a holding cost of § until they sell one unit of their position.
One can interpret that discretionary sellers are larger traders who can holder a larger portfolio than
local sellers. For mathematical simplicity, we further assume that a discretionary seller’s positions
in asset 1 and 2 have an identical maturity (i.e., the arrival of maturity is synchronized.) As shown
later in the paper, this assumption gives the same trading surplus for both local and discretionary
sellers.® Upon selling one unit of their positions, sellers exit the market and go back to the outside
investor pool. Figure 3 illustrates the flow of investors between the two markets.

Investors can trade assets by finding a counterparty according to a random search which follows

4See, for example, He and Xiong (2012) for further discussions on the assumption.

>The assumption of synchronized maturities for each individual discretionary seller is a purely technical assumption
which simplifies our analysis. Without this assumption, trading surplus of a discretionary seller becomes different
from that of a local seller, which creates multiple trading prices. However, it does not affect the results qualitatively
in any other way than making calculations more complex.



Inactlve N
owners Valuation

shock AN

Search Search
trade ;

trade Maturity*~ . Market 1 Local /

arrival - sellers

Local buyers —
-~ Maturity
l,’ arrival

N Discretionary Outside Discre

investor sel

buyers < ers
ool %
/ P N Maturity
s - __a[rival

\
\

P

ionary

LocaI buyers \
Matunty T Local “\
arrival.-~~ sellers ‘\‘

Market 2 Search !
trade

Search
trade

A4

Valuation

Inactlve shock N
owners g
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a Poisson process. In both markets, the Poisson intensity of finding a counterparty is A which
describes the search technology in the market. We denote the mass of buyers and sellers in market
i at time ¢ by p?(t) and (). The total mass of matched pairs in market i at time ¢ is given by
M8 () g (t). Therefore, the probability of buying and selling in market i at time ¢ is given by

HOEPVHONEPHOEPVIHGE (1)

respectively. When an investor finds a counterparty for trading an asset, the transaction price is
determined by bargaining for the asset between two investors where the bargaining powers of seller

and buyer are exogenously given by g and 1 — ¢, respectively.

To focus on economically meaningful outcomes, we introduce a parametric restriction on the

intensity of investors’ arrivals.
Assumption 1 x(¢° + ¢%) < (x + K)¢°.

This assumption ensures that the mass of sellers (thus, the successful buying probability) is

positive regardless of discretionary investors’ choice of markets.%

5As we show later, u$ in equation (13) is positive even in the worse case, in which no discretionary sellers enter
market ¢ (i.e., 7; = 0) and all discretionary buyers enter market ¢ (i.e., 7, = 1).
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4.2 Laws of Motion

We denote the portion of discretionary buyers who choose to enter market ¢ by v;, and the portion
of discretionary sellers who choose to enter market i by 7;. In one market, any investor can be
described by three types: buyer (b), inactive owner (o), seller (s).

The laws of motion for mass pf of type o € {b, 0, s} in market i are given by

F7 () = — M (0) g (8) + ¢ () + da(t)vi(); (2)
F7(8) = = (X + R)ug () + Mg (8) 3 (1); 3)
3 (8) = = (x + A ()45 (8) + &° (1) + $3(6)mit) + mpf (¢). (4)

The first equation of the laws of the motion is the one for the mass of buyers in market i. The
first term describes the departure from the buyer pool due to a successful trade. The second term
describes the entry of local buyers, and the third term describes the entry of discretionary buyers
who choose to enter market ¢. The other two equations are laws of motion for inactive owners and
sellers which can be similarly interpreted.

As shown in the Appendix, the value functions V,7 of type o in market ¢ satisfy the Hamilton-

Jacobi-Bellman (HJB) equations as follows:

VP(t) =rV () = N(O(VE (1) = V2 (t) = Pi(t)); ()
Vo) =rVe(t) — s(VE(8) = V(1) = x (V" = V(1) = 1; (6)
V() =rVE() = N (O(Ri(t) + V" = V() = x (V" = V(1) — (1 - 4), (7)

where V™ = 0 which is the value of exiting the market and going back to the outside investor pool,
and P;(t) is the price of asset i at time t. The first equation of HJBs is the one for the value of a
buyer. It shows that the value increases whenever the price P, is less than the surplus V.°(¢) — V(¢).
The second and third equations are the HJBs for the value of an inactive owner and a seller which
can be similarly interpreted.

The price of asset in market i is determined by Nash (1950) bargaining with a seller bargaining

power q:
Py(t) = (1 — q)AVE () + qAV (1), (8)

where AV#(t) = V3(t) — V,, and AV2(t) = VO(t) — V*(¢) which describe the seller’s surplus and the

buyer’s surplus at time ¢, respectively.

4.3 Market Choice

A discretionary buyer, who enters the market without any position, maximizes value by choosing

between market 1 and 2 to buy a new position. Therefore, at time ¢, the portion of discretionary

11



buyers who choose market 1 is given by

0 if V(1) < VP(t)
vt) €< [0,1] if V(t) = VR (b) (9)
1 if VP(t) > V(1)

and vo(t) is equal to 1 — v ().
Likewise, a discretionary seller, who enters the market with a position on each asset, maximizes
value by choosing between market 1 and 2 to sell one unit of holdings. Therefore, at time ¢, the

portion of discretionary sellers who choose market 1 is given by

0 HfVEE) <VE®)
m(t) € ¢ [0,1] if VP(t) = V() (10)
1 VR > V)

and n2(t) is equal to 1 — ny (¢).

5 Equilibrium
The stationary equilibrium of the model is defined in a standard manner:

Definition 1 A market equilibrium is a collection of masses {(u%, u¢, uf)}i=12, market choices
{vi,mi}i=1,2, value functions {(Vib7 V2, Vi) Yiz1,2, and prices {P;}i=1,2 which satisfy

(i) {1, 13, 1) Yi=1,2 are given by (2)-(4),

(11) {vi,ni}i=1,2 are given by (9) and (10),

(iii) {(V?, V2, Vi) Yim1,2 are given by (5)-(7),

(v) {P;}i=12 are given by (8).

5.1 Steady State Analysis

In this section, we focus on the steady state equilibrium of the model. In the steady state, the
inflow and the outflow should be equalized for mass of each type. Therefore, (2) implies that the

steady state mass of matched pairs in market ¢ should be equal to the mass of entering buyers:
Ml = ¢ + dhi. (11)
Then, (3) and (11) imply the following steady state mass of active owners:

:U’(') — )‘Mfluf — ¢b + ¢ZV’L
Yox+k X+r

(12)

which is due to the fact that the flow-out of inactive owners should be equal to their flow-in in the
steady state. Finally, (4) together with (11) and (12) yields the steady-state mass of sellers and

12



buyers as follows:

s_ O+ om0+ oy

; 13
Hi ., . (13)
b b
b ¢’ + ¢dl/i
Hi = [¢S+¢§m ¢b+¢gw] ' (14)
by —
X Xtk

In the first equation, the mass of sellers in the steady-state depends on the difference between
entering sellers and entering buyers with some adjustments due to asset maturities and type changes
(liquidity shocks.) In the second equation, the mass of buyers in the steady-state depends on the
mass of entering buyers with an adjustment due to the probability of successful buying trades.

In the steady state, the change in the value should be zero for the value of each type. Therefore,
(5)-(7) imply

(r+ A)VP = X(Vi° = P); (15)
(r+r+X)V2 =V +xV"+1; (16)
(r+x+X)VZ=X(P-V™")+xV"+1—0. (17)

Using (15)-(17) together with (8) yields

( X+ A —g\; )(AV;’)_( 1-6 > 18)

As shown in the Appendix, using (8) and (18), we can obtain the steady state price for asset i:

L1 o [ oo o)
Trdx T4y r+(1—q))\§+r+g+xq)\f ’

where the first term is the present value of payoff until the random maturity 7, which arrives with

a Poisson maturity intensity x:

5, [ / : er(“t)du} _ 1 (20)
t

r4+x

and the second term is the illiquidity discount which arises due to search frictions.

We define marginal investors as those investors who are indifferent between the two markets.
That is, marginal investors are those who affect pricing in both markets, thus, they determine
cross-sectional variations of prices and liquidity premia of the two assets. The fundamental of the
two assets are equal due to (20), but their prices may still differ because marginal investors require
different compensations given different liquidity.

If buyers are marginal investors (i.e., V’ = VJ), (15) implies that prices should satisfy the

13



following relation:

A A3
T+)\b(V10_P1):T+>\b(VQO_P2)a (21)
1 2

which in turn implies that the profit of trading more liquid asset (in terms of successful buying

probability) should be lower, i.e.,
VP — P <V¥—P, ifandonlyif X > 5 (22)

where V;° — P; captures the trading profit in market i because V,° is the benefit of being an inactive
owner and P; is the cost. On the other hand, if sellers are marginal investors (i.e., V;* = V5), (17)

implies that prices should satisfy the following relation:

N, X

N p-_ 2 _p 23
FEXAA L xRN (23)

which in turn implies that the price of more liquid asset (in terms of successful selling probability)

should be lower, i.e.,
Py < P, ifandonlyif Aj > A3 (24)

This result is in line with the intuition presented by a simple model in Section 3. We summarize

this by the following lemma.

Lemma 1 If buyers are marginal investors, X} — Xy and (V? — P1) — (V§ — P2) have an opposite

sign. If sellers are marginal investors, \i — A5 and Py — P> have an opposite sign.

Lemma 1 shows the possibility that the spread of liquidity premia can be reversed depending
on who are marginal investors in the economy. In case market 1 is generally more liquid for both
buyers and sellers (i.e., A} > Ay and A\{ > \3), (16) and (17) imply that V° > Vi. Then, (22)
implies that P — P, > V? = Vy’ > 0. Therefore, in case one market is generally more liquid for both
buyers and sellers, liquid asset is more expensive if buyers are marginal investors, but illiquid asset
becomes more expensive if sellers are marginal investors. Now, the remaining important question
to answer is under what situations buyers or sellers become marginal investors, which we study this

in the next subsection.

5.2 Steady State Equilibrium

In this section, we provide a sufficient and necessary condition, in primitive terms, under which
steady state equilibrium exists. There are four types of steady state equilibria depending on the
identity of marginal investors. First, both discretionary buyers and discretionary sellers are in-

different between the two markets (i.e., both are marginal investors). Following our discussion in
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Section 3, prices are equalized between the two markets. Second, discretionary buyers are marginal
and price in the market where all discretionary sellers enter is higher than price in the other market
where no discretionary sellers enter. Third, discretionary sellers are marginal and price in the mar-
ket where all discretionary buyers enter is lower than price of the other market. Lastly, no trader
is marginal in both markets.

Now, we discuss when symmetric or asymmetric equilibria exist. First, symmetric equilibrium
always exists and is unique. A unique symmetric equilibrium arises naturally due to symmetry of
parameters; the two markets have same search technology A1 = Ao and identical local investors’
arrival rates ¢ and ¢°. In the symmetric equilibrium, an equal portion of discretionary buyers and
sellers enter each market: i.e., 71 = n2 = 0.5 and v; = vo = 0.5 (see Proposition 2 (1).)

When would asymmetric equilibria exist? As an example, we discuss the class of asymmetric
equilibria in which discretionary buyers are marginal. A similar argument can describe asymmetric
equilibria in which the discretionary sellers are marginal. From Nash bargaining price (8), the

indifference condition of a marginal buyer (V¥ = V) is simplified to”
A (1= @) (AVY = AVF) = dop3(1 — ¢)(AVY — AVY), (26)

where AV = V? —V? and AV = V* — V"™ for each i. By plugging the steady state value function
(15)-(17) into (26), we get the indifference condition of discretionary buyers in terms of investors’
mass in the steady state:

s A2t

= . 27
N (R R VY A T e m s W () R S

All discretionary buyers choose market 1 (i.e., v; = 1) if the value of choosing in market 1 is strictly
greater than that of choosing market 2 (or equivalently, the left-hand-side of (27) is strictly greater
than the right-hand-side). Likewise, all choose market 2 (i.e., v; = 0) if the left-hand-side is strictly
smaller than the right-hand-side.

A key observation is that the expected payoff in market 1 is decreasing in vy taking 1 =1 — 19
as fixed, and by v = 1 — v; the expected payoff in market 2 is increasing in v1. The monotonicity
of expected payoffs in the marginal trader’s market choice v1 immediately implies that a solution
v1 € [0, 1] that solves the indifference condition (27) is unique when it exists.

The value of choosing one market monotone decreases in the number of other discretionary

buyers’ choosing the market. When more buyers enter the market, sellers are matched with a

"To see this, from (15), V¥ = V2 is equivalent to
NV =V = P) = N (VE — Vs = P). (25)

Substituting (8) into prices P; and P, in the above equation yields (26).
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higher intensity and leave the market faster:

o O o &t dhm
L X xX+r

(28)

The fewer sellers remains in the market, the lower trading probability buyers get in the market 1.
On the other hand, as vy increases, taking 7; as given, the trading surplus AVY — AV} in market
1 decreases if ¢ is sufficiently large, and increases otherwise.

rd

AVP — AVS = ) 29
LA G s (= 0) + g (29)

Even when buyers take all trading surplus (i.e., ¢ = 0), the increase of trading surplus is dominated
by the decrease of sellers’ mass pj as long as » > 0. When the trading surplus is split between
buyers and sellers through ¢ > 0, the increase of buyers’ mass ,ui’ dampens the total surplus further,
and thus, the dominance of the decrease in the trading probability \;p{ is even stronger with ¢ > 0.
Hence, as v increases, the left-hand-side of (27) decreases and the right-hand-side increases, and
guarantees the uniqueness of 7; € [0, 1] when it exists.

Proposition 2 provides a sufficient and necessary condition of existence of each type of equilib-
rium. Parts (i), (ii), and (iii) show that there exists a unique (pair of) asymmetric equilibria, and
provide exclusive conditions on which type of equilibrium arises: marginal buyers, marginal sellers,
or no marginal trader, respectively. For simplicity, we focus on asymmetric equilibrium in which
market 1 is more liquid that market 2. There always exist a pair of asymmetric equilibria — (n;, v;)

and (1 —n;, 1 — p;) — if there is any.

Proposition 2 (Steady State Equilibria) There exists a unique symmetric equilibrium with

N =V = % There also exists an asymmetric equilibrium such that

(i) (Marginal Buyers) discretionary buyers are marginal and all sellers enter market 1 (i.e.,

ﬁ_ qblc)l s,bs:i_ @
o <0k dh 00 = 5 (- BB adce), (30)

(ii) (Marginal Sellers) discretionary sellers are marginal and all buyers enter market 1 (i.e.,

m = 1) when

v1 = 1) when

b. b s 1 o oy oh

(i1i) (Corner Equilibrium) both discretionary buyers and sellers enter market 1 (i.e., ;1 =1 and
v1 = 1) when

s b
®m@$¢ﬂ§%— i

b, /b ;s
X"‘/@ S q)2(¢d7¢ 7¢ )7 (32)
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s s b
where ®a(¢h; 6%, ¢°) > 1(d3; ¢, ¢°) holds; A =1+ (1 —q)(x + ) + alx + k)5 (% — 55) 7" >0,

s b s s b
B=A(% - 50) +ax+R)5 >0, C=q(x+r) (5 —55) >0, D=X1—q), E=(r+2X\(1—
¢° o° _ (¢ @° ¢° o° +rK
D = 55) >0, and F = (5 — 55) (0 + A1 — o) (5 — 55)) %5 > 0.

When an asymmetric equilibrium exists, it is unique within its equilibrium-type by the mono-
tonicity of indifference condition in a marginal trader’s market choice. Proposition 2 shows that
asymmetric equilibrium is unique even across types of asymmetric equilibria: For instance, if there
exists an asymmetric equilibrium where discretionary buyers are marginal, then there is no other
asymmetric equilibrium in which discretionary sellers are marginal or in which all discretionary
investors enter the same market. Figure 4 shows the condition on ((bg,qﬁfl), of which each area

corresponds to each asymmetric equilibrium.

09
0.8 [

0.7 Sellers are marginal investors
(n, € 0.1), v, =1)

04r
No marginal investor in both
markets (n, =1, v, = 1)

02r
01r (n, =1, v; € (0,1))

Buyers are marginal investors
1

O 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

Figure 4. Existence of Asymmetric Equilibrium

In an asymmetric equilibrium, which market would be more liquid in the sense of successful
matching probability? Consider an asymmetric equilibrium in which the discretionary buyer is
marginal and all discretionary sellers enter market 1 (i.e., v; € (0,1),71 = 1). By rewriting his
indifference condition (27), the successful buying probability in market 1 relative to that in market

2 is represented by
i rx et

= < .
ops X+ R+ ghops T Aopb

(33)

The inequality holds due to the strict preference of discretionary sellers to market 1, which implies
that A\ ,ull’ > )\g,ug. This implies that the successful trading probability of sellers is higher in market
1 where they enter. From the buyers’ indifference in (33), A pj > Aopd holds, and thus, the trading
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probability of buyers is higher in market 1. This concludes that the market 1 is more liquid for
both sellers and buyers.

Lemma 3 extends the result to all asymmetric equilibrium:

Lemma 3 (Liquidity in Asymmetric Equilibrium) In an asymmetric equilibrium with either

v =1 orm =1, the market 1 is more liquid than market 2 for both buyers and sellers:
Ao < Mg Aaph < A (34)

From Lemma 1 and Lemma 3, the relative liquidity of the markets determines the ranking of prices
in an asymmetric equilibrium. If buyers are marginal investors, the market where all discretionary
sellers enter is more liquid for both buyers and sellers, and equilibrium price is higher compared to
the other market. If sellers are marginal investors, the market where all discretionary buyers enter
is more liquid and equilibrium price is lower than the other market. Proposition 2 allows us to
state the results in primitive terms: When discretionary buyers arrive more frequently than sellers
(i.e., qﬁz is sufficiently larger than ¢%), equilibrium is symmetric (P! = P?) or marginal buyers pay
a positive liquidity premium (P! > P?). When sellers’ arrival intensity ¢ is relatively larger than
buyers qﬁz, equilibrium is either symmetric (P! = P2) or marginal sellers pay the liquidity premium
(Pl < P?).

6 Empirical Setup

The key prediction of our model is that illiquid securities can have higher prices than liquid securities
of the same cash flows when the mass of seller is greater than the buyer mass. To test this prediction,
we focus on fire sale episodes in the corporate bond market by examining pairs of bonds with almost
identical cash flows but different liquidity. We first explain our empirical strategy to identify the

effect of liquidity on bond prices during such episodes, controlling for the cash flows of bonds.

6.1 Identification Methodology

To identify the impact of liquidity on security prices, it is crucial to control for any unobservable
time-varying information that is related to the fundamental cash flows of bonds. Our key idea to
control for the fundamentals of bonds is to examine the yields of corporate bond pairs that are
issued by a same firm and have very similar maturities but with different liquidity, following the
identification strategy of Choi, Hoseinzade, Shin, and Tehranian (2019).

To obtain the cross-sectional difference in liquidity within a same issuer, we exploit the on-
the-run versus off-the-run effect associated with the age of bonds. As times passes after issuance,
bonds tend to become more illiquid because larger amounts of the issued bonds are absorbed into

the portfolios of buy-and-hold investors (e.g. insurance companies and pension funds) who are the
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major investors in the bond market.®

We thus construct pairs of relatively liquid and illiquid bonds based on the age of bonds. Within
an issuer we define liquid bonds as bonds with age younger than 3 years. We then match the bond
with another bond (the illiquid bond) issued by a same firm with a difference in time-to-maturity
less than one year and a minimum age of 5 years. We also require that the matched bonds should
have a same credit rating and seniority. If there are multiple available matches, we choose the
oldest one. If multiple matches are still available, we choose one with the closest time-to-maturity.

In this way, we ensure that the matched bonds have almost identical fundamental values.

6.2 Data and Variable Construction

Our data source for corporate bond pricing is the enhanced Trade Reporting and Compliance
Engine (TRACE) database from the Financial Industry Regulatory Authority (FINRA). We use
bond pricing data from February 2005 through June 2017.° We exclude retail-sized trades (i.e.,
trades with volumes below $100,000) following Bessembinder, Kahle, Maxwell, and Xu (2008).
In addition, we use the Mergent Fixed Income Securities Database (FISD) to obtain bond-specific
information including ages, credit ratings, maturity, amounts outstanding, and other characteristics.
We use fixed coupon bonds after excluding convertible and foreign currency bonds.

In addition, we obtain data on mutual fund flows and characteristics from the Center for Re-
search in Security Prices (CRSP) survivorship-bias-free mutual fund database. We define corporate
bond funds as mutual funds that have the Lipper objective code A, BBB, HY, SII, SID, or IID,
or the CRSP objective code starting with IC. We also obtain mutual fund quarterly holdings from
the Morningstar Direct database.

Our main variable of interest is the yield-to-maturity obtained from the enhanced TRACE. We
exclude observations with negative yields. We define the daily yield as a trading-volume-weighted
yield for each day, following Bessembinder, Kahle, Maxwell, and Xu (2008). We construct a measure
for the liquidity premia, Liquidity Spread, as yield differences between liquid bond 4 and illiquid
bond j of a matched pair for day ¢ as following:

Liquidity Spread; j; = Yield'}" — Yield;" (35)
Then we define monthly Liquidity Spread as median of daily Liquidity Spread during the month

for each matched pair. By construction, the negative Liquidity Spread means that price of liquid

8Many papers document the bond age as a strong proxy for the liquidity. See, e.g., Sarig and Warga (1989),
Alexander, Edwards, and Ferri (2000), Schultz (2001), Houweling, Mentink, and Vorst (2005), and Ericsson and
Renault (2006), among many others. Also, once a bond becomes illiquid, it tends to stay illiquid to its maturity (e.g.,
Sarig and Warga (1989)).

9The TRACE becomes fully comprehensive after February 7, 2005 as it begins the full dissemination of bond
transactions for the entire universe of corporate bonds. To filter the reporting errors in TRACE, We follow the
filtering procedures described in Dick-Nielsen (2009). We refer the SAS codes from Dick-Nielsen (2014) and also
employ price-sequence-based filters (reversal and median filters) as suggested in Dick-Nielsen (2014) and Edwards,
Harris, and Piwowar (2007).
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bond is lower (i.e. yield is higher) than its matched counterpart of illiquid bond. In all our empirical
analyses, we only use daily yields where both bonds of a matched pair have available daily yields
for the same day to mitigate the price staleness problems. As a result, our sample of the matched
bonds includes 425,196 daily yields. All variables are detailed in Appendix B.

6.3 Summary Statistics of Matched Bond Pairs

The matching described in Section 6.1 yields 2,142 unique matched pairs of bonds from 515 unique
issuers during our sample period from February 2005 through June 2017. Table 1 provides summary
statistics. By construction, they have very similar time-to-maturities but very different age. On
average, young bonds in our sample have the average age of 0.95 years, while old bonds have
the average age of 7.52 years. Meanwhile, average time-to-maturities for the young and matched
old bonds are 4.57 and 4.42, respectively. Approximately 80% of the bonds in our sample are
investment-grade (IG) bonds, showing the sample is skewed towards relatively safer bonds. This is
because safe IG firms tend to have more instances of multiple bond issues than HY firms.

In Table 2, we check the quality of the matching process by examining sample differences
between old and young bonds. Although we matched young and old bonds based on maturity,
young bonds have on average longer maturity than old bonds by about 0.19 years. Note that
the magnitude is rather small and is not economically significant, although it is significant in a
statistical sense. More importantly, the old bond has approximately 35%, 42%, 53%, 40%, and
25% higher values of illiquidity measures such as Amihud, IRC, Bid-ask 1, Bid-ask 2, and Roll,
respectively. All five illiquidity measures indicate that the young bond is more liquid than the
matched old bond.

7 Empirical Results

7.1 Time Series Evidence for Negative Liquidity Spread

Our model implies that the price of liquid bonds can be lower than the price of illiquid bonds during
market-wide distressed periods. In this section, we test this model implication by examining time
series of Liquidity Spread during market distress periods.

In Figure 5, we plot the time series of average monthly Liquidity Spread from February 2005
through June 2017. Panel A uses all 2,142 unique matched pairs whereas Panels B, C, and D
use a sub-sample of bonds with above AA credit ratings, investment grade bonds, or high yield
bonds, respectively. Panel A shows that average Liquidity Spread is generally positive except
around the GM and Ford downgrades in 2005 and the financial crisis period after September
2008. In particular, average Liquidity Spread drops rapidly to —0.4% level after the Lehman
Brothers collapse in September 2008. The Liquidity Spread reverts towards the near-zero level
around 2010. Liquidity Spread decreases again following the Taper Tantrum in 2013. Panel

B shows similar patterns within investment grade bonds and high yield bonds. The changes in
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Liquidity Spread are larger in high yield bonds, potentially due to higher liquidation costs and
more limits to arbitrage. In sum, the results are consistent with our model implication that the
liquid bond can be priced lower than illiquid bond with identical cash flows.

One potential concern in interpreting the time-variation of Liquidity Spread in Figure 5 is that
the composition of bonds are changing over time. In Figure 6, we visually inspect this possibility
by plotting time series of average differences in time-to-maturity and age between the matched
bond pair and confirm that there was no rapid changes in difference in maturity or age. In fact,
Figure 7 illustrates that large outflows from the bond mutual fund sector coincide with market
distress events (e.g. the Lehman Brothers collapse and the Taper Tantrum) and also with negative

liquidity Spread.

7.2 Investor Trading Decisions in a Seller-Driven Market

Our model implies that investors in the seller-driven market can endogenously choose to sell a liquid
bond at a cheaper price than selling an illiquid bond at a higher price. In this section, we provide
direct evidence on the investor choice of selling between liquid and illiquid bonds by examining
mutual fund trading decisions. The key idea is to examine CBMFs under severe outflows that
actually hold the pair of liquid and illiquid bonds of the same issuers.

In Figure 8, we provide a nonparametric plot of trade and quarterly flows by using kernel-
weighted local polynomial smoothing. The trade is measured as par-value changes in CBMFs
holdings in a bond during a quarter. We use quarterly flows to match frequency of the holding
data. We only use CBMFs which hold at least one pair of the matched bonds (i.e., both the liquid
and the matched illiquid bond) at least one quarter during the sample periods. The sample period
is the post-Lehman crisis periods (2008 Q3 through 2009 Q2) and the post Taper Tantrum in 2013
(2013 Q2 through 2013 Q4).

Figure 8 shows that the fitted slope of liquid bond (solid line) is much steeper than those of
illiquid bond (dashed line), especially in the outflow region. For example, when fund flows change
from 0% to —20%, holding else constant, average sales for the liquid bonds increase (i.e., T'rade
decreases) about 50% of its sample standard deviation whereas average sales for the illiquid bonds
increase only marginally. This is consistent with our presumption that investors choose to sell the
liquid bonds when the sellers are more likely to be the marginal investors, even when the liquid

bond is cheaper.'?

7.3 Price of Liquid and Illiquid Bonds around the Market-wide Shocks

The results discussed in Section 7.1 visually show that the price of liquid security can fall below to
the price of illiquid security during the market-wide distressed periods. In this section, we formally

investigate yield changes during such periods, using regression analyses.

0Table 3 shows that during the Taper Tantrum event the price of liquid bonds does not become cheaper than
the price of illgiuid bonds on average, although the liquid bond price falls. Our results in Figure 8 are qualitatively
similar by using the post-Lehman crisis period only (unreported).
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In Table 3, we run difference-in-difference regressions around two market-wide events (the
Lehman Brothers Bankruptcy in September 14, 2008 and Taper Tantrum episode in May 22, 2013),
which witnessed substantial amounts of investor money to flow out of corporate bond markets.The
treatment group in our difference-in-difference regressions consists of young bonds with age less
than three years. The control group consists of old bonds based on the the matching procedure in

Section 6.1. Specifically, we estimate the following regression model:
Yield; s = a + piTreat; - Posty + foTreat; + ctrls;; + e (36)

where Yield;; is the monthly (or daily) yield of bond ¢, Treat; is a dummy variable indicating
the treatment group, and Post; is a dummy variable indicating the month (or day) of event and
afterwards. We control for time-to-maturity and amount outstanding and also include issuer-
times-time fixed effects to control for issuer-level time-varying information that can drive bond
yield changes. The Post; term is subsumed by the fixed effects. We use sub-sample period around
the events: January 2008 through June 2009 for the Lehman collapse event and January 2013
through December 2013 for the Taper Tantrum event.

Table 3 Panel A shows the estimation results. The results indicate that yields of the treated
bonds increased after the events compare to changes in yields of the matched control bonds. In Col-
umn (1), for example, the coefficient estimate on T'reat - Post was positive (0.342) and statistically
significant at the 1% level. This means that changes in yields of treated bonds are 0.342% larger on
average than changes in matched control bonds around the Lehman collapse event. The estimated
coefficient on T'reat indicates that on average yields of the treated bond are lower before the event
by -0.139%. Thus, the magnitude of yield changes after the event is large enough to make the yield
of treated bonds higher than the yield of matched control bonds (—0.139% + 0.342% > 0). The
results for Taper Tantrum event are similar but the magnitude of yield changes after the treatment
was smaller than those for the Lehman collapse.

In Panel B of Table 3, we examine how do the search friction and limits to arbitrage affect the
price declines of liquid bonds relative to the matched illiquid bonds during the event of Lehman
Brothers Bankruptcy. Specifically, we separately run the difference-in-difference regression (i.e.,
equation 36) for two subgroups of the matched sample bonds where one group is more likely to
have higher search friction (i.e., lower matching probability) and more difficult to arbitrage than the
other group. We employ various variables related to the search friction and limits to arbitrage.!
In Columns (1) and (2), for example, we measures the relative strength of dealer connection for
the treated bond and matched control bonds. When the relative dealer connectedness of treated
bond is higher (e.g., Column 1), investors more likely choose to sell the liquid bonds than the
matched illiquid bonds because sellers would expect that the better connected dealers can more
easily find the potential buyers. Thus, the price of liquid bonds might fall more relative to the

matched control bonds. Indeed, our results in Columns (1) and (2) are consistent with this story.

1The variable definitions are detailed in the Appendix B.
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Similarly, the results in Panel B implies that the negative liquidity spreads are more likely when
the search friction of illiquid bonds is higher than liquid bonds and the arbitrage strategy is more
difficult to implements.

Overall, the results are consistent with our model prediction that liquid bond prices can become

lower than illiquid bond prices with the same cash flows.

7.4 The Effect of Market Liquidity on Bond Prices When the Market Condition
is Bad

In this section, we further examine the impact of liquidity on bond prices based on the market
conditions. In particular, we employ the TED spread as a proxy of funding liquidity. When
funding liquidity is low (and thus the TED spread is high), there are supposedly much more sellers
in the market and they are likely to be marginal investors. To test this story, we run the following
panel regression with our sample of matched bonds from February 2005 through June 2017, using

interactions of illiquidity measures with the TED spread:
Yz‘eldi,t = o+ ﬂlflliqi,t_l -TED; + ﬁg[”’i(]i,t—l + CtT’ZSM + &¢ (37)

where Yield;; is the monthly yield of bond 7, TED; is the average TED spreads during the month
t, and Illig;;—1 is the lagged illiquidity of bond measured by the five measures in Table 2. The
control variables, ctrls; ;, include logged time-to-maturity and logged amount outstanding. We also
inlcude issuer-times-month fixed effects.

The higher (lower) TED spread is related to the more tightened (abundant) funding liquidity,
therefore the seller (buyer) is more likely to be the marginal investor. Thus, our model implies that
£1 to be negative. Also, we expect B2 to be positive because we expect that the illiquid bond is
priced lower (i.e., higher yield) than the matched liquid bond during the normal times.

Table 4 shows the estimated results. The results are consistent with the above hypotheses.
In Column (1), for example, the estimated coefficient on Illig;;—1 - TED; is negative (-0.085) and
statistically significant at the conventional level. Also, results show that the estimated coefficient on
Illig; 41 is positive (0.079) and significant at the conventional level. Thus, holding the TED spreads
at 0% and all else constant, a one-standard-deviation increase in Amihud illiquidity increases the
yield by 0.079%. With the TED spreads of 1%, the coefficient on Amihud illiquidity decreases
by about 108% (& 0.085/0.079) and thus the effects of market liquidity on yield has a flipped
sign, which means that more liquid bond price is cheaper than its illiquid counterpart. The results
for other liquidity measures in Columns (2) through (5) are both quantitatively and qualitatively
similar, consistent with our model implication.

The results above can be driven mainly by the extreme values of the TED spread during
the financial crisis. As a robustness check, in Columns (6) through (10) of Table 4 we provide
subsample analysis results after excluding the period from 2008Q3 through 2009Q2. The results

are qualitatively similar to the results obtained from the main sample.
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7.5 The Effect of Market Liquidity on Bond Prices When Mutual Funds are
Major Sellers

In this section, we examine the impact of liquidity on bond prices when there are substantial
outflows from bond mutual funds. Under severe outflows, mutual funds should liquidate at least
part of their bond positions to meet investor redemption requests and thus it is likely that sellers
are marginal investors. To the extent that the aggregate outflows from bond mutual funds are a
proxy for the increased mass of bond sellers, we expect that sellers are marginal investors given
large fund outflows and therefore liquid bond prices are likely to fall below illiquid bond prices.
To further examine this hypothesis, we run the following regressions, using aggregate outflows

from corporate bond mutual funds (CBMFSs) industry. Specifically, we run the following regression:
Yield;; = o + B11llig; 1—1 - Out flowsy + Pollliq; —1 + ctrls;; + & (38)

where Out flows; is defined as —min(flow;,0). flow, is the aggregate investor flows of CBMFs
during month ¢. Everything else is same as the regression (37). The advantage of CBMF outflow
measure is that this directly measures an actual capital outflows from the CBMFs. The potential
limitation of this measure is that CBMFs manage the liquidity relatively well and represent only
part of corporate bond investors.'?

Table 5 provides the results. In Column (1), for example, the coefficient estimates on Illig; ;1 -
Out flows; is negative (—0.135) and statistically significant at 1% level. With outflows of 0.4%,
holding everything else constant, coefficient on Amihud becomes negative (—0.011 = —0.135-0.4+
0.043) implying that the price of liquid bond becomes cheaper than price of illiquid bond within a

same issuer-month, holding else constant. Results using other illiquidity measures are similar.

7.6 Price of Liquid and Illiquid Bonds around Credit Rating Downgrade Events

In this section, we examine whether our previous results using the market-level conditions can be
generalized to local-level shocks. We use credit rating downgrades as events that affects selling
probability of bond investors who hold the downgraded bonds. For example, investors might have
limited capacity or target-levels in taking credit risks thus they are likely to sell at least part of their
downgraded holdings. Especially, insurance companies have regulatory constraints in taking credit
risks (e.g., Ellul, Jotikasthira, and Lundblad (2011b)). Also, compositions of bond market indexes
changes following downgrades which cause selling pressures from funds following the indexes (e.g.,
Dick-Nielsen and Rossi (2018)). Thus, we expect that the price of liquid bonds falls more (and

below) than price of illiquid bonds around the downgrade events. To investigate this, we run the

12The market share of CBMF's in the corporate bodn market is about 10% in the beginning of 2005 which increased
to about 24% in 2014. Most of actively managed CBMFs precautionary hold cash-like assets to reduce bond sales
driven by investor outflows. See, e.g., Choi, Hoseinzade, Shin, and Tehranian (2019).
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following difference-in-difference regression:
Yield;+ = a+ BiTreat; + BoTreat; - wi_19 1) + BsTreat; - wy g + ctris;s + & (39)

where Yield;; is yield of bond i at day ¢, T'reat; is a dummy variable that equals one if the bond
is the young bond in a matched pair, wi_1g,_1] is a dummy variable that equals one if day ¢ is
between —10 and —1 weeks from the downgrade date, and wjy g is a dummy variable that equals
one if day t is between 0 and 9 weeks from the downgrade date. We control for time-to-maturity
and amount outstanding. We also include issuer-times-day fixed effects. Our control group consists
of the matched illiquid bonds as in Section 6.1. The sample includes downgrades between February
2005 and June 2017. To be included in the sample, we require that both treated and control bonds
are downgraded in a same day. We include the pre-event period dummy (i.e., w[—lo,—l]) because
the downgrade not exogenous at all but can be anticipated.

Table 6 provides the estimated results from regression (39). The results are consistent with
our hypothesis that price of liquid bonds fall below to the price of illiquid bonds. In Column (2),
for example, estimated coefficients on T'reat; is negative (—0.108) meaning that yield of liquid
bond is lower by —0.108% (i.e., price of liquid bond is higher). On the other hands, the estimated
coefficients on T'reat; - wi_j9, 1) and Treat; - wy g are positive (0.111 and 0.160, respectively) and
statistically significant at the conventional levels. The results indicate that yields of the liquid and
matched illiquid bonds become similar (—0.108% + 0.111% ~ 0) during the 10 weeks before the
downgrade week and then the yield of the liquid bonds become higher by on average 0.163%(=
—0.108% + 0.111% + 0.160%) during the 10 weeks after downgrades. Results are similar during
the distressed periods (Column 2) and all types of downgrades (IG — IG in Column 4, IG - HY
in Column 5, and HY — HY in Column 6). If any, magnitudes of yield differences are bigger and
the liquid and illiquid bonds tend to be priced similar already before the downgrade events in the
distressed periods or for high yield bonds.

Overall, results in Table 6 show that our model implication can be generalized to the local-level

shocks such as downgrades of bonds.

8 Conclusion

In this paper, we both theoretically and empirically show that prices of liquid assets in OTC markets
can be lower than those of illiquid assets with similar fundamentals. We study a search-based model
with two identical assets where investors can choose which asset to trade in a discretionary manner.
We show that liquidity spreads (price differentials between the liquid and the illiquid asset) can flip
signs depending on market-wide sell pressure. When buyers are marginal investors, liquid assets
are generally more expensive than illiquid assets because buyers who hold the illiquid asset should
be compensated with higher profits. On the other hand, when sellers are marginal investors, an

opposite situation arises. Sellers who sell the illiquid asset should be compensated with higher
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trading gains through higher prices. This leads to negative liquidity spreads. Such an equilibrium
arises due to the feedback between liquidity and investor concentration. We then provide empirical
evidence supporting the implications of the model by employing that there are multiple bonds
issued by an issuer but with different levels of market liquidity. We find that more liquid bonds
become cheaper than older illiquid bonds around liquidity events, such as the 2008 financial crisis,
increases in the TED spreads, large outflow shocks to mutual fund investors, and downgrades of

bond credit ratings.
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Appendix

A  Proofs

The Derivation of Investors’ Value Functions:

Let 7 = min(7, 74, 7y ) where 7,; denotes the time at which an inactive seller receives a low preference
shock, 7; denotes the time at which an investor successfully trades in market ¢, and 7, denotes the
time at which an investor’s . The expected utility of an investor who trades in market ¢ with wealth

W, and type o at time ¢ is given by
UWi,0) = Wi+ V7 () (40)

where the value function of each type investor is given by

VE(t) =B [ TV — P, T}] (41)
Vo(t) =Eq /t e du + eIV oy e Ty _T}] (42)
VA () =By /t D1 §)du+ eIV 4 Py ey ] (43)

V" =0 (44)

The Derivation of Investors’ Trading Surplus:

From (18), we obtain

(AVf)_ 1 < T+(1—q)/\b g\ )( 1-6 > (45)
b - D b s T ’
AVZ ¢ r+n+x (1 o Q))\ r+x+ q)\ r+r+x
where
-
Di=(r+ +(1-AN+ ——gX
(r X)(?“ (1—-q)\ pa—— 7,)

Then, (45) is equivalent to

(AV;S)_ 1 5( r+ (1 —q)AL ) (46)
AVP ) rix D\ g4 (1N

Proof of Proposition 2. First, we simplify discretionary traders’ indifference conditions. By

plugging the value functions (15)-(17) and by Theorem on Equal Ratios, a marginal buyer’s indif-
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ference condition is , b
Api AV —AVE (r+x+K) 4+ g

Mopts — AVP — AVE  (r+ x+ k) + ghoph

(47)

The closed form solution of p?, u§ shows that the relative liquidity A;u$ of buyers in market 1 (i.e.,
the left-hand-side of (47)) decreases as more buyers enter market 1. The the relative illiquidity
discount in market 1 (i.e., the inverse of right-hand-side of (47)) decreases, and hence, the right-
hand-side of (47) increases as more buyers enter market 1. The monotonicity of LHS — RHS of
equation (47) with respect to vy, taking n; as fixed, shows the uniqueness of v; = 1 — v that
solves the indifference condition (47), when it exists; and moreover, it shows that an asymmetric
equilibrium with ;1 =1 — s € (0,1) does not coexist with an asymmetric equilibrium with vy = 1
or v1 = 0, given 7.

Similarly, the indifference condition of a marginal seller is simplified into

)\ml{ B AVQI’ —AVG  r+ Aps(l—q)
opl  AVP—AVE r+dops(1—q)

(48)

In equation (48), the left-hand-side is decreasing and the right-hand-side is increasing with respect
ton = 1— 9, given v = 1 — . If there exists n; € [0,1] that solves (48), then it is unique.
Furthermore, an asymmetric equilibrium with n; € (0,1) does not coexist with an asymmetric
equilibrium with 7y = 1 or ;3 = 0, given v.

(1) (Symmetric Equilibrium) Suppose that both indifference conditions (47) and (48) holds.
Applying Theorem on Equal Ratios, we get

Mp g+ x o+ R) + gdapd
Xty Aoph  (r+ x4 k) + ghopb

=1. (49)

Hence, Ajpf = Agus and A\q ,ul{ = Ao ug is a necessary condition of symmetric equilibrium. The mass

of buyers and sellers in a steady state:

pr = Gt Gt b, p_ O+ bl
' X X+h L g

(50)

By plugging ,ui-’ and p into the necessary condition, we solve the discretionary buyers and sellers’
market choice: n; = v; = % Since equations (50) are linear in 7; and v;, the solution 7, = v; = % is
unique.

(2) (Asymmetric Equilibrium) Now we show that an asymmetric equilibrium exists and show
under which condition each type of asymmetric equilibrium exists.

(i) (Marginal Buyers) Suppose that discretionary sellers are not indifferent between two markets.

Without loss of generality, we assume that all sellers enter market 1, i.e., n; = 1,79 = 0. A sufficient
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and necessary condition for 173 = 1 being optimal for discretionary sellers is

Mgy 4 dpi(l—g)

= . ol
Aoy — 1+ Ao (1 = q) 51
By plugging p$, ub as functions of v; (equation (50)), we get a lower bound for v; = 1 — vs:

o (@ + 0im) (0" + 6f) — (¢° + ¢im)d® _ (&° +65) (8" + 0)) — ¢°¢" _ (52)

T e 0 emdh (@ e tend,

If the mass of buyers in market 1 is lower than the bound vy, a seller in market 1 has a profitable
deviation from market 1 to market 2, and thus, it violates n; = 1. The lower bound of v is value
(i.e., v; > 0). If v; > 1 (equivalently, gbs(blc’l > gbquZ), then there is no asymmetric equilibrium with
m =1

When v, < 1, the buyer’s indifference condition is a third-order polynomial for v = 1 — vs.
The monotonicity of buyers’ indifference condition gives a sufficient and necessary condition for
existence of asymmetric equilibrium: Given 7;, there exists a unique v; = 1 — v € [v;, 1] satisfying

(47) if and only if when vy =1 — 19 = vy,

M (e xk )+ g

; equivalently, A1 (@] + ¢3) > \od3; 53
Moty = (r x4 5) + Dol q vy A(A] + 97) = Aol (53)

and when v =1 —15 =1,
Mpi _ (et xck )+ g

Aoy~ (r X+ ) +ahapy] oy
equivalently,
—s_—s\2 P\ s _ P\ 9g
(A =7)"(r+(1=) Ot r)HaOctr) 7o)+ (0 =) (r+ (1= @) Ok o))t 20 Ocbe) ) < aa(xt) 2,
(55)
where f = ¢5—;¢S (bxiﬁd and 15 = % - XL_; As we discussed near equation (47), under If

inequality (53) is violated, all buyers enter market 2. If inequality (55) is violated, all buyers and
all sellers go to market 1. The inequality (55) gives an upper bounds on the difference between ¢

andgﬁg:

ﬁi ‘752 s, 1b s :L 2 ¢d

. —X+K<q>1(¢d,¢,¢>_m( B+ /B2 +4A0%4 ) (56)
whereA:r+<1—q)<x+n>+q(x+n>%<%—Xﬁ) 150, B=A(2 — ) +q(x +R)E >0,
andC—q(x+/<a)(——¢—)>0

Xtk
As a last remark gbsgbd > gbbqﬁd (i.e., v; > 1) holds when inequality (56) is satisfied. This is

because the slope of the boundary of inequality (56) is smaller than . By taking an implicit
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differentiation of the boundary (56) with respect to gbg, we get

d¢§_ X 1 C -1 < X B

d(ﬁg_X—Ffi( a /BQ+4A0¢;§) “x+kB-C"

The inequality holds by the concavity of ¢ with respect to <bfl in the boundary of (56). It suffices
to show that

By plugging B and C,

A AN o0
abe+m) (= T <l - T b T -

),

which is equivalent to 0 < A( % - %)2 Because A > 0, the inequality holds for any ¢° and ¢°.
Hence, d)sqﬁg > qﬁbgﬁz (i.e., v; > 1) holds when inequality (56) is satisfied.

(ii) (Marginal Sellers) Suppose that discretionary buyers are not indifferent between two mar-
kets, and enter market 1 without loss of generality, i.e., v1 = 1,10 = 0. The same steps as in part
(2) derive a sufficient and necessary condition that an asymmetric equilibrium with 7; € (0,1) and
v1 = 1 exists.

Buyers optimally choose market 1, i.e., v; = 1, if and only if n; = 1 — 1, satisfies

Mt (rx+R)+ gAd

. 57
Aopi3 "~ (r X+ K) + ghopb o7
This inequality gives a lower bound for n; = 1 — ns:
X ¢ +05 ¢+ oo ¢° ¢+ dhm
m > - (2 - R e icand) L RN G
(A1 4 A2) o3 X Xtk X X+ K

If the mass of sellers is lower than the bound n,, a buyer in market 1 would move to market 2 so

it violates v1 = 1. If n. > 1 (equivalently, A (@ - qb—g) —A (ﬁ - cb—l{) > A\ (ﬁ - LZ) ie., ¢3is
11— L Hl q Y, 2X KX IX KX 1X tx /Y Pd
smaller than a linear function of qbZ), then there is no solution.
When n, < 1, the seller’s indifference condition is a third-order polynomial for n =1 — ns.
The monotonicity of sellers’ indifference condition gives a sufficient and necessary condition for
existence: Given v;, there exists a unique solution 7y =1 — 12 € [Ql, 1] satisfying (48) if and only

if when n1 =1 —np = vy,

Mgy r+dpi(1—g)
Xoph o+ dops (1 — q)

equivalently, A (¢° + ¢Z) > Aodb; (59)

and when m =1,
Apf < Al —g)
)\glug T+ Aps(l—q)

, (60)
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equivalently,

b
X+K (bd

Aar AL = q)ip) = =~ < AL = @) — 1i3)* + (r =+ 2X(1 = q)7i3) (7} — 733), (61)
s s b b s b s
where 1] = ¢ I% - ¢Xiﬁd =5+ % - % and g5 = % - X‘b—; If inequality (59) is violated, all

sellers enter market 2. If inequality (61) is violated, all buyers and all sellers go to market 1. The

inequality (61) gives a lower bounds on the difference between ¢7 and (;Slc’l:

Pq o b. b 1 o

Zd__Td s gyl 0, ¢°) = —( — E+|E2+4DF—4—

Y X+f'@> 2(¢da¢v¢) 2D( + + X"’ff)’

where D = A(1—q), E = (r + 2\(1 — q)(% — XL;)) >0, and F = (% — X%)(rmu — (& -
b K

L)X >0,

(iii) (Corner Equilibrium) As discussed near equations (47), given 71 = 1, v; solving the in-
difference condition (47) is unique. If there exists a solution v; € (0,1) for equation (47), then
replacing v; by 1 violates the inequality (57), which is a necessary condition of equilibrium with
v1 = 1. Hence, an asymmetric equilibrium with v; € (0,1) and an asymmetric equilibrium with
v; = 1, given 1 = 1, cannot coexist because LHS-RHS of equation (47) decreases. Similarly, an
asymmetric equilibrium with 71 € (0,1) and n; = 1, given v; = 1, cannot coexist. When inequal-
ities (55) and (61) are violated, all discretionary buyers and sellers enter market 1. When such
asymmetric equilibrium exists, it is unique: i.e., m =1—mp=1land vy =1 -1y = 1.

(4) (Asymmetric Equilibrium is Unique) Now we show that three types of asymmetric equilibria
(i), (ii), and (iii) exists exclusively, and so, (a pair of) asymmetric equilibrium is unique.

An asymmetric equilibrium in which discretionary buyers are marginal (i.e., v; € (0,1)) and all
discretionary sellers enter market 1 (i.e., 73 = 1) cannot coexist with an asymmetric equilibrium
in which all traders choose market 1 (i.e., 1 = n; = 1). This is because, given 71, the buyer’s
indifference condition (47) is monotone in ; = 1—w» and thus it has a unique solution v; > 0. If the
solution satisfies 1 < 1 then an asymmetric equilibrium with marginal buyers alone exists; if the
solution satisfies 1 > 1 then an asymmetric equilibrium with 1 = ;1 = 1 alone exists. Similarly,
an asymmetric equilibrium with 1, € (0,1) and v; = 1 cannot coexist with an equilibrium with
m = v1 = 1, due to the monotonicity of the sellers’ indifference condition (48) in 7y, given vy.

Lastly, we show that an asymmetric equilibrium with marginal buyers (14 € (0,1) and 7 = 1)
and an asymmetric equilibrium with marginal sellers (1, € (0,1) and 4 = 1) do not coexist. We
show this by contradiction. Suppose that there exists a parameter set such that both equilibria

exists. The necessary condition (55) for equilibrium with marginal buyers and (61) for equilibrium
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with marginal sellers must hold:

gy T -ac+n) +q(X+ﬁ>x¢§;>(M3_MS)2+<(T+ (1 —q)<x+ﬂ))ﬁ§+2q(x+n)§>(ﬁs_ﬁs)_
Y~ msq(x + ) v A3q(x + K) o
(62)
¢} A1—q) s s (r+2X1—qp3) o
< ML= oy P —m) o (), (63)
X 3(r 4+ A1 — q)m3) %55 fis(r+ A1 = q)3) %55
b b
where fif = ¢ ;qﬁd — ¢xiﬁ and 715 = % — XLJ; If both inequalities hold, we get
r+ (1= q)(x + )+ q(x + k)= M1 —q)
(5 —713) > — I (5 - )2 - = — e (7 — 1)
b Asq(x + 1) P B -
(r+(1—q)(x+r)E +2q(x+ﬁ)§(ﬂs S Uy S
—s 1 K 1 *
sa(x + 1) 2mr A1 - ) ’

Let us denote the quadratic and linear coefficients of the right-hand-side by K and L:

K = P+ (L= a)(x +8) + a(x + #) % A1 = q) (64)
a A3q(X + k) uQ(r—i—/\l—q) g)xtw i
o (r+ (- +r)A +20x+ RS r 201 - Q7 (65)
- m5q(x + ) B+ M1 — q)f )d)i
The inequality has a solution ff — 15 = ﬁ — % > 0, which must be positive by Assumption 1,
unless K > 0and L > 1.
rbxts | A-of  A-od
K = —TXTFE S Xt o, (66)
mq(x + k) AL — Q)(Hz) 5 (r + A1 = q)p3)
b
r+A1—gq - r+2X\1—g¢q -
Loy o rhas 2 ENCOBE Crp0-omd o

q(x + ) as(r+ A1 = q)ms3) as(r+ A1 —q)ms3)

Therefore, the necessary condition (64) for the coexistence of asymmetric equilibrium with marginal

buyers and asymmetric equilibrium with marginal sellers never hold. m

Proof of Lemma 3. In an asymmetric equilibrium in which buyers are marginal and all sellers
enter market 1 (i.e., v1 € (0,1),m1 = 1), traders’ indifference conditions are written by
Mg (r xR+ (1 - q) Fradapt

= < . 68
Aops  (r+x+ )+ Aaps(1—q) + rgrepd  Aopd (©8)

By Theorem of Equal Ratio, the above condition is simplified into

)\1![; _ r+XxX+hK+ q)‘lluli < )‘Lu’li (69)
Mo TA X+ K+ gl dapb
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Because the successful selling probability A; ,uf is positive in equilibrium, the inequality implies that
b

:\\;75}, > 1. Moreover, the equality implies that
2

probability in market 1 to market 2 satisfies

i;ﬁ é > 1. In particular, traders’ relative trading

A b
1 < 1#; < 1#2
Aoy Aapig

in asymmetric equilibrium with marginal buyers and all sellers in market 1.

Similarly, in asymmetric equilibrium in which sellers are marginal and all buyers enter market
1 (i.e., m € (0,1),11 = 1), we get

Al s
1 < 1#; < 1#; '
Aopig  Aafty
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B Variable Definition

We exclude the retail transactions (i.e., trading volume less than $100k) to calculate the following

9th

variables. All variables are winsorized at 1% and 99" percentiles.

B.1 Yield and Liquidity Spread

The yield is yield-to-maturity obtained from the TRACE enhanced database. We follow Bessem-
binder, Kahle, Maxwell, and Xu (2008) in defining the daily yield. Specifically, we calculate a
bond’s daily yield as the trading-volume-weighted average yield for each day, after excluding the
negative yields. Throughout the paper, we use the matched sample defined in Section 6.1. For the
liquid bond ¢ and matched illiquid bond j, we denote the daily yield as Yieldz(fzq) and Yieldg-filiq),
)

respectively. To be included in our sample, both Yieldz(lfq) and Yieldgiiliq for a matched pair should

be available in day t. Then, for each day we define Liquidity Spread as following:

Liquidity Spread; j; = Yz'eld%liq) — Yield(lzq) (B1)

Z'7

Monthly Liquidity Spread is defined as median of the daily Liquidity Spread during the month

for each matched pair.

B.2 Amihud

Amihud is the intraday version of Amihud (2002) illiquidity measure introduced in Dick-Nielsen,
Feldhiitter, and Lando (2012). Specifically, for each bond i, we calculate the following within day
t:

. 1 x|
Amihud; s = — E — B2
TN 52
where 7y, is a return of the k¥ transaction within day t (= %), Q. is trading volume in $MM

for the k' transaction, and N; is the number of 7, observations during day t.

B.3 IRC

IRC is the imputed roundtrip costs of Feldhiitter (2012). For bond i and day ¢, we call it as the
imputed roundtrip trades (IRT) if there exists a group of two or three (and no more than three)
transactions that have the same trading volume. Then, we calculate the following daily imputed

roundtrip cost:
Nt

_ 1 Pmaz — Pmin
k=1
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where N, is the number of IRTs for bond ¢ within day ¢ and pq: and pp, are maximum and

minimum transacton prices within each IRT k.

B.4 Bid-ask 1

Bid-ask 1 is the bid-ask spreads calculated by using inter-dealer transaction prices as a reference
price, following Choi and Huh (2018). Specifically, we calculate the transaction-level bid-ask spreads

for each customer-dealer transaction k of bond 4 in day ¢ as following:

reference
Pk — Py,
reference
Py

Bid-asky, = 2S5, - (B4)

where Sj is equal to either +1 or —1 if transaction k is a customer-buy or customer-sell from
dealers, respectively. The reference price for transaction k, pzef erence s defined as the transaction-
volume-weighted average price of interdealer transaction prices for bond ¢ within the same day ¢

after excluding the interdealer trades executed within 15 minutes from the transaction k.

Finally, we define Bid-ask 1;; as the bond-day level measure of bid-ask spreads by taking the
transaction-volume-weighted average of Bid-asky, for customer-dealer transactions for bond ¢ during
day t.

B.5 Bid-ask 2

For each bond 7 and day t, we calculate the realized bid-ask spreads similarly to Adrian, Fleming,

Shachar, and Vogt (2017). Specifically, we calculate the following:

aski,t — bidi’t
(ask;y + bid; ) /2

Bid-ask 2;+ = (B5)

where ask;; and bid;; are the transaction-volume-weighted average prices of customer-buy and

customer-sell transactions, respectively, for bond ¢ during day t.

B.6 Roll

We calculate the Roll (1984) illiquidity measure, Roll, by following Dick-Nielsen, Feldhiitter, and
Lando (2012). Specifically, for bond ¢ and day ¢

Roll; s = 2+/—cov(Ry, Ri_1) (B6)

where cov(Ry, Rk—1) is the covariance of consecutive returns calculated based on transaction prices
obtained from the TRACE enhanced database. For each day ¢ with at least one transaction, we
calculate the measure in a rolling window of 21 trading days. We discard it if the covariance is

positive.
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B.7 Dealer Connectedness

We calculate the connectedness of dealers by computing eignvector centrality of dealer network by
following Friewald and Nagler (2019). We define that two dealers are connected if there are at
least 50 transactions with each other during a month and we use weight connections by sum of
transaction volumes (in par values) between the two dealers. Then, the dealer connectedness for
a bond is defined as transaction volume-weighted average of dealer connectedness of dealers who

have traded the bond during a month.

B.8 Prearranged Trading Ratio

Similar to Schultz (2017), the prearranged trading is defined as a sequence of transactions for a
bond that satisfy the following conditions: the transactions are executed within one minute; the
transactions have a same trading volume; at least one of the transactions is a customer trade. We
define prearranged trading ratio as the fraction of prearranged trading among all transactions for

a bond during a month.

B.9 Volatility of Yield Difference of Matched Bonds

We define the volatility of yield difference, Vol(|Y1dT — Y1d®|), by calculating previous one year
volatility for absolute value of yield differences. The yield difference is calculated as daily yields of

the treated bond minus yields of matched control bond at the same day.

B.10 Flows

For each fund j and month ¢, we calculate monthly fund flows as following;:

TNAj; —TNAjy - (1+7;
Flowj, = ——— Aj-’i_i L+ 7i) (B7)

where T'N A;; is total net assets for fund j at the end of month ¢ and r;; is monthly return for fund
j over month ¢. The total net assets and monthly returns are obtained from the CRSP survivorship-
bias-free mutual fund database. We define corporate bond mutual funds (CBMFs) as funds with
the Lipper objective code in (A, BBB, HY, SII, SID, IID) or the CRSP objective code starting
with IC. We require that TNA should be at least $1MM and eliminate overly extreme monthly
changes in TINA by requiring 0.5 < #ﬁi: < 3 for fund j and month t. We also require that a
fund should have at least one year of the holdings data with at least 10 different holdings at some

point in the past.

We calculate the aggregate flows of CBMF's, Flows, by taking average of individual fund flows
(Flow;) weighted by lagged TNAs (TN A;;—1) using all CBMFs in our sample.
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B.11 Trade

We define mutual fund trading, T'rade; ¢, for each bond ¢, fund j, and quarter ¢ as following:

AmtHold; ;¢
Trade; j; = ——— 0" B
raaci AthOldi,j,tfl ( 8)

where AmtHold; j; is the dollar par-value amount of bond 4 held by fund j at the end of quarter
t. We obtain the quarterly holdings of CBMF's from the Morningstar database.
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Figure 7. Monthly Mutual Fund Investor Flows and the Liquidity Spread

This figure plots monthly mutual fund flows (grey vertical bars) along with the monthly average liquidity spread
(black solid line). The monthly mutual fund flows are defined as capital flows to corporate bond mutual funds
(CBMF) in percentages of total net assets. Corporate bond mutual funds are defined as the Lipper objective code is
in (A, BBB, HY, SII, SID, IID) or the CRSP objective code starts with ”IC”. We use all CBMF in CRSP mutual
fund database. The monthly average liquidity spread is same as in Figure 5. The sample period runs from February
2005 through June 2017. Dashed vertical lines indicate the GM&Ford downgrades (May 2005), Lehman Brothers
Bankruptcy (September 2008), and Taper Tantrum (May 2013). The x-axis represents calendar dates. The left y-axis
represents yield spreads in percentages and the right y-axis represents the mutual fund flows in percentage.

[ GM&Ford | [ Lehman Brothers Bankruptcy | [ Taper Tantrum |

Liquidity Spread (%)
Mutual Fund Flows (%)

% e % % Y Y % % Y % Y% o

Calendar Date

[ 77 Monthly Fund Flows
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Figure 8. Trading of Liquid and the Matched Illiquid Bonds by Distressed Mutual Funds

This figure shows relationship between mutual fund flows and their trading (Trade) of the liquid and illiquid bonds
in a matched pair during the distressed periods. Specifically, we plot fitted lines from non-parametric regressions of
Trade on quarterly fund flows for the post Lehman crisis period (2008 Q3 through 2009 Q2) and the Taper Tantrum
period (2013 Q2 through 2013 Q4). Trade = AmtHold; j,«/ AmtHolt; j.+—1 is the percentage trading by mutual fund j
in quarter ¢t where AmtHold; ;. is par-value amounts of holdings in corporate bond i of fund j at the end of quarter
t. We standardize Trade using the entire sample period. We only use actively managed corporate bond funds (i.e.,
index funds, exchange-traded funds, exchange-traded notes are excluded) that hold both liquid and illiquid bonds
in a matched pair at the beginning of each quarter. For the non-parametric regression, we use kernel-weighted local
polynomial smoothing with the Epanechnikov kernel function in, e.g., Fan (1992) and Fan and Gijbels (1996). Black
solid line represents trade—flow relationship of liquid bonds and gray dashed line represents those of illiquid bonds.
The vertical dashed lines represent the 95% confidence bands.
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Table 1. Descriptive Statistics of Matched Bonds

This table provides descriptive statistics for 2,142 unique matching pairs of the young and the old bonds in our
sample from February 2005 through June 2017. The sample consists of matching bond pairs issued by a same issuer
with same credit rating and seniority, and very similar time-to-maturities (less than one year difference), but different
ages. Age is defined as years passed after the issuance. We define young bond as bonds with age less than 3 years
and pick a matched bond with a maximum age differences having age of at least 5 years. time-to-maturity (7'7M)
are remaining years to the maturity. We also report the dollar amount outstandings (Amtout). Rating is the S&P
credit rating of bonds where we assign 21 to AAA rating and so on. The rating is reported just once because the
young and old bonds in a matched pair have exactly same rating. The reported variables are calculated when the
bond pairs are first appeared on our sample. We report the number of observations (N), mean, standard deviation
(Std.), and 5%, 25%, 50% (median), 75%, and 95% quantiles.

N Mean  Std. 5% 25% 50% 75% 95%

(1) ©) 3) (4) (%) (6) (7) (8)
Age (year), Young Bond 2,142 0.947 0.989 0.005 0.038 0.553 1.843 2.757
Age (year), Old Bond 2,142 7.515 3.727 5.002 5.046 5.921 8.129 16.674
TTM (year), Young Bond 2,142 4.574 3.403 0.583 2919 4.427 5.024 9.949
TTM (year), Old Bond 2,142  4.425 3.455 0.427 2.42 423  4.999 9.895
Amtout ($MM), Young Bond 2,142 8384 623.9 200 400 650 1,100 2,240
Amtout ($MM), Old Bond 2,142 765.0 735.0 100 250 500 1,000 2,500
Rating 2,140 15.11 3.031 10 13 15 17 21
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Table 2. Mean Difference Tests of Matched Bonds

This table provides the results of difference tests on means between young and old bonds in the matched pair. The
sample is consist of 63,052 monthly bond-level observations from 2,142 unique pairs during our sample period from
February 2005 through June 2017. We examine times passed after the issuance, Age; remaining times to the maturity,
TTM; and par-value dollar amount outstandings, Amtout. We also include various measures of illiquidity such as
the Amihud (2002) illiquidity, Amihud; imputed round-trip costs of Feldhiitter (2012), IRC’; two measures of Bid-
ask spreads, Bid-ask 1 and Bid-ask 2, calculated following in Choi and Huh (2018) and Adrian, Fleming, Shachar,
and Vogt (2017), respectively; and Roll (1984) illiquidity, Roll; All measures are calculated daily basis following
Dick-Nielsen, Feldhiitter, and Lando (2012) and Schestag, Schuster, and Uhrig-Homburg (2016) and each month we
take median of daily measures during previous six months. Definitions for all variables are detailed in the Appendix
B. Column (1) reports the number of observations used. Columns (2) and (3) report mean of each variable for the
young bonds and the matched old bonds, respectively. Column (4) reports mean differences. *, ** and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively. The numbers in parentheses (Column 5) are the
standard errors two-way clustered at the issuer and month levels.

N Young Old  Difference s.e.

(1) (2) (3) (4) (5)
Age (year) 63,062 1.547 8317 -6.770%**  (0.240)
TTM (year) 63,052 3.841 3.655  0.186***  (0.019)
Amtout (MM) 63,052 9404 8782  62.19%*  (36.86)
Amihud 62,106  0.468 0.633 -0.166***  (0.027)
IRC 61,693 0.076 0.108 -0.032***  (0.004)
Bid-ask 1 59,852 0.262 0.402 -0.140%**  (0.013)
Bid-ask 2 60,157 0.223  0.313  -0.090%**  (0.011)
Roll 61,553  0.459  0.576 -0.117***  (0.011)
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Table 3. Difference-in-Differences Regressions: Yields around Market-wide Distress Events
This table provides the difference-in-difference regression results for the following model:
Yield;y = «+ BiTreat; - Posty + B2Treat; + ctris; s + &t

where Yield; : is monthly (or daily) yields in percentage on bond 7. Monthly yields are defined as median of daily
yields of bonds during the month. We only use yields where both liquid and matched illiquid bonds of a pair
have available yields at the same day. Treat; is a time-invariant indicator variable for the young bonds of matched
pairs. In Panel A, we employ two market-wide events: the Lehman Brothers bankruptcy during 2008 financial
crisis (September 14, 2008) and the Taper Tantrum episode in 2013 (May 22, 2013). Post; is a dummy variable
indicating months of event and afterwards (in Columns 1 and 3) or days after the event date (in Columns 2 and
4). The sample period runs from January 2008 through June 2009 for Columns (1) and (2) and from January 2013
through December 2013 for Columns (3) and (4). In Panel B, we use the monthly data around the Lehman Brothers
bankruptcy. We further divide the sample into two subgroups based on the following variables related to the search
friction and limits to arbitrage. In Columns (1) through (4), we use search friction variables to measure relative
search frictions of treated bonds and matched control bonds. In Columns (1) and (2), we use differences in the dealer
connectedness, measured by eigenvector centrality of dealer networks. Specifically, we calculate eigenvector centrality
of dealer networks for treated bonds minus those for matched control bonds. Higher eignvector centrality implies
better connectedness. Thus, the large difference of connectedness means the higher search friction of control bonds
relative to treated bonds. In Columns (3) and (4), we similarly define the relative strength of search friction by
calculating the prearranged trading ratio of control bonds minus those of treated bonds. Higher prearranged trading
means higher search friction. Thus, the larger difference means the higher search friction of control bonds relative
to treated bonds. We also examine the amount outstanding of treated and control bonds. Vol(|Yld" — Y1d“]) is
the volatility of yield differences between matched bonds by using daily yields of previous one year. In Columns
(1) through (10), We form two subgroups based on the median of each variable measured prior to the Lehman
Brothers bankruptcy. In Columns (11) and (12), HY and IG represent the high yield and investment grade bonds,
respectively. The control variables, ctrls, include logged time-to-matured, TT'M, and logged amount outstandings,
Amtout. Definitions for all variables are detailed in Appendix B. We also include issuer-times-month fixed effects.
The sample bonds contain all matched bonds during the sample periods and the matching process is detailed in
Section 6.1. *, ** and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The numbers
in parentheses are standard errors two-way clustered at the issuer and time levels.

Panel A: Market-wide Distress Events

2008 Financial Crisis 2013 Taper Tantrum
Monthly Daily Monthly Daily
(1) (2) (3) (4)
Treat - Post 0.342%F*%  (0.266*** 0.058%**  0.067***
(0.118) (0.096) (0.018) (0.016)
Treat -0.139%%*  _0.123*** -0.155%**%  _0.159***
(0.043) (0.025) (0.018) (0.015)
TTM 1.125%**  1.283%** 1.332%**  1.408%**
(0.245) (0.313) (0.112) (0.058)
Amtout -0.032 0.034 -0.116%** -0.003
(0.061) (0.058) (0.020) (0.029)
Issuer - Time F.E. Y Y Y Y
N 5,510 37,170 5,604 40,116
Adj R? 0.954 0.955 0.906 0.936
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Table 5. Effects of Market Liquidity on Yields and Investor Outflows from Corporate Bond
Mutual Funds

This table provides the regression results for the following model:

Yield;y = o+ pillligi,i—1 - Outflows, + Pallligst—1 + ctrls;: +

where Yield;; is monthly yields in percentage defined as median of daily yields of bond ¢ during month ¢. We
only use yields where both liquid and matched illiquid bonds of a pair have available yields at the same day. Illig
represents one of the five measures of illiquidity described in Table 2 (Amihud, IRC, Bid-ask 1, Bid-ask 2, and Roll).
All illiquidity measures are standardized. All illiquidity measures are standardized. Owutflows is investor capital
outflows of corporate bond mutual funds (CBMFs) defined as —min(flow,0) where flow is capital flows of CBMFs
as percentage of their assets under managements. The control variables, ctrls, include logged time-to-matured, TT M,
and logged amount outstandings, Amtout. Definitions for all variables are detailed in Appendix B. We also include
issuer-times-month fixed effects. The sample contains all matched pairs of bonds from February 2005 through Jun
2017. The matching process is detailed in Section 6.1. *, ** and *** denote statistical significance at the 10%, 5%,
and 1% levels, respectively. The numbers in parentheses are standard errors two-way clustered at the issuer and
month levels.

Dependent Variable: Monthly Yields

Illiquidity Measure  Amihud IRC Bid-ask 1 Bid-ask 2 Roll
(1) (2) 3) (4) (5)
Illiq - Out flows -0.135%#F*%  _0.081***  -0.042*%**  -0.064**  -0.148***
(0.030) (0.022) (0.015) (0.030) (0.046)
Tlliq 0.043%** 0.029** 0.036%** 0.035** 0.076***
(0.015) (0.014) (0.010) (0.014) (0.015)
TTM 1.192%F%  1.193%k* 1, 184%F* 1.I87H**  1.163%**
(0.053) (0.051) (0.051) (0.050) (0.051)
Amtout -0.084%**  _0.080***  -0.084***  _0.078%*F*  -0.070%**
(0.022) (0.023) (0.023) (0.021) (0.024)
Issuer - Time F.E. Y Y Y Y Y
N 61,871 61,289 58,801 59,282 61,236
Adj R? 0.973 0.973 0.973 0.974 0.973
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Table 6. Difference-in-Differences Regressions: Issuer-level Outflow Shocks from Downgrade
Events

This table provides the difference-in-difference regression results for the following model:
Yieldi: = o+ piTreat; + B2Treat; - wi_10,—1) + BsTreat; - wio,9) + ctrils; + €t

where Yield; ; is daily yields in percentage on bond ¢ and day ¢t. Treat; is a time-invariant indicator variable for the
young bonds of matched pairs. We employ downgrade of bond credit ratings as events for difference-in-difference
regressions. We define the downgrade event as the first downgrade announcement date by S&P, Moody’s, or Fitch
(i.e., downgrade that changes the lowest rating of the three ratings). We only include downgrades where two bonds
in the matched pairs are downgraded at the same day. If there are multiple consecutive downgrade events within a
month, we only include the first event Similarly, wj_19,—1j is a dummy variable indicating days between -10 and -1
weeks from the event date. Similarly, wy,g is a dummy variable indicating days between 0 and 9 weeks from the
event date. The sample consists of daily yields from 30 weeks before and 10 weeks after the event. In Column (1),
we include all downgrade events between February 2005 and June 2017. In Columns (2) and (3), we use downgrade
events during the normal and distressed periods, respectively, where we define the distressed periods as the post
Lehman Brothers bankruptcy crisis periods (September 2008 through June 2009) and the Taper Tantrum periods
(May 2013 through December 2013). In Columns (4), (5), and (6), we use downgrades from investment grades (IG)
to IG, from IG to high yields (HY), and from HY to HY, respectively. The control variables, ctrls, include logged
time-to-maturity, 7T'M, and logged amount outstandings, Amtout. We also include issuer-times-month fixed effects.
The sample consists of the matched bonds and we detailed the matching process in Section 6.1. *, ** and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively. The numbers in parentheses are standard errors
two-way clustered at the issuer and month levels.

All Normal  Distressed IG - 1IG 1IG - HY HY - HY
(1) (2) (3) (4) (5) (6)
Treat -0.078 -0.108** 0.012 -0.113%** 0.227 0.169
(0.049) (0.044)  (0.091) (0.027)  (0.233) (0.204)
Treat - wi—10,-1] 0.161*** 0.111** 0.282%** 0.080* 0.189 0.632***
(0.045) (0.046) (0.083) (0.041) (0.216) (0.208)
Treat - Wio,9] 0.332%** 0.160*** 0.709*** 0.214*** 0.835* 0.822%**
(0.062) (0.053) (0.174) (0.045) (0.426) (0.275)
TTM 1.332%** 1.293%** 1.355%** 1.323%** 0.168 2.338
(0.189) (0.230)  (0.288) (0.161)  (0.841) (1.555)
Amtout -0.024 -0.066 0.076 0.024 -0.405 -0.386%**
(0.071) (0.073) (0.111) (0.029) (0.309) (0.125)
Issuer - Time F.E. Y Y Y Y Y Y
N 74,760 52,266 22,494 59,302 4,196 11,262
Adj R? 0.976 0.977 0.973 0.973 0.929 0.943
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