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Abstract

Using a search-based trading model, we show that either an illiquidity price premium or discount

can arise between two assets with identical fundamentals. Liquidity between the two assets

diverges endogenously in a self-reinforcing manner as trading is concentrated in the more liquid

asset. When buyers are marginal investors, prices are determined by buyers’ tradeoff between

immediacy and trading gains, generating the illiquidity price discount wherein the liquid asset

is more expensive than the illiquid asset. When there is strong selling pressure, however, sellers

become marginal investors and the illiquidity price premium arises, because they demand a

higher selling price for the illiquid asset by trading off immediacy for trading gains. Using an

identification strategy that exploits same-issuer bonds but with differing liquidity, we confirm

these theoretical predictions by showing that illiquid bonds have higher prices than liquid bonds

during fire-sale episodes, while liquid bonds carry higher prices in normal periods.

JEL Classification: G10, G12, G20, D83

Keywords: OTC market, Liquidity, Flight-from-liquidity, Limits-to-arbitrage,

Price pressure, Fire sale

* University of Illinois Urbana-Champaign, Department of Finance; E-mail: jaewchoi@illinois.edu.
† Stockholm School of Economics, Department of Finance; E-mail: jungsuk.han@hhs.se.
‡ Aalto University, Department of Finance; E-mail: sean.shin@aalto.fi.
S University College London, Department of Economics; E-mail: jihee.yoon@ucl.ac.uk.

1



1 Introduction

How does illiquidity affect asset prices in over-the-counter (OTC) markets? According to clas-

sical theories, holding illiquid assets require higher compensation and, therefore, they should be

cheaper than their counterparts with higher liquidity.1 That is, price differentials between liquid

and illiquid assets (henceforth, “liquidity spreads”) are generally positive. Although many empir-

ical studies agree with such theoretical predictions, some recent studies also document that liquid

assets experience bigger price declines in times of market distress than illiquid assets so that the

liquidity spreads can be narrower.2 These findings can run counter to the usual intuition of flight

to liquidity: investors will prefer liquid assets more in distress times and their price declines should

be smaller. In this paper, we provide a search-based theoretical model to explain this seemingly-

counter-intuitive empirical phenomenon and further show that not only price declines are higher for

liquid assets but also their price levels can be lower than those of illiquid assets. We also confirm

our theoretical predictions by showing that in the U.S. corporate bond market illiquid bonds can

have higher prices than liquid bonds with identical cash flows, using an identification strategy that

compares same-issuer bonds with differing illiquidity.

We provide a simple yet powerful mechanism based on search frictions that intuitively explains

negative liquidity spreads. We argue that liquidity spreads can flip signs depending on market-wide

sell pressure. When buyers are marginal investors, their valuation determines asset prices. They

need to be compensated through illiquidity discount (i.e. higher profit) for sacrificing immediacy

in trading. Consequently, illiquid assets should generally be less expensive than liquid assets when

buyers are marginal investors. When selling pressure is stronger, however, sellers become marginal

investors whose risk premium will mainly determine asset prices. Sellers also consider tradeoff

between immediacy and trading profits, but the effect of their valuation on asset prices is the

opposite of that of buyers. Sellers have higher disutility of holding assets as a result of holding costs

and choose which assets to liquidate based on the tradeoff. They want to be compensated by high

profits (i.e. high sale prices) for sacrificing immediacy from trading illiquid securities. Therefore,

illiquid assets become more expensive than liquid assets when sellers dominate the market. Figure 1

illustrates this.

To formalize the aforementioned idea, we study a search-based trading model with two types

of assets in an infinite horizon, traded in two markets with identical search frictions. In each

market, only one type of assets is traded. Both types of assets have identical cash flows and have

random maturities. There is a continuum of risk-neutral investors who enter the markets from an

outsider investor pool, either as a buyer or a seller. A buyer, who does not own any asset but has

higher valuation, will search for a counterparty to buy from. A seller, who already owns an asset

1See Duffie, Gârleanu, and Pedersen (2005), Duffie, Gârleanu, and Pedersen (2007), Vayanos and Wang (2007),
Vayanos and Weill (2008), Weill (2008), Lagos and Rocheteau (2009), Lagos, Rocheteau, and Weill (2011), among
many others

2In the sovereign bond market, Boudoukh, Brooks, Richardson, and Xu (2019) show the relative discount of
illiquid bonds becomes smaller in periods of widening credit spreads.

2



Price

Liquidity

Present 
value of 
payoff

Asset 2

Positive liquidity 
spread

Asset 1

Price

Liquidity

Present 
value of 
payoff

Asset 1

Asset 2 Negative liquidity 
spread

(a) buyers are marginal investors (b) sellers are marginal investors

Figure 1. Liquidity Spreads under Different Price Pressure

but has lower valuation, will also search for a counterparty to sell to. When a buyer and a seller

meets from a successful search, they trade by bargaining. When a buyer obtains an asset from the

bargaining, she becomes an inactive owner because holding an asset is optimal. An inactive owner

may become a seller in case she receives a low preference shock (which is interpreted as a liquidity

shock.) A seller who sells his holding exits the market and goes back to the outside investor pool.

An important assumption is that there are local buyers and sellers who enters exclusively into only

one market, while there are also discretionary buyers and discretionary sellers who can choose to

enter one of the two markets. The intensity of arrival of discretionary buyers and discretionary

sellers are interpreted as market-wide buying pressure and selling pressure, respectively.

We show that there exists a symmetric steady-state equilibrium where prices are identical

between two markets. In that case, liquidity between the two markets are also identical. There

also exists an asymmetric steady-state equilibrium where liquid assets are more expensive than

illiquid assets when market-wide buying pressure is stronger than market-wide selling pressure.

More importantly, we also show the existence of an asymmetric steady-state equilibrium where

illiquid assets are more expensive than liquid assets when market-wide selling pressure is stronger

than market-wide buying pressure. Those two types of asymmetric equilibria are exclusive of each

other, meaning that they do not co-exist. Therefore, market-wide buying or selling pressure can

tilt the market in one way or the other, thereby changing the sign of liquidity spreads.

Why does such an asymmetric equilibrium arise? This is the result of the feedback mechanism

between market liquidity and concentration of investors. Investors seek to join more liquid market

ceteris paribus, but, as more investors join one market, liquidity increases further in that market

whereas liquidity deteriorates in the other market. An archetype example of our result is the reversal

of liquidity spreads during the time of distress. A severe liquidity shock to investors in bad times can

make them want to liquidate their holdings aggressively, causing market-wide selling pressure which
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dominates buying-pressure. Sellers initially start selling liquid assets because the liquid market is

more preferable in terms of both immediacy and trading profits. When this happens, discretionary

buyers all gather into the more liquid market to benefit from higher liquidity when they need

to liquidate in the future. Because this makes the illiquid market even less attractive to sellers,

the difference in liquidity between the two markets intensifies further and sellers require higher

compensation through higher selling prices. Consequently, illiquid assets become more expensive

than liquid assets unless the market restores in the future the original level balance between buying

and selling pressure. This mechanism demonstrates how endogenous liquidity can greatly amplify

the price impact of a liquidity shock and can reverse the spread of liquidity premia between liquid

and illiquid assets.

We then examine the empirical implications of the model using corporate bond data from the

Trade Reporting and Compliance Engine (TRACE) for the period from 2005 through 2017. We

find that yields of more liquid bonds increase more than less liquid bonds with almost identical

cash flows following fire sale events, and more interestingly, the liquidity spread becomes negative.

We focus on the following events in our empirical results: the recent financial crisis period following

2008, the period when funding liquidity measured by the TED Spreads is low, the events of large

investor redemption requests in corporate bond mutual funds (CBMFs), and the credit rating

downgrade events of corporate bond issuers. Our key idea of the empirical strategy is to find a pair

of bonds that have (almost) identical cash flows but differing liquidity. To this end, we match a

bond to another bond that is issued by the same issuer and have same maturities and credit rating

but different bond age, following the identification method in Choi et al. (2019). We examine the

yield spreads of these matched pairs between old and young bonds (liquidity spreads henceforth).

To the extent that young bonds are more liquid (i.e. on-the-run) than old bonds (i.e. off-the-run),

this empirical strategy allows us to compare the pricing effect of liquidity on two bonds with the

same cash flows.

Using these matched bond pairs, we provide four key results that support our theoretical model.

First, we show that liquidity spreads become significantly negative following the liquidity events that

we consider. For example, the average liquidity spread falls to -0.4% following the announcement of

Lehman Brothers’ bankruptcy, suggesting that liquid bonds were in fact cheaper than illiquid bonds

during the time of distress. Our evidence also suggests that the negative liquidity spreads are more

likely where the relative search friction of illiquid bond to liquid bond is higher and the arbitrage

is more difficult to be implemented. Second, we find that the relationship between market liquidity

and bond prices are positive on average but becomes negative when funding liquidity (measured

by the TED spreads) is low or market-wide outflows from CBMFs are large. Third, we find that

the prices of liquid bonds become significantly lower than those of the matched illiquid bond after

credit rating downgrades. These results are all consistent with the model’s implication that the

price of more liquid bonds can be lower when the sellers are the marginal investors.

Note that we do not argue that our mechanism is the only economic force at work. There

are other potential explanations. Boudoukh, Brooks, Richardson, and Xu (2019), for example,
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argue the liquidity spread narrows (but is still positive) because of price pressure arising from flight

from low-quality sovereign bonds. Chaderina, Mürmann, and Scheuch (2018) document that liquid

price declines are greater following rating downgrades because of coordination failure in insurance

companies’ bond liquidation. Lou and Sadka (2011) show that liquid stock returns are lower

during financial crisis because they are more sensitive to market wide returns. Our view is that

these explanations including ours are not necessarily mutually exclusive. Certainly, a more realistic

view is that all these forces can even have amplifying effects on the pricing impact of illiquidity.

We also want to emphasize, however, that our study differs from these studies in the following

important ways. We provide a full-scale dynamic equilibrium model to show how search frictions

can explain our empirical findings. More importantly, we show how the liquidity spread can become

negative: not only price declines are greater, but the price levels of liquid assets are lower than

those of illiquid assets. As our model shows, incorporating search friction is crucial in generating

this effect. In a trading venue like exchanges where search frictions are minimal, we do not expect

to see such an inversion of liquid versus illiquid prices. Our empirical findings also differ from those

previous papers that focus on time-series price declines of liquid and illiquid bonds. Our novel

results are that illiquid bond prices can in fact be higher than liquid bond prices, which we show

using the identification strategy exploiting the same issuer bonds with different liquidity.

The paper is organized as follows. In Section 2, we discuss related literature. In Section 3,

we illustrate the main intuition using a simple model. In Section 4, we describe the main model.

In Section 5, we solve for the equilibrium of the model and discuss the theoretical predictions. In

Section 6, we describe the empirical setup. In Section 7, we discuss our empirical findings. In

Section 8, we conclude.

2 Literature Review

Our paper is related to the literature on search-based asset pricing models. In their seminal work,

Duffie, Gârleanu, and Pedersen (2005) show that liquidity premium arises due to search frictions

using an OTC market setup with a single asset. Duffie, Gârleanu, and Pedersen (2005) further

extend this framework with risk averse investors to study asset pricing implications in OTC markets.

More closely-related works to our paper include search-based models with multiple assets such as

Vayanos and Wang (2007) and Weill (2008), and Vayanos and Weill (2008). Vayanos and Wang

(2007) and Weill (2008) show that buyers’ market choice can create cross-sectional variations in

prices due to endogenous liquidity difference. In these models, however, sellers do not have market

choices. On the other hand, Vayanos and Weill (2008) feature short sellers who can choose markets.

They show that cross-sectional variations in prices can arise due to endogenous liquidity difference

short sellers face when covering their short positions. One common feature among the existing

OTC market models with multiple markets is that sellers are never marginal investors who drive

cross-sectional variations. As a result, liquid assets are generally more expensive whenever there
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are cross-sectional variations.3 Our paper differs from this line of literature because we allow sellers

become marginal investors instead of buyers, which is the key mechanism which generate negative

liquidity spread between liquid and illiquid assets.

Our paper is also related to the limits-to-arbitrage literature. This line of literature often focuses

on the feedback between capital constraint and mispricing. In time series, the violation of the law

of one price arises due to the intertemporal linkage of mispricing wedge when investors are capital-

constrained (Shleifer and Vishny (1997), Gromb and Vayanos (2002), Brunnermeier and Pedersen

(2009), Kondor (2009), Dow, Han, and Sangiorgi (2019)). In cross-section, mispricing wedge can be

larger for more illiquid assets than liquid assets because investors have be compensated with higher

profits for illiquid investment (Shleifer and Vishny (1990)). Our model differs from those papers in

that we explicitly model liquidity using search frictions. We contribute to this line of literature by

providing a mechanism of the violation of the law of one price where the sign of relative mispricing

flips cross-sectionally due to changes in marginal investors.

There is a growing theoretical literature that studies investors’ endogenous market choice among

multiple trading venues— for identical or correlated assets with same or different trading mecha-

nisms. A strand of literature studies incentives to choose a counterparty and endogenize over-the-

counter networks (Zhu (2012), Hugonnier, Lester, and Weill (2016), Babus and Parlatore (2019)).

Observing that some assets are often available in both over-the-counter markets and centralized

exchanges, several authors have explored choices between these two trading venues: such as default,

search friction, price impacts, and information asymmetry between sellers and buyers (Kirilenko

(2000), Viswanathana and Wang (2002), Praz (2015), Bolton, Santos, and Scheinkman (2016),

Yoon (2016), Lee and Wang (2019), and Dugast, Üslü, and Weill (2019)). Our paper contributes

to this line of literature by explaining how cross-market liquidity difference and asset prices are

formed by market choices under search frictions.

Our paper contributes to the literature on price pressures in bond markets (Greenwood and

Vayanos (2014), Ellul, Jotikasthira, and Lundblad (2011a), Feldhütter (2012), Manconi, Massa, and

Yasuda (2012), D’Amico and King (2013), Goldstein, Jiang, and Ng (2017), Boudoukh, Brooks,

Richardson, and Xu (2019), Choi, Hoseinzade, Shin, and Tehranian (2019), Helwege and Wang

(2019)). Especially, our paper provides the mechanism and rationale behind recent findings of

Boudoukh, Brooks, Richardson, and Xu (2019) that liquid government bonds become cheaper

during times of distress.

Our paper also contributes to the literature on the pricing of liquidity (Amihud and Mendelson

(1988), Acharya and Pedersen (2005)), the liquidity premium of corporate bonds (Chen, Lesmond,

and Wei (2007), Lin, Wang, and Wu (2011), De Jong and Driessen (2012), Acharya, Amihud, and

Bharath (2013)), and that of sovereign bonds (Cornell and Shapiro (1989), Amihud and Mendelson

(1991), Longstaff, Neis, and Mithal (2005), Pasquariello and Vega (2009), Favero, Pagano, and

Von Thadden (2010), Goyenko, Subrahmanyam, and Ukhov (2011), among many others) by docu-

3Most of the existing papers with multiple assets also have generic symmetric equilibria where there is no cross-
sectional variation.
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menting the seemingly counter-intuitive situation in relative prices of liquid securities during times

of flight from liquidity.

3 An Illustration with a Simple Model

We first demonstrate the main mechanism using a simple stylized model. Consider two identical

assets (asset 1 and asset 2) which pay one unit of consumption good in the next period. The

discount rate is fixed to zero. Asset 1 is traded in market 1, and asset 2 is traded in market 2. Due

to search frictions, an investor is able to trade if the investor is matched with a counterparty. An

investor choosing market 𝑘 = 1, 2 is matched successfully with probability 𝑓𝑖. We assume 𝑓1 > 𝑓2

so that that market 1 is more liquid than market 2.

Consider a risk-neutral buyer who can choose to trade in either of the two markets. With a

successful match in market 𝑘, the buyer acquire asset 𝑘 by paying price 𝑝𝑖. Otherwise, the buyer

keeps the reservation utility of zero. The buyer’s value of trading in market 𝑘 is given by

𝑉𝑖 = 𝑃𝑟(Success)× Trading gains + 𝑃𝑟(Fail)× Reservation value = 𝑓𝑖(1− 𝑝𝑖)

If the buyer is indifferent between the two markets, the expected value of choosing each market

should be the same:

𝑓1(1− 𝑝1) = 𝑓2(1− 𝑝2)

Because the probability of a successful buying trade is higher for asset 1 (i.e., 𝑓1 > 𝑓2), the trading

gain of the buyer should be smaller for the asset (i.e., 1− 𝑝1 < 1− 𝑝2.) That is, the price of asset

1 should be higher than that of asset 2. The liquidity spread between asset 1 and 2 is positive

because

𝑝1 − 𝑝2 =
𝑓1 − 𝑓2

𝑓1
(1− 𝑝2) > 0

Therefore, when buyers are marginal investors, it has to be the case that liquid assets should be

more expensive.

Now, we consider the case of a seller who can choose between the two markets. We assume that

the seller has a lower valuation of the asset than the buyer; he has to pay a holding cost of 𝛿 if he

does not sell it immediately. The seller’s value of trading in market 𝑘 is given by

𝑉𝑖 = 𝑓𝑖𝑝𝑖 + (1− 𝑓𝑖)(1− 𝛿) = 𝑓𝑖(𝑝𝑖 − 1 + 𝛿) + 1− 𝛿

If the seller is indifferent between the two markets, the expected value of choosing each market
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should be the same:

𝑓1(𝑝1 − 1 + 𝛿) = 𝑓2(𝑝2 − 1 + 𝛿)

Because the probability of a successful selling trade is higher for asset 1 (i.e., 𝑓1 > 𝑓2), the trading

gain of the seller should be smaller for the asset (i.e., 𝑝1 − 1 + 𝛿 < 𝑝2 − 1 + 𝛿.) That is, the price of

asset 1 should be lower than that of asset 2. The liquidity spread between asset 1 and 2 is negative

because

𝑝1 − 𝑝2 =
𝑓2 − 𝑓1

𝑓1
(𝑝1 − 1 + 𝛿) < 0

Therefore, when sellers are marginal investors, it has to be the case that liquid assets should be

cheaper.

Asset 1 Asset 2

Buyer

Seller

indifferent

Strictly prefer

Higher price Lower price

Liquid Illiquid

Asset 1 Asset 2

Buyer

Seller

indifferent

Strictly preferLower price Higher price

Liquid Illiquid

(a) buyers are marginal investors (b) sellers are marginal investors

Figure 2. Liquidity Premia under Different Marginal Investors

Fixing liquidity as an exogenous input, this simple model illustrates the relation between liq-

uidity and asset prices in two different cases by setting marginal investors differently. When there

are sufficiently large number of buyers relative to that of sellers, buyers become marginal investors,

in which case asset prices are set by the trade-off between liquidity and trading gains in terms of

buyers’ valuations. In this case, sellers strictly prefer trading in liquid market. On the other hand,

when there are sufficiently large number of sellers relative to that of buyers, an opposite situation

arises. This is illustrated in Figure 2. To fully investigate this question, however, one should solve a

dynamic equilibrium model which endogenizes liquidity by incorporating all investors’ choices into

the equilibrium solution. We study this in the next section.
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4 Model

4.1 Description

We consider a multi-market dynamic trading model with search frictions. The risk-free rate is

exogenously given by 𝑟. There are two assets labeled as asset 1 and 2. In each market 1 and 2,

investors trade asset 1 and 2, respectively. Both assets pay a unit of consumption good per a unit

of time, and there is no final payoff. Each unit of asset matures with a Poisson intensity of 𝜒. The

assumption of staggered maturities is for technical convenience; as it will become clear in the laws

of motion, this assumption keeps the mass of supplied assets in the market stable.4 We further

assume that assets are traded by one unit which is indivisible, and no short sales are allowed.

All investors are risk-neutral and infinitely-lived, with preference defined by a discount rate of

𝑟. Investors enter the market as buyers or sellers from an outside investor pool depending on their

trading needs.

Buyers initially do not hold any position, and can hold at most one unit of assets. There are

“local buyers” who can buy only in one market, and “discretionary buyers” who can buy in any

of the two markets. Local buyers who can trade in only one market enter at the rate of 𝜑𝑏 in

each market, and discretionary buyers enter at the rate of 𝜑𝑏
𝑑. Upon the entrance, discretionary

buyers choose to buy in either of the two markets. Buyers become “inactive owner” once they

own a position because buyers do not have any holding cost. Inactive owners are subject to an

idiosyncratic preference shock (or liquidity shock) with a Poisson intensity 𝜅 which gives them a

holding cost of 𝛿 per unit of time. Those shocked inactive owners become sellers. Upon selling

their positions, they exit the market and go back to the outside investor pool.

Unlike buyers, some investors enter the market as sellers because they already hold a position

when they enter the market. There are “local sellers” who hold one unit of either asset 1 or 2,

and “discretionary sellers” who hold one unit of both assets. Local sellers who can trade in only

one market enter at the rate of 𝜑𝑠 in each market, and discretionary sellers enter at the rate of

𝜑𝑠
𝑑. Upon the entrance, discretionary sellers choose to sell in either of the two markets. Both local

sellers and discretionary sellers have a holding cost of 𝛿 until they sell one unit of their position.

One can interpret that discretionary sellers are larger traders who can holder a larger portfolio than

local sellers. For mathematical simplicity, we further assume that a discretionary seller’s positions

in asset 1 and 2 have an identical maturity (i.e., the arrival of maturity is synchronized.) As shown

later in the paper, this assumption gives the same trading surplus for both local and discretionary

sellers.5 Upon selling one unit of their positions, sellers exit the market and go back to the outside

investor pool. Figure 3 illustrates the flow of investors between the two markets.

Investors can trade assets by finding a counterparty according to a random search which follows

4See, for example, He and Xiong (2012) for further discussions on the assumption.
5The assumption of synchronized maturities for each individual discretionary seller is a purely technical assumption

which simplifies our analysis. Without this assumption, trading surplus of a discretionary seller becomes different
from that of a local seller, which creates multiple trading prices. However, it does not affect the results qualitatively
in any other way than making calculations more complex.
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Figure 3. The Flow of Investors between the Two Markets

a Poisson process. In both markets, the Poisson intensity of finding a counterparty is 𝜆 which

describes the search technology in the market. We denote the mass of buyers and sellers in market

𝑖 at time 𝑡 by 𝜇𝑏
𝑖(𝑡) and 𝜇𝑠

𝑖 (𝑡). The total mass of matched pairs in market 𝑖 at time 𝑡 is given by

𝜆𝜇𝑏
𝑖(𝑡)𝜇

𝑠
𝑖 (𝑡). Therefore, the probability of buying and selling in market 𝑖 at time 𝑡 is given by

𝜆𝑏
𝑖(𝑡) ≡ 𝜆𝜇𝑠

𝑖 (𝑡), 𝜆𝑠
𝑖 (𝑡) ≡ 𝜆𝜇𝑏

𝑖(𝑡), (1)

respectively. When an investor finds a counterparty for trading an asset, the transaction price is

determined by bargaining for the asset between two investors where the bargaining powers of seller

and buyer are exogenously given by 𝑞 and 1− 𝑞, respectively.

To focus on economically meaningful outcomes, we introduce a parametric restriction on the

intensity of investors’ arrivals.

Assumption 1 𝜒(𝜑𝑏 + 𝜑𝑏
𝑑) ≤ (𝜒+ 𝜅)𝜑𝑠.

This assumption ensures that the mass of sellers (thus, the successful buying probability) is

positive regardless of discretionary investors’ choice of markets.6

6As we show later, 𝜇𝑠
𝑖 in equation (13) is positive even in the worse case, in which no discretionary sellers enter

market 𝑖 (i.e., 𝜂𝑖 = 0) and all discretionary buyers enter market 𝑖 (i.e., 𝛾𝑖 = 1).
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4.2 Laws of Motion

We denote the portion of discretionary buyers who choose to enter market 𝑖 by 𝜈𝑖, and the portion

of discretionary sellers who choose to enter market 𝑖 by 𝜂𝑖. In one market, any investor can be

described by three types: buyer (𝑏), inactive owner (𝑜), seller (𝑠).

The laws of motion for mass 𝜇𝜎
𝑖 of type 𝜎 ∈ {𝑏, 𝑜, 𝑠} in market 𝑖 are given by

𝜇̇𝑏
𝑖(𝑡) =− 𝜆𝜇𝑠

𝑖 (𝑡)𝜇
𝑏
𝑖(𝑡) + 𝜑𝑏(𝑡) + 𝜑𝑏

𝑑(𝑡)𝜈𝑖(𝑡); (2)

𝜇̇𝑜
𝑖 (𝑡) =− (𝜒+ 𝜅)𝜇𝑜

𝑖 (𝑡) + 𝜆𝜇𝑏
𝑖(𝑡)𝜇

𝑠
𝑖 (𝑡); (3)

𝜇̇𝑠
𝑖 (𝑡) =− (𝜒+ 𝜆𝜇𝑏

𝑖(𝑡))𝜇
𝑠
𝑖 (𝑡) + 𝜑𝑠(𝑡) + 𝜑𝑠

𝑑(𝑡)𝜂𝑖(𝑡) + 𝜅𝜇𝑜
𝑖 (𝑡). (4)

The first equation of the laws of the motion is the one for the mass of buyers in market 𝑖. The

first term describes the departure from the buyer pool due to a successful trade. The second term

describes the entry of local buyers, and the third term describes the entry of discretionary buyers

who choose to enter market 𝑖. The other two equations are laws of motion for inactive owners and

sellers which can be similarly interpreted.

As shown in the Appendix, the value functions 𝑉 𝜎
𝑖 of type 𝜎 in market 𝑖 satisfy the Hamilton-

Jacobi-Bellman (HJB) equations as follows:

𝑉̇ 𝑏
𝑖 (𝑡) =𝑟𝑉 𝑏

𝑖 (𝑡)− 𝜆𝑏
𝑖(𝑡)(𝑉

𝑜
𝑖 (𝑡)− 𝑉 𝑏

𝑖 (𝑡)− 𝑃𝑖(𝑡)); (5)

𝑉̇ 𝑜
𝑖 (𝑡) =𝑟𝑉 𝑜

𝑖 (𝑡)− 𝜅(𝑉 𝑠
𝑖 (𝑡)− 𝑉 𝑜

𝑖 (𝑡))− 𝜒(𝑉 𝑛 − 𝑉 𝑜
𝑖 (𝑡))− 1; (6)

𝑉̇ 𝑠
𝑖 (𝑡) =𝑟𝑉 𝑠

𝑖 (𝑡)− 𝜆𝑠
𝑖 (𝑡)(𝑃𝑖(𝑡) + 𝑉 𝑛 − 𝑉 𝑠

𝑖 (𝑡))− 𝜒(𝑉 𝑛 − 𝑉 𝑠
𝑖 (𝑡))− (1− 𝛿), (7)

where 𝑉 𝑛 = 0 which is the value of exiting the market and going back to the outside investor pool,

and 𝑃𝑖(𝑡) is the price of asset 𝑖 at time 𝑡. The first equation of HJBs is the one for the value of a

buyer. It shows that the value increases whenever the price 𝑃𝑖 is less than the surplus 𝑉 𝑜
𝑖 (𝑡)−𝑉 𝑏

𝑖 (𝑡).

The second and third equations are the HJBs for the value of an inactive owner and a seller which

can be similarly interpreted.

The price of asset in market 𝑖 is determined by Nash (1950) bargaining with a seller bargaining

power 𝑞:

𝑃𝑖(𝑡) = (1− 𝑞)Δ𝑉 𝑠
𝑖 (𝑡) + 𝑞Δ𝑉 𝑏

𝑖 (𝑡), (8)

where Δ𝑉 𝑠
𝑖 (𝑡) ≡ 𝑉 𝑠

𝑖 (𝑡)−𝑉𝑛 and Δ𝑉 𝑏
𝑖 (𝑡) ≡ 𝑉 𝑜

𝑖 (𝑡)−𝑉 𝑏
𝑖 (𝑡) which describe the seller’s surplus and the

buyer’s surplus at time 𝑡, respectively.

4.3 Market Choice

A discretionary buyer, who enters the market without any position, maximizes value by choosing

between market 1 and 2 to buy a new position. Therefore, at time 𝑡, the portion of discretionary
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buyers who choose market 1 is given by

𝜈1(𝑡) ∈

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑉 𝑏

1 (𝑡) < 𝑉 𝑏
2 (𝑡)

[0, 1] if 𝑉 𝑏
1 (𝑡) = 𝑉 𝑏

2 (𝑡)

1 if 𝑉 𝑏
1 (𝑡) > 𝑉 𝑏

2 (𝑡)

(9)

and 𝜈2(𝑡) is equal to 1− 𝜈1(𝑡).

Likewise, a discretionary seller, who enters the market with a position on each asset, maximizes

value by choosing between market 1 and 2 to sell one unit of holdings. Therefore, at time 𝑡, the

portion of discretionary sellers who choose market 1 is given by

𝜂1(𝑡) ∈

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑉 𝑠

1 (𝑡) < 𝑉 𝑠
2 (𝑡)

[0, 1] if 𝑉 𝑠
1 (𝑡) = 𝑉 𝑠

2 (𝑡)

1 if 𝑉 𝑠
1 (𝑡) > 𝑉 𝑠

2 (𝑡)

(10)

and 𝜂2(𝑡) is equal to 1− 𝜂1(𝑡).

5 Equilibrium

The stationary equilibrium of the model is defined in a standard manner:

Definition 1 A market equilibrium is a collection of masses {(𝜇𝑏
𝑖 , 𝜇

𝑜
𝑖 , 𝜇

𝑠
𝑖 )}𝑖=1,2, market choices

{𝜈𝑖, 𝜂𝑖}𝑖=1,2, value functions {(𝑉 𝑏
𝑖 , 𝑉

𝑜
𝑖 , 𝑉

𝑠
𝑖 )}𝑖=1,2, and prices {𝑃𝑖}𝑖=1,2 which satisfy

(i) {(𝜇𝑏
𝑖 , 𝜇

𝑜
𝑖 , 𝜇

𝑠
𝑖 )}𝑖=1,2 are given by (2)-(4),

(ii) {𝜈𝑖, 𝜂𝑖}𝑖=1,2 are given by (9) and (10),

(iii) {(𝑉 𝑏
𝑖 , 𝑉

𝑜
𝑖 , 𝑉

𝑠
𝑖 )}𝑖=1,2 are given by (5)-(7),

(iv) {𝑃𝑖}𝑖=1,2 are given by (8).

5.1 Steady State Analysis

In this section, we focus on the steady state equilibrium of the model. In the steady state, the

inflow and the outflow should be equalized for mass of each type. Therefore, (2) implies that the

steady state mass of matched pairs in market 𝑖 should be equal to the mass of entering buyers:

𝜆𝜇𝑠
𝑖𝜇

𝑏
𝑖 = 𝜑𝑏 + 𝜑𝑏

𝑑𝜈𝑖. (11)

Then, (3) and (11) imply the following steady state mass of active owners:

𝜇𝑜
𝑖 =

𝜆𝜇𝑏
𝑖𝜇

𝑠
𝑖

𝜒+ 𝜅
=

𝜑𝑏 + 𝜑𝑏
𝑑𝜈𝑖

𝜒+ 𝜅
. (12)

which is due to the fact that the flow-out of inactive owners should be equal to their flow-in in the

steady state. Finally, (4) together with (11) and (12) yields the steady-state mass of sellers and

12



buyers as follows:

𝜇𝑠
𝑖 =

𝜑𝑠 + 𝜑𝑠
𝑑𝜂𝑖

𝜒
−

𝜑𝑏 + 𝜑𝑏
𝑑𝜈𝑖

𝜒+ 𝜅
, (13)

𝜇𝑏
𝑖 =

𝜑𝑏 + 𝜑𝑏
𝑑𝜈𝑖

𝜆
[︁
𝜑𝑠+𝜑𝑠

𝑑𝜂𝑖
𝜒 − 𝜑𝑏+𝜑𝑏

𝑑𝜈𝑖
𝜒+𝜅

]︁ . (14)

In the first equation, the mass of sellers in the steady-state depends on the difference between

entering sellers and entering buyers with some adjustments due to asset maturities and type changes

(liquidity shocks.) In the second equation, the mass of buyers in the steady-state depends on the

mass of entering buyers with an adjustment due to the probability of successful buying trades.

In the steady state, the change in the value should be zero for the value of each type. Therefore,

(5)-(7) imply

(𝑟 + 𝜆𝑏
𝑖)𝑉

𝑏
𝑖 = 𝜆𝑏

𝑖(𝑉
𝑜
𝑖 − 𝑃𝑖); (15)

(𝑟 + 𝜅+ 𝜒)𝑉 𝑜
𝑖 = 𝜅𝑉 𝑠

𝑖 + 𝜒𝑉 𝑛 + 1; (16)

(𝑟 + 𝜒+ 𝜆𝑠
𝑖 )𝑉

𝑠
𝑖 = 𝜆𝑠

𝑖 (𝑃𝑖 − 𝑉 𝑛) + 𝜒𝑉 𝑛 + 1− 𝛿. (17)

Using (15)-(17) together with (8) yields(︃
𝑟 + 𝜒+ 𝑞𝜆𝑠

𝑖 −𝑞𝜆𝑠
𝑖

− 𝑟𝜅
𝑟+𝜅+𝜒 − (1− 𝑞)𝜆𝑏

𝑖 𝑟 + (1− 𝑞)𝜆𝑏
𝑖

)︃(︃
Δ𝑉 𝑠

𝑖

Δ𝑉 𝑏
𝑖

)︃
=

(︃
1− 𝛿

𝑟
𝑟+𝜅+𝜒

)︃
. (18)

As shown in the Appendix, using (8) and (18), we can obtain the steady state price for asset 𝑖:

𝑃𝑖 =
1

𝑟 + 𝜒
− 𝛿

𝑟 + 𝜒

⎡⎣
(︁
1− 𝑟+𝜒

𝑟+𝜅+𝜒𝑞
)︁
𝑟 + (1− 𝑞)𝜆𝑏

𝑖

𝑟 + (1− 𝑞)𝜆𝑏
𝑖 +

𝑟
𝑟+𝜅+𝜒𝑞𝜆

𝑠
𝑖

⎤⎦ , (19)

where the first term is the present value of payoff until the random maturity 𝜏𝜒 which arrives with

a Poisson maturity intensity 𝜒:

E𝑡

[︂∫︁ 𝜏𝜒

𝑡
𝑒−𝑟(𝑢−𝑡)𝑑𝑢

]︂
=

1

𝑟 + 𝜒
, (20)

and the second term is the illiquidity discount which arises due to search frictions.

We define marginal investors as those investors who are indifferent between the two markets.

That is, marginal investors are those who affect pricing in both markets, thus, they determine

cross-sectional variations of prices and liquidity premia of the two assets. The fundamental of the

two assets are equal due to (20), but their prices may still differ because marginal investors require

different compensations given different liquidity.

If buyers are marginal investors (i.e., 𝑉 𝑏
1 = 𝑉 𝑏

2 ), (15) implies that prices should satisfy the
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following relation:

𝜆𝑏
1

𝑟 + 𝜆𝑏
1

(𝑉 𝑜
1 − 𝑃1) =

𝜆𝑏
2

𝑟 + 𝜆𝑏
2

(𝑉 𝑜
2 − 𝑃2), (21)

which in turn implies that the profit of trading more liquid asset (in terms of successful buying

probability) should be lower, i.e.,

𝑉 𝑜
1 − 𝑃1 < 𝑉 𝑜

2 − 𝑃2 if and only if 𝜆𝑏
1 > 𝜆𝑏

2. (22)

where 𝑉 𝑜
𝑖 −𝑃𝑖 captures the trading profit in market 𝑖 because 𝑉 𝑜

𝑖 is the benefit of being an inactive

owner and 𝑃𝑖 is the cost. On the other hand, if sellers are marginal investors (i.e., 𝑉 𝑠
𝑖 = 𝑉 𝑠

2 ), (17)

implies that prices should satisfy the following relation:

𝜆𝑠
1

𝑟 + 𝜒+ 𝜆𝑠
1

𝑃1 =
𝜆𝑠
2

𝑟 + 𝜒+ 𝜆𝑠
2

𝑃2, (23)

which in turn implies that the price of more liquid asset (in terms of successful selling probability)

should be lower, i.e.,

𝑃1 < 𝑃2 if and only if 𝜆𝑠
1 > 𝜆𝑠

2. (24)

This result is in line with the intuition presented by a simple model in Section 3. We summarize

this by the following lemma.

Lemma 1 If buyers are marginal investors, 𝜆𝑏
1 − 𝜆𝑏

2 and (𝑉 𝑜
1 − 𝑃1)− (𝑉 𝑜

2 − 𝑃2) have an opposite

sign. If sellers are marginal investors, 𝜆𝑠
1 − 𝜆𝑠

2 and 𝑃1 − 𝑃2 have an opposite sign.

Lemma 1 shows the possibility that the spread of liquidity premia can be reversed depending

on who are marginal investors in the economy. In case market 1 is generally more liquid for both

buyers and sellers (i.e., 𝜆𝑏
1 > 𝜆𝑏

2 and 𝜆𝑠
1 > 𝜆𝑠

2), (16) and (17) imply that 𝑉 𝑜
1 > 𝑉 𝑜

2 . Then, (22)

implies that 𝑃1−𝑃2 > 𝑉 𝑜
1 −𝑉 𝑜

2 > 0. Therefore, in case one market is generally more liquid for both

buyers and sellers, liquid asset is more expensive if buyers are marginal investors, but illiquid asset

becomes more expensive if sellers are marginal investors. Now, the remaining important question

to answer is under what situations buyers or sellers become marginal investors, which we study this

in the next subsection.

5.2 Steady State Equilibrium

In this section, we provide a sufficient and necessary condition, in primitive terms, under which

steady state equilibrium exists. There are four types of steady state equilibria depending on the

identity of marginal investors. First, both discretionary buyers and discretionary sellers are in-

different between the two markets (i.e., both are marginal investors). Following our discussion in
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Section 3, prices are equalized between the two markets. Second, discretionary buyers are marginal

and price in the market where all discretionary sellers enter is higher than price in the other market

where no discretionary sellers enter. Third, discretionary sellers are marginal and price in the mar-

ket where all discretionary buyers enter is lower than price of the other market. Lastly, no trader

is marginal in both markets.

Now, we discuss when symmetric or asymmetric equilibria exist. First, symmetric equilibrium

always exists and is unique. A unique symmetric equilibrium arises naturally due to symmetry of

parameters; the two markets have same search technology 𝜆1 = 𝜆2 and identical local investors’

arrival rates 𝜑𝑏 and 𝜑𝑠. In the symmetric equilibrium, an equal portion of discretionary buyers and

sellers enter each market: i.e., 𝜂1 = 𝜂2 = 0.5 and 𝜈1 = 𝜈2 = 0.5 (see Proposition 2 (1).)

When would asymmetric equilibria exist? As an example, we discuss the class of asymmetric

equilibria in which discretionary buyers are marginal. A similar argument can describe asymmetric

equilibria in which the discretionary sellers are marginal. From Nash bargaining price (8), the

indifference condition of a marginal buyer (𝑉 𝑏
1 = 𝑉 𝑏

2 ) is simplified to7

𝜆1𝜇
𝑠
1(1− 𝑞)(Δ𝑉 𝑏

1 −Δ𝑉 𝑠
1 ) = 𝜆2𝜇

𝑠
2(1− 𝑞)(Δ𝑉 𝑏

2 −Δ𝑉 𝑠
2 ), (26)

where Δ𝑉 𝑏
𝑖 ≡ 𝑉 𝑜

𝑖 −𝑉 𝑏
𝑖 and Δ𝑉 𝑠

𝑖 ≡ 𝑉 𝑠
𝑖 −𝑉 𝑛 for each 𝑖. By plugging the steady state value function

(15)-(17) into (26), we get the indifference condition of discretionary buyers in terms of investors’

mass in the steady state:

𝜆1𝜇
𝑠
1

(𝑟 + 𝜒+ 𝜅)(𝑟 + 𝜆1𝜇𝑠
1(1− 𝑞)) + 𝑟𝑞𝜆1𝜇𝑏

1

=
𝜆2𝜇

𝑠
2

(𝑟 + 𝜒+ 𝜅)(𝑟 + 𝜆2𝜇𝑠
2(1− 𝑞)) + 𝑟𝑞𝜆2𝜇𝑏

2

. (27)

All discretionary buyers choose market 1 (i.e., 𝜈1 = 1) if the value of choosing in market 1 is strictly

greater than that of choosing market 2 (or equivalently, the left-hand-side of (27) is strictly greater

than the right-hand-side). Likewise, all choose market 2 (i.e., 𝜈1 = 0) if the left-hand-side is strictly

smaller than the right-hand-side.

A key observation is that the expected payoff in market 1 is decreasing in 𝜈1 taking 𝜂1 = 1− 𝜂2

as fixed, and by 𝜈2 = 1− 𝜈1 the expected payoff in market 2 is increasing in 𝜈1. The monotonicity

of expected payoffs in the marginal trader’s market choice 𝜈1 immediately implies that a solution

𝜈1 ∈ [0, 1] that solves the indifference condition (27) is unique when it exists.

The value of choosing one market monotone decreases in the number of other discretionary

buyers’ choosing the market. When more buyers enter the market, sellers are matched with a

7To see this, from (15), 𝑉 𝑏
1 = 𝑉 𝑏

2 is equivalent to

𝜆𝑏
1(𝑉

𝑜
1 − 𝑉 𝑏

1 − 𝑃1) = 𝜆𝑏
1(𝑉

𝑜
2 − 𝑉 𝑏

2 − 𝑃2). (25)

Substituting (8) into prices 𝑃1 and 𝑃2 in the above equation yields (26).
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higher intensity and leave the market faster:

𝜇𝑠
1 =

𝜑𝑠 + 𝜑𝑠
𝑑𝜂1

𝜒
−

𝜑𝑏 + 𝜑𝑏
𝑑𝜈1

𝜒+ 𝜅
. (28)

The fewer sellers remains in the market, the lower trading probability buyers get in the market 1.

On the other hand, as 𝜈1 increases, taking 𝜂1 as given, the trading surplus Δ𝑉 𝑏
1 −Δ𝑉 𝑠

1 in market

1 decreases if 𝑞 is sufficiently large, and increases otherwise.

Δ𝑉 𝑏
1 −Δ𝑉 𝑠

1 =
𝑟𝛿

(𝑟 + 𝜒+ 𝜅)(𝑟 + 𝜆1𝜇𝑠
1(1− 𝑞)) + 𝑟𝜆1𝜇𝑏

1𝑞
. (29)

Even when buyers take all trading surplus (i.e., 𝑞 = 0), the increase of trading surplus is dominated

by the decrease of sellers’ mass 𝜇𝑠
1 as long as 𝑟 > 0. When the trading surplus is split between

buyers and sellers through 𝑞 > 0, the increase of buyers’ mass 𝜇𝑏
1 dampens the total surplus further,

and thus, the dominance of the decrease in the trading probability 𝜆1𝜇
𝑠
1 is even stronger with 𝑞 > 0.

Hence, as 𝜈1 increases, the left-hand-side of (27) decreases and the right-hand-side increases, and

guarantees the uniqueness of 𝜂𝑖 ∈ [0, 1] when it exists.

Proposition 2 provides a sufficient and necessary condition of existence of each type of equilib-

rium. Parts (i), (ii), and (iii) show that there exists a unique (pair of) asymmetric equilibria, and

provide exclusive conditions on which type of equilibrium arises: marginal buyers, marginal sellers,

or no marginal trader, respectively. For simplicity, we focus on asymmetric equilibrium in which

market 1 is more liquid that market 2. There always exist a pair of asymmetric equilibria — (𝜂𝑖, 𝜈𝑖)

and (1− 𝜂𝑖, 1− 𝜇𝑖) — if there is any.

Proposition 2 (Steady State Equilibria) There exists a unique symmetric equilibrium with

𝜂𝑖 = 𝜈𝑖 =
1
2 . There also exists an asymmetric equilibrium such that

(i) (Marginal Buyers) discretionary buyers are marginal and all sellers enter market 1 (i.e.,

𝜂1 = 1) when

𝜑𝑠
𝑑

𝜒
−

𝜑𝑏
𝑑

𝜒+ 𝜅
< Φ1(𝜑

𝑠
𝑑;𝜑

𝑏, 𝜑𝑠) ≡ 1

2𝐴

(︁
−𝐵 +

√︃
𝐵2 + 4𝐴𝐶

𝜑𝑠
𝑑

𝜒

)︁
, (30)

(ii) (Marginal Sellers) discretionary sellers are marginal and all buyers enter market 1 (i.e.,

𝜈1 = 1) when

Φ2(𝜑
𝑏
𝑑;𝜑

𝑏, 𝜑𝑠) ≡ 1

2𝐷

(︁
− 𝐸 +

√︃
𝐸2 + 4𝐷𝐹

𝜑𝑏
𝑑

𝜒+ 𝜅

)︁
<

𝜑𝑠
𝑑

𝜒
−

𝜑𝑏
𝑑

𝜒+ 𝜅
, (31)

(iii) (Corner Equilibrium) both discretionary buyers and sellers enter market 1 (i.e., 𝜂1 = 1 and

𝜈1 = 1) when

Φ1(𝜑
𝑠
𝑑;𝜑

𝑏, 𝜑𝑠) ≤
𝜑𝑠
𝑑

𝜒
−

𝜑𝑏
𝑑

𝜒+ 𝜅
≤ Φ2(𝜑

𝑏
𝑑;𝜑

𝑏, 𝜑𝑠), (32)
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where Φ2(𝜑
𝑏
𝑑;𝜑

𝑏, 𝜑𝑠) ≥ Φ1(𝜑
𝑠
𝑑;𝜑

𝑏, 𝜑𝑠) holds; 𝐴 = 𝑟 + (1− 𝑞)(𝜒+ 𝜅) + 𝑞(𝜒+ 𝜅)𝜑
𝑠

𝜒 (𝜑
𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅)
−1 > 0,

𝐵 = 𝐴(𝜑
𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅) + 𝑞(𝜒+ 𝜅)𝜑
𝑠

𝜒 > 0, 𝐶 = 𝑞(𝜒+ 𝜅)(𝜑
𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅) > 0, 𝐷 = 𝜆(1− 𝑞), 𝐸 = (𝑟 + 2𝜆(1−
𝑞)(𝜑

𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅)) > 0, and 𝐹 = (𝜑
𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅)(𝑟 + 𝜆(1− 𝑞)(𝜑
𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅))
𝜒+𝜅
𝜑𝑏 > 0.

When an asymmetric equilibrium exists, it is unique within its equilibrium-type by the mono-

tonicity of indifference condition in a marginal trader’s market choice. Proposition 2 shows that

asymmetric equilibrium is unique even across types of asymmetric equilibria: For instance, if there

exists an asymmetric equilibrium where discretionary buyers are marginal, then there is no other

asymmetric equilibrium in which discretionary sellers are marginal or in which all discretionary

investors enter the same market. Figure 4 shows the condition on (𝜑𝑏
𝑑, 𝜑

𝑠
𝑑), of which each area

corresponds to each asymmetric equilibrium.
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Figure 4. Existence of Asymmetric Equilibrium

In an asymmetric equilibrium, which market would be more liquid in the sense of successful

matching probability? Consider an asymmetric equilibrium in which the discretionary buyer is

marginal and all discretionary sellers enter market 1 (i.e., 𝜈1 ∈ (0, 1), 𝜂1 = 1). By rewriting his

indifference condition (27), the successful buying probability in market 1 relative to that in market

2 is represented by
𝜆1𝜇

𝑠
1

𝜆2𝜇𝑠
2

=
𝑟 + 𝜒+ 𝜅+ 𝑞𝜆1𝜇

𝑏
1

𝑟 + 𝜒+ 𝜅+ 𝑞𝜆2𝜇𝑏
2

<
𝜆1𝜇

𝑏
1

𝜆2𝜇𝑏
2

. (33)

The inequality holds due to the strict preference of discretionary sellers to market 1, which implies

that 𝜆1𝜇
𝑏
1 > 𝜆2𝜇

𝑏
2. This implies that the successful trading probability of sellers is higher in market

1 where they enter. From the buyers’ indifference in (33), 𝜆1𝜇
𝑠
1 > 𝜆2𝜇

𝑠
2 holds, and thus, the trading
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probability of buyers is higher in market 1. This concludes that the market 1 is more liquid for

both sellers and buyers.

Lemma 3 extends the result to all asymmetric equilibrium:

Lemma 3 (Liquidity in Asymmetric Equilibrium) In an asymmetric equilibrium with either

𝜈1 = 1 or 𝜂1 = 1, the market 1 is more liquid than market 2 for both buyers and sellers:

𝜆2𝜇
𝑠
2 < 𝜆1𝜇

𝑠
1; 𝜆2𝜇

𝑏
2 < 𝜆1𝜇

𝑏
1. (34)

From Lemma 1 and Lemma 3, the relative liquidity of the markets determines the ranking of prices

in an asymmetric equilibrium. If buyers are marginal investors, the market where all discretionary

sellers enter is more liquid for both buyers and sellers, and equilibrium price is higher compared to

the other market. If sellers are marginal investors, the market where all discretionary buyers enter

is more liquid and equilibrium price is lower than the other market. Proposition 2 allows us to

state the results in primitive terms: When discretionary buyers arrive more frequently than sellers

(i.e., 𝜑𝑏
𝑑 is sufficiently larger than 𝜑𝑠

𝑑), equilibrium is symmetric (𝑃 1 = 𝑃 2) or marginal buyers pay

a positive liquidity premium (𝑃 1 > 𝑃 2). When sellers’ arrival intensity 𝜑𝑠
𝑑 is relatively larger than

buyers 𝜑𝑏
𝑑, equilibrium is either symmetric (𝑃 1 = 𝑃 2) or marginal sellers pay the liquidity premium

(𝑃 1 < 𝑃 2).

6 Empirical Setup

The key prediction of our model is that illiquid securities can have higher prices than liquid securities

of the same cash flows when the mass of seller is greater than the buyer mass. To test this prediction,

we focus on fire sale episodes in the corporate bond market by examining pairs of bonds with almost

identical cash flows but different liquidity. We first explain our empirical strategy to identify the

effect of liquidity on bond prices during such episodes, controlling for the cash flows of bonds.

6.1 Identification Methodology

To identify the impact of liquidity on security prices, it is crucial to control for any unobservable

time-varying information that is related to the fundamental cash flows of bonds. Our key idea to

control for the fundamentals of bonds is to examine the yields of corporate bond pairs that are

issued by a same firm and have very similar maturities but with different liquidity, following the

identification strategy of Choi, Hoseinzade, Shin, and Tehranian (2019).

To obtain the cross-sectional difference in liquidity within a same issuer, we exploit the on-

the-run versus off-the-run effect associated with the age of bonds. As times passes after issuance,

bonds tend to become more illiquid because larger amounts of the issued bonds are absorbed into

the portfolios of buy-and-hold investors (e.g. insurance companies and pension funds) who are the
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major investors in the bond market.8

We thus construct pairs of relatively liquid and illiquid bonds based on the age of bonds. Within

an issuer we define liquid bonds as bonds with age younger than 3 years. We then match the bond

with another bond (the illiquid bond) issued by a same firm with a difference in time-to-maturity

less than one year and a minimum age of 5 years. We also require that the matched bonds should

have a same credit rating and seniority. If there are multiple available matches, we choose the

oldest one. If multiple matches are still available, we choose one with the closest time-to-maturity.

In this way, we ensure that the matched bonds have almost identical fundamental values.

6.2 Data and Variable Construction

Our data source for corporate bond pricing is the enhanced Trade Reporting and Compliance

Engine (TRACE) database from the Financial Industry Regulatory Authority (FINRA). We use

bond pricing data from February 2005 through June 2017.9 We exclude retail-sized trades (i.e.,

trades with volumes below $100,000) following Bessembinder, Kahle, Maxwell, and Xu (2008).

In addition, we use the Mergent Fixed Income Securities Database (FISD) to obtain bond-specific

information including ages, credit ratings, maturity, amounts outstanding, and other characteristics.

We use fixed coupon bonds after excluding convertible and foreign currency bonds.

In addition, we obtain data on mutual fund flows and characteristics from the Center for Re-

search in Security Prices (CRSP) survivorship-bias-free mutual fund database. We define corporate

bond funds as mutual funds that have the Lipper objective code A, BBB, HY, SII, SID, or IID,

or the CRSP objective code starting with IC. We also obtain mutual fund quarterly holdings from

the Morningstar Direct database.

Our main variable of interest is the yield-to-maturity obtained from the enhanced TRACE. We

exclude observations with negative yields. We define the daily yield as a trading-volume-weighted

yield for each day, following Bessembinder, Kahle, Maxwell, and Xu (2008). We construct a measure

for the liquidity premia, 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑, as yield differences between liquid bond 𝑖 and illiquid

bond 𝑗 of a matched pair for day 𝑡 as following:

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑗,𝑡 ≡ 𝑌 𝑖𝑒𝑙𝑑
(𝑖𝑙𝑙𝑖𝑞)
𝑗,𝑡 − 𝑌 𝑖𝑒𝑙𝑑

(𝑙𝑖𝑞)
𝑖,𝑡 (35)

Then we define monthly 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 as median of daily 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 during the month

for each matched pair. By construction, the negative 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 means that price of liquid

8Many papers document the bond age as a strong proxy for the liquidity. See, e.g., Sarig and Warga (1989),
Alexander, Edwards, and Ferri (2000), Schultz (2001), Houweling, Mentink, and Vorst (2005), and Ericsson and
Renault (2006), among many others. Also, once a bond becomes illiquid, it tends to stay illiquid to its maturity (e.g.,
Sarig and Warga (1989)).

9The TRACE becomes fully comprehensive after February 7, 2005 as it begins the full dissemination of bond
transactions for the entire universe of corporate bonds. To filter the reporting errors in TRACE, We follow the
filtering procedures described in Dick-Nielsen (2009). We refer the SAS codes from Dick-Nielsen (2014) and also
employ price-sequence-based filters (reversal and median filters) as suggested in Dick-Nielsen (2014) and Edwards,
Harris, and Piwowar (2007).
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bond is lower (i.e. yield is higher) than its matched counterpart of illiquid bond. In all our empirical

analyses, we only use daily yields where both bonds of a matched pair have available daily yields

for the same day to mitigate the price staleness problems. As a result, our sample of the matched

bonds includes 425,196 daily yields. All variables are detailed in Appendix B.

6.3 Summary Statistics of Matched Bond Pairs

The matching described in Section 6.1 yields 2,142 unique matched pairs of bonds from 515 unique

issuers during our sample period from February 2005 through June 2017. Table 1 provides summary

statistics. By construction, they have very similar time-to-maturities but very different age. On

average, young bonds in our sample have the average age of 0.95 years, while old bonds have

the average age of 7.52 years. Meanwhile, average time-to-maturities for the young and matched

old bonds are 4.57 and 4.42, respectively. Approximately 80% of the bonds in our sample are

investment-grade (IG) bonds, showing the sample is skewed towards relatively safer bonds. This is

because safe IG firms tend to have more instances of multiple bond issues than HY firms.

In Table 2, we check the quality of the matching process by examining sample differences

between old and young bonds. Although we matched young and old bonds based on maturity,

young bonds have on average longer maturity than old bonds by about 0.19 years. Note that

the magnitude is rather small and is not economically significant, although it is significant in a

statistical sense. More importantly, the old bond has approximately 35%, 42%, 53%, 40%, and

25% higher values of illiquidity measures such as 𝐴𝑚𝑖ℎ𝑢𝑑, 𝐼𝑅𝐶, Bid-ask 1, Bid-ask 2, and 𝑅𝑜𝑙𝑙,

respectively. All five illiquidity measures indicate that the young bond is more liquid than the

matched old bond.

7 Empirical Results

7.1 Time Series Evidence for Negative Liquidity Spread

Our model implies that the price of liquid bonds can be lower than the price of illiquid bonds during

market-wide distressed periods. In this section, we test this model implication by examining time

series of 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 during market distress periods.

In Figure 5, we plot the time series of average monthly 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 from February 2005

through June 2017. Panel A uses all 2,142 unique matched pairs whereas Panels B, C, and D

use a sub-sample of bonds with above AA credit ratings, investment grade bonds, or high yield

bonds, respectively. Panel A shows that average 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 is generally positive except

around the GM and Ford downgrades in 2005 and the financial crisis period after September

2008. In particular, average 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 drops rapidly to −0.4% level after the Lehman

Brothers collapse in September 2008. The 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 reverts towards the near-zero level

around 2010. 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 decreases again following the Taper Tantrum in 2013. Panel

B shows similar patterns within investment grade bonds and high yield bonds. The changes in
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𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 are larger in high yield bonds, potentially due to higher liquidation costs and

more limits to arbitrage. In sum, the results are consistent with our model implication that the

liquid bond can be priced lower than illiquid bond with identical cash flows.

One potential concern in interpreting the time-variation of 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 in Figure 5 is that

the composition of bonds are changing over time. In Figure 6, we visually inspect this possibility

by plotting time series of average differences in time-to-maturity and age between the matched

bond pair and confirm that there was no rapid changes in difference in maturity or age. In fact,

Figure 7 illustrates that large outflows from the bond mutual fund sector coincide with market

distress events (e.g. the Lehman Brothers collapse and the Taper Tantrum) and also with negative

𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑.

7.2 Investor Trading Decisions in a Seller-Driven Market

Our model implies that investors in the seller-driven market can endogenously choose to sell a liquid

bond at a cheaper price than selling an illiquid bond at a higher price. In this section, we provide

direct evidence on the investor choice of selling between liquid and illiquid bonds by examining

mutual fund trading decisions. The key idea is to examine CBMFs under severe outflows that

actually hold the pair of liquid and illiquid bonds of the same issuers.

In Figure 8, we provide a nonparametric plot of trade and quarterly flows by using kernel-

weighted local polynomial smoothing. The trade is measured as par-value changes in CBMFs

holdings in a bond during a quarter. We use quarterly flows to match frequency of the holding

data. We only use CBMFs which hold at least one pair of the matched bonds (i.e., both the liquid

and the matched illiquid bond) at least one quarter during the sample periods. The sample period

is the post-Lehman crisis periods (2008 Q3 through 2009 Q2) and the post Taper Tantrum in 2013

(2013 Q2 through 2013 Q4).

Figure 8 shows that the fitted slope of liquid bond (solid line) is much steeper than those of

illiquid bond (dashed line), especially in the outflow region. For example, when fund flows change

from 0% to −20%, holding else constant, average sales for the liquid bonds increase (i.e., 𝑇𝑟𝑎𝑑𝑒

decreases) about 50% of its sample standard deviation whereas average sales for the illiquid bonds

increase only marginally. This is consistent with our presumption that investors choose to sell the

liquid bonds when the sellers are more likely to be the marginal investors, even when the liquid

bond is cheaper.10

7.3 Price of Liquid and Illiquid Bonds around the Market-wide Shocks

The results discussed in Section 7.1 visually show that the price of liquid security can fall below to

the price of illiquid security during the market-wide distressed periods. In this section, we formally

investigate yield changes during such periods, using regression analyses.

10Table 3 shows that during the Taper Tantrum event the price of liquid bonds does not become cheaper than
the price of illqiuid bonds on average, although the liquid bond price falls. Our results in Figure 8 are qualitatively
similar by using the post-Lehman crisis period only (unreported).
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In Table 3, we run difference-in-difference regressions around two market-wide events (the

Lehman Brothers Bankruptcy in September 14, 2008 and Taper Tantrum episode in May 22, 2013),

which witnessed substantial amounts of investor money to flow out of corporate bond markets.The

treatment group in our difference-in-difference regressions consists of young bonds with age less

than three years. The control group consists of old bonds based on the the matching procedure in

Section 6.1. Specifically, we estimate the following regression model:

𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 = 𝛼+ 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖 · 𝑃𝑜𝑠𝑡𝑡 + 𝛽2𝑇𝑟𝑒𝑎𝑡𝑖 + 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡 + 𝜀𝑡 (36)

where 𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 is the monthly (or daily) yield of bond 𝑖, 𝑇𝑟𝑒𝑎𝑡𝑖 is a dummy variable indicating

the treatment group, and 𝑃𝑜𝑠𝑡𝑡 is a dummy variable indicating the month (or day) of event and

afterwards. We control for time-to-maturity and amount outstanding and also include issuer-

times-time fixed effects to control for issuer-level time-varying information that can drive bond

yield changes. The 𝑃𝑜𝑠𝑡𝑡 term is subsumed by the fixed effects. We use sub-sample period around

the events: January 2008 through June 2009 for the Lehman collapse event and January 2013

through December 2013 for the Taper Tantrum event.

Table 3 Panel A shows the estimation results. The results indicate that yields of the treated

bonds increased after the events compare to changes in yields of the matched control bonds. In Col-

umn (1), for example, the coefficient estimate on 𝑇𝑟𝑒𝑎𝑡 ·𝑃𝑜𝑠𝑡 was positive (0.342) and statistically

significant at the 1% level. This means that changes in yields of treated bonds are 0.342% larger on

average than changes in matched control bonds around the Lehman collapse event. The estimated

coefficient on 𝑇𝑟𝑒𝑎𝑡 indicates that on average yields of the treated bond are lower before the event

by -0.139%. Thus, the magnitude of yield changes after the event is large enough to make the yield

of treated bonds higher than the yield of matched control bonds (−0.139% + 0.342% > 0). The

results for Taper Tantrum event are similar but the magnitude of yield changes after the treatment

was smaller than those for the Lehman collapse.

In Panel B of Table 3, we examine how do the search friction and limits to arbitrage affect the

price declines of liquid bonds relative to the matched illiquid bonds during the event of Lehman

Brothers Bankruptcy. Specifically, we separately run the difference-in-difference regression (i.e.,

equation 36) for two subgroups of the matched sample bonds where one group is more likely to

have higher search friction (i.e., lower matching probability) and more difficult to arbitrage than the

other group. We employ various variables related to the search friction and limits to arbitrage.11

In Columns (1) and (2), for example, we measures the relative strength of dealer connection for

the treated bond and matched control bonds. When the relative dealer connectedness of treated

bond is higher (e.g., Column 1), investors more likely choose to sell the liquid bonds than the

matched illiquid bonds because sellers would expect that the better connected dealers can more

easily find the potential buyers. Thus, the price of liquid bonds might fall more relative to the

matched control bonds. Indeed, our results in Columns (1) and (2) are consistent with this story.

11The variable definitions are detailed in the Appendix B.
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Similarly, the results in Panel B implies that the negative liquidity spreads are more likely when

the search friction of illiquid bonds is higher than liquid bonds and the arbitrage strategy is more

difficult to implements.

Overall, the results are consistent with our model prediction that liquid bond prices can become

lower than illiquid bond prices with the same cash flows.

7.4 The Effect of Market Liquidity on Bond Prices When the Market Condition

is Bad

In this section, we further examine the impact of liquidity on bond prices based on the market

conditions. In particular, we employ the TED spread as a proxy of funding liquidity. When

funding liquidity is low (and thus the TED spread is high), there are supposedly much more sellers

in the market and they are likely to be marginal investors. To test this story, we run the following

panel regression with our sample of matched bonds from February 2005 through June 2017, using

interactions of illiquidity measures with the TED spread:

𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 = 𝛼+ 𝛽1𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 · 𝑇𝐸𝐷𝑡 + 𝛽2𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 + 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡 + 𝜀𝑡 (37)

where 𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 is the monthly yield of bond 𝑖, 𝑇𝐸𝐷𝑡 is the average TED spreads during the month

𝑡, and 𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 is the lagged illiquidity of bond measured by the five measures in Table 2. The

control variables, 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡, include logged time-to-maturity and logged amount outstanding. We also

inlcude issuer-times-month fixed effects.

The higher (lower) TED spread is related to the more tightened (abundant) funding liquidity,

therefore the seller (buyer) is more likely to be the marginal investor. Thus, our model implies that

𝛽1 to be negative. Also, we expect 𝛽2 to be positive because we expect that the illiquid bond is

priced lower (i.e., higher yield) than the matched liquid bond during the normal times.

Table 4 shows the estimated results. The results are consistent with the above hypotheses.

In Column (1), for example, the estimated coefficient on 𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 · 𝑇𝐸𝐷𝑡 is negative (-0.085) and

statistically significant at the conventional level. Also, results show that the estimated coefficient on

𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 is positive (0.079) and significant at the conventional level. Thus, holding the TED spreads

at 0% and all else constant, a one-standard-deviation increase in 𝐴𝑚𝑖ℎ𝑢𝑑 illiquidity increases the

yield by 0.079%. With the TED spreads of 1%, the coefficient on 𝐴𝑚𝑖ℎ𝑢𝑑 illiquidity decreases

by about 108% (≈ 0.085/0.079) and thus the effects of market liquidity on yield has a flipped

sign, which means that more liquid bond price is cheaper than its illiquid counterpart. The results

for other liquidity measures in Columns (2) through (5) are both quantitatively and qualitatively

similar, consistent with our model implication.

The results above can be driven mainly by the extreme values of the TED spread during

the financial crisis. As a robustness check, in Columns (6) through (10) of Table 4 we provide

subsample analysis results after excluding the period from 2008Q3 through 2009Q2. The results

are qualitatively similar to the results obtained from the main sample.
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7.5 The Effect of Market Liquidity on Bond Prices When Mutual Funds are

Major Sellers

In this section, we examine the impact of liquidity on bond prices when there are substantial

outflows from bond mutual funds. Under severe outflows, mutual funds should liquidate at least

part of their bond positions to meet investor redemption requests and thus it is likely that sellers

are marginal investors. To the extent that the aggregate outflows from bond mutual funds are a

proxy for the increased mass of bond sellers, we expect that sellers are marginal investors given

large fund outflows and therefore liquid bond prices are likely to fall below illiquid bond prices.

To further examine this hypothesis, we run the following regressions, using aggregate outflows

from corporate bond mutual funds (CBMFs) industry. Specifically, we run the following regression:

𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 = 𝛼+ 𝛽1𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 ·𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑡 + 𝛽2𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 + 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡 + 𝜀𝑡 (38)

where 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑡 is defined as −𝑚𝑖𝑛(𝑓𝑙𝑜𝑤𝑡, 0). 𝑓𝑙𝑜𝑤𝑡 is the aggregate investor flows of CBMFs

during month 𝑡. Everything else is same as the regression (37). The advantage of CBMF outflow

measure is that this directly measures an actual capital outflows from the CBMFs. The potential

limitation of this measure is that CBMFs manage the liquidity relatively well and represent only

part of corporate bond investors.12

Table 5 provides the results. In Column (1), for example, the coefficient estimates on 𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 ·
𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑡 is negative (−0.135) and statistically significant at 1% level. With outflows of 0.4%,

holding everything else constant, coefficient on 𝐴𝑚𝑖ℎ𝑢𝑑 becomes negative (−0.011 = −0.135 ·0.4+
0.043) implying that the price of liquid bond becomes cheaper than price of illiquid bond within a

same issuer-month, holding else constant. Results using other illiquidity measures are similar.

7.6 Price of Liquid and Illiquid Bonds around Credit Rating Downgrade Events

In this section, we examine whether our previous results using the market-level conditions can be

generalized to local-level shocks. We use credit rating downgrades as events that affects selling

probability of bond investors who hold the downgraded bonds. For example, investors might have

limited capacity or target-levels in taking credit risks thus they are likely to sell at least part of their

downgraded holdings. Especially, insurance companies have regulatory constraints in taking credit

risks (e.g., Ellul, Jotikasthira, and Lundblad (2011b)). Also, compositions of bond market indexes

changes following downgrades which cause selling pressures from funds following the indexes (e.g.,

Dick-Nielsen and Rossi (2018)). Thus, we expect that the price of liquid bonds falls more (and

below) than price of illiquid bonds around the downgrade events. To investigate this, we run the

12The market share of CBMFs in the corporate bodn market is about 10% in the beginning of 2005 which increased
to about 24% in 2014. Most of actively managed CBMFs precautionary hold cash-like assets to reduce bond sales
driven by investor outflows. See, e.g., Choi, Hoseinzade, Shin, and Tehranian (2019).

24



following difference-in-difference regression:

𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 = 𝛼+ 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖 + 𝛽2𝑇𝑟𝑒𝑎𝑡𝑖 · 𝑤[−10,−1] + 𝛽3𝑇𝑟𝑒𝑎𝑡𝑖 · 𝑤[0,9] + 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡 + 𝜀𝑡 (39)

where 𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 is yield of bond 𝑖 at day 𝑡, 𝑇𝑟𝑒𝑎𝑡𝑖 is a dummy variable that equals one if the bond

is the young bond in a matched pair, 𝑤[−10,−1] is a dummy variable that equals one if day 𝑡 is

between −10 and −1 weeks from the downgrade date, and 𝑤[0,9] is a dummy variable that equals

one if day 𝑡 is between 0 and 9 weeks from the downgrade date. We control for time-to-maturity

and amount outstanding. We also include issuer-times-day fixed effects. Our control group consists

of the matched illiquid bonds as in Section 6.1. The sample includes downgrades between February

2005 and June 2017. To be included in the sample, we require that both treated and control bonds

are downgraded in a same day. We include the pre-event period dummy (i.e., 𝑤[−10,−1]) because

the downgrade not exogenous at all but can be anticipated.

Table 6 provides the estimated results from regression (39). The results are consistent with

our hypothesis that price of liquid bonds fall below to the price of illiquid bonds. In Column (2),

for example, estimated coefficients on 𝑇𝑟𝑒𝑎𝑡𝑖 is negative (−0.108) meaning that yield of liquid

bond is lower by −0.108% (i.e., price of liquid bond is higher). On the other hands, the estimated

coefficients on 𝑇𝑟𝑒𝑎𝑡𝑖 · 𝑤[−10,−1] and 𝑇𝑟𝑒𝑎𝑡𝑖 · 𝑤[0,9] are positive (0.111 and 0.160, respectively) and

statistically significant at the conventional levels. The results indicate that yields of the liquid and

matched illiquid bonds become similar (−0.108% + 0.111% ≈ 0) during the 10 weeks before the

downgrade week and then the yield of the liquid bonds become higher by on average 0.163%(=

−0.108% + 0.111% + 0.160%) during the 10 weeks after downgrades. Results are similar during

the distressed periods (Column 2) and all types of downgrades (IG � IG in Column 4, IG � HY

in Column 5, and HY � HY in Column 6). If any, magnitudes of yield differences are bigger and

the liquid and illiquid bonds tend to be priced similar already before the downgrade events in the

distressed periods or for high yield bonds.

Overall, results in Table 6 show that our model implication can be generalized to the local-level

shocks such as downgrades of bonds.

8 Conclusion

In this paper, we both theoretically and empirically show that prices of liquid assets in OTC markets

can be lower than those of illiquid assets with similar fundamentals. We study a search-based model

with two identical assets where investors can choose which asset to trade in a discretionary manner.

We show that liquidity spreads (price differentials between the liquid and the illiquid asset) can flip

signs depending on market-wide sell pressure. When buyers are marginal investors, liquid assets

are generally more expensive than illiquid assets because buyers who hold the illiquid asset should

be compensated with higher profits. On the other hand, when sellers are marginal investors, an

opposite situation arises. Sellers who sell the illiquid asset should be compensated with higher
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trading gains through higher prices. This leads to negative liquidity spreads. Such an equilibrium

arises due to the feedback between liquidity and investor concentration. We then provide empirical

evidence supporting the implications of the model by employing that there are multiple bonds

issued by an issuer but with different levels of market liquidity. We find that more liquid bonds

become cheaper than older illiquid bonds around liquidity events, such as the 2008 financial crisis,

increases in the TED spreads, large outflow shocks to mutual fund investors, and downgrades of

bond credit ratings.
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Appendix

A Proofs

The Derivation of Investors’ Value Functions:

Let 𝜏 ≡ min(𝜏𝜅, 𝜏𝑖, 𝜏𝜒) where 𝜏𝜅 denotes the time at which an inactive seller receives a low preference

shock, 𝜏𝑖 denotes the time at which an investor successfully trades in market 𝑖, and 𝜏𝜒 denotes the

time at which an investor’s . The expected utility of an investor who trades in market 𝑖 with wealth

𝑊𝑡 and type 𝜎 at time 𝑡 is given by

𝑈(𝑊𝑡, 𝜎) = 𝑊𝑡 + 𝑉 𝜎
𝑖 (𝑡) (40)

where the value function of each type investor is given by

𝑉 𝑏
𝑖 (𝑡) =E𝑡

[︁
𝑒−𝑟(𝜏𝑖−𝑡)(𝑉 𝑜

𝑖 − 𝑃𝑖)1{𝜏𝑖=𝜏}

]︁
(41)

𝑉 𝑜
𝑖 (𝑡) =E𝑡

[︂∫︁ 𝜏

𝑡
𝑒−𝑟(𝑢−𝑡)𝑑𝑢+ 𝑒−𝑟(𝜏𝜅−𝑡)𝑉 𝑠

𝑖 1{𝜏𝜅=𝜏} + 𝑒−𝑟(𝜏𝜒−𝑡)𝑉 𝑛1{𝜏𝜒=𝜏}

]︂
(42)

𝑉 𝑠
𝑖 (𝑡) =E𝑡

[︁ ∫︁ 𝜏

𝑡
𝑒−𝑟(𝑢−𝑡)(1− 𝛿)𝑑𝑢+ 𝑒−𝑟(𝜏𝑖−𝑡)(𝑉 𝑛 + 𝑃𝑖)1{𝜏𝑖=𝜏} + 𝑒−𝑟(𝜏𝜒−𝑡)𝑉 𝑛1{𝜏𝜒=𝜏}

]︁
(43)

𝑉 𝑛 =0 (44)

The Derivation of Investors’ Trading Surplus:

From (18), we obtain(︃
Δ𝑉 𝑠

𝑖

Δ𝑉 𝑏
𝑖

)︃
=

1

𝐷𝑖

(︃
𝑟 + (1− 𝑞)𝜆𝑏

𝑖 𝑞𝜆𝑠
𝑖

𝑟𝜅
𝑟+𝜅+𝜒 + (1− 𝑞)𝜆𝑏

𝑖 𝑟 + 𝜒+ 𝑞𝜆𝑠
𝑖

)︃(︃
1− 𝛿

𝑟
𝑟+𝜅+𝜒

)︃
, (45)

where

𝐷𝑖 ≡ (𝑟 + 𝜒)

(︂
𝑟 + (1− 𝑞)𝜆𝑏

𝑖 +
𝑟

𝑟 + 𝜅+ 𝜒
𝑞𝜆𝑠

𝑖

)︂
Then, (45) is equivalent to(︃

Δ𝑉 𝑠
𝑖

Δ𝑉 𝑏
𝑖

)︃
=

1

𝑟 + 𝜒
− 𝛿

𝐷𝑖

(︃
𝑟 + (1− 𝑞)𝜆𝑏

𝑖
𝑟𝜅

𝑟+𝜅+𝜒 + (1− 𝑞)𝜆𝑏
𝑖

)︃
. (46)

Proof of Proposition 2. First, we simplify discretionary traders’ indifference conditions. By

plugging the value functions (15)-(17) and by Theorem on Equal Ratios, a marginal buyer’s indif-
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ference condition is
𝜆1𝜇

𝑠
1

𝜆2𝜇𝑠
2

=
Δ𝑉 𝑏

2 −Δ𝑉 𝑠
2

Δ𝑉 𝑏
1 −Δ𝑉 𝑠

1

=
(𝑟 + 𝜒+ 𝜅) + 𝑞𝜆1𝜇

𝑏
1

(𝑟 + 𝜒+ 𝜅) + 𝑞𝜆2𝜇𝑏
2

. (47)

The closed form solution of 𝜇𝑏
𝑖 , 𝜇

𝑠
𝑖 shows that the relative liquidity 𝜆𝑖𝜇

𝑠
𝑖 of buyers in market 1 (i.e.,

the left-hand-side of (47)) decreases as more buyers enter market 1. The the relative illiquidity

discount in market 1 (i.e., the inverse of right-hand-side of (47)) decreases, and hence, the right-

hand-side of (47) increases as more buyers enter market 1. The monotonicity of 𝐿𝐻𝑆 − 𝑅𝐻𝑆 of

equation (47) with respect to 𝜈1, taking 𝜂1 as fixed, shows the uniqueness of 𝜈1 = 1 − 𝜈2 that

solves the indifference condition (47), when it exists; and moreover, it shows that an asymmetric

equilibrium with 𝜈1 = 1− 𝜈2 ∈ (0, 1) does not coexist with an asymmetric equilibrium with 𝜈1 = 1

or 𝜈1 = 0, given 𝜂1.

Similarly, the indifference condition of a marginal seller is simplified into

𝜆1𝜇
𝑏
1

𝜆2𝜇𝑏
2

=
Δ𝑉 𝑏

2 −Δ𝑉 𝑠
2

Δ𝑉 𝑏
1 −Δ𝑉 𝑠

1

=
𝑟 + 𝜆1𝜇

𝑠
1(1− 𝑞)

𝑟 + 𝜆2𝜇𝑠
2(1− 𝑞)

. (48)

In equation (48), the left-hand-side is decreasing and the right-hand-side is increasing with respect

to 𝜂1 = 1 − 𝜂2, given 𝜈1 = 1 − 𝜈2. If there exists 𝜂1 ∈ [0, 1] that solves (48), then it is unique.

Furthermore, an asymmetric equilibrium with 𝜂1 ∈ (0, 1) does not coexist with an asymmetric

equilibrium with 𝜂1 = 1 or 𝜂1 = 0, given 𝜈1.

(1) (Symmetric Equilibrium) Suppose that both indifference conditions (47) and (48) holds.

Applying Theorem on Equal Ratios, we get

𝜆1𝜇
𝑠
1

𝜆2𝜇𝑠
2

=
𝜆1𝜇

𝑏
1

𝜆2𝜇𝑏
2

=
(𝑟 + 𝜒+ 𝜅) + 𝑞𝜆1𝜇

𝑏
1

(𝑟 + 𝜒+ 𝜅) + 𝑞𝜆2𝜇𝑏
2

= 1. (49)

Hence, 𝜆1𝜇
𝑠
1 = 𝜆2𝜇

𝑠
2 and 𝜆1𝜇

𝑏
1 = 𝜆2𝜇

𝑏
2 is a necessary condition of symmetric equilibrium. The mass

of buyers and sellers in a steady state:

𝜇𝑠
𝑖 =

𝜑𝑠
𝑖 + 𝜑𝑠

𝑑𝜂𝑖
𝜒

−
𝜑𝑏
𝑖 + 𝜑𝑏

𝑑𝛾𝑖
𝜒+ 𝜅

; 𝜇𝑏
𝑖 =

𝜑𝑏
𝑖 + 𝜑𝑏

𝑑𝛾𝑖
𝜆𝑖𝜇𝑠

𝑖

. (50)

By plugging 𝜇𝑏
𝑖 and 𝜇𝑠

𝑖 into the necessary condition, we solve the discretionary buyers and sellers’

market choice: 𝜂𝑖 = 𝜈𝑖 =
1
2 . Since equations (50) are linear in 𝜂𝑖 and 𝜈𝑖, the solution 𝜂𝑖 = 𝜈𝑖 =

1
2 is

unique.

(2) (Asymmetric Equilibrium) Now we show that an asymmetric equilibrium exists and show

under which condition each type of asymmetric equilibrium exists.

(i) (Marginal Buyers) Suppose that discretionary sellers are not indifferent between two markets.

Without loss of generality, we assume that all sellers enter market 1, i.e., 𝜂1 = 1, 𝜂2 = 0. A sufficient
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and necessary condition for 𝜂1 = 1 being optimal for discretionary sellers is

𝜆1𝜇
𝑏
1

𝜆2𝜇𝑏
2

≥ 𝑟 + 𝜆1𝜇
𝑠
1(1− 𝑞)

𝑟 + 𝜆2𝜇𝑠
2(1− 𝑞)

. (51)

By plugging 𝜇𝑠
𝑖 , 𝜇

𝑏
𝑖 as functions of 𝜈𝑖 (equation (50)), we get a lower bound for 𝜈1 = 1− 𝜈2:

𝜈1 ≥
(𝜑𝑠 + 𝜑𝑠

𝑑𝜂1)(𝜑
𝑏 + 𝜑𝑏

𝑑)− (𝜑𝑠 + 𝜑𝑠
𝑑𝜂2)𝜑

𝑏

(𝜑𝑠 + 𝜑𝑠
𝑑𝜂2)𝜑

𝑏
𝑑 + (𝜑𝑠 + 𝜑𝑠

𝑑𝜂1)𝜑
𝑏
𝑑

=
(𝜑𝑠 + 𝜑𝑠

𝑑)(𝜑
𝑏 + 𝜑𝑏

𝑑)− 𝜑𝑠𝜑𝑏

(𝜑𝑠 + 𝜑𝑠 + 𝜑𝑠
𝑑)𝜑

𝑏
𝑑

≡ 𝜈1. (52)

If the mass of buyers in market 1 is lower than the bound 𝜈1, a seller in market 1 has a profitable

deviation from market 1 to market 2, and thus, it violates 𝜂1 = 1. The lower bound of 𝜈1 is value

(i.e., 𝜈1 ≥ 0). If 𝜈1 > 1 (equivalently, 𝜑𝑠𝜑𝑏
𝑑 ≥ 𝜑𝑏𝜑𝑠

𝑑), then there is no asymmetric equilibrium with

𝜂1 = 1.

When 𝜈1 ≤ 1, the buyer’s indifference condition is a third-order polynomial for 𝜈1 = 1 − 𝜈2.

The monotonicity of buyers’ indifference condition gives a sufficient and necessary condition for

existence of asymmetric equilibrium: Given 𝜂𝑖, there exists a unique 𝜈1 = 1− 𝜈2 ∈ [𝜈1, 1] satisfying

(47) if and only if when 𝜈1 = 1− 𝜈2 = 𝜈1,

𝜆1𝜇
𝑠
1

𝜆2𝜇𝑠
2

≥ (𝑟 + 𝜒+ 𝜅) + 𝑞𝜆1𝜇
𝑏
1

(𝑟 + 𝜒+ 𝜅) + 𝑞𝜆2𝜇𝑏
2

; equivalently, 𝜆1(𝜑
𝑠
1 + 𝜑𝑠

𝑑) ≥ 𝜆2𝜑
𝑠
2; (53)

and when 𝜈1 = 1− 𝜈2 = 1,
𝜆1𝜇

𝑠
1

𝜆2𝜇𝑠
2

≤ (𝑟 + 𝜒+ 𝜅) + 𝑞𝜆1𝜇
𝑏
1

(𝑟 + 𝜒+ 𝜅) + 𝑞𝜆2𝜇𝑏
2

, (54)

equivalently,

(𝜇𝑠
1−𝜇𝑠

2)
2(𝑟+(1−𝑞)(𝜒+𝜅)+𝑞(𝜒+𝜅)

𝜑𝑠

𝜒𝜇𝑠
2

)+(𝜇𝑠
1−𝜇𝑠

2)((𝑟+(1−𝑞)(𝜒+𝜅))𝜇𝑠
2+2𝑞(𝜒+𝜅)

𝜑𝑠

𝜒
) ≤ 𝜇𝑠

2𝑞(𝜒+𝜅)
𝜑𝑠
𝑑

𝜒
,

(55)

where 𝜇𝑠
1 =

𝜑𝑠+𝜑𝑠
𝑑

𝜒 − 𝜑𝑏+𝜑𝑏
𝑑

𝜒+𝜅 and 𝜇𝑠
2 = 𝜑𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅 . As we discussed near equation (47), under If

inequality (53) is violated, all buyers enter market 2. If inequality (55) is violated, all buyers and

all sellers go to market 1. The inequality (55) gives an upper bounds on the difference between 𝜑𝑠
𝑑

and 𝜑𝑏
𝑑:

𝜑𝑠
𝑑

𝜒
−

𝜑𝑏
𝑑

𝜒+ 𝜅
< Φ1(𝜑

𝑠
𝑑;𝜑

𝑏, 𝜑𝑠) ≡ 1

2𝐴

(︁
−𝐵 +

√︃
𝐵2 + 4𝐴𝐶

𝜑𝑠
𝑑

𝜒

)︁
, (56)

where 𝐴 = 𝑟 + (1− 𝑞)(𝜒+ 𝜅) + 𝑞(𝜒+ 𝜅)𝜑
𝑠

𝜒 (𝜑
𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅)
−1 > 0, 𝐵 = 𝐴(𝜑

𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅) + 𝑞(𝜒+ 𝜅)𝜑
𝑠

𝜒 > 0,

and 𝐶 = 𝑞(𝜒+ 𝜅)(𝜑
𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅) > 0.

As a last remark, 𝜑𝑠𝜑𝑏
𝑑 ≥ 𝜑𝑏𝜑𝑠

𝑑 (i.e., 𝜈1 > 1) holds when inequality (56) is satisfied. This is

because the slope
𝑑𝜑𝑠

𝑑

𝑑𝜑𝑏
𝑑

of the boundary of inequality (56) is smaller than 𝜑𝑠

𝜑𝑏 . By taking an implicit
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differentiation of the boundary (56) with respect to 𝜑𝑏
𝑑, we get

𝑑𝜑𝑠
𝑑

𝑑𝜑𝑏
𝑑

=
𝜒

𝜒+ 𝜅
(1− 𝐶√︁

𝐵2 + 4𝐴𝐶
𝜑𝑠
𝑑
𝜒

)−1 ≤ 𝜒

𝜒+ 𝜅

𝐵

𝐵 − 𝐶
.

The inequality holds by the concavity of 𝜑𝑠
𝑑 with respect to 𝜑𝑏

𝑑 in the boundary of (56). It suffices

to show that
𝜒

𝜒+ 𝜅

𝐵

𝐵 − 𝐶
≤ 𝜑𝑠

𝜑𝑏
.

By plugging 𝐵 and 𝐶,

𝑞(𝜒+ 𝜅)(
𝜑𝑠

𝜒
− 𝜑𝑏

𝜒+ 𝜅
)
𝜑𝑠

𝜒
≤ (𝐴(

𝜑𝑠

𝜒
− 𝜑𝑏

𝜒+ 𝜅
) + 𝑞(𝜒+ 𝜅)

𝜑𝑠

𝜒
)(
𝜑𝑠

𝜒
− 𝜑𝑏

𝜒+ 𝜅
),

which is equivalent to 0 ≤ 𝐴(𝜑
𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅)
2. Because 𝐴 > 0, the inequality holds for any 𝜑𝑠 and 𝜑𝑏.

Hence, 𝜑𝑠𝜑𝑏
𝑑 ≥ 𝜑𝑏𝜑𝑠

𝑑 (i.e., 𝜈1 > 1) holds when inequality (56) is satisfied.

(ii) (Marginal Sellers) Suppose that discretionary buyers are not indifferent between two mar-

kets, and enter market 1 without loss of generality, i.e., 𝜈1 = 1, 𝜈2 = 0. The same steps as in part

(2) derive a sufficient and necessary condition that an asymmetric equilibrium with 𝜂1 ∈ (0, 1) and

𝜈1 = 1 exists.

Buyers optimally choose market 1, i.e., 𝜈1 = 1, if and only if 𝜂1 = 1− 𝜂2 satisfies

𝜆1𝜇
𝑠
1

𝜆2𝜇𝑠
2

>
(𝑟 + 𝜒+ 𝜅) + 𝑞𝜆1𝜇

𝑏
1

(𝑟 + 𝜒+ 𝜅) + 𝑞𝜆2𝜇𝑏
2

. (57)

This inequality gives a lower bound for 𝜂1 = 1− 𝜂2:

𝜂1 ≥
𝜒

(𝜆1 + 𝜆2)𝜑𝑠
𝑑

(︁
𝜆2(

𝜑𝑠 + 𝜑𝑠
𝑑

𝜒
−

𝜑𝑏 + 𝜑𝑏
𝑑𝜈2

𝜒+ 𝜅
)− 𝜆1(

𝜑𝑠

𝜒
−

𝜑𝑏 + 𝜑𝑏
𝑑𝜈1

𝜒+ 𝜅
)
)︁
≡ 𝜂

1
. (58)

If the mass of sellers is lower than the bound 𝜂
1
, a buyer in market 1 would move to market 2 so

it violates 𝜈1 = 1. If 𝜂
1
> 1 (equivalently, 𝜆2(

𝜑𝑠
2
𝜒 − 𝜑𝑏

2
𝜅+𝜒)− 𝜆1(

𝜑𝑠
1
𝜒 − 𝜑𝑏

1
𝜅+𝜒) > 𝜆1(

𝜑𝑠
𝑑
𝜒 − 𝜑𝑏

𝑑
𝜅+𝜒), i.e., 𝜑

𝑠
𝑑 is

smaller than a linear function of 𝜑𝑏
𝑑), then there is no solution.

When 𝜂
1
≤ 1, the seller’s indifference condition is a third-order polynomial for 𝜂1 = 1 − 𝜂2.

The monotonicity of sellers’ indifference condition gives a sufficient and necessary condition for

existence: Given 𝜈𝑖, there exists a unique solution 𝜂1 = 1 − 𝜂2 ∈ [𝜂
1
, 1] satisfying (48) if and only

if when 𝜂1 = 1− 𝜂2 = 𝜈1,

𝜆1𝜇
𝑏
1

𝜆2𝜇𝑏
2

≥ 𝑟 + 𝜆1𝜇
𝑠
1(1− 𝑞)

𝑟 + 𝜆2𝜇𝑠
2(1− 𝑞)

equivalently, 𝜆1(𝜑
𝑏
1 + 𝜑𝑏

𝑑) ≥ 𝜆2𝜑
𝑏
2; (59)

and when 𝜂1 = 1,
𝜆1𝜇

𝑏
1

𝜆2𝜇𝑏
2

≤ 𝑟 + 𝜆1𝜇
𝑠
1(1− 𝑞)

𝑟 + 𝜆2𝜇𝑠
2(1− 𝑞)

, (60)
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equivalently,

𝜇𝑠
2(𝑟 + 𝜆(1− 𝑞)𝜇𝑠

2)
𝜒+ 𝜅

𝜑𝑏

𝜑𝑏
𝑑

𝜒+ 𝜅
≤ 𝜆(1− 𝑞)(𝜇𝑠

1 − 𝜇𝑠
2)

2 + (𝑟 + 2𝜆(1− 𝑞)𝜇𝑠
2)(𝜇

𝑠
1 − 𝜇𝑠

2), (61)

where 𝜇𝑠
1 =

𝜑𝑠+𝜑𝑠
𝑑

𝜒 − 𝜑𝑏+𝜑𝑏
𝑑

𝜒+𝜅 = 𝜇𝑠
2 +

𝜑𝑠
𝑑
𝜒 − 𝜑𝑏

𝑑
𝜒+𝜅 and 𝜇𝑠

2 = 𝜑𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅 . If inequality (59) is violated, all

sellers enter market 2. If inequality (61) is violated, all buyers and all sellers go to market 1. The

inequality (61) gives a lower bounds on the difference between 𝜑𝑠
𝑑 and 𝜑𝑏

𝑑:

𝜑𝑠
𝑑

𝜒
−

𝜑𝑏
𝑑

𝜒+ 𝜅
> Φ2(𝜑

𝑏
𝑑;𝜑

𝑏, 𝜑𝑠) ≡ 1

2𝐷

(︁
− 𝐸 +

√︃
𝐸2 + 4𝐷𝐹

𝜑𝑏
𝑑

𝜒+ 𝜅

)︁
,

where 𝐷 = 𝜆(1 − 𝑞), 𝐸 = (𝑟 + 2𝜆(1 − 𝑞)(𝜑
𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅)) > 0, and 𝐹 = (𝜑
𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅)(𝑟 + 𝜆(1 − 𝑞)(𝜑
𝑠

𝜒 −
𝜑𝑏

𝜒+𝜅))
𝜒+𝜅
𝜑𝑏 > 0.

(iii) (Corner Equilibrium) As discussed near equations (47), given 𝜂1 = 1, 𝜈1 solving the in-

difference condition (47) is unique. If there exists a solution 𝜈1 ∈ (0, 1) for equation (47), then

replacing 𝜈1 by 1 violates the inequality (57), which is a necessary condition of equilibrium with

𝜈1 = 1. Hence, an asymmetric equilibrium with 𝜈1 ∈ (0, 1) and an asymmetric equilibrium with

𝜈1 = 1, given 𝜂1 = 1, cannot coexist because LHS-RHS of equation (47) decreases. Similarly, an

asymmetric equilibrium with 𝜂1 ∈ (0, 1) and 𝜂1 = 1, given 𝜈1 = 1, cannot coexist. When inequal-

ities (55) and (61) are violated, all discretionary buyers and sellers enter market 1. When such

asymmetric equilibrium exists, it is unique: i.e., 𝜂1 = 1− 𝜂2 = 1 and 𝜈1 = 1− 𝜈2 = 1.

(4) (Asymmetric Equilibrium is Unique) Now we show that three types of asymmetric equilibria

(i), (ii), and (iii) exists exclusively, and so, (a pair of) asymmetric equilibrium is unique.

An asymmetric equilibrium in which discretionary buyers are marginal (i.e., 𝜈1 ∈ (0, 1)) and all

discretionary sellers enter market 1 (i.e., 𝜂1 = 1) cannot coexist with an asymmetric equilibrium

in which all traders choose market 1 (i.e., 𝜈1 = 𝜂1 = 1). This is because, given 𝜂1, the buyer’s

indifference condition (47) is monotone in 𝜈1 = 1−𝜈2 and thus it has a unique solution 𝜈1 > 0. If the

solution satisfies 𝜈1 < 1 then an asymmetric equilibrium with marginal buyers alone exists; if the

solution satisfies 𝜈1 ≥ 1 then an asymmetric equilibrium with 𝜂1 = 𝜈1 = 1 alone exists. Similarly,

an asymmetric equilibrium with 𝜂1 ∈ (0, 1) and 𝜈1 = 1 cannot coexist with an equilibrium with

𝜂1 = 𝜈1 = 1, due to the monotonicity of the sellers’ indifference condition (48) in 𝜂1, given 𝜈1.

Lastly, we show that an asymmetric equilibrium with marginal buyers (𝜈1 ∈ (0, 1) and 𝜂1 = 1)

and an asymmetric equilibrium with marginal sellers (𝜂1 ∈ (0, 1) and 𝜈1 = 1) do not coexist. We

show this by contradiction. Suppose that there exists a parameter set such that both equilibria

exists. The necessary condition (55) for equilibrium with marginal buyers and (61) for equilibrium

36



with marginal sellers must hold:

𝜑𝑠
𝑑

𝜒
≥

(𝑟 + (1− 𝑞)(𝜒+ 𝜅) + 𝑞(𝜒+ 𝜅) 𝜑𝑠

𝜒𝜇𝑠
2
)

𝜇𝑠
2𝑞(𝜒+ 𝜅)

(𝜇𝑠
1−𝜇𝑠

2)
2+

((𝑟 + (1− 𝑞)(𝜒+ 𝜅))𝜇𝑠
2 + 2𝑞(𝜒+ 𝜅)𝜑

𝑠

𝜒 )

𝜇𝑠
2𝑞(𝜒+ 𝜅)

(𝜇𝑠
1−𝜇𝑠

2);

(62)
𝜑𝑏
𝑑

𝜒+ 𝜅
≤ 𝜆(1− 𝑞)

𝜇𝑠
2(𝑟 + 𝜆(1− 𝑞)𝜇𝑠

2)
𝜒+𝜅
𝜑𝑏

(𝜇𝑠
1 − 𝜇𝑠

2)
2 +

(𝑟 + 2𝜆(1− 𝑞)𝜇𝑠
2)

𝜇𝑠
2(𝑟 + 𝜆(1− 𝑞)𝜇𝑠

2)
𝜒+𝜅
𝜑𝑏

(𝜇𝑠
1 − 𝜇𝑠

2), (63)

where 𝜇𝑠
1 =

𝜑𝑠+𝜑𝑠
𝑑

𝜒 − 𝜑𝑏+𝜑𝑏
𝑑

𝜒+𝜅 and 𝜇𝑠
2 =

𝜑𝑠

𝜒 − 𝜑𝑏

𝜒+𝜅 . If both inequalities hold, we get

(𝜇𝑠
1 − 𝜇𝑠

2) ≥
𝑟 + (1− 𝑞)(𝜒+ 𝜅) + 𝑞(𝜒+ 𝜅) 𝜑𝑠

𝜒𝜇𝑠
2

𝜇𝑠
2𝑞(𝜒+ 𝜅)

(𝜇𝑠
1 − 𝜇𝑠

2)
2 − 𝜆(1− 𝑞)

𝜇𝑠
2(𝑟 + 𝜆(1− 𝑞)𝜇𝑠

2)
𝜒+𝜅
𝜑𝑏

(𝜇𝑠
1 − 𝜇𝑠

2)
2

+
(𝑟 + (1− 𝑞)(𝜒+ 𝜅))𝜇𝑠

2 + 2𝑞(𝜒+ 𝜅)𝜑
𝑠

𝜒

𝜇𝑠
2𝑞(𝜒+ 𝜅)

(𝜇𝑠
1 − 𝜇𝑠

2)−
𝑟 + 2𝜆(1− 𝑞)𝜇𝑠

2

𝜇𝑠
2(𝑟 + 𝜆(1− 𝑞)𝜇𝑠

2)
𝜒+𝜅
𝜑𝑏

(𝜇𝑠
1 − 𝜇𝑠

2).

Let us denote the quadratic and linear coefficients of the right-hand-side by 𝐾 and 𝐿:

𝐾 ≡
𝑟 + (1− 𝑞)(𝜒+ 𝜅) + 𝑞(𝜒+ 𝜅) 𝜑𝑠

𝜒𝜇𝑠
2

𝜇𝑠
2𝑞(𝜒+ 𝜅)

− 𝜆(1− 𝑞)

𝜇𝑠
2(𝑟 + 𝜆(1− 𝑞)𝜇𝑠

2)
𝜒+𝜅
𝜑𝑏

, (64)

𝐿 ≡
(𝑟 + (1− 𝑞)(𝜒+ 𝜅))𝜇𝑠

2 + 2𝑞(𝜒+ 𝜅)𝜑
𝑠

𝜒

𝜇𝑠
2𝑞(𝜒+ 𝜅)

− 𝑟 + 2𝜆(1− 𝑞)𝜇𝑠
2

𝜇𝑠
2(𝑟 + 𝜆(1− 𝑞)𝜇𝑠

2)
𝜒+𝜅
𝜑𝑏

. (65)

The inequality has a solution 𝜇𝑠
1 − 𝜇𝑠

2 =
𝜑𝑠
𝑑
𝜒 − 𝜑𝑏

𝑑
𝜒+𝜅 > 0, which must be positive by Assumption 1,

unless 𝐾 ≥ 0 and 𝐿 > 1.

𝐾 =
𝑟 + 𝜒+ 𝜅

𝜇𝑠
2𝑞(𝜒+ 𝜅)

+
𝜆(1− 𝑞) 𝜑𝑏

𝜒+𝜅

𝜆(1− 𝑞)(𝜇𝑠
2)

2
−

𝜆(1− 𝑞) 𝜑𝑏

𝜒+𝜅

𝜇𝑠
2(𝑟 + 𝜆(1− 𝑞)𝜇𝑠

2)
> 0; (66)

𝐿− 1 =
𝑟 + 𝜒+ 𝜅

𝑞(𝜒+ 𝜅)
+

2(𝑟 + 𝜆(1− 𝑞)𝜇𝑠
2)

𝜑𝑏

𝜒+𝜅

𝜇𝑠
2(𝑟 + 𝜆(1− 𝑞)𝜇𝑠

2)
−

(𝑟 + 2𝜆(1− 𝑞)𝜇𝑠
2)

𝜑𝑏

𝜒+𝜅

𝜇𝑠
2(𝑟 + 𝜆(1− 𝑞)𝜇𝑠

2)
> 0. (67)

Therefore, the necessary condition (64) for the coexistence of asymmetric equilibrium with marginal

buyers and asymmetric equilibrium with marginal sellers never hold.

Proof of Lemma 3. In an asymmetric equilibrium in which buyers are marginal and all sellers

enter market 1 (i.e., 𝜈1 ∈ (0, 1), 𝜂1 = 1), traders’ indifference conditions are written by

𝜆1𝜇
𝑠
1

𝜆2𝜇𝑠
2

=
(𝑟 + 𝜒+ 𝜅)(𝑟 + 𝜆1𝜇

𝑠
1(1− 𝑞)) + 𝑟𝑞𝜆1𝜇

𝑏
1

(𝑟 + 𝜒+ 𝜅)(𝑟 + 𝜆2𝜇𝑠
2(1− 𝑞)) + 𝑟𝑞𝜆2𝜇𝑏

2

<
𝜆1𝜇

𝑏
1

𝜆2𝜇𝑏
2

. (68)

By Theorem of Equal Ratio, the above condition is simplified into

𝜆1𝜇
𝑠
1

𝜆2𝜇𝑠
2

=
𝑟 + 𝜒+ 𝜅+ 𝑞𝜆1𝜇

𝑏
1

𝑟 + 𝜒+ 𝜅+ 𝑞𝜆2𝜇𝑏
2

<
𝜆1𝜇

𝑏
1

𝜆2𝜇𝑏
2

. (69)
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Because the successful selling probability 𝜆𝑖𝜇
𝑏
𝑖 is positive in equilibrium, the inequality implies that

𝜆1𝜇𝑏
1

𝜆2𝜇𝑏
2
> 1. Moreover, the equality implies that

𝜆1𝜇𝑠
1

𝜆2𝜇𝑠
2
> 1. In particular, traders’ relative trading

probability in market 1 to market 2 satisfies

1 <
𝜆1𝜇

𝑠
1

𝜆2𝜇𝑠
2

<
𝜆1𝜇

𝑏
1

𝜆2𝜇𝑏
2

in asymmetric equilibrium with marginal buyers and all sellers in market 1.

Similarly, in asymmetric equilibrium in which sellers are marginal and all buyers enter market

1 (i.e., 𝜂1 ∈ (0, 1), 𝜈1 = 1), we get

1 <
𝜆1𝜇

𝑏
1

𝜆2𝜇𝑏
2

<
𝜆1𝜇

𝑠
1

𝜆2𝜇𝑠
2

.
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B Variable Definition

We exclude the retail transactions (i.e., trading volume less than $100𝑘) to calculate the following

variables. All variables are winsorized at 1𝑠𝑡 and 99𝑡ℎ percentiles.

B.1 Yield and Liquidity Spread

The yield is yield-to-maturity obtained from the TRACE enhanced database. We follow Bessem-

binder, Kahle, Maxwell, and Xu (2008) in defining the daily yield. Specifically, we calculate a

bond’s daily yield as the trading-volume-weighted average yield for each day, after excluding the

negative yields. Throughout the paper, we use the matched sample defined in Section 6.1. For the

liquid bond 𝑖 and matched illiquid bond 𝑗, we denote the daily yield as 𝑌 𝑖𝑒𝑙𝑑
(𝑙𝑖𝑞)
𝑖,𝑡 and 𝑌 𝑖𝑒𝑙𝑑

(𝑖𝑙𝑙𝑖𝑞)
𝑗,𝑡 ,

respectively. To be included in our sample, both 𝑌 𝑖𝑒𝑙𝑑
(𝑙𝑖𝑞)
𝑖,𝑡 and 𝑌 𝑖𝑒𝑙𝑑

(𝑖𝑙𝑙𝑖𝑞)
𝑗,𝑡 for a matched pair should

be available in day 𝑡. Then, for each day we define 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 as following:

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑗,𝑡 ≡ 𝑌 𝑖𝑒𝑙𝑑
(𝑖𝑙𝑙𝑖𝑞)
𝑗,𝑡 − 𝑌 𝑖𝑒𝑙𝑑

(𝑙𝑖𝑞)
𝑖,𝑡 (B1)

Monthly 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 is defined as median of the daily 𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑆𝑝𝑟𝑒𝑎𝑑 during the month

for each matched pair.

B.2 Amihud

𝐴𝑚𝑖ℎ𝑢𝑑 is the intraday version of Amihud (2002) illiquidity measure introduced in Dick-Nielsen,

Feldhütter, and Lando (2012). Specifically, for each bond 𝑖, we calculate the following within day

𝑡:

𝐴𝑚𝑖ℎ𝑢𝑑𝑖,𝑡 ≡
1

𝑁𝑡

𝑁𝑡∑︁
𝑘=1

|𝑟𝑘|
𝑄𝑘

(B2)

where 𝑟𝑘 is a return of the 𝑘𝑡ℎ transaction within day 𝑡 (=
𝑝𝑘−𝑝𝑘−1

𝑝𝑘−1
), 𝑄𝑘 is trading volume in $MM

for the 𝑘𝑡ℎ transaction, and 𝑁𝑡 is the number of 𝑟𝑘 observations during day 𝑡.

B.3 IRC

𝐼𝑅𝐶 is the imputed roundtrip costs of Feldhütter (2012). For bond 𝑖 and day 𝑡, we call it as the

imputed roundtrip trades (IRT) if there exists a group of two or three (and no more than three)

transactions that have the same trading volume. Then, we calculate the following daily imputed

roundtrip cost:

𝐼𝑅𝐶𝑖,𝑡 ≡
1

𝑁𝑡

𝑁𝑡∑︁
𝑘=1

[︂
𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥

]︂
𝑘

(B3)
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where 𝑁𝑡 is the number of IRTs for bond 𝑖 within day 𝑡 and 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛 are maximum and

minimum transacton prices within each IRT 𝑘.

B.4 Bid-ask 1

Bid-ask 1 is the bid-ask spreads calculated by using inter-dealer transaction prices as a reference

price, following Choi and Huh (2018). Specifically, we calculate the transaction-level bid-ask spreads

for each customer-dealer transaction 𝑘 of bond 𝑖 in day 𝑡 as following:

Bid-ask𝑘 ≡ 2𝑆𝑘 ·
𝑝𝑘 − 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑘

𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑘

(B4)

where 𝑆𝑘 is equal to either +1 or −1 if transaction 𝑘 is a customer-buy or customer-sell from

dealers, respectively. The reference price for transaction 𝑘, 𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑘 , is defined as the transaction-

volume-weighted average price of interdealer transaction prices for bond 𝑖 within the same day 𝑡

after excluding the interdealer trades executed within 15 minutes from the transaction 𝑘.

Finally, we define Bid-ask 1𝑖,𝑡 as the bond-day level measure of bid-ask spreads by taking the

transaction-volume-weighted average of Bid-ask𝑘 for customer-dealer transactions for bond 𝑖 during

day 𝑡.

B.5 Bid-ask 2

For each bond 𝑖 and day 𝑡, we calculate the realized bid-ask spreads similarly to Adrian, Fleming,

Shachar, and Vogt (2017). Specifically, we calculate the following:

Bid-ask 2𝑖,𝑡 ≡
𝑎𝑠𝑘𝑖,𝑡 − 𝑏𝑖𝑑𝑖,𝑡

(𝑎𝑠𝑘𝑖,𝑡 + 𝑏𝑖𝑑𝑖,𝑡)/2
(B5)

where 𝑎𝑠𝑘𝑖,𝑡 and 𝑏𝑖𝑑𝑖,𝑡 are the transaction-volume-weighted average prices of customer-buy and

customer-sell transactions, respectively, for bond 𝑖 during day 𝑡.

B.6 Roll

We calculate the Roll (1984) illiquidity measure, 𝑅𝑜𝑙𝑙, by following Dick-Nielsen, Feldhütter, and

Lando (2012). Specifically, for bond 𝑖 and day 𝑡

𝑅𝑜𝑙𝑙𝑖,𝑡 ≡ 2
√︀
−𝑐𝑜𝑣(𝑅𝑘, 𝑅𝑘−1) (B6)

where 𝑐𝑜𝑣(𝑅𝑘, 𝑅𝑘−1) is the covariance of consecutive returns calculated based on transaction prices

obtained from the TRACE enhanced database. For each day 𝑡 with at least one transaction, we

calculate the measure in a rolling window of 21 trading days. We discard it if the covariance is

positive.
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B.7 Dealer Connectedness

We calculate the connectedness of dealers by computing eignvector centrality of dealer network by

following Friewald and Nagler (2019). We define that two dealers are connected if there are at

least 50 transactions with each other during a month and we use weight connections by sum of

transaction volumes (in par values) between the two dealers. Then, the dealer connectedness for

a bond is defined as transaction volume-weighted average of dealer connectedness of dealers who

have traded the bond during a month.

B.8 Prearranged Trading Ratio

Similar to Schultz (2017), the prearranged trading is defined as a sequence of transactions for a

bond that satisfy the following conditions: the transactions are executed within one minute; the

transactions have a same trading volume; at least one of the transactions is a customer trade. We

define prearranged trading ratio as the fraction of prearranged trading among all transactions for

a bond during a month.

B.9 Volatility of Yield Difference of Matched Bonds

We define the volatility of yield difference, 𝑉 𝑜𝑙(|𝑌 𝑙𝑑𝑇 − 𝑌 𝑙𝑑𝐶 |), by calculating previous one year

volatility for absolute value of yield differences. The yield difference is calculated as daily yields of

the treated bond minus yields of matched control bond at the same day.

B.10 Flows

For each fund 𝑗 and month 𝑡, we calculate monthly fund flows as following:

𝐹𝑙𝑜𝑤𝑗,𝑡 ≡
𝑇𝑁𝐴𝑗,𝑡 − 𝑇𝑁𝐴𝑗,𝑡−1 · (1 + 𝑟𝑗,𝑡)

𝑇𝑁𝐴𝑗,𝑡−1
(B7)

where 𝑇𝑁𝐴𝑗,𝑡 is total net assets for fund 𝑗 at the end of month 𝑡 and 𝑟𝑗,𝑡 is monthly return for fund

𝑗 over month 𝑡. The total net assets and monthly returns are obtained from the CRSP survivorship-

bias-free mutual fund database. We define corporate bond mutual funds (CBMFs) as funds with

the Lipper objective code in (A, BBB, HY, SII, SID, IID) or the CRSP objective code starting

with IC. We require that TNA should be at least $1MM and eliminate overly extreme monthly

changes in 𝑇𝑁𝐴 by requiring 0.5 <
𝑇𝑁𝐴𝑗,𝑡

𝑇𝑁𝐴𝑗,𝑡−1
< 3 for fund 𝑗 and month 𝑡. We also require that a

fund should have at least one year of the holdings data with at least 10 different holdings at some

point in the past.

We calculate the aggregate flows of CBMFs, 𝐹𝑙𝑜𝑤𝑡, by taking average of individual fund flows

(𝐹𝑙𝑜𝑤𝑗,𝑡) weighted by lagged TNAs (𝑇𝑁𝐴𝑗,𝑡−1) using all CBMFs in our sample.
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B.11 Trade

We define mutual fund trading, 𝑇𝑟𝑎𝑑𝑒𝑖,𝑗,𝑡, for each bond 𝑖, fund 𝑗, and quarter 𝑡 as following:

𝑇𝑟𝑎𝑑𝑒𝑖,𝑗,𝑡 ≡
𝐴𝑚𝑡𝐻𝑜𝑙𝑑𝑖,𝑗,𝑡
𝐴𝑚𝑡𝐻𝑜𝑙𝑑𝑖,𝑗,𝑡−1

− 1 (B8)

where 𝐴𝑚𝑡𝐻𝑜𝑙𝑑𝑖,𝑗,𝑡 is the dollar par-value amount of bond 𝑖 held by fund 𝑗 at the end of quarter

𝑡. We obtain the quarterly holdings of CBMFs from the Morningstar database.
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Figure 7. Monthly Mutual Fund Investor Flows and the Liquidity Spread

This figure plots monthly mutual fund flows (grey vertical bars) along with the monthly average liquidity spread
(black solid line). The monthly mutual fund flows are defined as capital flows to corporate bond mutual funds
(CBMF) in percentages of total net assets. Corporate bond mutual funds are defined as the Lipper objective code is
in (A, BBB, HY, SII, SID, IID) or the CRSP objective code starts with ”IC”. We use all CBMF in CRSP mutual
fund database. The monthly average liquidity spread is same as in Figure 5. The sample period runs from February
2005 through June 2017. Dashed vertical lines indicate the GM&Ford downgrades (May 2005), Lehman Brothers
Bankruptcy (September 2008), and Taper Tantrum (May 2013). The x-axis represents calendar dates. The left y-axis
represents yield spreads in percentages and the right y-axis represents the mutual fund flows in percentage.00:19 Wednesday, October 23, 2019 1
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Figure 8. Trading of Liquid and the Matched Illiquid Bonds by Distressed Mutual Funds

This figure shows relationship between mutual fund flows and their trading (Trade) of the liquid and illiquid bonds
in a matched pair during the distressed periods. Specifically, we plot fitted lines from non-parametric regressions of
Trade on quarterly fund flows for the post Lehman crisis period (2008 Q3 through 2009 Q2) and the Taper Tantrum
period (2013 Q2 through 2013 Q4). Trade ≡ AmtHold𝑖,𝑗,𝑡/AmtHolt𝑖,𝑗,𝑡−1 is the percentage trading by mutual fund 𝑗
in quarter 𝑡 where AmtHold𝑖,𝑗,𝑡 is par-value amounts of holdings in corporate bond i of fund j at the end of quarter
𝑡. We standardize Trade using the entire sample period. We only use actively managed corporate bond funds (i.e.,
index funds, exchange-traded funds, exchange-traded notes are excluded) that hold both liquid and illiquid bonds
in a matched pair at the beginning of each quarter. For the non-parametric regression, we use kernel-weighted local
polynomial smoothing with the Epanechnikov kernel function in, e.g., Fan (1992) and Fan and Gijbels (1996). Black
solid line represents trade–flow relationship of liquid bonds and gray dashed line represents those of illiquid bonds.
The vertical dashed lines represent the 95% confidence bands.
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Table 1. Descriptive Statistics of Matched Bonds

This table provides descriptive statistics for 2,142 unique matching pairs of the young and the old bonds in our
sample from February 2005 through June 2017. The sample consists of matching bond pairs issued by a same issuer
with same credit rating and seniority, and very similar time-to-maturities (less than one year difference), but different
ages. 𝐴𝑔𝑒 is defined as years passed after the issuance. We define young bond as bonds with age less than 3 years
and pick a matched bond with a maximum age differences having age of at least 5 years. time-to-maturity (𝑇𝑇𝑀)
are remaining years to the maturity. We also report the dollar amount outstandings (𝐴𝑚𝑡𝑜𝑢𝑡). 𝑅𝑎𝑡𝑖𝑛𝑔 is the S&P
credit rating of bonds where we assign 21 to AAA rating and so on. The rating is reported just once because the
young and old bonds in a matched pair have exactly same rating. The reported variables are calculated when the
bond pairs are first appeared on our sample. We report the number of observations (N), mean, standard deviation
(Std.), and 5%, 25%, 50% (median), 75%, and 95% quantiles.

N Mean Std. 5% 25% 50% 75% 95%

(1) (2) (3) (4) (5) (6) (7) (8)

𝐴𝑔𝑒 (year), Young Bond 2,142 0.947 0.989 0.005 0.038 0.553 1.843 2.757
𝐴𝑔𝑒 (year), Old Bond 2,142 7.515 3.727 5.002 5.046 5.921 8.129 16.674
𝑇𝑇𝑀 (year), Young Bond 2,142 4.574 3.403 0.583 2.919 4.427 5.024 9.949
𝑇𝑇𝑀 (year), Old Bond 2,142 4.425 3.455 0.427 2.42 4.23 4.999 9.895
𝐴𝑚𝑡𝑜𝑢𝑡 ($MM), Young Bond 2,142 838.4 623.9 200 400 650 1,100 2,240
𝐴𝑚𝑡𝑜𝑢𝑡 ($MM), Old Bond 2,142 765.0 735.0 100 250 500 1,000 2,500
𝑅𝑎𝑡𝑖𝑛𝑔 2,140 15.11 3.031 10 13 15 17 21
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Table 2. Mean Difference Tests of Matched Bonds

This table provides the results of difference tests on means between young and old bonds in the matched pair. The
sample is consist of 63,052 monthly bond-level observations from 2,142 unique pairs during our sample period from
February 2005 through June 2017. We examine times passed after the issuance, 𝐴𝑔𝑒; remaining times to the maturity,
𝑇𝑇𝑀 ; and par-value dollar amount outstandings, 𝐴𝑚𝑡𝑜𝑢𝑡. We also include various measures of illiquidity such as
the Amihud (2002) illiquidity, 𝐴𝑚𝑖ℎ𝑢𝑑; imputed round-trip costs of Feldhütter (2012), 𝐼𝑅𝐶; two measures of Bid-
ask spreads, Bid-ask 1 and Bid-ask 2, calculated following in Choi and Huh (2018) and Adrian, Fleming, Shachar,
and Vogt (2017), respectively; and Roll (1984) illiquidity, 𝑅𝑜𝑙𝑙; All measures are calculated daily basis following
Dick-Nielsen, Feldhütter, and Lando (2012) and Schestag, Schuster, and Uhrig-Homburg (2016) and each month we
take median of daily measures during previous six months. Definitions for all variables are detailed in the Appendix
B. Column (1) reports the number of observations used. Columns (2) and (3) report mean of each variable for the
young bonds and the matched old bonds, respectively. Column (4) reports mean differences. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively. The numbers in parentheses (Column 5) are the
standard errors two-way clustered at the issuer and month levels.

N Young Old Difference s.e.

(1) (2) (3) (4) (5)

𝐴𝑔𝑒 (year) 63,052 1.547 8.317 -6.770*** (0.240)
𝑇𝑇𝑀 (year) 63,052 3.841 3.655 0.186*** (0.019)
𝐴𝑚𝑡𝑜𝑢𝑡 ($MM) 63,052 940.4 878.2 62.19* (36.86)
𝐴𝑚𝑖ℎ𝑢𝑑 62,106 0.468 0.633 -0.166*** (0.027)
𝐼𝑅𝐶 61,693 0.076 0.108 -0.032*** (0.004)
Bid-ask 1 59,852 0.262 0.402 -0.140*** (0.013)
Bid-ask 2 60,157 0.223 0.313 -0.090*** (0.011)
𝑅𝑜𝑙𝑙 61,553 0.459 0.576 -0.117*** (0.011)
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Table 3. Difference-in-Differences Regressions: Yields around Market-wide Distress Events

This table provides the difference-in-difference regression results for the following model:

𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 = 𝛼+ 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖 · 𝑃𝑜𝑠𝑡𝑡 + 𝛽2𝑇𝑟𝑒𝑎𝑡𝑖 + 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡 + 𝜀𝑡

where 𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 is monthly (or daily) yields in percentage on bond 𝑖. Monthly yields are defined as median of daily
yields of bonds during the month. We only use yields where both liquid and matched illiquid bonds of a pair
have available yields at the same day. 𝑇𝑟𝑒𝑎𝑡𝑖 is a time-invariant indicator variable for the young bonds of matched
pairs. In Panel A, we employ two market-wide events: the Lehman Brothers bankruptcy during 2008 financial
crisis (September 14, 2008) and the Taper Tantrum episode in 2013 (May 22, 2013). 𝑃𝑜𝑠𝑡𝑡 is a dummy variable
indicating months of event and afterwards (in Columns 1 and 3) or days after the event date (in Columns 2 and
4). The sample period runs from January 2008 through June 2009 for Columns (1) and (2) and from January 2013
through December 2013 for Columns (3) and (4). In Panel B, we use the monthly data around the Lehman Brothers
bankruptcy. We further divide the sample into two subgroups based on the following variables related to the search
friction and limits to arbitrage. In Columns (1) through (4), we use search friction variables to measure relative
search frictions of treated bonds and matched control bonds. In Columns (1) and (2), we use differences in the dealer
connectedness, measured by eigenvector centrality of dealer networks. Specifically, we calculate eigenvector centrality
of dealer networks for treated bonds minus those for matched control bonds. Higher eignvector centrality implies
better connectedness. Thus, the large difference of connectedness means the higher search friction of control bonds
relative to treated bonds. In Columns (3) and (4), we similarly define the relative strength of search friction by
calculating the prearranged trading ratio of control bonds minus those of treated bonds. Higher prearranged trading
means higher search friction. Thus, the larger difference means the higher search friction of control bonds relative
to treated bonds. We also examine the amount outstanding of treated and control bonds. 𝑉 𝑜𝑙(|𝑌 𝑙𝑑𝑇 − 𝑌 𝑙𝑑𝐶 |) is
the volatility of yield differences between matched bonds by using daily yields of previous one year. In Columns
(1) through (10), We form two subgroups based on the median of each variable measured prior to the Lehman
Brothers bankruptcy. In Columns (11) and (12), 𝐻𝑌 and 𝐼𝐺 represent the high yield and investment grade bonds,
respectively. The control variables, 𝑐𝑡𝑟𝑙𝑠, include logged time-to-matured, 𝑇𝑇𝑀 , and logged amount outstandings,
𝐴𝑚𝑡𝑜𝑢𝑡. Definitions for all variables are detailed in Appendix B. We also include issuer-times-month fixed effects.
The sample bonds contain all matched bonds during the sample periods and the matching process is detailed in
Section 6.1. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The numbers
in parentheses are standard errors two-way clustered at the issuer and time levels.

Panel A: Market-wide Distress Events

2008 Financial Crisis 2013 Taper Tantrum

Monthly Daily Monthly Daily
(1) (2) (3) (4)

𝑇𝑟𝑒𝑎𝑡 · 𝑃𝑜𝑠𝑡 0.342*** 0.266*** 0.058*** 0.067***
(0.118) (0.096) (0.018) (0.016)

𝑇𝑟𝑒𝑎𝑡 -0.139*** -0.123*** -0.155*** -0.159***
(0.043) (0.025) (0.018) (0.015)

𝑇𝑇𝑀 1.125*** 1.283*** 1.332*** 1.408***
(0.245) (0.313) (0.112) (0.058)

𝐴𝑚𝑡𝑜𝑢𝑡 -0.032 0.034 -0.116*** -0.003
(0.061) (0.058) (0.020) (0.029)

Issuer · Time F.E. Y Y Y Y
N 5,510 37,170 5,604 40,116
Adj 𝑅2 0.954 0.955 0.906 0.936
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Table 5. Effects of Market Liquidity on Yields and Investor Outflows from Corporate Bond
Mutual Funds

This table provides the regression results for the following model:

𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 = 𝛼+ 𝛽1𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 ·𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠𝑡 + 𝛽2𝐼𝑙𝑙𝑖𝑞𝑖,𝑡−1 + 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡 + 𝜀𝑡

where 𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 is monthly yields in percentage defined as median of daily yields of bond 𝑖 during month 𝑡. We
only use yields where both liquid and matched illiquid bonds of a pair have available yields at the same day. 𝐼𝑙𝑙𝑖𝑞
represents one of the five measures of illiquidity described in Table 2 (𝐴𝑚𝑖ℎ𝑢𝑑, 𝐼𝑅𝐶, Bid-ask 1, Bid-ask 2, and 𝑅𝑜𝑙𝑙).
All illiquidity measures are standardized. All illiquidity measures are standardized. 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠 is investor capital
outflows of corporate bond mutual funds (CBMFs) defined as −𝑚𝑖𝑛(𝑓𝑙𝑜𝑤, 0) where 𝑓𝑙𝑜𝑤 is capital flows of CBMFs
as percentage of their assets under managements. The control variables, 𝑐𝑡𝑟𝑙𝑠, include logged time-to-matured, 𝑇𝑇𝑀 ,
and logged amount outstandings, 𝐴𝑚𝑡𝑜𝑢𝑡. Definitions for all variables are detailed in Appendix B. We also include
issuer-times-month fixed effects. The sample contains all matched pairs of bonds from February 2005 through Jun
2017. The matching process is detailed in Section 6.1. *, **, and *** denote statistical significance at the 10%, 5%,
and 1% levels, respectively. The numbers in parentheses are standard errors two-way clustered at the issuer and
month levels.

Dependent Variable: Monthly Yields

Illiquidity Measure 𝐴𝑚𝑖ℎ𝑢𝑑 𝐼𝑅𝐶 Bid-ask 1 Bid-ask 2 𝑅𝑜𝑙𝑙

(1) (2) (3) (4) (5)

𝐼𝑙𝑙𝑖𝑞 ·𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠 -0.135*** -0.081*** -0.042*** -0.064** -0.148***
(0.030) (0.022) (0.015) (0.030) (0.046)

𝐼𝑙𝑙𝑖𝑞 0.043*** 0.029** 0.036*** 0.035** 0.076***
(0.015) (0.014) (0.010) (0.014) (0.015)

𝑇𝑇𝑀 1.192*** 1.193*** 1.184*** 1.187*** 1.163***
(0.053) (0.051) (0.051) (0.050) (0.051)

𝐴𝑚𝑡𝑜𝑢𝑡 -0.084*** -0.080*** -0.084*** -0.078*** -0.070***
(0.022) (0.023) (0.023) (0.021) (0.024)

Issuer · Time F.E. Y Y Y Y Y
N 61,871 61,289 58,801 59,282 61,236
Adj 𝑅2 0.973 0.973 0.973 0.974 0.973
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Table 6. Difference-in-Differences Regressions: Issuer-level Outflow Shocks from Downgrade
Events

This table provides the difference-in-difference regression results for the following model:

𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 = 𝛼+ 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖 + 𝛽2𝑇𝑟𝑒𝑎𝑡𝑖 · 𝑤[−10,−1] + 𝛽3𝑇𝑟𝑒𝑎𝑡𝑖 · 𝑤[0,9] + 𝑐𝑡𝑟𝑙𝑠𝑖,𝑡 + 𝜀𝑡

where 𝑌 𝑖𝑒𝑙𝑑𝑖,𝑡 is daily yields in percentage on bond 𝑖 and day 𝑡. 𝑇𝑟𝑒𝑎𝑡𝑖 is a time-invariant indicator variable for the
young bonds of matched pairs. We employ downgrade of bond credit ratings as events for difference-in-difference
regressions. We define the downgrade event as the first downgrade announcement date by S&P, Moody’s, or Fitch
(i.e., downgrade that changes the lowest rating of the three ratings). We only include downgrades where two bonds
in the matched pairs are downgraded at the same day. If there are multiple consecutive downgrade events within a
month, we only include the first event Similarly, 𝑤[−10,−1] is a dummy variable indicating days between -10 and -1
weeks from the event date. Similarly, 𝑤[0,9] is a dummy variable indicating days between 0 and 9 weeks from the
event date. The sample consists of daily yields from 30 weeks before and 10 weeks after the event. In Column (1),
we include all downgrade events between February 2005 and June 2017. In Columns (2) and (3), we use downgrade
events during the normal and distressed periods, respectively, where we define the distressed periods as the post
Lehman Brothers bankruptcy crisis periods (September 2008 through June 2009) and the Taper Tantrum periods
(May 2013 through December 2013). In Columns (4), (5), and (6), we use downgrades from investment grades (IG)
to IG, from IG to high yields (HY), and from HY to HY, respectively. The control variables, 𝑐𝑡𝑟𝑙𝑠, include logged
time-to-maturity, 𝑇𝑇𝑀 , and logged amount outstandings, 𝐴𝑚𝑡𝑜𝑢𝑡. We also include issuer-times-month fixed effects.
The sample consists of the matched bonds and we detailed the matching process in Section 6.1. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively. The numbers in parentheses are standard errors
two-way clustered at the issuer and month levels.

All Normal Distressed IG � IG IG � HY HY � HY

(1) (2) (3) (4) (5) (6)

𝑇𝑟𝑒𝑎𝑡 -0.078 -0.108** 0.012 -0.113*** 0.227 0.169
(0.049) (0.044) (0.091) (0.027) (0.233) (0.204)

𝑇𝑟𝑒𝑎𝑡 · 𝑤[−10,−1] 0.161*** 0.111** 0.282*** 0.080* 0.189 0.632***
(0.045) (0.046) (0.083) (0.041) (0.216) (0.208)

𝑇𝑟𝑒𝑎𝑡 · 𝑤[0,9] 0.332*** 0.160*** 0.709*** 0.214*** 0.835* 0.822***
(0.062) (0.053) (0.174) (0.045) (0.426) (0.275)

𝑇𝑇𝑀 1.332*** 1.293*** 1.355*** 1.323*** 0.168 2.338
(0.189) (0.230) (0.288) (0.161) (0.841) (1.555)

𝐴𝑚𝑡𝑜𝑢𝑡 -0.024 -0.066 0.076 0.024 -0.405 -0.386***
(0.071) (0.073) (0.111) (0.029) (0.309) (0.125)

Issuer · Time F.E. Y Y Y Y Y Y
N 74,760 52,266 22,494 59,302 4,196 11,262
Adj 𝑅2 0.976 0.977 0.973 0.973 0.929 0.943
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