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EWIV and VWIV when applied together are strong predictors of stock market returns over short- and long-

term horizons. The explanatory power is economically significant with an out-of-sample forecasting 𝑅2 

around 1% for one month and 12% for one year. This finding suggests that EWIV and VWIV together are 

linked to state variables that capture time-varying investment opportunities. Furthermore, EWIV and VWIV 

jointly can explain the cross-section of average stock returns with a beta quintile spread of 7.88% per year. 

I argue that the combination of EWIV and VWIV is a proxy for the conditional covariance risk in the 

ICAPM.  I revisit the debate between Goyal and Santa-Clara (2003) and Bali, Cakici, Yan, and Zhang (2005) 
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1. Introduction 

Goyal and Santa-Clara (2003) found that equal-weighted idiosyncratic volatility (EWIV) can positively 

forecast future stock market returns, suggesting that idiosyncratic risk matters for asset pricing. The finding, 

however, is criticized by several studies. For example, Bali et al (2005) and Wei and Zhang (2005) argue 

that this empirical finding is attributed to liquidity premium, small-stock bias, and sample-specific period. 

That is, when looking at a more recent period, EWIV is unable to predict aggregate stock returns. However, 

the value-weighted idiosyncratic volatility (VWIV) is negatively related to future stock market returns, 

although the significance is not as strong as other existing predictors.1  The difference in forecasting 

performance between EWIV and VWIV is confusing and ambiguous in the literature. To date, existing 

studies do not find consistent return predictability by aggregate idiosyncratic volatility. As a result, how 

aggregate idiosyncratic volatility affects asset prices remains unclear, especially for the time-series return 

predictability. I revisit this topic and provide an alternative explanation as to why existing studies obtain 

mixed conclusions. I show that aggregate idiosyncratic volatility, in fact, can be used to forecast stock 

market returns at both high and low frequencies. 

     Theoretically, if the CAPM holds, idiosyncratic volatility is related to neither time series nor cross-

section of stock returns. Levy (1978), Campbell, Lettau, Malkiel, and Xu (2001), and Malkiel and Xu (2001) 

claim that if investors hold undiversified portfolios, the expected return of any asset will be positively linked 

to idiosyncratic volatility. Their models imply that when investors’ portfolios are less diversified, aggregate 

idiosyncratic volatility should be positively related to future stock market returns in time series. However, 

recent empirical evidence has not consistently supported this prediction. While most of the previous studies 

focus on explaining the cross-sectional effect of idiosyncratic volatility with much success,2 the time-series 

effect of aggregate idiosyncratic volatility is still unclear and less explored. My research aims to fill this 

gap. 

     In this paper, I first document a novel finding that when running a bivariate regression of aggregate stock 

returns on EWIV and VWIV, both variables express strong and significant forecasting capacities for stock 

market returns. The explanatory power is economically significant with an out-of-sample 𝑅2 around 1% 

for one month and 12% for one year. EWIV is positively related to future stock market returns (consistent 

                                                           
1 For example, the relevant papers include Guo and Savickas (2008), Chen and Petkova (2012), and Pollet and Wilson (2010). 

However, no papers document that VWIV has return predictive power longer than one quarter. 

2 The typical papers include: Ang, Hodrick, Xing, and Zhang (2006), Brand, Brav, Graham, and Kumar (2009), Campbell and 

Taksler (2003), Fu (2009), Chen and Petkova (2012), Cao and Han (2016), Herskovic, Kelly, Lustig, and Nieuwerburgh (2016). 
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with Goyal and Santa-Clara, 2003), while the coefficient of VWIV remains negative (consistent with Guo 

and Savickas, 2008; Pollet and Wilson, 2010). The empirical findings are robust for various concerns of 

the predictive power of aggregate idiosyncratic volatility in the literature such as small-stock effect, sample-

specific periods, market liquidity premium, business-cycle conditions, and predictor persistency.3  The 

significance of both coefficients cannot be explained by multicollinearity because, otherwise both 

coefficients would be insignificant (smaller t-statistic) with a high-𝑅2  (larger F-statistic) regression. 

Statistically, the combined effect is more consistent with the omitted variable issue, which leads to 

estimation biases of univariate OLS regression.  

     Theoretically, the combined effect of EWIV and VWIV can be understood through Merton’s (1973) 

ICAPM. In his analysis, when the investor dynamically decides her optimal portfolio position, and if there 

exist certain state variables which can forecast future investment opportunities, the expected return of any 

asset (including the market portfolio) is determined by both its covariance with the market portfolio and 

with the innovation of the state variables (Hedegaard and Hodrick, 2014). While the market portfolio is 

easy to observe, the state variables are difficult to detect and thus to value (Rossi and Timmermann, 2015). 

Given that not all state variables are identifiable and that econometricians use a misspecified asset pricing 

model, the residual terms will consist of multiple systematic components, some of which are driven by the 

missed state variables and thus related to equity risk premium. I show in theory that although a single 

aggregate idiosyncratic variance could not capture the covariance risk in the ICAPM, a combination 

between two types of weighted average idiosyncratic variance is able to pin down the conditional 

covariance risk, and therefore is linked to stock market returns. Econometrically, the choice of using EWIV 

and VWIV is also close to the optimal combination to extract the conditional covariance risk among 

individual idiosyncratic variance.4 

     The return predictability based on multiple predictors is not uncommon in the literature. Lettau and 

Ludvigson (2001) use the combination of consumption in excess of labor income and asset wealth (CAY) 

to predict stock returns. Baker, Greenwood, and Wurgler (2003) study a two-predictor model of excess 

bond returns as a function of the lagged short- and long-term debt new issues. Menzly, Santos, and Veronesi 

(2004) propose a general equilibrium model to prove that the predictive regressions for returns should 

include both dividend yield and consumption/price ratio to disentangle the effect that changes in risk 

preference and expected dividend growth have on prices and returns. Santos and Veronesi (2005) develop 

a model where stock returns are predicted by labor income to consumption and by dividend yield. Ang and 

                                                           
3 More information can be found in Bali, Cakici, Yan, and Zhang (2005), Wei and Zhang (2007), Amihud,Hurvich, and Wang 

(2008), and Bekaert, Hodrick, and Zhang (2012). 
4 The detailed explanation is provided in Section 4.1. 



4 

 

Bekaert (2007) show that the predictive ability of dividend yield is best seen in a bivariate regression with 

short rates at short horizons. Guo and Savickas (2008) run a bivariate regression of stock market returns on 

both market and idiosyncratic volatility. Using a latent variable approach within a present-value model, 

Van Binsbergen and Koijen (2010) estimate the expected stock market return as a function of both lagged 

dividend-price ratio and lagged dividend growth rate.5 

     Guo and Savickas (2008) found that when combined with stock market volatility (SMV), value-weighted 

idiosyncratic volatility (VWIV) is negatively related to aggregate stock returns, although SMV and EWIV 

jointly do not work well.6 My explanation is different from theirs. While they argue VWIV is a proxy for 

the volatility of the missing factor, I contend that VWIV is a proxy for a combination of the variance of the 

hedge portfolio and the covariance of the hedge portfolio with the market portfolio. Because both terms are 

time-varying, we need to construct another variable with the same components to figure out the conditional 

covariance risk. Theoretically, both EWIV and VWIV are not redundant when SMV is included in the 

model. Empirically, the predictive power of both EWIV and VWIV is robust when SMV is controlled in 

the regression. 

     In addition to time-series stock return predictability, I also find cross-sectional evidence to support the 

hypothesis that the combined effect of EWIV and VWIV is consistent with Merton’s ICAPM. The analysis 

in Section 2 conjectures that under certain conditions, the combination of EWIV and VWIV can help 

pinpoint conditional risk exposures to the hedge portfolio, without identifying state variables. Consistent 

with the theoretical prediction, by running the time-series regression of individual stock returns on both 

EWIV and VWIV and sorting firms into quintile based on the firm loadings, I find that firms in the highest 

quintile earn average returns 7.88% per year higher than those in the lowest quintile. The cross-sectional 

evidence further confirms that the explanation of the combined effect is consistent with Merton’s ICAPM. 

     My study contributes to estimating the conditional covariance risk as well. A large literature has 

proposed different ways to estimate the conditional market variance,7 but far less work has been undertaken 

on estimating the conditional covariance in the ICAPM. A key hurdle in measuring the conditional 

covariance is the difficulty in identifying the hedge portfolio. Scruggs (1998) uses a two-factor GARCH-

in-mean model to estimate covariance risk where the nominal risk-free rate drives movements in the 

conditional covariance. Guo and Whitelaw (2006) assume that the conditional covariance is a linear 

                                                           
5 More advanced techniques are also applied to deal with omitted and latent variable problems in the literature, such as Kelly and 

Pruitt (2013), Kelly and Pruitt (2015), Light, Maslov, and Rytchkov (2017) and Giglio and Xiu (2018). 
6 See Table 4 in Guo and Savicaks (2008). 

7 For example, French, Schwert, and Stambaugh (1987), Bali and Peng (2004), Ghysels, Santa-Clara, and Valkanov (2005), 

Andersen, Bollserslev, and Diebold, and Labys (2003), Glosten, Jagannathan, and Runkle (1993), Nelson (1991), Engle and Ng 

(1993), Hansen and Richard (1987), Harvey (2001), Ludvigson and Ng (2007). 
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function of a vector of observable state variables. Lo and Wang (2006) creatively pinpoint the hedge 

portfolio using weekly volume and return data. Bali and Engle (2010) extend the estimation to a model with 

dynamic conditional correlations. Rossi and Timmermann (2015) propose a method for constructing the 

conditional covariance risk using a daily summary measure of economic activity to track time-varying 

investment opportunities. Differing from theirs, my study provides an alternative approach to estimate the 

conditional covariance risk through the combination of two types of aggregate idiosyncratic variance. 

Compared with other proposals, my approach has several advantages: it is model-free and the estimation is 

feasible at high frequency such as daily and weekly. 

     This paper also contributes to how to measure tail risk. Motivated by the power-law distribution, Kelly 

and Jiang (2014) propose a measure of time-varying tail risk through the cross-section of stock returns. 

They find that the proposed tail index has strong predictive power for aggregate stock returns and can also 

explain the cross-sectional variation of stock returns. Chapman, Gallmeyer, and Martin (2018) raise some 

empirical concerns regarding the explanation and robustness of this variable. One of their main arguments 

is that the tail index proposed by Kelly and Jiang (2014) explains the cross-section of the discount rate 

component rather than the cash-flow component, thus contradicting most of the theoretical motivations for 

tail risk such as the modified long-run risk model and the disaster risk model.8 In contrast, Chapman, 

Gallmeyer, and Martin (2018) found that the tail index is closely related to the level and slope of the term 

structure. An extension of my theoretical analysis in Section 2 provides an alternative explanation of the 

debate regarding the tail risk measure. I conjecture that the asset pricing implications of the variable 

proposed by Kelly and Jiang (2014) can also be understood under the framework of Merton’s ICAPM.9 

The alternative hypothesis can justify both the time-series and cross-sectional implications of the tail risk 

variable, and at the same time justify why Chapman, Gallmeyer, and Martin (2018) find that the predictive 

power of the tail risk measure comes through the discount rate channel rather than the cash-flow channel. 

     Last but not least, my paper contributes to the time-series return prediction literature as well. Recent 

papers find more evidence that stock market returns are predictable in both short- and long-term horizons, 

although most of the predictors either lose the significance in recent years (Goyal and Welch, 2008) or are 

only available for short-sample periods.10 By collecting data from both the Center for Research in Security 

Prices (CRSP) and Global Financial Data (GFD), I provide new and strong empirical evidence that stock 

market returns are predictable with consistent performance and sufficient long-sample periods from 1815 

to 2018, over two centuries. The return prediction by the combination of EWIV and VWIV exists at daily 

                                                           
8 Most of those models are motivated through the cash-flow channel such as Barro (2006), Gabaix (2012), Wachter (2013), Bansal 

and Yaron (2004), Bansal and Shaliastovich (2011), and Drechsler and Yaron (2011).  
9 The detailed investigation is shown in Section 5. 
10 For example, most of the option predictors are only available since 1990. 
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and weekly frequency as well. Previous studies find mixed evidence regarding stock return predictability 

before 1925. Goetzmann, Ibbotson, and Peng (2001) estimate an alternative stock index for the New York 

Stock Exchange between 1815 and 1925 and find little evidence of return prediction. Chen (2009) studies 

the U.S. stock market return prediction by dividend growth between 1872 and 2005, and documents that 

returns are largely unpredictable before 1926. Using comprehensive databases, Goleza and Koudijs (2018) 

found strong evidence of return prediction by dividend yield for the past four centuries. Different from the 

previous studies focus on dividend yield, my paper examines the conditional covariance risk, which 

complements their studies and provides strong support for the hypothesis of time-varying risk premium. 

The variation of equity risk premium is consistent with Merton’s ICAPM that investors are seeking to hedge 

against the shortfalls in consumption or against changes in the future investment opportunity sets.  

     The remainder of the paper is organized as follows. Section 2 derives the theoretical framework of the 

relationship between the combination of EWIV and VWIV and conditional covariance risk in the ICAPM. 

Section 3 provides both in-sample and out-of-sample time-series empirical evidence. Section 4 conducts 

various robustness checks, revisits previous studies in the literature, and discusses asset pricing implications 

at cross-section. Section 5 examines the relationship between the conditional covariance risk and the tail 

risk proposed by Kelly and Jiang (2014). Section 6 provides a simulation study based on the theoretical 

framework in Section 2. Section 7 concludes the paper. 

 

2. Theoretical Motivation 

The derivation begins with the discrete-time version of Merton’s ICAPM. By analyzing the dynamic 

optimal portfolio choice of the representative agent, Merton (1973) suggests the expression of the 

conditional expected return on asset i as: 

𝐸𝑡(𝑅𝑖,𝑡+1) = 𝛾𝑀𝐶𝑜𝑣𝑡(𝑅𝑖,𝑡+1, 𝑅𝑀,𝑡+1) +∑𝛾𝑘𝐶𝑜𝑣𝑡(𝑅𝑖,𝑡+1, Δ𝑍𝑘,𝑡+1)

𝐾

𝑘=1

, 𝑖 = 1,… ,𝑁,      (1) 

where 

𝑅𝑖,𝑡+1 is the excess return (rates of return minus a risk-free rate) for asset i, 

𝑅𝑀,𝑡+1 = ∑ 𝑤𝑖,𝑡𝑅𝑖,𝑡+1
𝑁
𝑖=1  is the market excess return, where 𝑤𝑖,𝑡 is the market portfolio’s weight for asset i,  

𝑍𝑘,𝑡+1 stands for certain state variable k, which contains information about future investment opportunities,   

𝛾𝑀 is the relative risk aversion of the representative agent, assumed to be constant, 
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𝛾𝑘 is the weighted average across investors of their state-variable aversions, assumed to be constant as well, 

𝐸𝑡 is the conditional expectation operator on information at time t, 

𝐶𝑜𝑣𝑡 is the conditional covariance operator on information at time t. 

     Equation (1) has been deduced in many papers such as Merton (1973), Long (1974), and Cox, Ingersoll, 

and Ross (1985). The ICAPM predicts that the expected return on asset i is determined by not only its 

covariance with the market portfolio but also its covariance with the innovation of certain state variables, 

which are linked to future investment opportunities (e.g., aggregate stock returns or volatility). Equation (1) 

can be used to derive the conditional equity risk premium: 

𝐸𝑡(𝑅𝑀,𝑡+1) = 𝛾𝑀𝑉𝑎𝑟𝑡(𝑅𝑀,𝑡+1) +∑𝛾𝑘𝐶𝑜𝑣𝑡(𝑅𝑀,𝑡+1, Δ𝑍𝑘,𝑡+1)

𝐾

𝑘=1

, (2) 

     where 𝑉𝑎𝑟𝑡 stands for the conditional variance operator on information at time t. For simplicity, I will 

use 𝜇 to denote the expected return and 𝜎2 to denote the (co)variance term for the rest of the derivations. 

𝜇𝑖,𝑡 , 𝜇𝑀,𝑡 , 𝜇𝐻,𝑡 (𝜎𝑖,𝑡 , 𝜎𝑀,𝑡 , 𝜎𝐻,𝑡) are the conditional expected excess return (volatility) of asset 𝑖, the market 

portfolio, and the hedge portfolio at time t. 𝜎𝑖𝑀,𝑡, 𝜎𝑖𝐻,𝑡, 𝜎𝑀𝐻,𝑡 stand for the covariance between any two of 

them.  

     Aside from the traditional risk-return tradeoff based on the CAPM, the ICAPM states that the conditional 

equity risk premium is determined not only by the conditional variance of the market portfolio but also by 

the conditional covariance of the market portfolio with the innovation of the state variables. Although 

𝜎𝑀,𝑡
2  𝑎𝑛𝑑 𝜎𝑀Δ𝑍𝑘,𝑡 are time-varying, since both variables are very persistent and stationary over time, one 

would expect empirically that either the variance term or the covariance terms can predict future aggregate 

realized stock returns in time series. Equation (2) can be simplified to a two-factor model by creating a new 

giant covariance term including all state variables: 

𝜇𝑀,𝑡 = 𝛾𝑀𝜎𝑀,𝑡
2 + 𝐶𝑜𝑣𝑡 (𝑅𝑀,𝑡+1,∑ 𝛾𝑘

𝐾

𝑘=1

Δ𝑍𝑘,𝑡+1) . (3) 

     Without loss of generality, in the following analysis, I consider the case of 𝐾 = 1. In practice, since the 

state variable (𝑍𝐾) is not tradeable, people often project the innovation of the state variable to a factor 

mimicking portfolio, namely a hedge portfolio, which is correlated with future investment opportunities. 

Based on the two traded portfolios, the ICAPM can be expressed as: 

𝜇𝑖,𝑡 = 𝛾𝑀𝜎𝑖𝑀,𝑡 + 𝛾𝐻𝜎𝑖𝐻,𝑡 .         (4) 
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     Note that the hedge portfolio has the maximum absolute correlation with the state variables, but not 

perfectly correlated with them. Nevertheless, previous studies show that 𝜎𝑖Δ𝑍,𝑡  and 𝜎𝑖𝐻,𝑡  are linearly 

correlated (Ingersoll, 1987, p.218), thus not impacting my main conclusion. Based on equation (4), the 

corresponding conditional equity risk premium can be written as: 

𝜇𝑀,𝑡 = 𝛾𝑀𝜎𝑀,𝑡
2 + 𝛾𝐻𝜎𝑀𝐻,𝑡.       (5)      

     When multiple state variables are involved in Merton’s ICAPM, 𝜎𝑀𝐻,𝑡 can be treated as a giant hedge 

portfolio which hedges the combination of all state variables: 𝜎𝑀𝐻,𝑡 ∝ 𝐶𝑜𝑣𝑡(𝑅𝑀,𝑡+1, ∑ 𝛾𝑘
𝐾
𝑘=1 Δ𝑍𝑘,𝑡+1).       

     Equation (4) can be expressed as the beta representation: 

𝜇𝑖,𝑡 = 𝛽𝑖𝑀,𝑡𝜇𝑀,𝑡 + 𝛽𝑖𝐻,𝑡𝜇𝐻,𝑡 .             (6) 

     Assuming rational expectations, the realized return generating process of (6) is given by: 

𝑅𝑖,𝑡+1 = 𝛽𝑖𝑀,𝑡(𝜇𝑀,𝑡 + 𝜀𝑀,𝑡+1) + 𝛽𝑖𝐻,𝑡(𝜇𝐻,𝑡 + 𝜀𝐻,𝑡+1) + 𝜀𝑖,𝑡+1, (7)    

where 𝜀𝑀,𝑡+1, 𝜀𝐻,𝑡+1, 𝑎𝑛𝑑 𝜀𝑖,𝑡+1 are exogenous shocks for the market portfolio, the hedge portfolio, and 

asset i. The cross-sectional distribution of the idiosyncratic shock is assumed to be normal and stable over 

time (Ferson, Kandel, and Stambaugh, 1987). A sufficient condition for the assumption is that the joint 

distribution of the returns and the relevant information set is a stationary normal distribution. It is worth 

noting that the risk exposure of asset i to the market portfolio is affected by the extra covariance term in the 

ICAPM. Based on Merton (1990, P.390), the risk exposures under the ICAPM are: 

𝛽𝑖𝑀,𝑡 =
𝜎𝑖𝑀,𝑡𝜎𝐻,𝑡

2 − 𝜎𝑖𝐻,𝑡𝜎𝑀𝐻,𝑡

𝜎𝐻,𝑡
2 𝜎𝑀,𝑡

2 − 𝜎𝑀𝐻,𝑡
2 ,    𝛽𝑖𝐻,𝑡 =

𝜎𝑖𝐻,𝑡𝜎𝑀,𝑡
2 − 𝜎𝑖𝑀,𝑡𝜎𝑀𝐻,𝑡

𝜎𝐻,𝑡
2 𝜎𝑀,𝑡

2 − 𝜎𝑀𝐻,𝑡
2 , 

where the market portfolio and the hedge portfolio are not necessarily orthogonal to each other. In the case 

of 𝜎𝑀𝐻,𝑡 = 0, both the equity risk premium and expected stock return will not be affected by the covariance 

term. In the following derivations, I assume that 𝜎𝑀𝐻,𝑡 ≠ 0. Note that since 𝜎𝑀𝐻,𝑡 , 𝜎𝐻,𝑡
2 , 𝑎𝑛𝑑 𝜎𝑀,𝑡

2  are time-

varying, the risk exposures change over time as well, although previous studies find that the risk exposures 

are relatively stable and that most of the predictable variation in returns are attributed to predictable 

variation in risk premia instead of time-varying risk exposures (Ferson and Harvey, 1991; Evans, 1994). 

Their empirical studies are also important motivations to decompose idiosyncratic variance into risk 

exposures (persistent parts) and other variables. 

     While the market portfolio can easily be observed, the hedge portfolio is difficult to estimate. Assume 

that econometricians only use the CAPM as the asset pricing model,   
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𝑅𝑖,𝑡+1 = 𝑏𝑖𝑀,𝑡(𝜇𝑀,𝑡 + 𝜀𝑀,𝑡+1) + 𝜂𝑖,𝑡+1, (8) 

where 𝑏𝑖𝑀,𝑡 =
𝜎𝑖𝑀,𝑡

𝜎𝑀,𝑡
2  is the misspecified risk exposures; 𝜂𝑖,𝑡+1 is the misspecified idiosyncratic shock for 

asset i under the CAPM. I first show that both the first and the second conditional moments of the 

misspecified firm idiosyncratic shock can be expressed as a combination of conditional variance of the 

hedge portfolio and the conditional covariance between the market portfolio and the hedge portfolio. 

 

Proposition 1. Suppose that the true conditional asset pricing model follows Merton’s ICAPM defined in 

(7), but econometricians use the conditional CAPM as the asset pricing model defined in (8). The first and 

second conditional moment of the misspecified firm idiosyncratic shock 𝜂𝑖,𝑡+1 are given by: 

𝐸𝑡(𝜂𝑖,𝑡+1) = 𝛾𝐻𝑏𝑖𝐻,𝑡𝜎𝐻,𝑡
2 + 𝛾𝐻𝑏𝑖𝑀,𝑡𝜎𝑀𝐻,𝑡, (9) 

𝑉𝑎𝑟𝑡(𝜂𝑖,𝑡+1) = 𝛽𝑖𝐻,𝑡𝑏𝑖𝐻,𝑡𝜎𝐻,𝑡
2 + 𝛽𝑖𝐻,𝑡𝑏𝑖𝑀,𝑡𝜎𝑀𝐻,𝑡 + 𝜎𝜀𝑖,𝑡

2 , (10) 

where 

{
 
 

 
 𝛽𝑖𝑀,𝑡 =

𝜎𝑖𝑀,𝑡𝜎𝐻,𝑡
2 − 𝜎𝑖𝐻,𝑡𝜎𝑀𝐻,𝑡

𝜎𝐻,𝑡
2 𝜎𝑀,𝑡

2 − 𝜎𝑀𝐻,𝑡
2

𝛽𝑖𝐻,𝑡 =
𝜎𝑖𝐻,𝑡𝜎𝑀,𝑡

2 − 𝜎𝑖𝑀,𝑡𝜎𝑀𝐻,𝑡

𝜎𝐻,𝑡
2 𝜎𝑀,𝑡

2 − 𝜎𝑀𝐻,𝑡
2

,

{
 

 𝑏𝑖𝑀,𝑡 =
𝜎𝑖𝑀,𝑡

𝜎𝑀,𝑡
2

𝑏𝑖𝐻,𝑡 =
𝜎𝑖𝐻,𝑡

𝜎𝐻,𝑡
2

 . 

 

     Proofs are provided in the Appendix. Proposition 1 shows that the misspecified idiosyncratic variance 

contains at least two common components, but only one of them (i.e., 𝜎𝑀𝐻,𝑡) is related to the conditional 

equity risk premium. Corollary 1.1 below proves how two types of different weighted-average idiosyncratic 

variance can capture the conditional covariance in Merton’s ICAPM, thus are linked to stock market returns. 

In my study, I use equal-weighted average idiosyncratic variance (EWIV) and value-weighted average 

idiosyncratic variance (VWIV) as an example. Theoretically, the weighting schemes are not necessarily 

restricted to this choice. The robustness checks of using alternative weighting schemes are provided in 

Section 4. 

 

Corollary 1.1 Suppose that the true conditional asset pricing model follows Merton’s ICAPM defined in 

(7), but econometricians use the conditional CAPM as the asset pricing model defined in (8). The 
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conditional variance of the hedge portfolio and the conditional covariance between the market portfolio 

and the hedge portfolio are given by 

𝜎𝐻,𝑡
2 =

𝐵𝑡
𝐸𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 𝑉𝑊𝐼𝑉𝑡
̃ −

𝐵𝑡
𝑉𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 𝐸𝑊𝐼𝑉𝑡
̃ , (11) 

𝜎𝑀𝐻,𝑡 =
𝐴𝑡
𝑉𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 𝐸𝑊𝐼𝑉𝑡
̃ −

𝐴𝑡
𝐸𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 𝑉𝑊𝐼𝑉𝑡
̃ , (12) 

where 

{
 
 

 
 
𝐴𝑡
𝐸𝑊 =∑

1

𝑁𝑡
𝛽𝑖𝐻,𝑡𝑏𝑖𝐻,𝑡

𝑁𝑡

𝑖=1

𝐴𝑡
𝑉𝑊 =∑𝑤𝑖,𝑡𝛽𝑖𝐻,𝑡𝑏𝑖𝐻,𝑡

𝑁𝑡

𝑖=1

,

{
 
 

 
 
𝐵𝑡
𝐸𝑊 =∑

1

𝑁𝑡
𝛽𝑖𝐻,𝑡𝑏𝑖𝑀,𝑡

𝑁𝑡

𝑖=1

𝐵𝑡
𝑉𝑊 =∑𝑤𝑖,𝑡𝛽𝑖𝐻,𝑡𝑏𝑖𝑀,𝑡

𝑁𝑡

𝑖=1

,

{
 
 

 
 
𝐸𝑊𝐼𝑉𝑡 =∑

1

𝑁𝑡
𝑉𝑎𝑟𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡

𝑖=1

𝑉𝑊𝐼𝑉𝑡 =∑𝑤𝑖,𝑡𝑉𝑎𝑟𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡

𝑖=1

,   

{
 
 

 
 
Ω𝑡
EW =∑

1

𝑁𝑡
𝜎𝜀𝑖,𝑡
2

𝑁𝑡

𝑖=1

Ω𝑡
𝑉𝑊 =∑𝑤𝑖,𝑡𝜎𝜀𝑖,𝑡

2

𝑁𝑡

𝑖=1

 , {
𝐸𝑊𝐼𝑉𝑡̃ =𝐸𝑊𝐼𝑉𝑡 − Ω𝑡

𝐸𝑊

𝑉𝑊𝐼𝑉𝑡̃ =𝑉𝑊𝐼𝑉𝑡 − Ω𝑡
𝑉𝑊 . 

 

     Proofs and corresponding assumptions are provided in the Appendix. Since the weighting schemes are 

not perfectly linearly correlated (i.e., 𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 ≠ 0). The solution exists and is unique. Both 

the conditional variance of the hedge portfolio and the conditional covariance of the market portfolio with 

the hedge portfolio are a linear combination of EWIV and VWIV. Empirically, the second conditional 

moment of 𝜂𝑖,𝑡+1 can be estimated by the standard deviation of the realized idiosyncratic shocks from the 

CAMP using the daily returns within each month: 

𝑉𝑎𝑟𝑡̂(𝜂𝑖,𝑡+1) =
1

21
∑(𝑅𝑖,𝑡−𝑠 − 𝑏̂𝑖𝑀,𝑡𝑅𝑀,𝑡−𝑠)

2
21

𝑠=0

.  (13) 

     Because both 𝜎𝐻,𝑡
2  and 𝜎𝑀𝐻,𝑡 are time-varying and because only 𝜎𝑀𝐻,𝑡 matters for the conditional equity 

risk premium, a single aggregate idiosyncratic variance (EWIV or VWIV) is a noisy proxy for 𝜎𝑀𝐻,𝑡, and 

therefore is inconsistent in its performance forecasting future stock market returns. This is why previous 

research obtains mixed empirical findings of the predictive power of aggregate idiosyncratic variance. In 

Section 6, I conduct a simulation study to illustrate the estimation bias of the omitted-variable issue. 
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     Based on Proposition 1, besides the conditional misspecified idiosyncratic variance, the first conditional 

moment of the misspecified idiosyncratic shock can also be used to estimate 𝜎𝑀𝐻,𝑡. Therefore, it is feasible 

to estimate the common component using the cross-section of individual residual returns, instead of 

idiosyncratic variance. 

 

Corollary 1.2 Suppose that the true conditional asset pricing model follows Merton’s ICAPM defined in 

(7), but econometricians use the conditional CAPM as the asset pricing model defined in (8). The 

conditional variance of the hedge portfolio and the conditional covariance between the market portfolio 

and the hedge portfolio are given by 

𝜎𝐻,𝑡
2 =

𝐺𝑡
𝐸𝑊

𝐹𝑡
𝑉𝑊𝐺𝑡

𝐸𝑊 − 𝐹𝑡
𝐸𝑊𝐺𝑡

𝑉𝑊 𝑉𝑊𝐴𝑃𝑡 −
𝐺𝑡
𝑉𝑊

𝐹𝑡
𝑉𝑊𝐺𝑡

𝐸𝑊 − 𝐹𝑡
𝐸𝑊𝐺𝑡

𝑉𝑊 𝐸𝑊𝐴𝑃𝑡 , (14)  

𝜎𝑀𝐻,𝑡 =
𝐹𝑡
𝑉𝑊

𝐹𝑡
𝑉𝑊𝐺𝑡

𝐸𝑊 − 𝐹𝑡
𝐸𝑊𝐺𝑡

𝑉𝑊 𝐸𝑊𝐴𝑃𝑡 −
𝐹𝑡
𝐸𝑊

𝐹𝑡
𝑉𝑊𝐺𝑡

𝐸𝑊 − 𝐹𝑡
𝐸𝑊𝐺𝑡

𝑉𝑊 𝑉𝑊𝐴𝑃𝑡 , (15)  

where 

{
 
 

 
 
𝐸𝑊𝐴𝑃𝑡 =∑

1

𝑁𝑡
𝐸𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡

𝑖=1

𝑉𝑊𝐴𝑃𝑡 =∑𝑤𝑖,𝑡𝐸𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡

𝑖=1

,

{
 
 

 
 
𝐹𝑡
𝐸𝑊 =∑

1

𝑁𝑡
𝛾𝐻𝑏𝑖𝐻,𝑡

𝑁𝑡

𝑖=1

𝐹𝑡
𝑉𝑊 =∑𝑤𝑖,𝑡𝛾𝐻𝑏𝑖𝐻,𝑡

𝑁𝑡

𝑖=1

,

{
 
 

 
 
𝐺𝑡
𝐸𝑊 =∑

1

𝑁𝑡
𝛾𝐻𝑏𝑖𝑀,𝑡

𝑁𝑡

𝑖=1

𝐺𝑡
𝑉𝑊 =∑𝑤𝑖,𝑡𝛾𝐻𝑏𝑖𝑀,𝑡

𝑁𝑡

𝑖=1

.  

 

     Proofs and corresponding assumptions are provided in the Appendix. The result is similar to Corollary 

1.1, except that I use the first conditional moment to estimate the conditional covariance. Empirically, the 

first conditional moment of the misspecified idiosyncratic shock is similar to the intercept (𝛼) from the 

Market model using daily returns within each month:  

𝐸𝑡̂(𝜂𝑖,𝑡+1) = 𝛼̂𝑖,𝑡 =
1

21
∑(𝑅𝑖,𝑡−𝑠 − 𝑏̂𝑖𝑀,𝑡𝑅𝑀,𝑡−𝑠)

21

𝑠=0

.  (16) 

     While the focus of my paper is idiosyncratic variance, I will discuss the implication of Corollary 1.2 in 

Section 5, when examing the tail risk measure. Thereafter, I will use EWIV and VWIV as the primary setup 

for the derivations in this section. The conclusion is similar if I replace them with the first-moment case. 
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Proposition 2 Suppose that the true conditional asset pricing model follows Merton’s ICAPM defined in 

(7), but econometricians use the conditional CAPM as the asset pricing model defined in (8). The 

conditional equity risk premium can be expressed as: 

𝜇𝑀,𝑡 = 𝛾𝑀𝜎𝑀,𝑡
2 + 𝛾𝐻𝜎𝑀𝐻,𝑡 = 𝛾𝑀 × 𝜎𝑀,𝑡

2 + 𝐶𝑡 × 𝐸𝑊𝐼𝑉𝑡̃ −𝐷𝑡 × 𝑉𝑊𝐼𝑉𝑡̃ , (17) 

where 

𝐶𝑡 =
𝛾
𝐻
𝐴𝑡
𝑉𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 ,    𝐷𝑡 =
𝛾
𝐻
𝐴𝑡
𝐸𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊. 

     Similarly, the portfolio/firm conditional expected excess return is given by: 

𝜇𝑖,𝑡 = 𝛽𝑖𝑀,𝑡𝜇𝑀,𝑡 + 𝐶𝑖,𝑡 × 𝐸𝑊𝐼𝑉𝑡̃ −𝐷𝑖,𝑡 × 𝑉𝑊𝐼𝑉𝑡̃ , (18) 

where 

𝐶𝑖,𝑡 = 𝛽𝑖𝐻,𝑡
𝛾𝑀𝐴𝑡

𝑉𝑊 − 𝛾𝐻𝐵𝑡
𝑉𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 ,    𝐷𝑖,𝑡 = 𝛽𝑖𝐻,𝑡
𝛾𝑀𝐴𝑡

𝐸𝑊 − 𝛾𝐻𝐵𝑡
𝐸𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊. 

 

     Proofs and corresponding assumptions are given in the Appendix. Note that 𝜎𝑀𝐻,𝑡is replaced by the 

combination of 𝐸𝑊𝐼𝑉̃ 𝑎𝑛𝑑 𝑉𝑊𝐼𝑉̃, since the latter are identifiable. As to the coefficients, if 𝐴𝑡
𝐸𝑊𝑎𝑛𝑑 𝐴𝑡

𝑉𝑊 

have the same sign, the coefficients of EWIV and VWIV are supposed to be opposite each other.  

     It is worth noting that Proposition 2 has important implications on estimating risk exposures of the 

missing factors for the conditional ICAPM. Since the hedge portfolio is generally unobservable, how to 

estimate the risk premium of the hedge portfolio and its corresponding risk exposure is challenging. 

Previous studies focus on identifying state variables and estimate the risk exposures based on the covariance 

term with the innovation of certain state variables. Instead of looking for state variables, Proposition 2 

shows that one can estimate conditional risk exposures of the hedge portfolio based on the conditional 

misspecified idiosyncratic variance. 

 

Corollary 2.1 Suppose that the true conditional asset pricing model follows Merton’s ICAPM defined in 

(7), but econometricians use the conditional CAPM as the asset pricing model defined in (8). The 

conditional risk exposure of firm/portfolio i to the missed hedge portfolio (𝛽𝑖𝐻,𝑡) is given by one of the 

following formulas: 



13 

 

{
 
 
 

 
 
 𝛽𝑖𝐻,𝑡 = 𝐶𝑖,𝑡 ×

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊

𝛾𝑀𝐴𝑡
𝑉𝑊 − 𝛾𝐻𝐵𝑡

𝑉𝑊 ∝ 𝐶𝑖,𝑡 at cross-section

𝛽𝑖𝐻,𝑡 = 𝐷𝑖,𝑡 ×
𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊

𝛾𝑀𝐴𝑡
𝐸𝑊 − 𝛾𝐻𝐵𝑡

𝐸𝑊 ∝ 𝐷𝑖,𝑡  at cross-section

𝛽𝑖𝐻,𝑡 =
(𝐴𝑡

𝑉𝑊𝐵𝑡
𝐸𝑊 − 𝐴𝑡

𝐸𝑊𝐵𝑡
𝑉𝑊)

𝛾𝐻
2 (𝐷𝑡 × 𝐶𝑖,𝑡 − 𝐶𝑡 × 𝐷𝑖,𝑡) ∝ (𝐷𝑡 × 𝐶𝑖,𝑡 − 𝐶𝑡 × 𝐷𝑖,𝑡) at cross-section

 (19) 

where 𝐶𝑡, 𝐶𝑖,𝑡 , 𝐷𝑡, 𝑎𝑛𝑑 𝐷𝑖,𝑡 are based on Proposition 2. 

 

     Proofs and corresponding assumptions are given in the Appendix. Corollary 2.1 predicts that by running 

the regressions of (17) and (18), we are able to obtain a proxy for the risk exposure to the hedge portfolio 

from one of the coefficients in (19), which I will provide the empirical supports in Section 4.5. It is worth 

noting that since (𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊) are not identifiable, Corollary 2.1 does not give the explicit 

formula for 𝛽𝑖𝐻,𝑡. Instead, one can only infer the relative rank of 𝛽𝑖𝐻,𝑡 at cross-section by assuming that the 

sign of (𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊) does not change over time. In addition to this, it should be noted that 

Corollary 2.1 only applies to the conditional model. As to the unconditional case, since the time-varying 

risk exposure and the risk premium are correlated, there are extra factors appearing in the unconditional 

version (Jagannathan and Wang, 1996). Nevertheless, the empirical results in Section 4.5 strongly support 

Corollary 2.1 that EWIV and VWIV have important cross-sectional implications on stock returns. 

 

3. Time-Series Empirical Evidence 

3.1 Data, Variable, and Summary Statistics 

Motivated by diverse goals, researchers define idiosyncratic volatilities in different ways. To make my 

empirical results neat and mostly comparable to other papers in the literature, when conducting the 

empirical tests, I use idiosyncratic volatility instead of idiosyncratic variance and calculate it based on the 

CAPM model.11 The empirical results are robust if I use idiosyncratic variance or log-variance of stock 

returns. 

     From 1926 to 2018, for each stock at the end of each month, I use the past 30-day return observations 

to fit the CAPM model. The data of stock returns, market capitalization, share code, and exchange code are 

obtained from the CRSP. The stock market excess return (MKTRF) is downloaded from Kenneth French’s 

website. The number of return observations within each month should be greater than 20. The idiosyncratic 

                                                           
11 In this paper, the “volatility” represents the standard deviation of stock returns. 
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volatility of each stock is then defined as the standard deviation of the residuals from the benchmark 

model.12 The value-weighted idiosyncratic volatility (VWIV) and equal-weighted idiosyncratic volatility 

(EWIV) are simply obtained by taking the cross-sectional average based on either market-capitalization 

weights at the end of the previous month or equal weights. The daily EWIV and VWIV are constructed in 

a similar way at the daily frequency. When constructing aggregate idiosyncratic volatility, I include all 

available securities traded in the U.S. stock exchanges, so that it is closer to the market portfolio.13 

     In order to construct the sample before 1926, I collect monthly observations including stock price, stock 

return, and market capitalization from the Global Financial Data (GFD), which provides U.S. stock data 

beginning from 1790. The monthly firm idiosyncratic volatility before 1926 is estimated using a 48-month 

rolling window of return observations to fit the CAPM. The market excess returns between 1871 to 1925 

are obtained from Amit Goyal’s website. From 1815 to 1870, there were no liquid monthly short-term 

government securities (Golez and Koudijs, 2018). Therefore, I use the raw stock market returns between 

1815 and 1870. The data is obtained from G.William Schwert’s website (Schwert, 1990). The value-

weighted idiosyncratic volatility (VWIV) and equal-weighted idiosyncratic volatility (EWIV) are simply 

derived by taking the cross-sectional average based on either market-cap weights at the end of the previous 

month or equal weights. When constructing aggregate idiosyncratic volatility, I include all available 

securities traded in the U.S. stock exchanges with a stock price greater than $1. 

     The followings are the figures of monthly and daily EWIV and VWIV, and the corresponding summary 

statistics. As a comparison, I also estimate the stock market volatility (SMV) based on the past 30-day daily 

return observations of MKTRF. 

[Insert Figure 1 and Figure 2] 

     Since the data of CRSP before 1963 is subject to quality issues (Shumway, 1997), the main sample 

period is from 1963 to 2018. The empirical results with longer periods from 1815 to 1962 are provided as 

robustness checks. 

[Insert Table 1] 

     Figures 1 and 2 show that EWIV is always higher than VWIV, which is consistent with previous findings 

in the literature that small firms’ volatilities are on average higher than big firms’ volatilities. In the 

meantime, SMV shares a lower correlation with either EWIV or VWIV. All the volatility measures shoot 

                                                           
12 The empirical results are robust if I use other types of definitions such as total volatility proposed by French et al (1987), 

idiosyncratic volatility based on different benchmarks (e.g., Fama-French three/five-factor model) and frequencies (e.g., daily or 

monthly), and total variance used in Chen and Petkova (2012). 
13 The empirical results are robust if I only include the common stocks. 
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up during the recession periods and revert back to the normal level thereafter. As expected, EWIV and 

VWIV are highly correlated with each other (correlation equals to 0.893). However, one can see that EWIV 

and VWIV also perform differently sometimes. For example, EWIV shoots up much higher than VWIV 

during recessions. The divergence between EWIV and VWIV supports the assumption that the variance 

and covariance of the hedge portfolio are time-varying. 

     One important issue for aggregate idiosyncratic volatility is whether there exists a trend of aggregate 

idiosyncratic volatility. The trend of aggregate idiosyncratic volatility is first documented by Campbell, 

Lettau, Malkiel, and Xu (2001). By extending the sample period to 2008 and to 23 developed equity markets, 

Bekaert, Hodrick, and Zhang (2012) find no evidence of upward trends in recent periods. I extend both 

studies to examine whether the trend exists for aggregate idiosyncratic volatility. I follow Bekaert, Hodrick, 

and Zhang (2012) and conduct the following test: 

𝑦𝑡 = 𝑏0 + 𝑏1𝑡 + 𝑢𝑡, (20) 

where 𝑦𝑡 is the variable of interest (i.e, EWIV or VWIV), and t is a linear time trend. The null hypothesis 

test is 𝑏1 = 0. Similar to Bekaert, Hodrick, and Zhang (2012), I find no evidence that there is a trend of 

either EWIV or VWIV in recent periods. The t-stat of the coefficient of 𝑏1 is 1.05 and 0.19 for EWIV and 

VWIV respectively. 

 

3.2 In-Sample Empirical Evidence 

The most commonly used multi-period predictive regression follows Fama and French (1988, 1989): 

∑
𝑟𝑡+𝑘
𝐾

𝐾

𝑘=1

≡ 𝑟𝑡,𝑡+𝐾 = 𝑎 + 𝑏 × 𝑋𝑡 + 𝜖𝑡,𝑡+𝐾. (21) 

     Similarly, the bivariate regression can be written as:  

𝑟𝑡,𝑡+𝐾 = 𝑎 + 𝑏1 × 𝑋1,𝑡 + 𝑏2 × 𝑋2,𝑡 + 𝜖𝑡+𝐾,𝑡, (22) 

where 𝑟𝑡+𝑘 is the value-weighted market excess return in logarithm (MKTRF) at time 𝑡 + 𝑘 obtained from 

Kenneth French’s Website; 𝑋𝑡  is the predictor variable of interest; 𝐾  stands for the forecast horizon 

(number of months ahead). I run monthly predictive regressions with K equal to 1, 3, 6, 12, and 24 months. 

When 𝐾 > 1, I correct the serial correlation and conditional heteroscedasticity using the Newey-West 

correction with K-1 lags (Newey and West, 1987). The hypothesis testing is 𝐻0: 𝑏 = 0,𝐻1:  𝑏 ≠ 0. When 
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running regressions, to make the coefficients comparable, I scale all independent variables to have zero 

mean and one standard deviation. Three points are worth mentioning here: 

(1) In Proposition 2, the true predictors are 𝐸𝑊𝐼𝑉̃𝑡 and 𝑉𝑊𝐼𝑉̃𝑡. Since the aggregate true idiosyncratic 

volatility is unable to be observed, I use 𝐸𝑊𝐼𝑉𝑡 and 𝑉𝑊𝐼𝑉𝑡  as predictors in the regression. In 

Appendix B, I show that under certain conditions the effect caused by true idiosyncratic volatility 

is moderate. 

(2) In Proposition 2, the variables on the right-hand side should be estimated based on the conditional 

volatility of the misspecified idiosyncratic shocks. In the empirical tests, I use the lagged volatility 

as a proxy for the conditional variable, which can be justified by the high persistence of the time 

series of aggregate idiosyncratic volatility. The empirical results are robust if I use parametric 

models, such as ARCH or GARCH, to construct the conditional idiosyncratic volatility. 

(3) In Proposition 2, since the coefficients (𝐶𝑡 and 𝐷𝑡) are also time-varying, the predictive regression 

of (21) does not exactly capture the true time-varying coefficients in equation (17). The empirical 

results can only be interpreted as evidence that the variation of EWIV and VWIV is more important 

than the variation of the average risk exposures (i.e., 𝐶𝑡 and 𝐷𝑡 ). One can follow Lettau and 

Lugvigson (2001) to model 𝐶𝑡 and 𝐷𝑡 as a linear function of certain conditional variable 𝑍𝑡 , in 

order to capture the effects from time-varying 𝐶𝑡 and 𝐷𝑡, which is beyond the scope of my study. 

For simplicity and tractability, 𝐶𝑡 and 𝐷𝑡 are assumed to be relatively stable over time.  

     Since there are multiple predictors in the regressions and both of them are highly correlated and 

persistent, the hypothesis test from OLS might be subject to estimation biases. Amihud, Hurvich, and Wang 

(2008) propose an alternative hypothesis-testing method for multiple-predictor regressions in small samples. 

Their approach, the multi-predictor augmented regression method (mARM), shows better performance to 

reject the null hypothesis of no predictive power than those of OLS and bootstrapping method. Therefore, 

I also conduct their test and provide the corresponding mARM statistics as a robustness check for the 

conclusion. The corresponding mARM statistics are provided in Table 2. 

[Insert Table 2] 

     Table 2 provides convincing evidence that although neither EWIV nor VWIV is able to predict stock 

market returns, EWIV and VWIV jointly are strong predictors of aggregate stock returns. The in-sample 

one-month and one-year 𝑅2 are around 1% and 14% respectively. The predictive power of the combination 

cannot be explained by multicollinearity, because if so one should observe that both coefficients are 

insignificant with a high-𝑅2 regression. Instead, the lack of predictive power of EWIV (or VWIV) is more 
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likely driven by the omitted-variable bias, which can be understood by the following example. Suppose that 

the true model is 

𝑅𝑀,𝑡+1 = 𝑎 + 𝛾𝑀 × 𝜎𝑀,𝑡
2 + 𝐶𝑡 × 𝐸𝑊𝐼𝑉𝑡 −𝐷𝑡 × 𝑉𝑊𝐼𝑉𝑡 + 𝑒𝑀,𝑡+1.  (23)    

     When running the predictive regression, suppose that we only include EWIV: 

𝑅𝑀,𝑡+1 = 𝑎 + 𝑏 × 𝐸𝑊𝐼𝑉𝑡 + 𝜈𝑀,𝑡+1, (24) 

the estimation of 𝑏 is given by: 

𝑏 =
𝐶𝑜𝑣(𝑅𝑀,𝑡+1, 𝐸𝑊𝐼𝑉𝑡)

𝑉𝑎𝑟(𝐸𝑊𝐼𝑉𝑡)
= 𝐶𝑡 + 𝛾𝑀 ×

𝐶𝑜𝑣(𝜎𝑀,𝑡
2 , 𝐸𝑊𝐼𝑉𝑡)

𝑉𝑎𝑟(𝐸𝑊𝐼𝑉𝑡)
− 𝐷𝑡 ×

𝐶𝑜𝑣(𝑉𝑊𝐼𝑉𝑡 , 𝐸𝑊𝐼𝑉𝑡)

𝑉𝑎𝑟(𝐸𝑊𝐼𝑉𝑡)
. (25) 

     The estimation bias is driven by two components: 𝜎𝑀,𝑡
2  and 𝑉𝑊𝐼𝑉𝑡. Note that the omitted-variable bias 

does not always lead to insignificant coefficient tests of existing variables unless the omitted variable is 

highly correlated with existing variables with opposite values. Since the correlation between 𝜎𝑀,𝑡
2  and 

EWIV is moderate (44%) and 𝐶𝑡 is empirically positive while 𝛾𝑀 is on-average positive as well, the bias 

caused by 𝜎𝑀,𝑡
2  is moderate and acceptable. On the contrary, VWIV and EWIV are highly correlated (89%) 

and the coefficient of VWIV is very close to that of EWIV with an opposite sign. Therefore, one would 

expect that missing VWIV in the regression will lead to a significant bias to the coefficient estimation for 

EWIV. Empirically, I show that the coefficient of EWIV is highly underestimated if VWIV is missing in 

the regression and vice versa. For example, in Table 2 the univariate regression, the coefficient of EWIV is 

around 0.001. However, the coefficient of EWIV increases to greater than 0.01 in the bivariate regression.  

     In Table 3, I show that the joint predictive power of EWIV and VWIV holds at high frequencies such as 

daily and weekly as well. When running the daily and weekly regressions in Table 3, I add the one-day 

(one-week) lagged stock market return as an extra independent variable to control for positive 

autocorrelation of stock market returns documented by Lo and MacKinlay (1988). Similar to the monthly 

regression, I correct the serial correlation and conditional heteroscedasticity using the Newey-West 

correction with D-1 lags, where D stands for the daily forecast horizon. 

[Insert Table 3] 

     Consistent with Table 2, while neither EWIV nor VWIV is able to predict stock market returns at the 

daily frequency, EWIV and VWIV together create strong signals for future aggregate stock returns. Overall, 

the empirical finding provides persuasive evidence of stock return predictability both with sufficient long-

sample periods and at various forecast horizons. Garci, Mantilla-Garcia, and Martellini (2014) suggest 

computing aggregate idiosyncratic volatility by calculating the cross-sectional standard deviation of 
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individual stock returns. They show that the new predictor can forecast equal-weighted aggregate stock 

returns at the daily frequency, although long-term return prediction has not been found. My paper’s 

motivation and findings are different from theirs. They still treat EWIV and VWIV separately in their tests, 

but I consider EWIV and VWIV together as a proxy for the covariance term in Merton’s ICAPM. 

Empirically, the predictive power is robust if I construct EWIV and VWIV using the method proposed by 

Garcia, Mantilla-Garcia, and Martellini (2014). 

     To investigate whether the combination of EWIV and VWIV is only a proxy for any existing predictor 

in the literature, I run the multiple regressions with the combination of EWIV and VWIV and each of the 

classic predictors found by other papers. The controlling variables include: 22 predictors based on Goyal 

and Welch (2008) from Amit Goyal’s website, stock market volatility (SMV; Guo and Savickas, 2008), 

variance risk premium (VRP; Bollerslev, Tauchen, and Zhou, 2009), lower-bound equity premium (SVIX; 

Martin, 2017), average correlation (Pollet and Wilson, 2010), asset wealth (CAY; Lettau and Ludvigson, 

2001), aggregate stock illiquidity (ILIQ; Chen, Eaton, and Paye, 2018), investor sentiment (Wurgler and 

Baker, 2007), aggregate short interest (SII; Rapach, Ringgenberg, and Zhou, 2016), and aggregate implied 

volatility spread (IVS; Han and Li, 2017). The regression specification is given by: 

𝑟𝑡,𝑡+𝐾 = 𝑎 + 𝑏1 × 𝐸𝑊𝐼𝑉𝑡 + 𝑏2 × 𝑉𝑊𝐼𝑉𝑡 + 𝑏3 × 𝑋𝑖,𝑡 + 𝜖𝑡,𝑡+𝐾 . (26) 

[Insert Table 4] 

     Table 4 shows that after controlling for those selected predictors, EWIV and VWIV retain the 

significance at all forecast horizons. The coefficients of EWIV and VWIV in Table 4 are about the same as 

the corresponding ones in the univariate regressions in Table 2. Furthermore, when stock market volatility 

is included in the regression, it shows significant positive relation with stock market returns, thus supporting 

the positive risk-return tradeoff. 

[Insert Table 5] 

     For return prediction at high frequency, because the number of such predictors is small, I include all 

available predictors and run one multiple regression together at the daily frequency. For example, I include 

VRP by Bollerslev, Tauchen, and Zhou (2009) to differentiate from the diffusion effect. Han and Li (2017) 

found that aggregate implied volatility spread (IVS) between at-the-money call and put equity options can 

strongly predict stock market returns at daily and weekly frequency. Since both variables are constructed 

using volatility, I also control for their variable in my test. The multiple regression is displayed in Table 5. 

 

3.3 Out-of-Sample Performance  
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To alleviate concerns about overfitting and finite sample biases, I conduct out-of-sample tests by separating 

the data sample (1963~2018) into two parts: 1963~1980 as the in-sample estimation period and 1981~2018 

as the out-of-sample performance evaluation period. Starting in January 1981, I run various predictive 

regressions each month using historical data from January 1963 and then compare the out-of-sample 

forecast errors (i.e., differences between the realized market returns and the predicted returns) with those 

from the benchmark model (i.e., historical average).14 The statistical test of equal predictive accuracy in 

nested models is based on Clark and West (2007). The regression details are given by: 

{
𝑟𝑡,𝑡+𝐾 = 𝛼 + 𝛽 × 𝑥𝑡 + 𝜖𝑡,𝑡+𝐾 ,    𝑡 = 1,… , 𝑇0 − 𝐾

𝑟̂𝑡,𝑡+𝐾 = 𝛼̂ + 𝛽̂ × 𝑥𝑡 ,                    𝑡 = 𝑇0, … , 𝑇,
  (27) 

 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘:       𝑟𝑡,𝑡+𝐾
𝐵 =

1

𝑡−𝐾
∑ 𝑟𝑠,𝑠+𝐾
𝑡−𝐾
𝑠=1 ,    𝑡 = 𝑇0, … ,  𝑇,  (28)     

where K is the forecast horizon, 𝑟𝑡,𝑡+𝐾 is the market excess return from time 𝑡 to 𝑡 + 𝐾, 𝑥𝑡 is the value of 

the predictor at time 𝑡; 𝑟̂𝑡,𝑡+𝐾 is the forecasted return based on 𝑥𝑡 from the recursive regression. The out-of-

sample 𝑅2 statistic is defined as 1 minus the ratio of mean squared forecast error of the larger model to that 

of the benchmark model:  

𝑀𝑆𝐹𝐸1 =
1

𝑇 − 𝑇0
∑(𝑟𝑡,𝑡+𝐾 − 𝑟̂𝑡,𝑡+𝐾)

2
𝑇

𝑡=𝑇0

;   𝑀𝑆𝐹𝐸0 =
1

𝑇 − 𝑇0
∑(𝑟𝑡,𝑡+𝐾 − 𝑟𝑡,𝑡+𝐾

𝐵 )
2

𝑇

𝑡=𝑇0

, (29)   

𝑅𝑂𝑆
2 = 1 − (

𝑀𝑆𝐹𝐸1

𝑀𝑆𝐹𝐸0
) , (30)

where (𝑇 − 𝑇0) is the number of out-of-sample evaluation periods. I test the hypothesis 𝐻0: 𝑀𝑆𝐹𝐸0 ≤

𝑀𝑆𝐹𝐸1 𝑣𝑠.  𝐻1:𝑀𝑆𝐹𝐸0 > 𝑀𝑆𝐹𝐸1, or equivalently 𝐻0: 𝑅𝑂𝑆
2 ≤ 0 𝑣𝑠.  𝐻1: 𝑅𝑂𝑆

2 > 0. Following the Clark and 

West (2007) test for nested models, I adjust the point estimate of the difference between two MSFEs for 

the noise associated with the larger model’s forecast and define   

𝑓𝑡,𝑡+𝐾 = (𝑟𝑡,𝑡+𝐾 − 𝑟𝑡,𝑡+𝐾
𝐵 )

2
− [(𝑟𝑡,𝑡+𝐾 − 𝑟̂𝑡,𝑡+𝐾)

2
− (𝑟𝑡,𝑡+𝐾

𝐵 − 𝑟̂𝑡,𝑡+𝐾)
2
] . (31) 

     The test of equal predictive accuracy is conducted by regressing 𝑓𝑡,𝑡+𝐾  on a constant and using the 

resulting z-statistic for a zero coefficient. The null hypothesis is rejected (equivalent to 𝑅𝑂𝑆
2  as statistically 

significant) if this statistic is greater than 1.282 (for a one-sided test at 10% confidence), 1.645 (for a one-

sided test at 5% confidence), or 2.334 (for a one-sided test at 1% confidence). When forecast horizon 𝐾 is 

greater than one, I adjust for serial correlation and conditional heteroskedasticity using the Newey-West 

correction with 𝐾 − 1 lags. 

                                                           
14 Similar out-of-sample tests are used by Campbell and Thompson (2008), Goyal and Welch (2008), and Rapach et al. (2010). 
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[Insert Table 6] 

     Table 6 Panel A reports the 𝑅𝑂𝑆
2  statistics for various predictors and forecast horizons. The out-of-sample 

𝑅𝑂𝑆
2  for the combination of EWIV and VWIV is as high as 0.64% for one-month ahead, 5.46% for six-

month ahead, and 11.90% for a one-year ahead forecast horizon. All of them are statistically significant at 

the 1% level.   

     Time-series predictability of stock market returns has important implications for market timing by 

guiding investors to optimally allocate wealth between stock investments and a risk-free asset.15 I consider 

a mean-variance-utility investor who allocates wealth between the market portfolio and T-bill. Given an 

investment horizon of K periods, her optimal weight on the market portfolio is: 

𝑤𝑡,𝑡+𝐾 =
1

𝛾

𝑟̂𝑡,𝑡+𝐾

𝜎̂𝑡,𝑡+𝐾
2 , (32)  

where 𝑟̂𝑡,𝑡+𝑘  is conditional expected market excess return (i.e., forecast based on a predictor) given by 

equation (27). The 𝜎̂𝑡,𝑡+𝐾
2  is estimated using the variance of the past five-year historical returns, and the 

relative risk aversion 𝛾 is set to be 3. The portfolio is rebalanced every month. The corresponding Sharpe 

ratio of the investor’s optimal portfolio is given by: 

𝑆𝑅 =
𝑅𝑃
𝜎𝑝
, (33) 

     where 𝑅𝑃 and 𝜎𝑝 are the mean and the standard deviation of the portfolio return. The average utility gain 

or the certainty equivalent return (CER) is computed as: 

𝐶𝐸𝑅 = 𝑅𝑃 − 0.5𝛾𝜎𝑝
2. (34)  

     To gauge the economic benefit of a predictor to the mean-variance investor, I compare the CER above 

associated with the optimal portfolio based on the forecasts provided by the predictor to 𝐶𝐸𝑅̅̅ ̅̅ ̅̅ , the certainty 

equivalent return of a benchmark portfolio formed based on the average return and standard deviation 

estimated from historical returns. The difference is defined as the CER gain: 

𝐶𝐸𝑅 𝐺𝑎𝑖𝑛 = 𝐶𝐸𝑅 − 𝐶𝐸𝑅̅̅ ̅̅ ̅̅ . (35) 
 

                                                           
15 The implication of out-of-sample return prediction is documented in for example Kandel and Stambaugh (1996), Campbell and 

Thompson (2008), Rapach, Strauss, and Zhou (2010), and Ferreira and Santa-Clara (2011). 
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     Table 6 Panel B compares the economic value of using out-of-sample forecasts provided by each 

predictor to form the optimal portfolio. Consistent with the results in Table 6 Panel A, EWIV and VWIV 

together outperform other predictors at horizons from one month to two years. 

 

 

4. Robustness Checks and Discussions 

4.1 Alternative Weighting Schemes and Optimal Combinations 

In the analysis above, I choose the aggregate idiosyncratic volatilities using EWIV and VWIV, which are 

commonly used in the literature.16 However, it is not necessary to be restricted to this choice. Based on 

Section 2, as long as the two aggregate idiosyncratic volatilities are not perfectly correlated, we should be 

able to obtain similar empirical results. Therefore, there is flexibility in deciding how to aggregate 

idiosyncratic volatilities. In this section, I select three alternative weighting schemes to check the robustness 

of the empirical results. The first choice is a combination of EWIV and price-weighted idiosyncratic 

volatility (PWIV): 

𝑃𝑊𝐼𝑉𝑡 =∑𝑝𝑖,𝑡𝑉𝑎𝑟𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡

𝑖=1

=∑𝑝𝑖,𝑡𝛽𝑖𝐻,𝑡𝑏𝑖𝐻,𝑡

𝑁𝑡

𝑖=1

𝜎𝐻,𝑡
2 +∑𝑝𝑖,𝑡𝛽𝑖𝐻,𝑡𝑏𝑖𝑀,𝑡

𝑁𝑡

𝑖=1

𝜎𝑀𝐻,𝑡 +∑𝑝𝑖,𝑡𝜎𝜀𝑖,𝑡
2

𝑁𝑡

𝑖=1

, (36) 

where 𝑝𝑖,𝑡 is the market price weight and sums up to one. The second choice is a combination of EWIV and 

aggregate idiosyncratic volatility weighted by the level of idiosyncratic volatility  (IWIV): 

𝐼𝑊𝐼𝑉𝑡 =∑𝐼𝑉𝑖,𝑡𝑉𝑎𝑟𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡

𝑖=1

=∑𝐼𝑉𝑖,𝑡𝛽𝑖𝐻,𝑡𝑏𝑖𝐻,𝑡

𝑁𝑡

𝑖=1

𝜎𝐻,𝑡
2 +∑𝐼𝑉𝑖,𝑡𝛽𝑖𝐻,𝑡𝑏𝑖𝑀,𝑡

𝑁𝑡

𝑖=1

𝜎𝑀𝐻,𝑡 +∑𝐼𝑉𝑖,𝑡𝜎𝜀𝑖,𝑡
2

𝑁𝑡

𝑖=1

,      (37) 

where 𝐼𝑉𝑖,𝑡 is the idiosyncratic volatility weight and sums up to one. The last choice is a combination of 

two different aggregate idiosyncratic volatility at the portfolio level. Based on Section 2, it is not necessary 

to aggregate all individuals to obtain the proxies for the conditional covariance term. Instead, as long as I 

choose two types of aggregate idiosyncratic volatility such that the weights are not perfectly linearly related 

and the aggregate true idiosyncratic volatility is stable and diversified, one should be able to use the 

combination to forecast stock market returns. Motivated by this logic, I choose the aggregate idiosyncratic 

volatilities of two portfolios to obtain the conditional covariance term. In each month I first sort the stocks 

into five portfolios based on the market capitalization and then compute the portfolio aggregate 

idiosyncratic volatility as the equal-weighted average of the individual stock idiosyncratic volatility across 

                                                           
16 Most of the previous studies use EWIV and VWIV, including: Guo and Savickas (2008), Bekaert, Hodrick, and Zhang (2012), 

Bartram, Brown, and Stulz (2018). 
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stocks belonging to the corresponding portfolio. I then choose the combination of aggregate idiosyncratic 

volatility from the bottom portfolio (SWIV) and from the top portfolio (BWIV) to predict stock market 

returns: 

 

 

{
  
 

  
 
𝑆𝑊𝐼𝑉𝑡 =∑

1

𝑁𝑡
𝑆 𝑉𝑎𝑟𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡
𝑆

𝑖=1

=∑
1

𝑁𝑡
𝑆 𝛽𝑖𝐻,𝑡𝑏𝑖𝐻,𝑡

𝑁𝑡
𝑆

𝑖=1

𝜎𝐻,𝑡
2 +∑

1

𝑁𝑡
𝑆 𝛽𝑖𝐻,𝑡𝑏𝑖𝑀,𝑡

𝑁𝑡
𝑆

𝑖=1

𝜎𝑀𝐻,𝑡 +∑
1

𝑁𝑡
𝑆 𝜎𝜀𝑖,𝑡

2

𝑁𝑡
𝑆

𝑖=1

𝐵𝑊𝐼𝑉𝑡 =∑
1

𝑁𝑡
𝐵 𝑉𝑎𝑟𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡
𝐵

𝑖=1

=∑
1

𝑁𝑡
𝐵 𝛽𝑖𝐻,𝑡𝑏𝑖𝐻,𝑡

𝑁𝑡
𝐵

𝑖=1

𝜎𝐻,𝑡
2 +∑

1

𝑁𝑡
𝐵 𝛽𝑖𝐻,𝑡𝑏𝑖𝑀,𝑡

𝑁𝑡
𝐵

𝑖=1

𝜎𝑀𝐻,𝑡 +∑
1

𝑁𝑡
𝐵 𝜎𝜀𝑖,𝑡

2

𝑁𝑡
𝐵

𝑖=1

.

 (38) 

 

[Insert Table 7] 

     Table 7 shows that all of those alternative weighting schemes are able to predict stock market returns. 

Note that similar to the case of the combination of EWIV and VWIV, in both situations above, the true 

idiosyncratic volatility has a limited effect on the empirical results. One should be noted that although the 

choice of weighting schemes is flexible, it does not mean the approach can work for any combinations. The 

failure of certain cases may be due to reasons such as unstable aggregate risk exposures (e.g., 𝐶𝑡 and 𝐷𝑡) 

and volatile aggregate true idiosyncratic variance (e.g., Ω𝑡
𝐸𝑊 and Ω𝑡

𝑉𝑊).  

     In addition to this, Corollary 1.2 shows that instead of using conditional variance, one can forecast stock 

market returns by calculating the first conditional moment across individual firms. As a robustness check, 

I replace EWIV and VWIV with the aggregate alpha defined in (16) to examine and validate this hypothesis. 

The aggregate first conditional moments are defined as: 

{
 
 

 
 
𝐸𝑊𝐴𝑃𝑡 =∑

1

𝑁𝑡
𝐸𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡

𝑖=1

=∑
1

𝑁𝑡
𝛾𝐻𝑏𝑖𝐻,𝑡

𝑁𝑡

𝑖=1

𝜎𝐻,𝑡
2 +∑

1

𝑁𝑡
𝛾𝐻𝑏𝑖𝑀,𝑡

𝑁𝑡

𝑖=1

𝜎𝑀𝐻,𝑡

𝑉𝑊𝐴𝑃𝑡 =∑𝑤𝑖,𝑡𝐸𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡

𝑖=1

=∑𝑤𝑖,𝑡𝛾𝐻𝑏𝑖𝐻,𝑡

𝑁𝑡

𝑖=1

𝜎𝐻,𝑡
2 +∑𝑤𝑖,𝑡𝛾𝐻𝑏𝑖𝑀,𝑡

𝑁𝑡

𝑖=1

𝜎𝑀𝐻,𝑡 .

   (39) 

     Table 7 provides consistent evidence that one can achieve the same conclusion of stock market return 

predictability by using aggregate first conditional moments instead of second moments. The empirical 

results provide further support of my theoretical explanation using the ICAPM, which can justify the 

predictive power of both the first and second conditional moments of the misspecified idiosyncratic shocks. 
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     A natural question regarding weighting schemes is: what is the optimal combination to extract the 

conditional covariance risk, or in other words, to give the best return prediction on stock market returns? 

To answer this question, I apply the three-pass regression filter methodology proposed by Kelly and Pruitt 

(2015). Kelly and Pruitt (2015) derive a closed-form formula to forecast a single time series using many 

predictors, which are driven by both infeasible relevant factors and irrelevant factors. Econometrically, the 

method is able to identify the best subsets of the common components which are related to the forecast 

target. Following their procedures and adjusting to fit my problem, I implement the three-pass regression 

filter through the following steps: 

(1) Run separate time-series regressions for each firm. The independent variables are (automatic) 

proxies constructed based on Kelly and Pruitt (2015, Section 2.5.1). The dependent variables are 

firm idiosyncratic volatilities. 

(2) Run separate cross-sectional regressions at each point of time to extract latent factors that are 

related to the forecast target. The independent variables are the coefficients of idiosyncratic 

volatilities of each firm from step (1). The dependent variables are again firm idiosyncratic 

volatilities. The slopes of the coefficients from the cross-sectional regressions are treated as the 

estimations of latent factors. 

(3) Run a single time-series regression of stock market returns on the predictive factors. 

     Alternatively, Kelly and Pruitt (2015) show that the whole process can be simplified to one closed-form 

formula to forecast the target variable: 

𝑦 = 𝚤𝑦̅ + 𝐽𝑇𝑋𝛼̂, (40) 

𝛼̂ = 𝑊𝑋𝑍(𝑊𝑋𝑍
′ 𝑆𝑋𝑋𝑊𝑋𝑍

′ )−1𝑊𝑋𝑍
′ 𝑠𝑋𝑦, (41) 

where 𝐽𝑡 ≡ 𝐼𝑡 −
1

𝑇
𝚤𝑡𝚤𝑡

′ ; 𝐼𝑇  is the T-dimensional identity matrix and 𝚤𝑇  is the T-vector of ones ( 𝐽𝑁  is 

analogous); 𝑦̅ = 𝚤𝑇
′ 𝑦/𝑇, 𝑊𝑋𝑍 ≡ 𝐽𝑁𝑋

′𝐽𝑇𝑍, 𝑆𝑋𝑋 ≡ 𝑋
′𝐽𝑇𝑋, and 𝑠𝑋𝑦 ≡ 𝑋

′𝐽𝑇𝑦. The vector 𝑦  and matrix 𝑋 are 

the target variable (i.e., stock market returns) and observable predictors (i.e., firm idiosyncratic volatility). 

To implement the three-pass regression filter, during the sample period from 1963 to 2018, in each month 

I first sort all available stocks into thirty portfolios based on market capitalizations and then compute the 

portfolio aggregate idiosyncratic volatility as the equal-weighted average among individual idiosyncratic 

volatilities within the corresponding portfolio.17 The portfolio aggregate idiosyncratic volatilities are then 

treated as the predictors in the three-pass regression filter. The target variable is stock market returns one 

month ahead. The optimal combination of predictors can be obtained by computing 𝛼̂  in (40). The 

                                                           
17 The implementation by portfolios can make sure I have consecutive observations for each range of firm size in the whole sample 

period. The result and conclusion are robust and consistent if I run the tests at the firm level over time by rolling window. 
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coefficient 𝛼̂ can be used as the optimal weights to aggregate idiosyncratic volatilities among the thirty 

portfolios, and thus construct the best estimation of the conditional covariance risk. As an ex-post analysis, 

Figure 3 plots the bar chart for the optimal weights of aggregating idiosyncratic volatilities through the 

thirty portfolios sorted by market capitalization to compute the conditional covariance risk. 

[Insert Figure 3] 

     The pattern of the bar charts in Figure 3 is consistent with the signs and performance of using EWIV (or 

EWAP) and VWIV (or VWAP) as an approximate optimal combination to measure the conditional 

covariance risk. The optimal aggregation gives the most positive weights to small-stock portfolios and most 

negative weights to big-stock portfolios. Since EWIV (or EWAP) assigns the same weights to all stocks, 

its dynamic is more close to small-stock idiosyncratic volatilities. Similarly, as VWIV (or VWAP) gives 

more weights to big stocks, its dynamic is more close to big-stock idiosyncratic volatilities.  

     To investigate alternative aggregations, I also construct the portfolio idiosyncratic volatilities sorted by 

various firm characteristics, such as book-to-market ratio, market beta, trading volume, return on equity, 

and stock illiquidity. I then apply the three-pass regression filter using those portfolios as inputs. Unlike the 

case of market capitalization, the optimal weights do not show clear and regular patterns among portfolios 

sorted by other types of firm characteristics. The ex-post optimal weights based on the three-pass regression 

filter, therefore, justify the choice and the performance of using EWIV and VWIV as an optimal 

approximation to estimate the conditional covariance risk. Similar results and conclusions can be achieved 

by using the combination of EWAP and VWAP. The weighting pattern is shown in Figure 3. 

 

4.2 Portfolio Return Prediction by EWIV and VWIV 

Recall that based on Proposition 2, EWIV and VWIV can be also linked to firm/portfolio return 

predictability. In order to examine this hypothesis, I investigate time-series return predictability at various 

portfolio levels. I download different types of (quintile sorted) portfolio returns from Kenneth French’s 

website including market size, book-to-market, operating profitability, and investment portfolios. I run the 

predictive regression for each portfolio on EWIV, VWIV, and the combination of EWIV and VWIV 

separately. The results are shown in Table 8. To save space, Table 8 only displays the return prediction for 

forecast horizons of 6 months and 1 year, though the results are similar for 1 month, 3 months, or 2 years 

as forecast horizons. 

[Insert Table 8] 
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     Similar to the case of stock market return prediction, Table 8 shows that although neither EWIV nor 

VWIV is able to forecast portfolio returns independently, EWIV and VWIV jointly are strong predictors 

for most of the portfolios. The empirical evidence is again consistent with the theoretical prediction in 

Section 2.  

 

4.3 Revisit Goyal and Santa-Clara (2003) and Bali, Cakici, Yan, and Zhang (2005) 

Goyal and Santa-Clara (2003) found that EWIV can significantly forecast future stock market returns. Bali 

et al. (2005) and Wei and Zhang (2005) revisited their study and found that the empirical results are not 

robust. Bali et al. (2005) extend the sample to recent periods and conclude that idiosyncratic risk does not 

matter. For example, Bali et al. (2005) found that the predictive power of EWIV does not hold for the 

extended sample of 1963 to 2001 and for the NYSE stocks. Based on the theoretical framework in Section 

2, I show that by considering EWIV and VWIV together, one can obtain consistent predictive power of 

aggregate idiosyncratic volatility. The results are displayed in Table 9 Panel A and B. The mixed findings 

between Goyal and Santa-Clara (2003) and Bali et al. (2005) are mainly due to the omitted-variable problem. 

As stated in Section 2, a single average of idiosyncratic variance includes (at least) both the conditional 

variance of the hedge portfolio and the conditional covariance between the market portfolio and the hedge 

portfolio. Since the conditional variance of the hedge portfolio is not related to the equity risk premium, a 

single aggregate idiosyncratic provides noisy information (i.e., 𝜎𝑀𝐻,𝑡) about future stock market returns. 

     Table 9 also documents the robustness of the return predictive power of the combination of EWIV and 

VWIV. I consider those concerns of aggregate idiosyncratic volatility by Bali et al. (2005) and Wei and 

Zhang (2005) including sub-sample periods, liquidity issues, and small stock effects.18 Bali et al. (2005) 

argue that the predictive power of EWIV (or VWIV) is mainly driven by NASDAQ stocks (i.e., small-stock 

effect). In order to investigate whether the combined effect of EWIV and VWIV is driven by NASDAQ 

stocks, I construct an alternative version of EWIV and VWIV by aggregating stocks from the NYSE/AMEX 

exchange only. Table 9 shows that in all cases one can obtain consistent significant return predictive power 

through applying the combination of EWIV and VWIV. 

     While idiosyncratic volatility is used in most of the empirical tests, based on Section 2, the right variable 

to use is idiosyncratic variance. As a robustness check, I rerun the predictive regression using idiosyncratic 

variance to construct EWIV and VWIV. Table 9, Panel D confirms that the main conclusion still holds 

when idiosyncratic variance is used in the regression.  

                                                           
18 The market liquidity issues are discussed and examined in the multiple predictive regression in Section 3. 
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[Insert Table 9] 

     Table 9 shows that the predictive power of both EWIV and VWIV holds for different tests and variable 

specifications. Consequently, the combination largely reconciles the mixed findings between Goyal and 

Santa-Clara (2003) and Bali et al. (2005). In both sample periods, we can observe consistent forecasting 

performance of EWIV and VWIV.  

 

4.4 EWIV, VWIV, and Conditional Covariance Risk 

Recall that based on Corollary 1.1, the conditional covariance between the market and the hedge portfolio 

can be expressed as the combination of EWIV and VWIV. In order to explicitly view it, I construct the 

conditional covariance risk as follows: at the end of each month beginning from 1927 (1816) using the 

database of CRSP (GFD), I use all available observations of EWIV, VWIV, and 𝜎𝑀,𝑡
2  since 1926 (1815) to 

fit an expanding-window regression: 

𝑅𝑀,𝑠 = 𝛾𝑀,𝑡 × 𝜎𝑀,𝑠−1
2 + 𝐶𝑡 × 𝐸𝑊𝐼𝑉𝑠−1 − 𝐷𝑡 × 𝑉𝑊𝐼𝑉𝑠−1 + 𝜖𝑀,𝑠,       𝑠 = 1,… , 𝑡 (42) 

     Then the estimated conditional covariance is computed as: 

𝜎̂𝑀𝐻,𝑡 ∝ (𝐶̂𝑡 × 𝐸𝑊𝐼𝑉𝑡 − 𝐷̂𝑡 × 𝑉𝑊𝐼𝑉𝑡). (43) 

     One should be noted that the estimated variable is not exactly the conditional covariance because 𝛾𝐻 is 

still unobservable. However, since 𝛾𝐻 is assumed to be constant (or persistent) over time, (𝐶̂𝑡 × 𝐸𝑊𝐼𝑉𝑡 −

𝐷̂𝑡 × 𝑉𝑊𝐼𝑉𝑡) can be treated as a one-to-one mapping to the true conditional covariance and therefore has 

the same dynamic as the true conditional covariance in the ICAPM. Figure 4 plots the conditional 

covariance estimated from aggregate idiosyncratic variance. 

[Insert Figure 4] 

     In addition to using aggregate idiosyncratic variance, one can use the first conditional moment of the 

misspecified idiosyncratic shocks based on Corollary 1.2. Similar to (42) and (43), the conditional 

covariance can be estimated through: 

𝜎̂𝑀𝐻,𝑡 ∝ (
𝐹̂𝑡
𝑉𝑊

𝐹̂𝑡
𝑉𝑊𝐺̂𝑡

𝐸𝑊 − 𝐹̂𝑡
𝐸𝑊𝐺̂𝑡

𝑉𝑊
𝐸𝑊𝐴𝑃𝑡 −

𝐹̂𝑡
𝐸𝑊

𝐹̂𝑡
𝑉𝑊𝐺̂𝑡

𝐸𝑊 − 𝐹̂𝑡
𝐸𝑊𝐺̂𝑡

𝑉𝑊
𝑉𝑊𝐴𝑃𝑡) . (44) 

     As a comparison, Figure 5 plots the conditional covariance estimated using either (43) or (44). For 

convenience, two variables are scaled to have zero mean and one standard deviation. Figure 5 shows that 
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the two time series track closely to each other. The correlation between the two variables is 76%. The 

empirical evidence further supports the theoretical explanation in Section 2. 

[Insert Figure 5] 

     Although Merton (1973) acknowledges the additional fact that investors seek to hedge against shortfalls 

in consumption or against changes in the future investment opportunity set, he does not specify what the 

state variables are and how such variables map into the conditional covariance. Previous papers try to 

measure the conditional covariance risk through certain pre-specified models. For example, Merton (1973) 

suggests that the risk-free interest rate is a proxy to which investors would desire to hedge against its 

unanticipated adverse changes. Scruggs (1998) was the first to include the return on a long-term Treasury 

bond as an additional state variable noting that its omission induces a negative bias in the estimate of the 

price of risk associated with the return on the market. Guo and Whitelaw (2006) assume that the conditional 

covariance is a linear function of a vector of observable state variables including the relative Treasury bill 

rate and the CAY variable of Lettau and Ludvigson (2001). Rossi and Timmermann (2015) link the 

conditional covariance risk to a broad economic activity index. If my hypothesis is correct that EWIV and 

VWIV together are a proxy for the conditional covariance, it should be largely related to the time-varying 

investment opportunities and those state variables.  

     To investigate the link between the conditional covariance and those state variables, I conduct an 

empirical test using the framework of the vector autoregression (VAR) with one lag. Based on the previous 

studies, I consider the following state variables in my test: consumption growth, income growth, CAY, 

unemployment growth, industrial production growth, term spread, default spread, and dividend-price ratio. 

The VAR is model specified as: 

𝑍𝐾,𝑡+1 = 𝜙0 + 𝜙1𝑍𝐾,𝑡 + 𝜈𝐾,𝑡+1, (45) 

where 𝑍𝐾,𝑡+1 = {𝜎̂𝑀𝐻,𝑡 , consumption growth, income growth, 𝐶𝐴𝑌,… }  is a vector of variables of 

interest; 𝜙0 and 𝜙1 are two vectors of coefficients; 𝜈𝐾,𝑡+1 is the vector of residuals of each state variable. I 

collect the monthly data of consumption growth, income growth, unemployment growth and industrial 

production growth from FRED-MD, a monthly frequency macroeconomic database with consistent and 

comparable adjustment provided by Federal Reserve Economic Data, St. Louis. CAY data is from Sydney 

Ludvigson’s website. I use the latest quarterly CAY as the observation for each month. The rest of the data 

are obtained from Amit Goyal’s website. 

[Insert Table 10] 
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     Table 10 exhibits consistent evidence that the measure 𝜎̂𝑀𝐻,𝑡 is closely related to those state variables, 

which are commonly used to model conditional covariance risk. For example, the results in Table 10, Panel 

A are consistent with both Guo and Whitelaw (2006) that the CAY variable is an important state variable 

to model conditional covariance, and Rossi and Timmermann (2015) that economic activities such as 

consumption growth, term spread, and dividend yield can be used to track time-varying investment 

opportunities. 

  

4.5 Cross-Sectional Implication of EWIV and VWIV 

Corollary 2.1 sustains that EWIV and VWIV together can help identify the conditional risk exposures to 

the missing hedge portfolio in Merton’s ICAPM. I conduct the following tests to verify this hypothesis. 

During the sample period from 1963 to 2018, I first run a time-series regression of market excess returns 

on SMV, EWIV, and VWIV using a 48-month rolling window: 

𝑅𝑀,𝑠 = 𝛾𝑀,𝑡 × 𝜎𝑀,𝑠−1
2 + 𝐶𝑡 × 𝐸𝑊𝐼𝑉𝑠−1 − 𝐷𝑡 × 𝑉𝑊𝐼𝑉𝑠−1 + 𝜖𝑀,𝑠,      𝑠 = 𝑡 − 47,… , 𝑡. (46) 

     I then run a similar regression at the individual level: 

𝑅𝑖,𝑠 = 𝛽𝑖𝑀,𝑡 × 𝑅𝑀,𝑠 + 𝐶𝑖,𝑡 × 𝐸𝑊𝐼𝑉𝑠−1 −𝐷𝑖,𝑡 × 𝑉𝑊𝐼𝑉𝑠−1 + (𝛽𝑖𝐻,𝑡 × 𝜖𝐻,𝑠 + 𝜖𝑖,𝑠), 𝑠 = 𝑡 − 47, . . , 𝑡 (47) 

where 𝑅𝑖,𝑡 is the excess return of firm i at time t. Each firm to be included should have more than 30-month 

observations and stock prices are great than $5. Based on Corollary 2.1, the conditional risk exposures to 

the missing factor (i.e., hedge portfolio) can be obtained from one of the coefficients below: 

{

𝛽̂𝑖𝐻,𝑡 ∝ 𝐶̂𝑖,𝑡  at cross-section

𝛽̂𝑖𝐻,𝑡 ∝ 𝐷̂𝑖,𝑡   at cross-section

𝛽̂𝑖𝐻,𝑡 ∝ (𝐷̂𝑡 × 𝐶̂𝑖,𝑡 − 𝐶̂𝑡 × 𝐷̂𝑖,𝑡) at cross-section.

 (48) 

Four conditions are specific to my analysis: 

(1) In order to be consistent with the framework in Section 2, when running the time-series regression, 

I do not include other risk factors. Furthermore, instead of using changes/innovations of EWIV or 

VWIV to calculate risk loadings, I use the levels of EWIV and VWIV, which are different from 

some of the previous studies such as Chen and Petkova (2012) and Herskovic, Kelly, Lustig, and 

Nieuwerburgh (2016).  

(2) Since Corollary 2.1 is based on the conditional ICAPM, both risk exposures (𝛽𝑖𝐻,𝑡) and risk 

premium 𝜇𝐻,𝑡 are time-varying. Jagannathan and Wang (1996) show that the conditional CAPM 

can be unconditioned to a two-factor model due to the covariance term between risk exposures and 
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risk premia. Therefore, a rolling window is more reasonable in my case to capture the time-varying 

changes of the conditional risk exposures. 

(3) Equation (47) is not an unbiased regression, since the residual term 𝜖𝐻,𝑠 is correlated with 𝑅𝑀,𝑠. An 

alternative regression is to use all conditional expectation on the right-hand side, for example: 

𝑅𝑖,𝑠 = 𝛽𝑖𝑀,𝑡𝛾𝑀,𝑡 × 𝜎𝑀,𝑠−1
2 + 𝐶𝑖,𝑡 × 𝐸𝑊𝐼𝑉𝑠−1 −𝐷𝑖,𝑡 × 𝑉𝑊𝐼𝑉𝑠−1 + (𝛽𝑖𝑀,𝑡𝜖𝑀,𝑠 + 𝛽𝑖𝐻,𝑡𝜖𝐻,𝑠 + 𝜖𝑖,𝑠).  (49) 

It is worth mentioning here that the mechanism of computing risk loadings using conditional 

expectations of random variables above is different from that by using realized random variables. 

The former is based on time-varying variation of random variables, while the latter is based on 

realized shocks. 

(4) Corollary 2.1 only demonstrates that the true conditional risk exposures proportionate to the 

coefficients from EWIV and VWIV under certain conditions. They are not true risk exposures and 

only applied to a two-factor model. 

     After obtaining the estimated conditional risk exposures, at the end of each month, I sort all eligible 

stocks based on either 𝛽̂𝑖𝑀,𝑡 or one of those three proxies for 𝛽̂𝑖𝐻,𝑡 into quintiles. Within each quintile, I 

compute both equal-weighted and value-weighted returns based on the market capitalization at the end of 

the previous month and then construct a long-short portfolio between the top and bottom quintiles. The 

portfolios are held until the end of next month. Table 11 displays each portfolio’s raw returns and the long-

short portfolio returns and alphas based on the Fama-French five-factor model. In addition to investigating 

the effect of 𝛽̂𝑖𝑀,𝑡, I extend the portfolio analysis in Panel C through double sorting the stocks by  𝛽̂𝑖𝑀,𝑡 first 

and then by 𝛽̂𝑖𝐻,𝑡 within each quintile. 

 [Insert Table 11] 

     Table 11 confirms the theoretical prediction that the combined effect of EWIV and VWIV has an 

important implication for the cross-sectional variation of stock returns. Firms with higher 𝛽̂𝑖𝐻,𝑡 earn higher 

returns than firms with lower 𝛽̂𝑖𝐻,𝑡 on average, implying that the risk premium of the hedge portfolio is 

positive. Furthermore, the sorting performance is consistent and robust among all three proxies specified in 

Corollary 2.1. The magnitude of the monthly long-short strategy is economically significant and 

comparable to other factors in the literature. For example, the long-short strategy based on 𝛽̂𝑖𝐻,𝑡 ∝

(𝐷̂𝑡 × 𝐶̂𝑖,𝑡 − 𝐶̂𝑡 × 𝐷̂𝑖,𝑡) earns 0.66% in raw returns monthly (around 7.88% annually). The double-sorting 

test also confirms that the explanatory power of  𝛽̂𝑖𝐻,𝑡 on average returns of stocks cannot be explained by 

market risk exposures. It is worth mentioning here that when 𝛽̂𝑖𝑀,𝑡 is calculated under the control of EWIV 

and VWIV, one is able to observe a more monotonic increasing relationship between 𝛽̂𝑖𝑀,𝑡 and future stock 
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returns. The cross-sectional results then highlight the importance of considering EWIV and VWIV together 

to reconcile the market beta anomaly, which is well documented in the literature.  

     To further affirm the cross-sectional finding and its difference from existing risk factors, I conduct the 

Fama-MacBeth regression proposed by Fama and MacBeth (1973). For each month, I run a cross-sectional 

regression of their returns on 𝛽̂𝑖𝐻,𝑡 and other control variables, which have been linked to stock returns in 

the literature. The cross-sectional regression above is used to obtain the coefficients for the independent 

variables. After obtaining the time series of the coefficients for the independent variables, I conduct the t-

test for each coefficient with one-lag correction of Newey and West (1987). The control variables include 

the classic factors such as 𝛽̂𝑖𝑀,𝑡, market size, book-to-market ratio, momentum, CIV beta (Herskovic, et al. 

2016), and idiosyncratic volatility. The empirical results are provided in Table 12. 

 [Insert Table 12] 

     Table 12 supports that EWIV and VWIV when used together become an important determinant of cross-

sectional variations of stock returns. The cross-sectional evidence is consistent with the theoretical 

framework in Section 2, and further confirms that the empirical findings can be explained under Merton’s 

ICAPM.  

 

5. Tail Risk and Conditional Covariance Risk 

Kelly and Jiang (2014) (hereafter KJ (2014)) propose a new measure of time-varying tail risk through the 

cross-section of stock returns. They show that tail risk has strong predictive power for aggregate stock 

market returns and that tail risk also has cross-sectional implementations on individual stock returns. The 

tail risk measure can negatively forecast real economic activity as well. The asset pricing facts are consistent 

with the perspective of structural models with heavy-tailed firm-level shock distributions that are preserved 

under aggregation. They conclude that the power-law aggregation and the real effects of uncertainty shocks 

represent potential channels through which firm-level tail risk can influence asset prices.  

     Chapman, Gallmeyer, and Martin (2018) (hereafter CGM (2018)) revisit KJ (2014) and raise some 

empirical concerns regarding this finding. First, CGM (2018) found that the tail risk proposed by KJ (2014) 

has a weak correlation with theoretically motivated measures of tail risk.19 CGM (2018) also found that the 

variable explains the cross-section of the discount rate component of returns, but not the cash-flow 

                                                           
19 Typical examples include aggregate uncertainty (Jurado, Ludvigson, and Ng, 2015; Bloom, 2014) and systemic risk (Allen, Bali, 

and Tang, 2012). 
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component. The impact of tail risk on real quantities appears to be inconsistent with a structural model, 

such as a rare disaster model, that generates tail outcomes through large real cash-flow effects. On the 

contrary, CGM (2018) found that there is a strong and negative correlation between changes in the tail 

measure and subsequent changes in the 10-year Treasury yield. While CGM (2018) questioned the link of 

the risk measure proposed by KJ (2014) to tail risk, they don’t explain why this measure can predict time-

series stock market returns and explain the cross-sectional variation of individual stock returns.  

In this section, I provide an alternative reconciliation regarding the debate between KJ (2014) and CGM 

(2018). I first show theoretically that under certain conditions the variable proposed by KJ (2014) may 

capture the conditional covariance in Merton’s ICAPM. Empirically, I find that the tail risk measure 

proposed by KJ (2014) is highly correlated with the conditional covariance estimated by EWIV and VWIV. 

Furthermore, when including the conditional covariance in the predictive regression, the tail risk measure 

loses the significance to forecast stock market returns. My hypothesis can explain why CGM (2018) found 

that the tail risk measure mainly forecasts stocks’ discount rate components instead of cash flow 

components. The new hypothesis can also interpret the strong correlations between changes in the tail 

measure and subsequent changes in the level of yield on a 10-year Treasury bond, and changes in the slope 

of the Treasury yield curve. Both of them are commonly used state variables to model the conditional 

covariance in the literature (Rossi and Timmermann, 2015; Guo and Whitelaw, 2006). 

     Recall that based on Proposition 1 and Corollary 1.2, besides the conditional misspecified idiosyncratic 

variance, the first conditional moment of the misspecified idiosyncratic shock can also be used to estimate 

the conditional covariance between the market portfolio and the hedge portfolio. Therefore, it is possible 

that the tail risk measure (i.e., 𝜆𝑡
𝐻𝑖𝑙𝑙), which is constructed based on the first conditional moment of stock 

returns, may be linked to the conditional covariance risk like EWIV and VWIV. 

 

Proposition 3. Suppose that the stock return follows Merton’s ICAPM defined in (7), but econometricians 

use the CAPM as the asset pricing model defined in (8). Furthermore, the empirical 𝜆𝑡+1
𝐻𝑖𝑙𝑙 is defined as: 

𝜆𝑡+1
𝐻𝑖𝑙𝑙 =

1

𝐾𝑡+1
∑ 𝑙𝑜𝑔 (

𝜂𝑘,𝑡+1
𝑢𝑡+1

)

𝐾𝑡+1

𝑘=1

. (50) 

Under moderate assumptions, 𝜆𝑡+1
𝐻𝑖𝑙𝑙 can be written as a linear function of 𝜎𝑀𝐻,𝑡 in the ICAPM  

𝜆𝑡+1
𝐻𝑖𝑙𝑙 ≈ 𝑙𝑜𝑔 (

𝐽𝑡
𝐾

𝐽𝑡
𝑢) +

1

𝑥0
𝜎𝑀𝐻,𝑡 + 𝜀𝑡+1, (51) 



32 

 

where: 

 

{
 
 

 
 𝐽𝑡

𝑢 =
𝐹𝑡
𝑢

𝐹𝑡
𝑢𝐺𝑡

𝐾 − 𝐹𝑡
𝐾𝐺𝑡

𝑢

𝐽𝑡
𝐾 =

𝐹𝑡
𝐾

𝐹𝑡
𝑢𝐺𝑡

𝐾 − 𝐹𝑡
𝐾𝐺𝑡

𝑢

,

{
 
 

 
 
𝐹𝑡
𝐾 = ∑

1

𝐾𝑡+1
𝛾𝐻𝑏𝑘𝐻,𝑡  

𝐾𝑡+1

𝑘=1

𝐺𝑡
𝐾 = ∑

1

𝐾𝑡+1
𝛾𝐻𝑏𝑘𝑀,𝑡

𝐾𝑡+1

𝑘=1

, {
𝐹𝑡
𝑢 = 𝛾𝐻𝑏𝑢𝐻,𝑡
𝐺𝑡
𝑢 = 𝛾𝐻𝑏𝑢𝑀,𝑡

,   

{𝑥0 =
1

2
[𝐸(𝐽𝑡

𝑢)𝐸(𝜂̅𝑘,𝑡+1) + 𝐸(𝐽𝑡
𝐾)𝐸(𝑢𝑡+1)] . 

 

     Proofs and corresponding assumptions are given in the Appendix. Proposition 3 provides an alternative 

theoretical explanation to why 𝜆𝑡
𝐻𝑖𝑙𝑙 is able to forecast stock market returns is because it is related to the 

conditional covariance in the ICAPM. Empirically, I confirm that the variable proposed by KJ (2014) is a 

robust predictor for aggregate stock market returns from 1963 to 2018. The predictive power is both 

statistically and economically significant. I first show that besides using 𝜆𝑡
𝐻𝑖𝑙𝑙, 𝜂̅𝑘,𝑡 and 𝑢𝑡 are also strong 

predictors of stock market returns. 

[Insert Table 13] 

     Table 13 shows that similar to the previous empirical results, although separately 𝜂̅𝑘,𝑡 nor 𝑢𝑡 are able to 

forecast stock market returns, 𝜂̅𝑘,𝑡 and 𝑢𝑡  together become strong predictors. To compare directly with 𝜆𝑡
𝐻𝑖𝑙𝑙, 

I then construct the conditional covariance risk estimate based on Section 4.4 by running a recursive 

predictive regression since 1926 to the present date and using the coefficients to compute the conditional 

covariance risk (𝜎̂𝑀𝐻,𝑡). One would expect that the two variables will have a very high correlation with each 

other. Empirically, I find the same evidence in the data. 

 [Insert Figure 6] 

     Figure 6 shows that the two variables track each other closely. The correlation between 𝜎̂𝑀𝐻,𝑡 and  𝜆𝑡
𝐻𝑖𝑙𝑙 

is as high as 0.795 from 1926 to 2018.20 In addition to this, Section 4.1 and 4.3 have shown that equal-

weighted alpha (EWAP) and value-weighted alpha (VWAP) also have comparable predictive power for the 

stock market returns, and that the conditional covariance risk estimated using EWAP and VWAP is highly 

                                                           
20 An alterantive simple proxy for the conditional covariance can be calculated by taking tha ratio between EWIV and VWIV. The 

ratio is also highly correlated with 𝜆𝑡
𝐻𝑖𝑙𝑙 with a correlation equal to 0.761.  
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correlated with that computed from EWIV and VWIV (see Figure 4). Given that 𝜎̂𝑀𝐻,𝑡 uses all information 

(either first or second conditional moments) across individual stocks, it is difficult to be treated as tail risk. 

     Regarding the relationship between 𝜆𝑡
𝐻𝑖𝑙𝑙 and cross-sectional variations of stock returns, the connection 

can be justified through the ICAPM as well. Based on Proposition 2 and 3, the conditional expected return 

of any asset can be written as: 

𝜇𝑖,𝑡 = 𝛽𝑖𝑀,𝑡𝜇𝑀,𝑡 + 𝛽𝑖𝐻,𝑡𝛾𝐻𝜎𝑀𝐻,𝑡 + 𝛽𝑖𝐻,𝑡𝛾𝐻𝜎𝐻,𝑡
2 ≈ 𝛽𝑖𝑀,𝑡𝜇𝑀,𝑡 + 𝛽𝑖𝐻,𝑡𝛾𝐻𝜆𝑡

𝐻𝑖𝑙𝑙 + 𝛽𝑖𝐻,𝑡𝛾𝐻𝜎𝐻,𝑡
2 . (52) 

     Suppose we further assume that 𝛾𝐻 are constant over time and 𝛽𝑖𝐻,𝑡 are stable within certain time periods, 

one can observe the asset-pricing implication of 𝜆𝑡
𝐻𝑖𝑙𝑙 on the cross-section of stock returns because the 

factor loading is linked to the conditional risk exposure to the hedge portfolio (𝛽𝑖𝐻,𝑡).
21 Equation (52) is 

also consistent with the cross-sectional test setting in KJ (2014). When calculating the tail risk sensitivities 

of individual stocks, they use the predictive regression on the lagged level of 𝜆𝑡
𝐻𝑖𝑙𝑙  instead of its 

contemporaneous shocks, which are more widely used to calculate factor loadings in the literature.  

     However, one should be aware that the analysis above only provides an alternative explanation to the 

tail risk measure. Section 5 does not provide any direct evidence to reject the tail-risk explanation proposed 

by Kelly and Jiang (2014).  

      

6. Simulation Evidence 

This section builds on the framework developed in Section 2. In order to understand the mechanism between 

idiosyncratic variance and the missing covariance term in the ICAPM, I conduct a numerical analysis based 

on the theoretical framework in Section 2. The simulation is designed in the following way: 

     Assuming that stock price dynamics are driven by the ICAPM with pre-specified parameters, I first 

simulate the whole stock market, which includes individual stocks, the market portfolio and the hedge 

portfolio, based on the true parameters. For instance, the relative risk aversion (𝛾𝑀) and weighted average 

state-variable aversion (𝛾𝐻) are set equal to 3 and 2.6 respectively.22 The conditional variance of the market 

portfolio (𝜎𝑀,𝑡
2 ) and the hedge portfolio (𝜎𝐻,𝑡

2 ) is simulated based on a GARCH (1, 1) model fitted using the 

empirical data of the stock market returns for 𝜎𝑀,𝑡
2  and the HML factor premiums for 𝜎𝐻,𝑡

2 : 

                                                           
21 The details are provided in the proof of Corollary 2.1 in the appendix. Note that since 𝜆𝑡

𝐻𝑖𝑙𝑙 doesn’t include the effect of 𝜎𝐻,𝑡
2 , the 

coefficient from the predictive regression of stock excess returns on 𝜆𝑡
𝐻𝑖𝑙𝑙 is a biased estimator of 𝛽𝑖𝐻,𝑡. 

22 The level of state-variable aversions is set based on Rossi and Timmermann (2015). 
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𝜎𝑡+1
2 = 𝜔 + 𝛼𝜀𝑡

2 + 𝛽𝜎𝑡
2,  with 𝛼 + 𝛽 < 1, (53) 

where 𝜀𝑡 is obtained from a normal distribution with zero mean and a standard deviation, which is matched 

through the market return residuals from regressing stock market returns (HML factor) on SMV, EWIV, 

and VWIV for 𝜎𝑀,𝑡
2  (𝜎𝐻,𝑡

2 ). Then the realized returns of the market portfolio and the hedge portfolio are 

computed as: 

{
𝑅𝑀,𝑡 = 𝛾𝑀𝜎𝑀,𝑡

2 + 𝛾𝐻𝜎𝑀𝐻,𝑇 + 𝜀𝑀,𝑡

𝑅𝐻,𝑡 = 𝛾𝑀𝜎𝑀𝐻,𝑡 + 𝛾𝐻𝜎𝐻,𝑡
2 + 𝜀𝐻,𝑡 .

 (54) 

     To simulate individual stocks, I construct the following variables: 

(1) The beta exposures to the market portfolio (hedge portfolio) for each stock: is simulated based 

on an AR (1) model: 

𝛽𝑖,𝑡 = 𝜙𝑖,0 + 𝜙𝑖,1𝛽𝑖,𝑡−1 + 𝜈𝑖,𝑡+1, (55) 

where 𝜙0 and 𝜙1 are calibrated based on the empirical distribution of the market beta and the HML beta 

among firms. For example, the initial value of the market beta is generated based on a normal distribution 

of mean equal to 0.5495 and standard deviation equal to 1.661. 𝜙𝑖,0 (𝜙𝑖,1) is simulated based on a normal 

distribution with mean equal to 0.474 (0.439) and standard deviation equal to 0.088 (0.214). 𝜈𝑖,𝑡+1 is an 

i.i.d random risk-exposure shock across all firms with zero mean and standard deviation equal to 0.064. 

(2) The realized returns for each stock: are simulated based on the information of the market and 

hedge portfolio and their corresponding risk exposures, with the model specified in (7). For 

simplicity and without loss of generality, the firm idiosyncratic shocks are assumed to be i.i.d. 

(3) The price dynamics for each stock: are then obtained by multiplying one plus the raw return by 

the previous stock price. The cross-sectional distribution of the initial stock price is generated based 

on a uniform distribution within the range between $1.00 and $2000. During the sample periods, if 

the stock price goes below $1.00, the firm will be excluded from the sample as it is treated as delisted. 

(4) For simplicity and without loss of generality, I assume the shares outstanding for each firm is 

constant over time. The cross-sectional distribution of the shares outstanding is generated from a 

uniform distribution within the range from 2,000 to 4,000,000. The market capitalization for each 

firm is then computed as the product of stock price and shares outstanding. 

After obtaining all necessary variables, I construct a synthetic stock market with 2000 stocks over 2000 

months and simulate the market for 10,000 times. For each simulation, I follow the procedure in Section 3 

and 4 to compute the corresponding SMV, EWIV, VWIV, and 𝜆𝐻𝑖𝑙𝑙 proposed by Kelly and Jiang (2014) 

with monthly observations. The simulated variables are used to run the time-series regressions similar to 
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the previous empirical tests in Section 3.2. I subsequently count the proportion of the simulation studies, 

which are consistent with my hypothesis and real empirical evidence (i.e., a predictive regression with 

significant coefficients and right signs). The results are displayed in Table 14. 

[Insert Table 14] 

     Table 14 shows a similar pattern that when independent variables are highly correlated and one of them 

is missing in the specification, the existing independent variables are subject to serious omitted variable 

bias. For example, consistent with the empirical observations, when running univariate regressions of 

simulated market returns on EWIV (VWIV), only 20% (12.50%) of the total simulations are significant 

with correct signs. The simulation results, however, are different when omitted variables are included in 

the regression. For instance, in column IV and V, both EWIV and VWIV become significant in 98.00% 

and 99.20% of all simulations with correct signs. Consistent with Proposition 3, Table 14, column VI 

provides simulation evidence that the tail risk measure proposed by Kelly and Jiang (2014) is also able to 

forecast stock market returns under the framework of Merton’s ICAPM. 

 

7. Conclusion 

The importance of idiosyncratic volatility is an essential topic in asset pricing. While most of the previous 

research focuses on cross-sectional studies of idiosyncratic volatility, this paper examines asset pricing 

implications of aggregate idiosyncratic volatility. I contribute to the literature that aggregate idiosyncratic 

volatility in fact matters to asset pricing in both time series and cross-section. Empirically, I document that 

equal-weighted idiosyncratic volatility (EWIV) and value-weighted idiosyncratic volatility (VWIV) jointly 

are strong predictors of aggregate stock returns in both short- and long-term horizons. The firm loadings 

obtained from the regressions including both EWIV and VWIV also explain cross-sectional variations of 

stock returns. I argue that these findings can be understood under the framework of Merton’s (1973) ICAPM 

that EWIV and VWIV when applied together are a proxy for the conditional covariance between the market 

portfolio and the hedge portfolio. Econometrically, the choice of using EWIV and VWIV is close to an 

optimal approximation of the conditional covariance risk. Based on this framework, I revisit two debates 

regarding idiosyncratic volatility and tail risk in the literature and provide new insights and reconciliations 

pertaining to their mixed findings. 

     Several relevant questions are still open for discussion. For example, since the ICAPM affirms that stock 

market return is related to conditional market variance and conditional covariance, it is reasonable to infer 

that after controlling for conditional covariance, we should observe a significant positive relationship 
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between conditional variance and stock market return (i.e., risk-return tradeoff). I find this is not true in the 

data. Although a significant positive risk-return tradeoff is observed in the sample period from 1963 to 2018, 

it is not as stable as the conditional covariance. For example, if I look at longer sample periods (e.g., 1815 

to 2018), or recent sample periods (e.g., 1999 to 2018), the risk-return tradeoff becomes insignificant. 

Future research can explore why we still are unable to find a stable significant positive relationship between 

stock market returns and conditional market variance, even after controlling for the conditional covariance. 

One potential explanation is that the variation of the representative agent’s risk aversion might be very 

volatile. 

     Another question, which has not been solved in this article, is regarding the economic reason why EWIV 

and VWIV are close to the optimal combination to extract the conditional covariance risk. In Section 4.1, 

by applying the three-pass regression filter, I demonstrate that the combination of EWIV and VWIV is 

close to the optimal proxies for the conditional covariance risk econometrically. More specifically, a rise 

of small-firm idiosyncratic volatilities increases the conditional covariance risk, while a rise of big-firm 

idiosyncratic volatilities decreases the conditional covariance risk. However, the regression methodology 

is unable to resolve the economic mechanism behind this choice. In other words, why do small-firm (big-

firm) idiosyncratic volatilities seem to be a bad (good) thing to investors over time? Since the question is 

not a focus of this article, I will leave it to future research.  
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Appendix 

A  Proof of Proposition 1 

Consider the true return generating process: 

𝑅𝑖,𝑡+1 = 𝛽𝑖𝑀,𝑡(𝜇𝑀,𝑡 + 𝜀𝑀,𝑡+1) + 𝛽𝑖𝐻,𝑡(𝜇𝐻,𝑡 + 𝜀𝐻,𝑡+1) + 𝜀𝑖,𝑡+1, (A1) 

where 𝜀𝑀,𝑡+1, 𝜀𝐻,𝑡+1, 𝜀𝑖,𝑡+1 are the unexpected shocks for the market portfolio, the hedge portfolio, and 

asset i. 𝑅𝑀,𝑡+1 is the market excess return, 𝑅𝐻,𝑡+1 is the return of the hedge portfolio,  𝛽𝑖𝑀,𝑡 𝑎𝑛𝑑 𝛽𝑖𝐻,𝑡 are 

the corresponding risk exposures: 

𝛽𝑖𝑀,𝑡 =
𝜎𝑖𝑀,𝑡𝜎𝐻,𝑡

2 − 𝜎𝑖𝐻,𝑡𝜎𝑀𝐻,𝑡

𝜎𝐻,𝑡
2 𝜎𝑀,𝑡

2 − 𝜎𝑀𝐻,𝑡
2 ,    𝛽𝑖𝐻,𝑡 =

𝜎𝑖𝐻,𝑡𝜎𝑀,𝑡
2 − 𝜎𝑖𝑀,𝑡𝜎𝑀𝐻,𝑡

𝜎𝐻,𝑡
2 𝜎𝑀,𝑡

2 − 𝜎𝑀𝐻,𝑡
2 . (A2) 

     Suppose that econometricians only use the CAPM as the asset pricing model:  

𝑅𝑖,𝑡+1 = 𝑏𝑖𝑀,𝑡(𝜇𝑀,𝑡 + 𝜀𝑀,𝑡+1) + 𝜂𝑖,𝑡+1.  (A3) 

where 𝜂𝑖,𝑡+1 is the misspecified idiosyncratic shock for asset i; 𝑏𝑖𝑀,𝑡 is the risk exposure under the CAPM 

and can be written as 𝑏𝑖𝑀,𝑡 =
𝜎𝑖𝑀,𝑡

𝜎𝑀,𝑡
2 . It can be easily shown that: 

𝛽𝑖𝑀,𝑡 − 𝑏𝑖𝑀,𝑡 =
𝜎𝑖𝑀,𝑡𝜎𝐻,𝑡

2 − 𝜎𝑖𝐻,𝑡𝜎𝑀𝐻,𝑡

𝜎𝐻,𝑡
2 𝜎𝑀,𝑡

2 − 𝜎𝑀𝐻,𝑡
2 −

𝜎𝑖𝑀,𝑡

𝜎𝑀,𝑡
2 = −𝛽𝑖𝐻,𝑡

𝜎𝑀𝐻,𝑡

𝜎𝑀,𝑡
2 . (A4) 

     The conditional expectation of the misspecified firm idiosyncratic shock is given by: 

𝐸𝑡(𝜂𝑖,𝑡+1) = 𝜇𝑖,𝑡 − 𝑏𝑖𝑀,𝑡𝜇𝑀,𝑡 

= 𝛽𝑖𝑀,𝑡𝜇𝑀,𝑡 + 𝛽𝑖𝐻,𝑡𝜇𝐻,𝑡 − (𝛽𝑖𝑀,𝑡 + 𝛽𝑖𝐻,𝑡
𝜎𝑀𝐻,𝑡

𝜎𝑀,𝑡
2 )𝜇𝑀,𝑡 

= 𝛽𝑖𝐻,𝑡𝜇𝐻,𝑡 − 𝛽𝑖𝐻,𝑡
𝜎𝑀𝐻,𝑡

𝜎𝑀,𝑡
2 𝜇𝑀,𝑡.         (A5) 

     In addition, based on Merton’s ICAPM, the market portfolio and the hedge portfolio have the following 

relationship: 

{
𝜇𝑀,𝑡 = 𝛾𝑀𝜎𝑀,𝑡

2 + 𝛾𝐻𝜎𝑀𝐻,𝑡

𝜇𝐻,𝑡 = 𝛾𝑀𝜎𝑀𝐻,𝑡 + 𝛾𝐻𝜎𝐻,𝑡
2 .
  (A6) 

     Plug back to the equation of the expected misspecified idiosyncratic shocks:  
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𝐸𝑡(𝜂𝑖,𝑡+1) = 𝛽𝑖𝐻,𝑡(𝛾𝑀𝜎𝑀𝐻,𝑡 + 𝛾𝐻𝜎𝐻,𝑡
2 ) − 𝛽𝑖𝐻,𝑡

𝜎𝑀𝐻,𝑡

𝜎𝑀,𝑡
2 (𝛾𝑀𝜎𝑀,𝑡

2 + 𝛾𝐻𝜎𝑀𝐻,𝑡) 

= 𝛾𝐻𝛽𝑖𝐻,𝑡
𝜎𝐻,𝑡
2 𝜎𝑀,𝑡

2 − 𝜎𝑀𝐻,𝑡
2

𝜎𝑀,𝑡
2 ,    ∵  𝛽𝑖𝐻,𝑡 =

𝜎𝑖𝐻,𝑡𝜎𝑀,𝑡
2 − 𝜎𝑖𝑀,𝑡𝜎𝑀𝐻,𝑡

𝜎𝐻,𝑡
2 𝜎𝑀,𝑡

2 − 𝜎𝑀𝐻,𝑡
2  

= 𝛾𝐻
𝜎𝑖𝐻,𝑡

𝜎𝐻,𝑡
2 𝜎𝐻,𝑡

2 + 𝛾𝐻
𝜎𝑖𝑀,𝑡

𝜎𝑀,𝑡
2 𝜎𝑀𝐻,𝑡 

= 𝛾𝐻𝑏𝑖𝐻,𝑡𝜎𝐻,𝑡
2 + 𝛾𝐻𝑏𝑖𝑀,𝑡𝜎𝑀𝐻,𝑡 .                                                                                                           (A7) 

     Similarly, the conditional variance of the misspecified firm idiosyncratic shock is:  

𝑉𝑎𝑟𝑡(𝜂𝑖,𝑡+1) = 𝑉𝑎𝑟𝑡(𝑅𝑖,𝑡+1 − 𝑏𝑖𝑀,𝑡𝑅𝑀,𝑡+1) 

= 𝛽𝑖𝐻,𝑡
2 (

𝜎𝑀𝐻,𝑡

𝜎𝑀,𝑡
2 )

2

𝜎𝑀,𝑡
2 + 𝛽𝑖𝐻,𝑡

2 𝜎𝐻,𝑡
2 − 2𝛽𝑖𝐻,𝑡𝛽𝑖𝐻,𝑡

𝜎𝑀𝐻,𝑡
2

𝜎𝑀,𝑡
2 + 𝜎𝜀𝑖,𝑡

2  

= 𝛽𝑖𝐻,𝑡
2 𝜎𝐻,𝑡

2 𝜎𝑀,𝑡
2 − 𝜎𝑀𝐻,𝑡

2

𝜎𝑀,𝑡
2  + 𝜎𝜀𝑖,𝑡

2 ,            ∵ 𝛽𝑖𝐻,𝑡 =
𝜎𝑖𝐻,𝑡𝜎𝑀,𝑡

2 − 𝜎𝑖𝑀,𝑡𝜎𝑀𝐻,𝑡

𝜎𝐻,𝑡
2 𝜎𝑀,𝑡

2 − 𝜎𝑀𝐻,𝑡
2          

= 𝛽𝑖𝐻,𝑡
𝜎𝑖𝐻,𝑡

𝜎𝐻,𝑡
2 𝜎𝐻,𝑡

2 + 𝛽𝑖𝐻,𝑡
𝜎𝑖𝑀,𝑡

𝜎𝑀,𝑡
2 𝜎𝑀𝐻,𝑡 + 𝜎𝜀𝑖,𝑡

2  

= 𝛽𝑖𝐻,𝑡𝑏𝑖𝐻,𝑡𝜎𝐻,𝑡
2 + 𝛽𝑖𝐻,𝑡𝑏𝑖𝑀,𝑡𝜎𝑀𝐻,𝑡 + 𝜎𝜀𝑖,𝑡

2 .                                                                                (A8) 

     This completes the proof. 

 

B Proof of Corollary 1.1 

Based on Proposition 1 and the CAPM in equation (8), consider the equal-weighted idiosyncratic variance 

and value-weighted idiosyncratic variance for the CAPM: 

𝐸𝑊𝐼𝑉𝑡 =∑
1

𝑁𝑡
𝑉𝑎𝑟𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡

𝑖=1

= 𝐴𝑡
𝐸𝑊𝜎𝐻,𝑡

2 + 𝐵𝑡
𝐸𝑊𝜎𝑀𝐻,𝑡 + Ω𝑡

EW, (B1) 

where 𝐴𝑡
𝐸𝑊 = ∑

1

𝑁𝑡
𝛽𝑖𝐻,𝑡𝑏𝑖𝐻,𝑡

𝑁𝑡
𝑖=1 , 𝐵𝑡

𝐸𝑊 = ∑
1

𝑁𝑡
𝛽𝑖𝐻,𝑡𝑏𝑖𝑀,𝑡

𝑁𝑡
𝑖=1 , Ω𝑡

EW = ∑
1

𝑁𝑡
𝜎𝜀𝑖,𝑡
2𝑁𝑡

𝑖=1 . 

     Similarly, the conditional VWIV can be defined as: 

𝑉𝑊𝐼𝑉𝑡 = 𝐴𝑡
𝑉𝑊𝜎𝐻,𝑡

2 + 𝐵𝑡
𝑉𝑊𝜎𝑀𝐻,𝑡 + Ω𝑡

𝑉𝑊, (B2) 

where 𝐴𝑡
𝑉𝑊 = ∑ 𝑤𝑖,𝑡𝛽𝑖𝐻,𝑡𝑏𝑖𝐻,𝑡

𝑁𝑡
𝑖=1 , 𝐵𝑡

𝑉𝑊 = ∑ 𝑤𝑖,𝑡𝛽𝑖𝐻,𝑡𝑏𝑖𝑀,𝑡
𝑁𝑡
𝑖=1 , Ω𝑡

𝑉𝑊 = ∑ 𝑤𝑖,𝑡𝜎𝜀𝑖,𝑡
2𝑁𝑡

𝑖=1 ; 𝑤𝑖,𝑡  is the market-

cap weight of each firm at the end of time t. One can clearly see that either EWIV or VWIV is a linear 

function of at least three time-varying components: the conditional variance of the hedge portfolio, the 
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conditional covariance of the market portfolio with the hedge portfolio, and the average true idiosyncratic 

variance. Three points are worthy of mentioning here:  

1) The reason why to decompose the variation of return into the risk exposures is that previous literature 

finds that most of the predictable variation in returns can be attributed to predictable variation in risk 

premia (Ferson and Harvey, 1991; Evans, 1994) instead of time-varying risk exposures. The finding 

is consistent with my empirical results. For example, if I calculate the value-weighted average 

market beta and idiosyncratic volatility separately, the coefficients of variations are 0.0659 for the 

market beta and 0.3318 for VWIV. By decomposing the idiosyncratic variance into risk exposures 

and other variations, I am able to analyze which part determines the variation of time-varying risk 

premium.  

2) When choosing the weighting schemes, to void degeneracy for the future derivation, I need to choose 

the weights so that 𝐴𝑡
𝐸𝑊𝑎𝑛𝑑 𝐵𝑡

𝐸𝑊 are not perfectly linearly related to 𝐴𝑡
𝑉𝑊𝑎𝑛𝑑 𝐵𝑡

𝑉𝑊. At the same 

time, I also need to choose the weights so that the average true idiosyncratic variance can be 

diversified enough and stable. In my case of EWIV and VWIV, this criterion is easy to be satisfied. 

3) Since either EWIV or VWIV is constructed from a bottom-up approach, the aggregate true 

idiosyncratic variance (Ω𝑡
𝐸𝑊 or Ω𝑡

𝑉𝑊 ) cannot be negligible, thus leading to estimation biases. 

However, under the moderate assumption that the conditional covariance matrix of the true 

idiosyncratic shocks is relatively stable, when running regressions, the effect of the true idiosyncratic 

shocks can be captured by the intercept term in the empirical tests. Therefore, the effect caused by 

the true idiosyncratic variance can be ignored. The detailed effect of the aggregate true idiosyncratic 

variance is discussed in the simulation study in Section 6.  

     Since both 𝜎𝐻,𝑡
2  and 𝜎𝑀𝐻,𝑡 are unobservable, I use two types of weighted average idiosyncratic variance 

to solve the linear system. Similar techniques are used in other papers such as Lo and Wang (2006). For 

simplicity, I define the following: 

{
𝐸𝑊𝐼𝑉𝑡̃ ≡𝐸𝑊𝐼𝑉𝑡 − Ω𝑡

𝐸𝑊 = 𝐴𝑡
𝐸𝑊𝜎𝐻,𝑡

2 + 𝐵𝑡
𝐸𝑊𝜎𝑀𝐻,𝑡

𝑉𝑊𝐼𝑉𝑡̃ ≡𝑉𝑊𝐼𝑉𝑡 − Ω𝑡
𝑉𝑊 = 𝐴𝑡

𝑉𝑊𝜎𝐻,𝑡
2 + 𝐵𝑡

𝑉𝑊𝜎𝑀𝐻,𝑡
  (B3) 

     It is a linear system with two linearly independent equations with two unknowns. One can easily figure 

out 𝜎𝐻,𝑡
2  and 𝜎𝑀𝐻,𝑡: 

{
 
 

 
 𝜎𝐻,𝑡

2 =
𝐵𝑡
𝐸𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 𝑉𝑊𝐼𝑉𝑡
̃ −

𝐵𝑡
𝑉𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 𝐸𝑊𝐼𝑉𝑡
̃

𝜎𝑀𝐻,𝑡 =
𝐴𝑡
𝑉𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 𝐸𝑊𝐼𝑉𝑡
̃ −

𝐴𝑡
𝐸𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 𝑉𝑊𝐼𝑉𝑡
̃

  (B4) 
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     This completes the Proof. 

 

C Proof of Corollary 1.2 

The proof is similar to Corollary 1.1, except that I use the first conditional moment instead of the second 

conditional moment. Similarly, I consider the equal-weighted and value-weighted average conditional 

expectation of the misspecified idiosyncratic: 

𝐸𝑊𝐴𝑃𝑡 =∑
1

𝑁𝑡
𝐸𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡

𝑖=1

= 𝐹𝑡
𝐸𝑊𝜎𝐻,𝑡

2 + 𝐺𝑡
𝐸𝑊𝜎𝑀𝐻,𝑡, (C1) 

where  𝐹𝑡
𝐸𝑊 = ∑

1

𝑁𝑡
𝛾𝐻𝑏𝑖𝐻,𝑡

𝑁𝑡
𝑖=1 , 𝐺𝑡

𝐸𝑊 = ∑
1

𝑁𝑡
𝛾𝐻𝑏𝑖𝑀,𝑡

𝑁𝑡
𝑖=1 . 

     Similarly, define: 

𝑉𝑊𝐴𝑃𝑡 =∑𝑤𝑖,𝑡𝐸𝑡(𝜂𝑖,𝑡+1)

𝑁𝑡

𝑖=1

= 𝐹𝑡
𝑉𝑊𝜎𝐻,𝑡

2 + 𝐺𝑡
𝐸𝑊𝜎𝑀𝐻,𝑡, (C2) 

where  𝐹𝑡
𝑉𝑊 = ∑ 𝑤𝑖,𝑡𝛾𝐻𝑏𝑖𝐻,𝑡

𝑁𝑡
𝑖=1 , 𝐺𝑡

𝑉𝑊 = ∑ 𝑤𝑖,𝑡𝛾𝐻𝑏𝑖𝑀,𝑡
𝑁𝑡
𝑖=1 . 

     Similar to the derivation in Corollary 1.1, one can obtain that: 

{
 
 

 
 𝜎𝐻,𝑡

2 =
𝐺𝑡
𝐸𝑊

𝐹𝑡
𝑉𝑊𝐺𝑡

𝐸𝑊 − 𝐹𝑡
𝐸𝑊𝐺𝑡

𝑉𝑊 𝑉𝑊𝐴𝑃𝑡 −
𝐺𝑡
𝑉𝑊

𝐹𝑡
𝑉𝑊𝐺𝑡

𝐸𝑊 − 𝐹𝑡
𝐸𝑊𝐺𝑡

𝑉𝑊 𝐸𝑊𝐴𝑃𝑡

𝜎𝑀𝐻,𝑡 =
𝐹𝑡
𝑉𝑊

𝐹𝑡
𝑉𝑊𝐺𝑡

𝐸𝑊 − 𝐹𝑡
𝐸𝑊𝐺𝑡

𝑉𝑊 𝐸𝑊𝐴𝑃𝑡 −
𝐹𝑡
𝐸𝑊

𝐹𝑡
𝑉𝑊𝐺𝑡

𝐸𝑊 − 𝐹𝑡
𝐸𝑊𝐺𝑡

𝑉𝑊 𝑉𝑊𝐴𝑃𝑡

  (C3) 

     This completes the Proof. 

 

D Proof of Proposition 2. 

The proposition can be simply derived by plug the proposition 2 back into the stock market return equation, 

since only the covariance terms matters for predicting the market portfolio returns: 

𝜇𝑀,𝑡 = 𝛾𝑀𝜎𝑀,𝑡
2 + 𝛾𝐻𝜎𝑀𝐻,𝑡 = 𝛾𝑀 × 𝜎𝑀,𝑡

2 + 𝐶𝑡 × 𝐸𝑊𝐼𝑉𝑡̃ −𝐷𝑡 × 𝑉𝑊𝐼𝑉𝑡̃      (D1) 

where based on (B4): 

𝐶𝑡 =
𝛾
𝐻
𝐴𝑡
𝑉𝑊

𝐴𝑡
𝑉𝑊𝐵

𝑡

𝐸𝑊
− 𝐴𝑡

𝐸𝑊𝐵𝑡
𝑉𝑊
,    𝐷𝑡 =

𝛾
𝐻
𝐴𝑡
𝐸𝑊

𝐴𝑡
𝑉𝑊𝐵

𝑡

𝐸𝑊
− 𝐴𝑡

𝐸𝑊𝐵𝑡
𝑉𝑊
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     As to the expected return at the firm/portfolio level, based on (6), (A5), (A6), and Corollary 1.1, one can 

plug back 𝜎𝑀,𝑡
2  and use EWIV and VWIV to proxy for 𝜎𝐻,𝑡

2  𝑎𝑛𝑑 𝜎𝑀𝐻,𝑡: 

𝜇𝑖,𝑡 = 𝛽𝑖𝑀,𝑡𝜇𝑀,𝑡 + 𝛽𝑖𝐻,𝑡(𝛾𝐻𝜎𝐻,𝑡
2 + 𝛾𝑀𝜎𝑀𝐻,𝑡).    (D2) 

     After some algebra, the expected firm/portfolio return can be written as: 

𝜇𝑖,𝑡 = 𝛽𝑖𝑀,𝑡𝜇𝑀,𝑡 + 𝐶𝑖,𝑡 × 𝐸𝑊𝐼𝑉𝑡̃ −𝐷𝑖,𝑡 × 𝑉𝑊𝐼𝑉𝑡̃ ,    (D3) 

where: 

𝐶𝑖,𝑡 = 𝛽𝑖𝐻,𝑡
𝛾𝑀𝐴𝑡

𝑉𝑊 − 𝛾𝐻𝐵𝑡
𝑉𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊 ,    𝐷𝑖,𝑡 = 𝛽𝑖𝐻,𝑡
𝛾𝑀𝐴𝑡

𝐸𝑊 − 𝛾𝐻𝐵𝑡
𝐸𝑊

𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊. 

This completes the proof. 

 

E Proof of Corollary 2.1. 

The first two equations (𝐶𝑖,𝑡  𝑎𝑛𝑑 𝐷𝑖,𝑡) are based on (D3) directly. I only need to prove the last equation. 

Based on (D3) in the proof of Proposition 2, it can be easily shown that: 

𝛽𝑖𝐻,𝑡 =
𝐴𝑡
𝐸𝑊𝐶𝑖,𝑡 − 𝐴𝑡

𝑉𝑊𝐷𝑖,𝑡
𝛾𝐻

.    (E1) 

     Similarly, based on Proposition 2 and the coefficients of (D1), one can obtain that: 

{
 
 

 
 𝐴𝑡

𝑉𝑊 =
𝐶𝑡(𝐴𝑡

𝑉𝑊𝐵𝑡
𝐸𝑊 − 𝐴𝑡

𝐸𝑊𝐵𝑡
𝑉𝑊)

𝛾𝐻

𝐴𝑡
𝐸𝑊 =

𝐷𝑡(𝐴𝑡
𝑉𝑊𝐵𝑡

𝐸𝑊 − 𝐴𝑡
𝐸𝑊𝐵𝑡

𝑉𝑊)

𝛾𝐻

  (E2) 

     Replace 𝐴𝑡
𝑉𝑊 and 𝐴𝑡

𝐸𝑊 by (E2) into (E1), the conditional risk exposures can be expressed as: 

𝛽𝑖𝐻,𝑡 =
(𝐴𝑡

𝑉𝑊𝐵𝑡
𝐸𝑊 − 𝐴𝑡

𝐸𝑊𝐵𝑡
𝑉𝑊)

𝛾𝐻
2 (𝐷𝑡 × 𝐶𝑖,𝑡 − 𝐶𝑡 × 𝐷𝑖,𝑡).  (E3) 

     Since (𝐴𝑡
𝑉𝑊𝐵

𝑡

𝐸𝑊
− 𝐴𝑡

𝐸𝑊𝐵𝑡
𝑉𝑊) is same for any firm at each time t, 

𝛽𝑖𝐻,𝑡 ∝ (𝐷𝑡 × 𝐶𝑖,𝑡 − 𝐶𝑡 × 𝐷𝑖,𝑡)  at cross-section.  (E4) 

     This completes the proof. 
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F Proof of Proposition 3.  

Recall that the tail risk measure proposed by Kelly and Jiang (2014) is: 

𝜆𝑡+1
𝐻𝑖𝑙𝑙 =

1

𝐾𝑡+1
∑ log(

𝜂𝑘,𝑡+1
𝑢𝑡+1

)

𝐾𝑡+1

𝑘=1

,   (F1) 

where 𝜂𝑘,𝑡+1 is the kth daily residual return that falls below an extreme value threshold 𝑢𝑡+1 during month 

t+1, and 𝐾𝑡+1 is the total number of such exceedances within month t+1. In Kelly and Jiang (2014), to 

avoid the bias in tail estimates arising from dependence among returns, they mitigate the effect by first 

removing common return factors and then estimating the tail process from return residuals. Based on (A1) 

and (A3), one can obtain: 

{
𝜂𝑘,𝑡+1 = 𝐸𝑡(𝜂𝑘,𝑡+1) + 𝜀𝑘,𝑡+1
𝑢𝑡+1 = 𝐸𝑡(𝑢𝑡+1) + 𝜀𝑢,𝑡+1

 (F2) 

Proposition 1 gives that:  

{
𝐸𝑡(𝜂𝑘,𝑡+1) = 𝛾𝐻𝑏𝑘𝐻,𝑡𝜎𝐻,𝑡

2 + 𝛾𝐻𝑏𝑘𝑀,𝑡𝜎𝑀𝐻,𝑡

𝐸𝑡(𝑢𝑡+1) = 𝛾𝐻𝑏𝑢𝐻,𝑡𝜎𝐻,𝑡
2 + 𝛾𝐻𝑏𝑢𝑀,𝑡𝜎𝑀𝐻,𝑡

  (F3) 

     Following the structure of Corollary 1.1:  

{
 
 

 
 
𝐸𝑡(𝜂̅𝑘,𝑡+1) = 𝐸𝑡 (∑

1

𝐾𝑡+1
𝜂𝑘,𝑡+1

𝐾𝑡+1

𝑘=1

) = ∑
1

𝐾𝑡+1
𝐸𝑡(𝜂𝑘,𝑡+1)

𝐾𝑡+1

𝑘=1

= 𝐹𝑡
𝐾𝜎𝐻,𝑡

2 + 𝐺𝑡
𝐾
𝜎𝑀𝐻,𝑡

𝐸𝑡(𝑢𝑡+1) = 𝐹𝑡
𝑢𝜎𝐻,𝑡

2 + 𝐺𝑡
𝑢
𝜎𝑀𝐻,𝑡

    (F4) 

where 

{
𝐹𝑡
𝐾 =∑

1

𝐾𝑡+1
𝛾
𝐻
𝑏𝑘𝐻,𝑡 

𝐾𝑡+1

𝑘=1

 𝐹𝑡
𝑢 = 𝛾

𝐻
𝑏𝑢𝐻,𝑡

,         {
𝐺𝑡
𝐾 =∑

1

𝐾𝑡+1
𝛾
𝐻
𝑏𝑘𝑀,𝑡

𝐾𝑡+1

𝑘=1

 𝐺𝑡
𝑢 = 𝛾

𝐻
𝑏𝑢𝑀,𝑡

 

     Therefore, similar to the derivation Corollary 1.2: 

𝜎𝑀𝐻,𝑡 =
𝐹𝑡
𝑢

𝐹𝑡
𝑉𝑊𝐺𝑡

𝐸𝑊 − 𝐹𝑡
𝐸𝑊𝐺𝑡

𝑉𝑊 𝐸𝑡(𝜂̅𝑘,𝑡+1) −
𝐹𝑡
𝐾

𝐹𝑡
𝑉𝑊𝐺𝑡

𝐸𝑊 − 𝐹𝑡
𝐸𝑊𝐺𝑡

𝑉𝑊 𝐸𝑡(𝑢𝑡+1) ≡ 𝐽𝑡
𝑢𝐸𝑡(𝜂̅𝑘,𝑡+1) − 𝐽𝑡

𝐾𝐸𝑡(𝑢𝑡+1).  (F5) 

     Based on (F3),  
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𝜎𝑀𝐻,𝑡 = 𝐽𝑡
𝑢𝐸𝑡(𝜂̅𝑘,𝑡+1) − 𝐽𝑡

𝐾𝐸𝑡(𝑢𝑡+1) 

= 𝐽𝑡
𝑢𝜂̅𝑘,𝑡 − 𝐽𝑡

𝐾𝑢𝑡+1 + (𝐽𝑡
𝐾𝜀𝑢,𝑡+1 − 𝐽𝑡

𝑢𝜀𝑘̅,𝑡+1).  (F6) 

     I first use the Taylor series to approximate the equation above to logarithm format. Recall that the first 

order of Taylor series for log (𝑥) at some 𝑎 = 𝑥0 is: 

log(𝑥) ≈ log(𝑥0) +
1

𝑥0
(𝑥 − 𝑥0) + 𝑂(𝑥

2).   (F7) 

     The approximation is reasonable when 𝑥  is close to 𝑥0 . In my case, 𝐽𝑡
𝑢𝜂̅𝑘,𝑡+1  is close to 𝐽𝑡

𝐾𝑢𝑡+1 on 

average. For example, the average 𝐽𝑡
𝑢𝜂̅𝑘,𝑡+1 within the sample period is around 0.0598, while the average 

𝐽𝑡
𝐾𝑢𝑡+1 is around 0.0586. And the corresponding standard deviations are 0.0190 and 0.0181. It is reasonable 

that one can define the following point as 𝑥0: 

𝑥0 ≡
𝐸(𝐽𝑡

𝑢)𝐸(𝜂̅𝑘,𝑡+1) + 𝐸(𝐽𝑡
𝐾)𝐸(𝑢𝑡+1)

2
.  (F8) 

     Suppose 𝑥0 > 0, then apply the Taylor expansion: 

{
 

 log(𝐽𝑡
𝑢𝜂̅𝐾,𝑡+1) ≈ log(𝑥0) +

1

𝑥0
𝐽𝑡
𝑢𝜂̅𝑘,𝑡+1 − 1

log(𝐽𝑡
𝐾𝑢𝑡+1) ≈ log(𝑥0) +

1

𝑥0
𝐽𝑡
𝐾𝑢𝑡+1 − 1

  (F9) 

     Take the difference between the two: 

𝐽𝑡
𝑢𝜂̅𝑘,𝑡+1 − 𝐽𝑡

𝐾𝑢𝑡+1 ≈ 𝑥0 log (
𝐽𝑡
𝑢

 𝐽𝑡
𝐾) + 𝑥0 log (

𝜂̅𝑘,𝑡+1
 𝑢𝑡+1

).  (F10) 

     Therefore, the conditional covariance risk can be approximated by: 

𝜎𝑀𝐻,𝑡 = 𝐽𝑡
𝑢𝐸𝑡(𝜂̅𝑘,𝑡+1) − 𝐽𝑡

𝐾𝐸𝑡(𝑢𝑡+1) 

= 𝐽𝑡
𝑢𝜂̅𝑘,𝑡 − 𝐽𝑡

𝐾𝑢𝑡+1 + (𝐽𝑡
𝐾𝜀𝑢,𝑡+1 − 𝐽𝑡

𝑢𝜀𝑘̅,𝑡+1) 

≈ 𝑥0 log (
𝐽𝑡
𝑢

 𝐽𝑡
𝐾) + 𝑥0 log (

𝜂̅𝑘,𝑡+1
 𝑢𝑡+1

) + (𝐽𝑡
𝐾𝜀𝑢,𝑡+1 − 𝐽𝑡

𝑢𝜀𝑘̅,𝑡+1).   (F11) 

     The tail risk of (F1) can also be approximated by similar techniques. Suppose  
𝜂𝑘,𝑡+1

𝑢𝑡+1
> 0 𝑎𝑛𝑑 𝑦0,𝑡+1 =

𝐸 (
𝜂𝑘,𝑡+1

𝑢𝑡+1
), the logarithm of the ratio can be approximated by: 

log (
𝜂𝑘,𝑡+1
𝑢𝑡+1

) ≈ log(𝑦0,𝑡+1) +
1

𝑦0,𝑡+1
(
𝜂𝑘,𝑡+1
𝑢𝑡+1

− 𝑦0,𝑡+1).  (F12) 
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     Then the tail risk measure can be approximated by: 

𝜆𝑡+1
𝐻𝑖𝑙𝑙 ≈

1

𝐾𝑡+1
∑ (log(𝑦0,𝑡+1) +

1

𝑦0,𝑡+1
(
𝜂𝑘,𝑡+1
𝑢𝑡+1

− 𝑦0,𝑡+1))

𝐾𝑡+1

𝑘=1

 

= log(𝑦0,𝑡+1) +
1

𝑦0,𝑡+1
(
𝜂̅𝑘,𝑡+1
𝑢𝑡+1

− 𝑦0,𝑡+1) 

≈ log (
𝜂̅𝑘,𝑡+1
𝑢𝑡+1

).                                                                                                                                              (F13) 

     Therefore, the conditional covariance risk based on (F11) can be expressed as: 

𝜎𝑀𝐻,𝑡 ≈ 𝑥0 log (
𝐽𝑡
𝑢

 𝐽𝑡
𝐾) + 𝑥0 log (

𝜂̅𝑘,𝑡+1
 𝑢𝑡+1

) 

≈ 𝑥0 log (
𝐽𝑡
𝑢

𝐽𝑡
𝐾) + 𝑥0𝜆𝑡

𝐻𝑖𝑙𝑙 + (𝐽𝑡
𝐾𝜀𝑢,𝑡+1 − 𝐽𝑡

𝑢𝜀𝑘̅,𝑡+1).   (F14) 

     Since both 𝜀𝑢,𝑡+1 𝑎𝑛𝑑 𝜀𝑘̅,𝑡+1 follow normal distributions, I can reorganize the formula to: 

𝜆𝑡+1
𝐻𝑖𝑙𝑙 ≈ log(

𝐽𝑡
𝐾

𝐽𝑡
𝑢) +

1

𝑥0
𝜎𝑀𝐻,𝑡 + 𝜀𝑡+1, (F15) 

     where 𝜀𝑡+1 follows a normal distribution. This completes the proof. To illustrate the accuracy of this 

approximation, I conduct a numerical study in Section 6 to understand the link.  
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Table 1. Summary Statistics of Monthly EWIV, VWIV, SMV, and MKTRF 

 Autocorrelation at Lag (Number of Months) Pearson Correlation 

Variable Mean STD 1 3 6 12 24 EWIV VWIV SMV MKTRF 

Panel A. Time Period: 181501 to 187012 

EWIV 0.049 0.024 0.975 0.952 0.925 0.880 0.778 1.000    

VWIV 0.040 0.018 0.893 0.835 0.752 0.679 0.560 0.853 1.000   

SMV 0.030 0.013 0.995 0.981 0.955 0.883 0.705 0.566 0.535 1.000  
MKTRF 0.004 0.033 0.058 0.051 0.123 0.040 -0.022 0.129 0.082 0.069 1.000 

Panel B. Time Period: 187101 to 192512 

EWIV 0.064 0.011 0.949 0.897 0.845 0.760 0.569 1.000    

VWIV 0.050 0.011 0.949 0.904 0.842 0.737 0.547 0.826 1.000   
SMV 0.032 0.005 0.987 0.950 0.884 0.734 0.489 0.529 0.307 1.000  

MKTRF 0.002 0.033 0.285 -0.001 0.040 -0.045 -0.031 0.116 0.038 0.073 1.000 

Panel C. Time Period: 192601 to 196212 

EWIV 0.026 0.016 0.948 0.856 0.760 0.565 0.470 1.000    
VWIV 0.021 0.012 0.935 0.808 0.654 0.401 0.360 0.959 1.000   

SMV 0.065 0.046 0.886 0.646 0.647 0.578 0.383 0.626 0.514 1.000  

MKTRF 0.008 0.065 0.135 -0.166 -0.031 -0.012 0.035 0.015 0.017 -0.111 1.000 

Panel D. Time Period: 196301 to 201812 

EWIV 0.027 0.008 0.970 0.876 0.777 0.693 0.520 1.000    

VWIV 0.020 0.005 0.948 0.850 0.727 0.567 0.277 0.893 1.000   

SMV 0.038 0.023 0.672 0.480 0.357 0.234 0.054 0.443 0.457 1.000  
MKTRF 0.005 0.044 0.072 0.022 -0.051 0.028 -0.012 -0.016 -0.045 -0.299 1.000 

The table reports the descriptive statistics for the monthly time-series EWIV, VWIV, SMV, and MKTRF, as well as their correlations. The sample 

periods are separated based on data resources and quality. The data before 192601 is collected from Global Financial Data. The data after 192601 

is collected from CRSP. Detailed descriptions of the variables and their constructions are provided in Section 3. 
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This table reports the results of univariate and bivariate monthly predictive regressions. The dependent variable is the average monthly value-

weighted market excess returns in logarithm (MKTRF) over the relevant forecast horizon. All predictors are normalized to have zero mean and one 

standard deviation. K stands for the forecast horizon in number of months. “b” is the slope coefficient on the predictor. When K>1, to adjust for 

the overlapping dependent variable, the t-stat is computed using the GMM standard errors with K-1 Newey-West lag correction. The sample periods 

are specified in the table. 

Table 2. Univariate and Bivariate Monthly Regression 

Panel A. Univariate Regression 

196301 to 201812 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.000 0.001 0.001 0.001 0.001 

t-stat 0.21 0.34 0.50 0.34 0.39 

𝑅2（%） -0.14 -0.11 -0.03 -0.01 0.38 

VWIV b -0.003 -0.002 -0.002 -0.002 -0.001 

t-stat -1.32 -1.45 -1.28 -1.18 -0.77 

𝑅2（%） 0.24 0.64 0.81 1.69 1.88 

Panel B. Bivariate Regression  

196301 to  201812 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.014 0.013 0.012 0.013 0.011 

t-stat (2.96) (3.57) (3.58) (4.07) (4.54) 

mARM t-stat (2.11) (2.72) (2.43) (3.97) (3.99) 

VWIV b -0.015 -0.014 -0.013 -0.014 -0.012 

t-stat (-3.03) (-3.74) (-3.68) (-4.52) (-5.13) 

mARM t-stat (-2.62) (-3.61) (-3.66) (-3.89) (-5.09) 

 𝑅2（%） 1.29 3.48 6.10 13.93 23.30 

Panel C. Bivariate Regression with Different Sample Periods 

181501 to 187012 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.009 0.009 0.010 0.010 0.008 
 t-stat (3.23) (4.69) (4.71) (4.03) (2.99) 

VWIV b -0.006 -0.007 -0.007 -0.008 -0.007 

 t-stat (-2.13) (-3.84) (-4.20) (-3.98) (-2.81) 

 𝑅2（%） 2.16 5.88 11.16 16.41 20.42 

187101 to 192512 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.005 0.006 0.007 0.006 0.004 

 t-stat (2.18) (2.54) (3.44) (3.15) (3.49) 
VWIV b -0.004 -0.005 -0.006 -0.006 -0.005 

 t-stat (-1.79) (-2.31) (-3.43) (-3.44) (-3.49) 

 𝑅2（%） 0.49 1.68 5.31 8.12 9.09 

192601 to 196212 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.029 0.043 0.043 0.038 0.033 

 t-stat (1.26) (2.15) (2.62) (3.42) (3.74) 

VWIV b -0.027 -0.043 -0.044 -0.038 -0.034 

 t-stat (-1.32) (-2.46) (-2.84) (-3.50) (-3.35) 

 𝑅2（%） 0.48 4.35 10.36 13.99 22.90 

196301 to 200112 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.009 0.007 0.006 0.006 0.004 

t-stat (3.14) (3.23) (2.89) (2.91) (2.49) 

VWIV b -0.007 -0.006 -0.006 -0.006 -0.003 

t-stat (-2.12) (-2.53) (-2.36) (-2.55) (-1.39) 

 𝑅2（%） 1.29 3.13 4.83 10.16 11.38 

200201 to 201812 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.023 0.031 0.032 0.022 0.014 

t-stat (1.63) (2.38) (2.42) (2.04) (2.46) 

VWIV b -0.030 -0.036 -0.034 -0.021 -0.012 

t-stat (-2.16) (-2.82) (-2.65) (-1.96) (-2.48) 

 𝑅2（%） 4.42 14.48 17.61 15.19 19.17 

181501 to 201812 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.008 0.009 0.009 0.009 0.007 

 t-stat (3.37) (4.26) (4.26) (3.92) (3.24) 

VWIV b -0.009 -0.010 -0.010 -0.010 -0.008 

 t-stat (-3.75) (-5.02) (-4.91) (-4.55) (-3.73) 

 𝑅2（%） 0.47 1.65 3.28 5.56 7.21 
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This table reports the results of univariate and bivariate daily predictive regressions. The dependent variable is the average daily value-weighted 

market excess returns in logarithm (MKTRF) over the relevant forecast horizon. All predictors are normalized to have zero mean and one standard 

deviation. D stands for the forecast horizon in number of days. I also include the lagged stock market return as a regressor (whose coefficient is 

omitted for brevity) to control for the market return autocorrelation. “b” is the slope coefficient on the predictor. When D>1, to adjust for the 

overlapping dependent variable, the t-stat is computed using the GMM standard errors with D-1 Newey-West lag correction. The sample periods 

are specified in the table. 

 

 

  

Table 3. Univariate and Bivariate Daily Regression 

Panel A. Univariate Regression  

19630103 to 20181231 Coefficient D=1 D=3 D=6 D=12 D=24 

EWIV b 0.001 0.001 0.001 0.001 0.001 

t-stat 0.36 0.45 0.48 0.49 0.52 

𝑅2（%） 0.26 0.02 0.00 0.00 0.02 

VWIV b -0.002 -0.002 -0.002 -0.002 -0.002 

t-stat -0.61 -0.83 -0.91 -1.01 -1.07 

𝑅2（%） 0.27 0.04 0.03 0.08 0.17 

Panel B. Bivariate Regression 

19630103 to 20181231 Coefficient D=1 D=3 D=6 D=12 D=24 

EWIV b 0.017 0.018 0.018 0.017 0.017 

t-stat (2.97) (3.53) (3.61) (3.67) (3.74) 

mARM t-stat (1.97) (3.20) (2.76) (2.68) (2.41) 
VWIV b -0.018 -0.018 -0.018 -0.018 -0.017 

t-stat (-2.78) (-3.36) (-3.54) (-3.74) (-3.86) 

mARM t-stat (-1.96) (-3.12) (-3.24) (-3.43) (-2.95) 

 𝑅2（%） 0.34 0.25 0.46 0.94 1.80 

Panel C. Bivariate Regression with Different Sample Periods 

19280303 to 19621231 Coefficient D=1 D=3 D=6 D=12 D=24 

EWIV b 0.024 0.024 0.024 0.028 0.034 
 t-stat (1.06) (1.23) (1.27) (1.44) (1.62) 

VWIV b -0.023 -0.024 -0.023 -0.027 -0.035 

 t-stat (-1.07) (-1.24) (-1.30) (-1.55) (-1.84) 

 𝑅2（%） 0.67 0.08 0.20 0.58 1.27 

19630103 to 20011231 Coefficient D=1 D=3 D=6 D=12 D=24 

EWIV b 0.014 0.015 0.015 0.015 0.015 

t-stat (2.71) (3.32) (3.42) (3.49) (3.50) 

VWIV b -0.012 -0.013 -0.013 -0.013 -0.012 

t-stat (-1.95) (-2.47) (-2.65) (-2.87) (-2.98) 

 𝑅2（%） 2.29 0.68 0.69 1.08 1.91 

20020103 to 20181231 Coefficient D=1 D=3 D=6 D=12 D=24 

EWIV b 0.046 0.043 0.042 0.041 0.040 

t-stat (1.72) (2.16) (2.22) (2.24) (2.40) 

VWIV b -0.052 -0.049 -0.048 -0.046 -0.046 

t-stat (-1.77) (-2.32) (-2.47) (-2.55) (-2.73) 

 𝑅2（%） 0.73 1.04 2.02 3.29 6.34 

19280303 to 20181231 Coefficient D=1 D=3 D=6 D=12 D=24 

EWIV b 0.020 0.021 0.020 0.020 0.021 

t-stat (2.43) (2.88) (3.00) (3.10) (3.11) 

VWIV b -0.019 -0.020 -0.020 -0.020 -0.021 

t-stat (-2.39) (-2.86) (-3.03) (-3.28) (-3.59) 

 𝑅2（%） 0.49 0.15 0.27 0.57 1.12 



54 

 

 

Table 4. Multiple Predictive Monthly Regression 

 K=1 K=12 

 Control EWIV VWIV  Control EWIV VWIV  

Predictor b t-stat b t-stat b t-stat 𝑹𝟐 b t-stat b t-stat b t-stat 𝑹𝟐 

Log dividend-price ratio 0.002 0.80 0.015 3.11 -0.016 -3.12 1.38 0.002 1.34 0.014 4.18 -0.014 -4.43 16.37 

Log dividend yield 0.002 0.95 0.015 3.11 -0.016 -3.11 1.42 0.002 1.33 0.014 4.17 -0.014 -4.42 16.35 

Dividend-payout ratio 0.000 -0.08 0.015 3.10 -0.016 -3.20 1.26 0.000 0.35 0.013 3.87 -0.014 -4.45 14.68 

Book-to-market ratio 0.001 0.68 0.016 3.20 -0.016 -3.25 1.35 0.002 1.27 0.015 4.52 -0.015 -4.82 16.25 

Net equity expansion 0.000 -0.22 0.015 3.02 -0.016 -3.00 1.27 0.000 -0.16 0.013 3.95 -0.014 -4.28 14.63 

Treasury bill rate -0.002 -0.90 0.014 2.90 -0.015 -2.86 1.40 -0.001 -0.41 0.013 4.10 -0.014 -4.39 14.76 
Long-term yield -0.002 -0.89 0.015 3.11 -0.016 -3.15 1.40 0.000 -0.11 0.014 4.12 -0.014 -4.57 14.60 

Long-term return 0.004 2.20 0.014 2.86 -0.015 -3.03 2.17 0.001 2.48 0.013 4.04 -0.014 -4.50 15.24 

Term spread 0.004 2.08 0.012 2.57 -0.013 -2.59 2.14 0.001 1.23 0.013 3.99 -0.014 -4.34 15.34 
Default yield spread 0.002 0.96 0.014 3.03 -0.015 -3.13 1.47 0.002 1.70 0.013 4.00 -0.014 -4.52 16.77 

Default return spread 0.005 2.49 0.014 2.91 -0.014 -2.91 2.69 0.001 1.18 0.013 4.14 -0.014 -4.51 15.13 

Inflation -0.002 -1.12 0.014 2.79 -0.015 -2.92 1.51 -0.001 -1.27 0.013 4.15 -0.014 -4.60 15.41 
Average correlation 0.003 1.30 0.014 2.89 -0.015 -2.90 1.64 0.002 2.01 0.013 3.82 -0.013 -4.14 16.91 

SMV 0.0002 -0.11 0.008 2.85 -0.009 -2.33 1.08 0.004 3.91 0.007 3.38 -0.010 -4.85 13.65 

ILIQ 0.002 0.75 0.010 1.35 -0.012 -1.66 1.19 0.002 1.37 0.009 2.10 -0.010 -2.68 14.74 
VRP 0.010 3.68 0.007 0.91 -0.011 -1.32 6.02 0.001 1.06 0.016 3.26 -0.018 -4.14 20.39 

IVS 0.011 2.85 0.016 1.12 -0.018 -1.30 5.77 0.001 0.90 0.026 2.85 -0.028 -3.54 23.97 

SVIX 0.002 0.45 0.014 1.75 -0.018 -2.01 1.00 0.003 3.18 0.017 3.39 -0.020 -4.39 26.03 
CAY -0.004 -1.93 0.022 3.47 -0.021 -3.57 1.81 0.001 0.60 0.012 3.08 -0.013 -3.90 14.88 

Sentiment -0.003 -1.23 0.015 3.02 -0.015 -2.89 1.42 -0.002 -1.10 0.014 4.26 -0.014 -4.49 15.90 

SII -0.006 -3.08 0.021 3.36 -0.021 -3.20 2.84 -0.006 -4.10 0.019 5.04 -0.019 -5.52 31.77 

This table reports the results of multivariate predictive regressions with both EWIV and VWIV and each control predictor. The dependent variable 

is monthly market excess returns (MKTRF) and the forecast horizon is one month (K=1) and one year (K=12). I normalize all predictors to have 

zero mean and one standard deviation. When K>1, to adjust for the overlapping dependent variable, the t-stat is computed using the GMM standard 

errors with K-1 Newer-West correction. The sample period is from 196301 to 201812. 
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This table reports the results of multiple daily predictive regressions. Each column in this table corresponds to one multiple predictive regression, 

labeled by the forecast horizons (D=days). The dependent variable is the average daily value-weighted market excess returns (MKTRF) over the 

relevant forecast horizon, and all predictors are normalized to have zero mean and one standard deviation. For all the regressions, I include the 

lagged stock market return as a regressor (whose coefficient is omitted for brevity) to control for the market return autocorrelation. “b” is the slope 

coefficient on the predictor. When D>1, to adjust for the overlapping dependent variable, the t-stat is computed using the GMM standard errors 

with D-1 Newey-West lag correction. The sample periods are specified in each panel. 

 

 

 

 

  

Table 5. Multiple Predictive Daily Regression 

Panel A. Control for SMV, SMB, and HML  

19630103 to 20181231 Coefficient D=1 D=3 D=6 D=12 D=24 

EWIV b 0.017 0.017 0.017 0.017 0.017 

t-stat (2.92) (3.49) (3.57) (3.63) (3.71) 

VWIV b -0.019 -0.019 -0.019 -0.019 -0.019 

t-stat (-2.92) (-3.56) (-3.73) (-3.95) (-4.09) 

SMV b 0.003 0.003 0.003 0.003 0.003 

t-stat (0.60) (0.86) (1.01) (1.26) (1.55) 

SMB b -0.005 -0.003 -0.001 0.000 0.000 

 t-stat (-1.23) (-1.53) (-1.06) (0.46) (0.62) 
HML b -0.015 -0.006 -0.004 -0.002 -0.001 

 t-stat (-3.99) (-3.42) (-3.27) (-2.14) (-1.70) 

Total 𝑅2（%） 0.84 0.52 0.72 1.18 2.21 

Panel B. Control for SMV, VRP, IVS, SMB, and HML 

19960103 to 20181231 Coefficient D=1 D=3 D=6 D=12 D=24 

EWIV b 0.050 0.064 0.072 0.072 0.072 

 t-stat (1.01) (1.82) (2.24) (2.51) (2.87) 

VWIV b -0.063 -0.075 -0.083 -0.084 -0.083 
 t-stat (-1.48) (-2.53) (-3.09) (-3.44) (-3.63) 

SMV b -0.032 -0.017 -0.003 0.011 0.011 

 t-stat (-1.02) (-0.82) (-0.13) (0.63) (1.23) 
SMB b 0.035 0.011 0.007 0.006 0.003 

 t-stat (2.94) (2.17) (1.78) (2.27) (1.74) 

HML b 0.013 0.000 0.000 0.002 0.001 
 t-stat (0.98) (-0.09) (-0.10) (0.73) (0.84) 

VRP b 0.055 0.029 0.012 0.000 -0.001 

 t-stat (1.63) (1.43) (0.67) (0.03) (-0.14) 

IVS b 0.052 0.025 0.015 0.016 0.012 

 t-stat (2.96) (2.37) (1.73) (2.42) (2.65) 

Total 𝑅2（%） 3.55 3.87 5.11 9.30 16.13 



56 

 

 

The forecast target is the market excess returns (MKTRF). The construction process is specified in section 3. The z-stat is computed based on Clark 

and West (2007), I reject the null hypothesis if this z-stat is greater than 1.282 (for a one-sided test at 10% confidence), 1.645 (for a one-sided test 

at 5% confidence), or 2.334 (for a one-sided test at 1% confidence). The out-of-sample evaluation periods are specified in the table. 

 

 

 

  

Table 6.  Out-of-Sample Performance of the Combination of EWIV and VWIV 

Panel A. Out-of-Sample 𝑹𝟐 Statistics (Monthly) 

Predictor Statistic K=1 K=3 K=6 K=12 K=24 

EWIV 

198101 ~ 201812 
OOS 𝑅2 (%) -0.808 -2.193 -2.974 -6.671 -19.067 

z-stat 0.77 0.95 0.71 0.01 -0.36 

VWIV 

198101 ~ 201812 
OOS 𝑅2 (%) -0.431 -1.278 -2.895 -8.682 -30.728 

z-stat 0.24 0.44 -0.24 -0.83 -1.33 

EWIV+VWIV 
186001 ~ 192512 

OOS 𝑅2 (%) 1.015 2.363 5.238 7.888 8.985 

z-stat 2.35 2.52 2.72 2.49 1.97 

EWIV+VWIV OOS 𝑅2 (%) 0.640 2.217 5.459 11.899 20.579 

198101 ~ 201812 z-stat 2.14 2.52 2.95 3.45 5.00 

Panel B. Out-of-Sample 𝑹𝟐 Statistics (Daily) 

Predictor Statistic D=1 D=3 D=6 D=12 D=24 

EWIV OOS 𝑅2 (%) -0.061 -0.167 -0.296 -0.610 -1.199 

19810103 ~ 20181231 z-stat 0.76 0.92 1.18 1.29 1.38 

VWIV OOS 𝑅2 (%) -0.048 -0.121 -0.189 -0.363 -0.733 

19810103 ~ 20181231 z-stat 0.08 0.12 0.36 0.48 0.62 

EWIV+VWIV OOS 𝑅2 (%) 0.055 0.154 0.316 0.654 1.346 

19810103 ~ 20181231 z-stat 2.70 3.01 3.10 3.12 3.12 

Panel C:  Optimal Portfolio Sharpe Ratio and Certainty Equivalent Return (CER) Gain (Monthly) 

Predictor Statistic K=1 K=3 K=6 K=12 K=24 

EWIV 

198101 ~ 201812 

Sharpe Ratio 0.378 0.386 0.392 0.395 0.351 

CER Gain (%) -0.770 -0.115 0.467 0.482 0.077 

VWIV 

198101 ~ 201812 

Sharpe Ratio 0.396 0.397 0.361 0.355 0.271 

CER Gain (%) -0.090 0.250 0.196 0.094 -0.618 

EWIV+VWIV 
186001 ~ 192512 

Sharpe Ratio 0.642 0.601 0.591 0.564 0.466 

CER Gain (%) 1.488 1.910 1.637 0.857 1.528 

EWIV+VWIV 

198101 ~ 201812 

Sharpe Ratio 0.497 0.509 0.514 0.553 0.414 

CER Gain (%) 1.358 1.928 2.431 3.272 1.325 

Historical Average 
Sharpe Ratio 0.401 0.377 0.345 0.350 0.299 

CER Gain (%) - - - - - 
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This table summarizes various robustness checks for the predictive regression using monthly time-series data. K stands for the forecast time horizon 

in number of months. For forecast horizons beyond one period, the t-stat is computed using the GMM standard errors with K-1 Newey-West lag 

correction in the monthly time-series regressions. The sample period is from 196301 to 201812. 

 

 

 

 

 

 

 

 

 

  

Table 7. Predictive Regression based on Alternative Weighting Schemes and Variables 

Panel A. In-Sample Performance 

Predictor Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.012 0.011 0.011 0.011 0.010 

t-stat (2.64) (3.25) (3.35) (3.98) (4.40) 

PWIV b -0.012 -0.011 -0.011 -0.012 -0.010 

t-stat (-2.70) (-3.47) (-3.40) (-4.43) (-5.00) 

 𝑅2（%） 1.01 2.87 5.34 12.83 21.60 

Predictor Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b -0.006 -0.006 -0.006 -0.006 -0.005 

t-stat (-2.07) (-2.54) (-2.57 (-2.60) (-1.94) 

IWIV b 0.008 0.008 0.008 0.008 0.006 

t-stat (2.64) (3.62) (3.50) (3.86) (3.48) 

 𝑅2（%） 0.73 2.50 4.38 8.77 11.92 

Predictor Coefficient K=1 K=3 K=6 K=12 K=24 

SWIV b 0.006 0.005 0.005 0.006 0.005 

 t-stat (2.45) (3.11) (3.20) (3.51) (3.74) 
BWIV b -0.006 -0.006 -0.005 -0.006 -0.005 

 t-stat (-2.44) (-3.41) (-3.29) (-4.70) (-5.28) 

 𝑅2（%） 0.99 3.12 5.58 13.75 23.95 

Predictor Coefficient K=1 K=3 K=6 K=12 K=24 

EWAP b 0.014 0.014 0.013 0.014 0.012 

 t-stat (2.44) (3.18) (3.16) (3.84) (4.52) 
VWAP b -0.016 -0.014 -0.014 -0.015 -0.013 

 t-stat (-2.64) (-3.49) (-3.26) (-4.33) (-5.23) 

 𝑅2（%） 0.95 2.64 4.78 12.00 19.21 

Panel B. Out-of-Sample Performance  

Predictor Statistic K=1 K=3 K=6 K=12 K=24 

EWIV+PWIV 

198101 ~201812 

OOS 𝑅2 (%) 0.769 2.292 5.491 12.067 20.135 

z-stat 2.23 2.55 2.99   3.55 5.09 

EWIV+IWIV 

198101 ~201812 

OOS 𝑅2 (%) 0.704 2.172 4.196 9.116 12.900 

z-stat 2.20 2.74 2.94 3.47 3.68 

SWIV+BWIV 

198101 ~201812 

OOS 𝑅2 (%) 0.911 3.026 6.697 13.949 23.949 

z-stat 2.65 3.15 3.61 4.19 5.30 

EWAP+VWAP OOS 𝑅2 (%) 0.257 1.608 3.772 10.416 12.216 

198101 ~ 201812 z-stat 0.99 2.46 2.68 2.84 2.47 
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This table summarizes bivariate predictive regressions for portfolio returns on EWIV and VWIV. The dependent variable is various monthly 

portfolio excess returns and the forecast horizon is one month and one year in all regressions. I normalize all predictors to have zero mean and one 

standard deviation. For forecast horizons beyond one period, the t-stat is computed using the GMM standard errors with K-1 Newey-West lag 

correction in the monthly time-series regressions. The sample period is from 196301 to 201812. 

  

Table 8.  Portfolio Return Predictability 

   Time Horizon K=6 Time Horizon K=12 
Fama-French Port Predictor Coefficient Port_1 Port_2 Port_3 Port_4 Port_5 Port_1 Port_2 Port_3 Port_4 Port_5 

Market Size 

EWIV b 0.003 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 

t-stat (1.78) (0.89) (0.72) (1.31) (0.38) (1.56) (0.65) (0.59) (1.10) (0.35) 

adj. R2（%） 1.02 0.24 0.20 0.72 0.04 1.87 0.39 0.29 1.27 0.04 

VWIV b 0.001 -0.000 -0.001 0.000 -0.001 0.002 -0.000 -0.001 0.000 -0.001 

t-stat (1.03) (-0.09) (-0.53) (0.21) (-0.80) (1.09) (-0.08) (-0.36) (0.22) (-0.55) 

adj. R2（%） 0.18 -0.15 -0.13 -0.07 0.04 0.41 -0.15 0.06 -0.12 0.69 

EWIV b 0.007 -0.005 0.007 -0.006 0.008 0.005 -0.003 0.005 -0.005 0.007 

 t-stat (1.65) (-1.26) (1.85) (-1.89) (2.64) (1.51) (-1.13) (1.84) (-2.05) (2.78) 

VWIV b -0.008 0.007 -0.006 0.008 -0.009 -0.007 0.007 -0.006 0.008 -0.008 

 t-stat (-2.85) (2.66) (-2.44) (3.36) (-3.86) (-3.24) (2.92) (-3.00) (3.56) (-4.07) 

 adj. R2（%） 3.42 3.42 3.42 3.42 3.42 3.09 2.93 5.77 5.05 8.61 

Book-to-Market 

EWIV b 0.000 0.002 0.002 0.001 0.002 0.000 0.002 0.002 0.001 0.002 

t-stat (0.20) (1.50) (1.63) (1.16) (1.53) (0.14) (1.25) (1.57) (1.10) (1.13) 

adj. R2（%） -0.06 0.83 0.89 0.36 1.05 -0.10 1.37 1.44 0.69 2.00 

VWIV b -0.002 0.000 0.000 0.001 0.001 -0.002 0.000 0.001 0.001 0.001 

t-stat (-0.92) (0.35) (0.52) (0.58) (1.03) (-0.81) (0.31) (0.70) (0.64) (0.56) 

adj. R2（%） 0.10 -0.09 -0.04 -0.06 0.13 1.08 -0.09 -0.04 0.01 0.53 

EWIV b 0.009 -0.010 0.007 -0.006 0.006 0.008 -0.009 0.006 -0.005 0.006 

 t-stat (2.88) (-3.37) (2.64) (-2.43) (2.30) (3.11) (-3.89) (3.10) (-3.08) (2.85) 

VWIV b -0.005 0.004 -0.003 0.005 -0.004 -0.004 0.004 -0.003 0.005 -0.004 

 t-stat (-1.85) (1.38) (-1.05) (1.68) (-1.27) (-2.76) (1.74) (-1.52) (2.25) (-1.85) 

 adj. R2（%） 2.83 2.79 2.43 0.80 1.94 8.51 4.92 4.42 1.40 3.04 

Operating 

Profitability 

EWIV b 0.000 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 

t-stat (0.14) (0.84) (0.45) (0.74) (0.53) (0.02) (0.75) (0.36) (0.64) (0.45) 

adj. R2（%） 0.00 0.22 -0.04 0.32 0.15 -0.11 0.51 0.06 0.42 0.13 

VWIV b -0.002 0.000 -0.001 -0.001 -0.001 -0.002 0.000 -0.001 -0.001 -0.001 

t-stat (-0.71) (-0.30) (-0.77) (-0.55) (-0.62) (-0.70) (-0.11) (-0.56) (-0.32) (-0.43) 

adj. R2（%） 0.00 -0.15 0.07 -0.12 -0.13 1.05 -0.07 0.44 0.20 0.14 

EWIV b 0.011 -0.012 0.007 -0.007 0.007 0.009 -0.011 0.007 -0.006 0.007 

 t-stat (2.85) (-2.85) (2.98) (-2.99) (3.07) (3.35) (-2.89) (3.32) (-3.35) (3.52) 

VWIV b -0.008 0.008 -0.008 0.007 -0.007 -0.007 0.007 -0.007 0.007 -0.007 

 t-stat (-3.50) (3.35) (-3.53) (2.43) (-2.89) (-4.02) (3.45) (-3.87) (2.72) (-3.50) 

 adj. R2（%） 2.70 1.94 2.86 3.57 2.08 7.94 5.52 6.98 8.41 5.21 

Investment 

EWIV b 0.002 0.002 0.001 0.002 -0.001 0.002 0.002 0.001 0.002 -0.001 

t-stat (1.68) (1.88) (0.95) (1.44) (-0.24) (1.26) (1.44) (0.86) (1.25) (-0.31) 

adj. R2（%） 1.30 1.03 0.20 1.06 -0.15 2.13 2.16 0.53 1.83 -0.05 

VWIV b 0.001 0.001 0.000 0.001 -0.003 0.001 0.001 0.000 0.001 -0.003 

t-stat (0.52) (0.86) (-0.28) (0.53) (-1.32) (0.38) (0.65) (0.06) (0.42) (-1.33) 

adj. R2（%） 0.04 -0.01 -0.14 0.16 0.65 0.03 0.21 -0.11 0.11 3.22 

EWIV b 0.008 -0.007 0.006 -0.004 0.006 0.007 -0.006 0.005 -0.004 0.005 

 t-stat (2.90) (-2.73) (2.72) (-2.29) (2.60) (3.11) (-2.88) (2.97) (-2.80) (2.45) 

VWIV b -0.006 0.006 -0.005 0.011 -0.014 -0.005 0.007 -0.005 0.010 -0.013 

 t-stat (-2.78) (2.54) (-2.11) (3.10) (-3.62) (-2.73) (3.05) (-2.91) (3.82) (-4.76) 

 adj. R2（%） 3.25 2.68 2.19 1.83 4.03 6.27 4.91 4.91 4.50 11.87 
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This table reports the results of univariate and bivariate monthly predictive regressions. The dependent variable is the average monthly value-

weighted market excess returns in logarithm (MKTRF) over the relevant forecast horizon. All predictors are normalized to have zero mean and one 

standard deviation. K stands for the forecast horizon in number of months. “b” is the slope coefficient on the predictor. When K>1, to adjust for 

the overlapping dependent variable, the t-stat is computed using the GMM standard errors with K-1 Newey-West lag correction. The sample periods 

are specified in the table. 

 

 

  

Table 9. Reconcile with  Goyal and Santa-Clara (2003) and Bali, et al. (2005) 

Panel A. Goyal and Santa-Clara (2003) 

196308 to 199912 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.006 0.005 0.004 0.004 0.003 

t-stat 3.39 3.90 3.58 3.19 2.80 

𝑅2（%） 1.70 4.07 5.14 7.64 14.67 

VWIV b 0.004 0.004 0.003 0.002 0.002 

t-stat 2.18 2.69 2.13 1.90 1.94 

 𝑅2（%） 0.72 1.91 2.01 2.44 5.35 

EWIV b 0.012 0.010 0.009 0.009 0.007 

t-stat (2.63) (2.78) (2.56) (2.53) (2.57) 
VWIV b -0.006 -0.006 -0.006 -0.006 -0.005 

t-stat (-1.35) (-1.48) (-1.51) (-1.72) (-1.77) 

 𝑅2（%） 1.85 4.63 6.35 10.62 18.44 

Panel B. Bali, Cakici, Yan, and Zhang (2005) 

196308 to 200112 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.003 0.003 0.002 0.002 0.003 

t-stat 1.65 1.73 1.16 0.95 2.01 

𝑅2（%） 0.39 1.03 0.86 1.39 8.42 

VWIV b 0.001 0.001 0.000 -0.001 0.001 

t-stat 0.34 0.34 -0.19 -0.54 0.59 

𝑅2（%） -0.19 -0.17 -0.19 0.37 0.63 

EWIV b 0.014 0.012 0.011 0.011 0.009 

t-stat (3.10) (3.38) (3.27) (3.70) (3.04) 

VWIV b -0.012 -0.010 -0.010 -0.011 -0.008 

t-stat (-2.43) (-2.97) (-2.98) (-3.50) (-2.54) 

𝑅2（%） 1.42 3.36 5.55 13.92 18.59 

Panel C. Small-Stock Effect ( Only Use NYSE Stocks ) 

196301 to 201812 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.008 0.008 0.007 0.007 0.006 

t-stat (3.00) (3.36) (3.21) (3.10) (2.95) 

VWIV b -0.010 -0.009 -0.008 -0.007 -0.006 

t-stat (-2.94) (-3.41) (-3.12) (-3.27) (-2.84) 

 𝑅2（%） 1.29 3.29 5.18 9.16 14.52 

Panel D. Aggregate Idiosyncratic Variance 

196301 to 201812 Coefficient K=1 K=3 K=6 K=12 K=24 

EWIV b 0.009 0.008 0.007 0.007 0.006 

t-stat (3.17) (3.65) (3.51) (3.16) (2.77) 

VWIV b -0.010 -0.009 -0.008 -0.007 -0.006 
t-stat (-3.00) (-3.55) (-3.57) (-3.29) (-2.67) 

 𝑅2（%） 1.37 3.43 5.02 8.45 13.17 
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Table 10. VAR(1) based on the Conditional Covariance Risk and Other State Variables 

Panel A. The Coefficients and t-stat from VAR(1)  

 𝜎̂𝑀𝐻,𝑡 Consumption Income CAY Unrate IndPro TMS DFY DP 

𝜎̂𝑀𝐻,𝑡 0.928 

(64.82) 

-0.047 

(-2.89) 

-0.003 

(-0.24) 

0.01 

(2.78) 

-0.001 

(-0.14) 

0.002 

(0.18) 

0.003 

(1.65) 

0.029 

(1.56) 

0.0003 

(1.26) 

Consumption -0.075 
(-2.13) 

-0.094 
(-2.34) 

0.065 
(2.48) 

-0.018 
(-2.16) 

0.016 
(1.22) 

-0.002 
(-0.11) 

-0.015 
(-3.67) 

-0.187 
(-4.13) 

0.003 
(6.64) 

Income -0.182 
(-3.43) 

0.196 
(3.24) 

-0.188 
(-4.79) 

-0.009 
(-0.66) 

0.026 
(1.37) 

0.078 
(2.44) 

-0.016 
(-2.61) 

-0.223 
(-3.28) 

0.003 
(4.06) 

CAY 0.051 

(1.09) 

0.101 

(1.90) 

0.014 

(0.40) 

0.962 

(84.84) 

0.028 

(1.65) 

0.026 

(0.91) 

-0.007 

(-1.31) 

-0.029 

(-0.49) 

-0.001 

(-1.67) 
Unrate 0.014 

(0.89) 

-0.052 

(-2.98) 

0.001 

(-0.02) 

-0.003 

(-0.78) 

0.97 

(174.78) 

-0.059 

(-6.37) 

-0.002 

(-0.88) 

0.111 

(5.62) 

0.0004 

(2.25) 

IndPro -0.033 
(-0.52) 

0.137 
(1.85) 

0.047 
(0.97) 

-0.009 
(-0.55) 

0.14 
(5.97) 

0.178 
(4.54) 

-0.018 
(-2.35) 

-0.654 
(-7.88) 

-0.001 
(-1.68) 

TMS 1.223 

(3.70) 

-1.077 

(-2.85) 

-0.672 

(-2.74) 

-0.364 

(-4.54) 

0.407 

(3.40) 

0.137 

(0.68) 

0.291 

(7.57) 

-0.878 

(-2.07) 

-0.031 

(-7.25) 

DFY -0.05 

(-4.55) 

-0.018 

(-1.42) 

-0.007 

(-0.91) 

0.01 

(3.73) 

-0.002 

(-0.51) 

-0.015 

(-2.18) 

0.004 

(3.06) 

0.949 

(67.37) 

0.001 

(4.20) 

DP -0.804 
(-1.92) 

-0.256 
(-0.54) 

0.289 
(0.93) 

0.085 
(0.83) 

0.037 
(0.24) 

-0.533 
(-2.10) 

-0.11 
(-2.25) 

-0.83 
(-1.55) 

0.992 
(180.38) 

Panel B. Correlation Matrix of the Residuals from VAR(1) 

 𝜎̂𝑀𝐻,𝑡 Consumption Income CAY Unrate IndPro TMS DFY DP 

𝜎̂𝑀𝐻,𝑡 1.00         

Consumption -0.15 1.00        

Income -0.01 0.18 1.00       

CAY 0.10 0.14 -0.19 1.00      
Unrate 0.02 -0.06 -0.07 -0.02 1.00     

IndPro -0.10 0.15 0.18 0.00 -0.28 1.00    

TMS 0.09 -0.21 -0.10 -0.07 0.17 -0.09 1.00   
DFY 0.01 -0.08 -0.05 -0.07 0.17 -0.12 0.19 1.00  

DP 0.20 -0.11 -0.08 0.18 -0.02 0.01 -0.10 0.04 1.00 

The table reports the results of the Vector Autoregression (VAR) based on the conditional covariance risk and other state variables. In Panel A, I 

report the coefficients and the corresponding t-stats in the parentheses for each VAR. In Panel B, I report the Pearson correlation matrix of the 

residuals of each independent variable in the VAR (1). The sample period is from 196301 to 201812. 
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This table summarizes the average returns and alphas in monthly frequencies for portfolios sorted by the risk loadings on corresponding independent 

variables and hold for one month. The firm risk exposures to both the market and the hedge portfolio are calculated based on Section 4.5. Column 

3 to 5 provide the sorting performance of 𝛽̂𝑖𝐻,𝑡 based on three different proxies based on Corollary 2.1. Panel A reports the equal-weighted average 

returns and alphas, while panel B reports the value-weighted (based on the market capitalization) average returns and alphas. The alpha is calculated 

based on the Fama-French five-factor model. The sample period is from 196301 to 201812. The t-stat is computed with Newey-West one-lag 

correction.  

 

 

 

 

 

 

 

 

Table 11. Portfolios Sorted by Risk Exposures to EWIV and VWIV 

Panel A. Equal-Weighted Portfolio (%) 

 𝜷̂𝒊𝑴,𝒕 𝜷̂𝒊𝑯,𝒕 ∝ 𝑪̂𝒊,𝒕 𝜷̂𝒊𝑯,𝒕 ∝ 𝑫̂𝒊,𝒕 𝜷̂𝒊𝑯,𝒕 ∝ (𝑫̂𝒕 × 𝑪̂𝒊,𝒕 − 𝑪̂𝒕 × 𝑫̂𝒊,𝒕) 
Port 1 1.394 1.511 1.553 1.387 

Port 2 1.469 1.296 1.293 1.323 

Port 3 1.552 1.344 1.339 1.359 

Port 4 1.604 1.470 1.491 1.517 

Port 5 1.897 2.053 2.000 2.044 

Port 5-1 0.503 0.542 0.448 0.657 

t-stat (2.33) (5.75) (4.30) (5.27) 

FF 5-factor alpha -0.031 0.493 0.410 0.526 

t-stat of alpha (-0.29) (5.13) (3.94) (4.62) 

Panel B. Value-Weighted Portfolio (%) 

 𝜷̂𝒊𝑴,𝒕 𝜷̂𝒊𝑯,𝒕 ∝ 𝑪̂𝒊,𝒕 𝜷̂𝒊𝑯,𝒕 ∝ 𝑫̂𝒊,𝒕 𝜷̂𝒊𝑯,𝒕 ∝ (𝑫̂𝒕 × 𝑪̂𝒊,𝒕 − 𝑪̂𝒕 × 𝑫̂𝒊,𝒕) 
Port 1 1.054 1.196 1.212 1.205 

Port 2 1.123 1.168 1.109 1.181 

Port 3 1.180 1.238 1.239 1.216 

Port 4 1.264 1.307 1.327 1.301 

Port 5 1.489 1.684 1.626 1.675 

Port 5-1 0.436 0.488 0.414 0.470 

t-stat (1.93) (3.62) (2.93) (3.55) 

FF 5-factor alpha 0.054 0.382 0.352 0.363 

t-stat of alpha (0.38) (2.87) (2.47) (2.78) 

Panel C. Double Sorting by 𝜷̂𝒊𝑴,𝒕 and 𝜷̂𝒊𝑯,𝒕 (%) 

Sort by 𝜷̂𝒊𝑯,𝒕 
Sort by 𝜷̂𝒊𝑴,𝒕 

Port 1 Port 2 Port 3 Port 4 Port 5 

Port 1 1.158 1.223 1.271 1.290 1.626 

Port 2 1.186 1.270 1.339 1.370 1.600 

Port 3 1.102 1.298 1.415 1.387 1.616 

Port 4 1.276 1.424 1.449 1.501 1.842 

Port 5 1.719 1.803 1.633 1.790 2.256 

Port 5-1 0.561 0.580 0.362 0.500 0.631 

t-stat (5.13) (3.67) (3.33) (4.36) (4.57) 

FF 5-factor alpha 0.466 0.305 0.277 0.469 0.576 

t-stat of alpha (4.33) (2.92) (2.53) (4.01) (4.14) 
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This table reports the Fama-MacBeth regressions for all eligible stocks. The dependent variables are the cross-section of stock excess returns. The 

independent variables are the cross-sectional conditional risk exposures of the market and hedge portfolio based on Section 2, and other control 

variables in Section 3. The CIV Beta is constructed based on Herskovic, et al. (2016). All portfolios are formed at monthly frequency and held for 

one month. All dependent and independent variables are expressed as monthly values. The coefficients in the table are calculated by taking the 

time-series average of the cross-sectional regressions over time. The t-stat is computed with Newey-West one-lag correction. The sample period is 

from 196301 to 201812.   

Table 12. Fama-Macbeth Regression 

Factor Coefficient I II III IV V 

Intercept b 0.163 0.171 0.175 0.175  0.175 

 t-stat (6.92) (7.38) (7.26) (7.26) (7.26) 

𝛽̂𝑖𝐻,𝑡 b 0.015 0.017 0.014 0.013 0.016 

 t-stat (4.16) (4.94) (4.06) (3.83) (3.59) 

𝛽̂𝑖𝑀,𝑡 b  0.019 0.015 0.013 0.009 

 t-stat  (2.13) (1.73) (1.62) (1.32) 

Market Size b   -0.012 -0.012 -0.009 

 t-stat   (-4.77) (-4.95) (-4.48) 

Book-to-Market b   0.02 0.020 0.018 

 t-stat   (5.69) (5.44) (5.18) 

Momentum b     0.014  0.020 

 t-stat    (2.43) (4.25) 

CIV Beta b    -0.005 -0.012 

 t-stat    (-2.49) (-2.64) 

Idiosyncratic 

Volatility 

b     -0.013 

t-stat     (-1.28) 

 𝑅2（%） 0.81 2.49 3.85 5.08 6.05 
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This table reports the results of univariate and bivariate monthly predictive regressions. The dependent variable is the average monthly value-

weighted market excess returns in logarithm (MKTRF) over the relevant forecast horizon. All predictors are normalized to have zero mean and one 

standard deviation.  𝜆𝑡
𝐻𝑖𝑙𝑙 𝑎𝑛𝑑  𝜎̂𝑀𝐻,𝑡  are defined in Section 5 and 4. K stands for the forecast horizon in number of months. “b” is the slope 

coefficient on the predictor. When K>1, to adjust for the overlapping dependent variable, the t-stat is computed using the GMM standard errors 

with K-1 Newey-West lag correction. The sample period is from 196301 to 201812. 

  

Table 13. Tail Risk and Conditional Covariance Risk 

Panel A. Tail Risk based on Kelly and Jiang (2014) 

Predictor Coefficient K=1 K=3 K=6 K=12 K=24 

𝜂̅𝑘,𝑡 
b -0.001 -0.001 -0.002 -0.002 -0.002 

t-stat -0.76 -0.93 -1.23 -1.15 -1.14 

𝑅2（%） -0.05 0.16 0.59 1.30 3.46 

𝑢𝑡 
b -0.001 -0.001 -0.001 -0.001 -0.001 

t-stat -0.29 -0.32 -0.52 -0.42 -0.52 

𝑅2（%） -0.14 -0.11 -0.01 0.07 0.77 

𝜂̅𝑘,𝑡 b -0.017 -0.019 -0.018 -0.019 -0.017 

t-stat (-2.25) (-2.92) (-2.92) (-3.23) (-3.27) 

mARM t-stat (-1.90) (-2.46) (-2.67) (-2.54) (-2.67) 

𝑢𝑡 b 0.016 0.018 0.017 0.018 0.016 

t-stat (2.07) (2.71) (2.69) (2.93) (2.77) 

mARM t-stat (1.99) (2.55) (2.26) (2.38) (2.45) 

 𝑅2（%） 0.49 2.36 4.63 10.72 18.97 

Panel B. Compare Tail Risk and Conditional Covariance 

Predictor Coefficient K=1 K=3 K=6 K=12 K=24 

𝜆𝑡
𝐻𝑖𝑙𝑙 

b 0.004 0.004 0.004 0.004 0.004 

t-stat 2.40 2.93 2.93 3.21 3.69 

𝑅2（%） 0.62 2.29 4.47 9.87 18.13 

𝜎̂𝑀𝐻,𝑡 
b 0.005 0.005 0.005 0.005 0.004 

t-stat 3.12 3.64 3.63 3.72 4.17 

𝑅2（%） 1.30 3.50 5.97 12.34 21.70 

𝜆𝑡
𝐻𝑖𝑙𝑙 b -0.001 0.000 0.001 0.001 0.001 

t-stat (-0.44) (-0.07) (0.25) (0.34) (0.69) 

𝜎̂𝑀𝐻,𝑡 b 0.007 0.005 0.005 0.005 0.004 

t-stat (2.21) (2.51) (2.21) (2.54) (2.53) 

 𝑅2（%） 1.40 3.69 6.55 14.47 24.00 

Panel C: Correlation between Tail Risk and Conditional Covariance 

Predictor 𝜆𝑡
𝐻𝑖𝑙𝑙 𝜎̂𝑀𝐻,𝑡     

𝜆𝑡
𝐻𝑖𝑙𝑙 1 0.795     

𝜎̂𝑀𝐻,𝑡 0.795 1     
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This table reports the simulated results of univariate and multiple regressions. Both independent and dependent variables are simulated based on 

the empirical moments described in Section 6. The simulation is run for 10,000 times. In Panel B, 𝛽̅ is the average of the coefficients of the 

corresponding regression in each column. “Average t-stat” is the average of the t-stat of the corresponding regression for each simulation. “% + (-) 

Significance t-stat’ is the proportion of positive (negative) t-stat greater (less) than 2 (-2). “Average adj.𝑅2” is the average of adjusted 𝑅2 obtained 

from the time-series regressions.   

 

 

  

Table 14. Simulation Analysis based on the ICAPM 

Panel A: Simulated Data based on the Empirical Moments 

 Summary Statistics Pearson Correlation 

 Mean STD AR(1) EWIV VWIV SMV 

EWIV 0.033 0.008 0.880 1.000   

VWIV 0.021 0.006 0.874 0.926 1.000  

SMV 0.056 0.013 0.533 0.576 0.540 1.000 

Panel B: Regression Summary based on Simulated Data 

 Coefficient I II III IV V VI 

EWIV 𝛽̅ 0.163   2.013 2.008  

 % positive 𝛽 89.80   99.50 100.00  

 Average t-stat 1.225   5.436 5.408  

 
% + significant t-stat 20.00   98.00 99.20  

VWIV 𝛽̅  -0.176  -3.014 -3.233  

 % negative 𝛽  80.80  99.50 100.00  

 Average t-stat  -0.876  -5.545 -5.776  

 
% - significant t-stat  12.50  98.00 99.20  

SMV 𝛽̅   1.909  3.012  

 % positive  𝛽   93.20  96.80  

 Average t-stat   1.401  1.837  

 % + significant t-stat   93.20  96.80  

𝜆𝐻𝑖𝑙𝑙 𝛽̅      0.032 

 % positive  𝛽      92.80 

 Average t-stat      5.010 

 % + significant t-stat      92.80 

Average adj. 𝑅2 (%) 0.07 0.04 0.09 1.48 1.92 1.25 
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Figure 1. Monthly Time Series of EWIV and VWIV 

Figure 1 depicts the time series of EWIV and VWIV from 1815 to 2018. The data before 1926 is collected from Global Financial Data (GFD), 

while the data after 1926 is collected from CRSP. The variable frequency is at the monthly level. The grey areas indicate the National Bureau of 

Economic Research (NBER) recession periods.  
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Figure 2. Daily Time Series of EWIV and VWIV 

Figure 2 depicts the time series of EWIV and VWIV from 1928 to 2018. The data is collected from CRSP. The variable frequency is at the daily 

level. The grey areas indicate the National Bureau of Economic Research (NBER) recession periods. 
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Figure 3. Optimal Combination Weights of Aggregate Idiosyncratic Volatility (Alpha) 

 

Figure 3 depicts the bar chats of the optimal weights to aggregate idiosyncratic volatility (alpha) for the thirty portfolios sorted by size in order to 

compute the condtional covariance risk. The optimal weights are estimated through the methodology proposed by Kelly and Pruitt (2015) in sample. 

The weights are scaled to sum up to  1 (-1) for positive (negative) values. The sample period is from 1963 to 2018. The variable frequency is at the 

monthly level.  
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Figure 4. Conditional Covariance Risk Estimated Through EWIV and VWIV 

 

Figure 4 depicts the time series of conditional covariance risk from 1815 to 2018. The data before 1926 is collected from Global Financial Data 

(GFD), while the data after 1926 is collected from CRSP. The conditional covariance risk is estimated based on the specification in Section 4. The 

variable frequency is at the monthly level. The grey areas indicate the National Bureau of Economic Research (NBER) recession periods. 
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Figure 5. Time Series of Conditional Covariance Risk through EWIV (EWAP) and VWIV (VWAP) 

 
Figure 5 depicts the time series of conditional covariance risk from 1928 to 2018. The data is collected from CRSP. The conditional covariance 

risk is estimated based on either the aggregate idiosyncratic volatility or the aggregate first conditional moment of misspecified idiosyncratic shocks. 

The variable frequency is at the monthly level. The grey areas indicate the National Bureau of Economic Research (NBER) recession periods. 
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Figure 6 Monthly Time Series of Tail Risk and Conditional Covariance Risk 

 

Figure 6 compares the time series of conditional covariance risk and tail risk proposed by Kelly and Jiang (2014) from 1928 to 2018. The data is 

from CRSP. The conditional covariance risk is estimated based on the specification in Section 4. The tail risk measure is constructed following 

Kelly and Jiang (2014). For comparability, I scale the value of both variables with zero mean and one standard deviation. The variable frequency 

is at the monthly level. The grey areas indicate the National Bureau of Economic Research (NBER) recession periods. 

 


