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Highlights 

 We investigate the connectedness among metals, energy, agriculture, and livestock futures.  

 The frequency-domain spillover method of Barunik and Krehlik (2018) and wavelet 

approach are applied.  

 Economic and political events intensify total spillovers among commodity futures.  

 Total spillover is higher in the short term than in long term.  

 Livestock markets is the least contributor/receiver of risk to/from other markets.  

 A mixed portfolio offers better diversification benefits and downside risk reduction 

especially in the short term.  
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1. Introduction 

This study analyzes the short-term and long-term spillovers, directional spillovers, and 

net pairwise network connectedness among main commodity futures contracts (six energy 

futures, four precious metals futures, six industrial metals futures, nine agriculture futures, and 

three livestock futures). Empirically, we use the time-frequency spillover method of Barunik 

and Krehlik (2018) to assess the cross-market network spillover connectedness in different 

investment horizons (short-term and long-term). It is useful for investors and policymakers to 

identify the extent and direction of spillovers from one market to another, which is crucial for 

financial risk management. Considering a multiscale analysis to account for the time horizon 

is important. We note that shorter time horizons require more caution than longer ones. In 

addition, longer-term results are more predictable than shorter-term. 

Commodity markets have experienced a rapid growth in liquidity over the last two 

decades. Commodity markets have significant instability when prices exhibit a simultaneous 

upside and downside trend. Mensi et al. (2014) document that the price instability of 

agricultural commodities can be explained by three factors. First, biofuels are derived from 

agricultural commodities. Higher price of energy markets pushes agricultural prices up as the 

cost of production of agricultural products increases. Second, the increasing and more 

prosperous world population and third, the adverse effects of global warming on climate change. 

The role of commodities in portfolio allocation has increased, given the volatile times 

(Creti et al., 2013). Policymakers pay special attention to commodity market instability given 

its influence over inflation pressure. Connectedness among commodity futures prices is a 

strategic issue for all economies. With the financialization of commodities, traders and 

investors now consider them as a potential diversifier of portfolio risk exposure (Choi and 

Hammoudeh, 2010; Vivian and Wohar, 2012).  
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Very few empirical studies have examined the relationship among energy, metals, 

agriculture, and livestock commodities. Nazlioglu (2011) explored the nonlinear causalities 

between oil and agricultural commodity prices. Vivian and Wohar (2012) examined the 

volatility transmission among energy, animal products, grains, industrial metals, manufacturing 

inputs, and precious metals. Mensi et al. (2014) used dynamic conditional correlations in a 

generalized autoregressive conditional heteroskedasticity (GARCH) model to examine the 

impact of OPEC news releases on the dynamic spillovers in returns and volatility between 

energy and cereal commodity markets. Gorzgor et al. (2016) analyzed the driver variables of 

commodity markets volatility by accounting for uncertainty indexes (volatility index and 

equity market uncertainty index). Barbaglia et al. (2020) analyzed volatility spillovers among 

energy, agriculture, and biofuel commodity markets. 

Our results show that total spillovers are 51.2% for the raw return series. Tin is the 

highest contributor of shocks to the other markets. West Texas Intermediate (WTI) and Brent 

crude oil markets are also high contributors of shocks to other markets. Energy futures prices 

act as price discovery tools for metals, agricultural, and livestock markets. Lean hogs and 

lumber contribute the least risk to other markets. Livestock futures have no risk contribution to 

energy, metals or agricultural futures markets. We also show that the magnitude of risk received 

from other markets is different for the four commodity classes. The risk spillover is dynamic 

and influenced by economic and geopolitical events. Total spillovers have intensified during 

the economic crises in the US and China, and the 2005 commodity crisis. After accounting for 

the time horizon, we find that WTI crude oil contributes 15% and 2% on the forecasting 

variance for Brent oil in the short term and long term, respectively. Energy, metals, and 

agricultural markets have low (no) contribution on the forecasting variance for livestock futures 

in the short term (long term). Livestock futures market is the least contributor/receiver of risk 

to/from other markets regardless of the time horizon. Risk spillovers among commodity futures 
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show a significant upward trend during 2008–2009 for the short- and long-term due to 

economic and geopolitical events. We find that the magnitude of spillovers is more evident in 

the short term than in the long term.  

The analysis of portfolio risk reveals that adding commodity futures to an individual 

WTI oil portfolio leads to significant risk reduction for short- and long-term. The magnitude 

of risk reduction is more pronounced for short-term than for long-term in many cases. 

Interestingly, WTI-Tin (WTI-Natural gas) portfolio offers the highest risk reduction in the 

short-term (long-term). In the long-term, Portfolio IV offers the highest risk reduction in 17 

cases (particularly for metals and livestock markets), whereas Portfolio III (Portfolio II) 

provides the highest risk reduction in 8 cases (2 cases: natural gas and gasoline). In the short-

term, we find that Portfolio IV, Portfolio III, and Portfolio II offer the highest risk reduction in 

12, 13, and 2 cases, respectively. Portfolio IV offers the best downside risk reduction regardless 

of the time horizon. 

The literature on spillovers studies spillover returns and volatility across assets (Baele, 

2005). This study contributes to the literature in several ways. First, we identify the magnitude 

of risk spillovers among commodity futures markets. Second, we determine directional 

spillovers (net receiver and net transmitter of risk). Investors are interested in the pathway of 

spillovers and extent of net spillover contribution by different commodities in their portfolio. 

Third, to optimize investment decisions, we re-estimate risk spillover by accounting for time 

horizon. We use the wavelet approach to consider whether the directional spillovers and net 

spillovers are stable across heterogeneous scales. We consider a short-term horizon (2–8 days) 

and long-term horizon (8–256 days) to get more accurate information for investors as their risk 

appetite, behaviors, and beliefs differ for different time horizons. Short-term investors like 

traders and speculators are more concerned with short-term price movement whereas 
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institutional investors are interested in long-term movement (Rua and Nunez, 2009). Finally, 

we use our results to study their implications in terms of risk reduction in general and downside 

risk reduction in particular for an investor holding an individual WTI oil portfolio. We consider 

different risk measures and a benchmark portfolio composed only of WTI oil for comparison 

with three other mixed portfolios (e.g., a risk-minimizing WTI-commodity portfolio, equal 

weights portfolio, and a portfolio whose weights are determined according to a variance 

minimization hedging strategy). The portfolio risk evaluation is examined for the short- and 

long-term. From a practical perspective, our findings are informative of commodity price 

discovery and network connectedness across commodity futures markets and are important to 

portfolio and fund managers. 

The remainder of this paper is organized as follows. Section 2 discusses the 

methodology. Section 3 presents the data and descriptive statistics. Section 4 reports and 

discusses the empirical results. Section 5 discusses the relevant risk management implications 

and concludes. 

 

2. Methodology  

2.1. Time-frequency connectedness method 

We first discuss the methodology of Diebold and Yilmaz (2012) (DY method hereafter) 

and then elaborate on the Barunik and Krehlik (2018) frequency-domain spillover index. The 

DY spillover index is based on a generalized vector autoregressive process in which a forecast 

error variance decomposition (FEVD) is utilized to estimate connectedness and magnitude in 

the time domain. Let us describe the 𝑛-variate process 𝑥𝑡 = (𝑥𝑡,1, … , 𝑥𝑡,𝑛) by the structural 

VAR(𝑝) at t = 1, … , 𝑇 as: 
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𝑥𝑡 = ∑ Φ𝑖𝑥𝑡−𝑖 + 𝜀𝑡
𝑝
𝑖=1 ,                                                (1) 

where ε~(0, Σ) is a vector of i.i.d. disturbances. Assuming stationary covariance, a moving 

average representation can be written as: 

𝑥𝑡 = ∑ Ζ𝑖𝜀𝑡−𝑖
∞
𝑖=0 ,                                                     (2) 

where ∑ Ζ𝑖 = Ζ(𝐿)∞
𝑖=0  is an n × n infinite-lag polynomial matrix of coefficients. Following 

Diebold and Yilmaz (2012), the generalized FEVD can be written as follows: 

Θ𝑖𝑗(𝐻) =
𝜎𝑗𝑗

−1 ∑ ((ΖℎΣ)𝑖𝑗)
2𝐻

ℎ=0

∑ (ΖℎΣΖℎ
′ )

𝑖𝑖
𝐻
ℎ=0

,           (3) 

where Ζℎ  is an n × n matrix of coefficients corresponding to lag h and 𝜎𝑗𝑗 = (Σ)𝑗𝑗 . The 

term Θ𝑖𝑗(𝐻) denotes the contribution of the j-th variable of the system to the variance of the 

forecast error of the 𝑖th variable at forecast horizon 𝐻. As the contributions by own- and cross-

variable variance do not sum to 1 under the generalized decomposition, the sum of the rows is 

used to normalize each element of the variance decomposition matrix: 

Θ̃𝑖𝑗(𝐻) =
Θ𝑖𝑗(𝐻)

∑ Θ𝑖𝑗(𝐻)𝑁
𝑗=1

,                                                 (4) 

with ∑ Θ𝑖𝑗(𝐻) = 1𝑁
𝑗=1  and ∑ Θ𝑖𝑗(𝐻)𝑁

𝑖,𝑗=1 = 𝑁 by construction. Θ̃𝑖𝑗 provides the estimates 

of the pairwise connectedness from the j-th variable to the i th variable at horizon 𝐻.  

Following Barunik and Krehlik (2018), we now discuss the method for measuring 

connectedness in the frequency domain considering the spectral representation of variance 

decompositions based on frequency responses to shocks. A frequency response function can be 

obtained from the Fourier transformation of the moving-average coefficients Ψℎ  with i =

√−1 and expressed as:  

Ψ(𝑒−𝑖𝜔) = ∑ 𝑒−𝑖𝜔ℎ
ℎ Ψℎ,                                              (5) 
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where ω  implies frequency. The power spectrum 𝑆𝑋(𝜔)  of 𝑥𝑡  at frequency ω  can be 

expressed as:  

𝑆𝑋(𝜔) = ∑ 𝐸 (𝑥𝑡𝑥𝑡−1

′
)∞

ℎ=−∞ 𝑒−𝑖𝜔ℎ = Ψ(𝑒−𝑖𝜔) ∑ Ψ′(𝑒+𝑖𝜔),                  (6) 

The generalized causation spectrum over frequencies ω ∈ (−𝜋, 𝜋) is specified as 

(𝑓(𝜔))
𝑖𝑗

=
𝜎𝑗𝑗

−1(Ψ(𝑒−𝑖ℎ𝜔)Σ)
𝑖𝑗

2

(Ψ(𝑒−𝑖ℎ𝜔)ΣΨ(𝑒−𝑖ℎ𝜔))
𝑖𝑖

,                                        (7) 

where (𝑓(𝜔))
𝑖𝑗

 is the portion of the spectrum of the i -th variable at frequency ω  due to 

shocks to the j-th variable. Thus, we can interpret the quantity as a within-frequency causation, 

as the denominator holds the spectrum of the j-th variable. That is, the on-diagonal elements of 

the cross-spectral density of 𝑥𝑡, at a given frequency ω. To obtain a natural decomposition 

of the original generalized FEVD into frequencies, we can simply weight (𝑓(𝜔))
𝑖𝑗

 by the 

frequency share of the variance of the i-th variable. The weighting function i s  expressed 

as: 

Γ𝑖(𝜔) =
(Ψ(𝑒−𝑖ℎ𝜔)ΣΨ′(𝑒+𝑖ℎ𝜔))

𝑖𝑖
1

2𝜋
∫ (Ψ(𝑒−𝑖ℎ𝜆)ΣΨ′(𝑒+𝑖𝜆))

𝑖𝑖
𝑑𝜆

𝜋
−𝜋

,                                      (8) 

where the power of the 𝑖-th variable at a  given frequency, which sums through frequencies 

to a constant value of 2𝜋. The generalized FEVD on a frequency band d can be defined 

as: 

(Θ𝑑)𝑖𝑗 =
1

2𝜋
∫ Γ𝑖(𝜔)

𝑑
(𝑓(𝜔))

𝑖𝑗
𝑑𝜔,                                       (9) 

The frequency connectedness 𝐶𝑑
𝐹  and within connectedness 𝐶𝑑

𝑊  on frequency 

band d = (𝑎, 𝑏): 𝑎, 𝑏 ∈ (−𝜋, 𝜋), 𝑎 < 𝑏 can be respectively obtained by:  
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𝐶𝑑
𝐹 = 100 (

∑ (Θ̃𝑑)
𝑖𝑗𝑖≠𝑗

∑(Θ̃∞)
𝑖𝑗

−
𝑇𝑟{Θ̃𝑑}

∑(Θ̃∞)
𝑖𝑗

).                                        (10) 

𝐶𝑑
𝑊 = 100 (1 −

𝑇𝑟{Θ̃𝑑}

∑(Θ̃∞)
𝑖𝑗

),                                             (11) 

where Tr{∙} is the trace operator and (Θ̃𝑑)
𝑖𝑗

= (Θ̃𝑑)
𝑖𝑗

∑ (Θ̃
∞

)
𝑖𝑗

𝑗⁄ . 

 Note that the within connectedness value provides the connectedness effect that 

occurs within the frequency band and is weighted by the power of the series on the given 

frequency band exclusively. Conversely, the frequency connectedness decomposes the 

original connectedness into separate parts that, when summed, provide the original 

connectedness measure.  

2.2. Wavelet-based approach  

We calculate the wavelets of the time series of returns in frequency domain using the 

maximal overlap discrete wavelet transform (MODWT).1 The MODWT wavelet and scaling 

coefficient 𝑤̃𝑗,𝑡 and 𝑣̃𝑗,𝑡 for a return series 𝑟(𝑡) are defined as: 

𝑤̃𝑗,𝑡 =
1

2𝑗/2
∑ ℎ̃𝑗,𝑙𝑟𝑡−𝑗

𝐿−1
𝑙=0 , and 𝑣̃𝑗,𝑡 =

1

2𝑗/2
∑ 𝑔̃𝑗,𝑡

𝐿−1
𝑙=0 𝑟𝑡−𝑗,                       (12) 

where 𝐿 is the length of the filter. Using the least asymmetric wavelet method of Daubechies 

(1988, 1992), we generate multiscale decomposition of the return series with a filter length of 

𝐿 = 8. The decomposed signals of the multi resolution analysis in the MODWT are obtained 

as follows:  

                                           
1 In comparison with the discrete wavelet transform (DWT), MODWT can handle any sample size, such as a non-

dyadic length sample size (Maghyereh, et al., 2019). Furthermore, MODWT does not introduce phase-shifts, 

which would change the location of events in time, and it is translation-invariant as a shift in signal does not 

change the pattern of wavelet transform coefficients (Khalfaoui et al., 2015; Boubaker and Raza, 2017). Thus, 

MODWT yields more asymptotically efficient wavelet variance than DWT (Lien and Shrestha, 2007). 
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𝑟(𝑡) = 𝑆𝐽(𝑡) + ∑ 𝐷𝑗(𝑡)𝐽
𝑗=1 ,                                            (13)  

where 𝑆𝐽(𝑡) = ∑ ℎ(𝑙)+∞
𝑙=−∞ 𝑆𝐽−1(𝑡 + 2𝑗−1 × 𝑙) denotes the smoothed version of series 𝑟(𝑡) 

at scale 𝐽 , and 𝐷𝑗(𝑡) = ∑ 𝑔(𝑙)𝑆𝑗−1(𝑡 + 2𝑗−1 × 𝑙)+∞
𝑙=−∞   is called the wavelet scales, which 

represent local fluctuation over the period of returns as the each scale j {𝑗 = 1, … , 𝐽}.  

We decompose our return series into four wavelet scales (𝐷1, … , 𝐷8) , corresponding to: 

𝐷1([2– 4]𝑑𝑎𝑦𝑠) , 𝐷2([4– 8]𝑑𝑎𝑦𝑠) , 𝐷3([8– 16]𝑑𝑎𝑦𝑠) , 𝐷4([16– 32]𝑑𝑎𝑦𝑠) , 

𝐷5([32– 64]𝑑𝑎𝑦𝑠), 𝐷6([64– 128]𝑑𝑎𝑦𝑠), 𝐷7([128– 256]𝑑𝑎𝑦𝑠), and 𝐷8([256– 512]𝑑𝑎𝑦𝑠).  

We construct the short-term and long-term horizon wavelet series as follows: the short-

term horizon is defined as the sum of 𝐷1 and 𝐷2 series, corresponding to the periods 2 and 8 

days whereas the long-term horizon is defined as the sum of 𝐷3 , 𝐷4 , 𝐷5 , 𝐷6 , and 𝐷7 , 

corresponding to the periods 8 and 256 days.  

 2.3. Portfolio evaluation 

We analyze the dynamic conditional correlations (DCCs) between different short-term 

and long-term horizon wavelet series using the DCC-GARCH model of Engle (2002).2 Using 

estimate DCCs, we rebalance and manage portfolio risk by maintaining optimal portfolio 

weights. To minimize risk without a loss in expected returns, we calculate the optimal weights 

(𝑤𝑇
𝐶) of the portfolio consisting of WTI and other commodity futures by following Kroner and 

Ng (1998). We also follow Kroner and Sultan’s (1993) methodology to quantify the beta hedge 

to minimize the risk of this portfolio. 

Following Reboredo and Rivera-Castro (2014), we assess the risk reduction measures 

in different investment horizons (short-term and long-term). The risk reduction 𝑅𝐸𝑣𝑎𝑟 of each 

                                           
2 See Appendix.  
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of these portfolios is computed by comparing the conditional variances of portfolio (𝑃𝑗) and 

a benchmark portfolio (𝑃𝐼) as: 

𝑅𝐸𝑉𝑎𝑟 = 1 −
𝑉𝑎𝑟(𝑃𝑗)

𝑉𝑎𝑟(𝑃𝐼)
 

,                                                (14) 

where 𝑗 = 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉, and Var(𝑃𝑗)and  Var(𝑃𝐼) are the conditional variances of Portfolio 𝑗 

and Portfolio I, respectively. Note that higher values of 𝑅𝐸𝑣𝑎𝑟 indicate a greater risk reduction 

in these portfolios. 

Variance at risk (VaR) is the loss associated with the α-th percentile of the portfolio 

returns distribution, which measures the maximum loss in portfolio value at a specific 

confidence level for a given time period. The VaR for a portfolio (𝑃𝑗) with a confidence level 

(1 − 𝛼) is given by: 

𝑃𝑟(𝑟𝑗 ≤ 𝑉𝑎𝑅𝑡|𝜓𝑡−1) = 𝛼                                        (15) 

where 𝑟𝑗 is the portfolio return and 𝜓𝑡−1  is the information set at t − 1. 

The semivariance (SV) measure accounts for the downside risk by measuring return 

variability below a threshold return. SV is defined as: 

SV = E[min{0, 𝑟𝑗 − 𝐸(𝑟𝑡)}]
2
.                                       (16) 

An alternative downside risk measure (Re) considers the expected value of returns 

provided they are below zero: 

Re = −E[min{0, 𝑟𝑡}].                              (17) 

 

3. Data and preliminary analysis   

We use the daily price data for 28 commodity futures in five commodity categories; (i) 

energy (WTI crude oil (CL1), Brent crude oil (CO1), natural gas (NG1), gasoline (XBW1), 
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heating oil (HO1), and gas oil (QS1)); (ii) precious metals (gold (GC1), silver (SI1), platinum 

(PL1), and palladium (PA1)); (iii) industrial metals (aluminum (LA1), copper (LP1), zinc 

(LX1), tin (LT1), lead (LL1), and nickel (LN1)); (iv) agriculture (wheat (W_1), corn (C_1), 

soybeans (S_1), coffee (KC1), sugar cane (SB1), sugar beets (QW1), cocoa (CC1), cotton 

(CT1), and lumber (LB1)); (v) livestock (lean hogs (LH1), feeder cattle (FC1), and live cattle 

(LC1).3 The sample period is from July 23, 1997 through February 28, 2018, which covers 

several turbulent periods and includes all the sharp fluctuations in the commodity futures 

markets and major global events, such as the 1998 Asian crisis, 2007 US subprime mortgage 

crisis, 2008–2009 global financial crisis (GFC), 2007–2008 global food crisis, 2009–2012 

European debt crisis (EDC), and oil price shocks (summer 2008 and June 2014). 

Fig. 1 illustrates the annual trading volumes and open interests between 2008 and 2017. 

This figure shows that the trading volume experienced an upside trend from 2008 till 2016 

followed by a decrease in 2014. Moreover, the trading volume of agricultural futures is the 

highest followed by industrial metals, precious metals, and energy futures. Conversely, the 

open interest for the four categories of markets is constant from 2015 till 2017. The open 

interest is significant for agriculture and livestock futures as compared to metals and energy 

futures.  

All series were extracted from the DataStream database. We calculate the continuously 

compounded daily returns by taking the difference in the log values of two consecutive prices. 

Fig. 2 shows the dynamics of commodity returns and shows evidence of volatility clustering in 

all return series, indicating nonlinearity. There is a low correlation between metals and 

agricultural and livestock markets. 

 

                                           
3 The details of the sample data are given in Appendix. 
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Fig. 1. Annual trading volumes and open interests (2008–2017).  

Source: FIA database (www.fia.org). 

 

 
Fig. 2. Dynamics of commodity futures price returns 

 

Table 1 summarizes the descriptive statistics for all return series. The average return 

series is positive for all series, except coffee and lean hogs price returns. We note that the 
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average returns for all series is close to zero. Palladium has the highest average returns. 

Looking at the standard deviations, natural gas futures is the most volatile market and feeder 

cattle is the least volatile. All returns series are asymmetric and leptokurtic according to 

skewness and kurtosis values. Further, the Jarque-Bera test rejects normal distribution. The unit 

root and stationary tests of ADF and KPSS show evidence of stationarity for all 28 series.  

Fig. 3 presents the heat map of the unconditional correlations in the commodity markets. 

The map shows a negative correlation between corn (C_1) and feeder cattle (FC1). This 

indicates a possibility of diversification benefits. A high correlation is observed among 

industrial metals as well as precious metals (gold, silver, platinum, and palladium) and energy 

markets. WTI crude oil (CL1) is highly correlated with Brent oil (CO1), natural gas (NG1), 

gasoline (XBW1), and gas oil (QA1). Natural gas (NG1) exhibits low correlations with all 

markets. This also shows the importance of this asset for hedging against risk exposure. We 

also observe a low correlation between energy markets and precious metals, industrial metals, 

agricultural, and livestock markets.    

 

Table 1. Summary descriptive statistics and unit root tests  

 
Mean 

(%) 
Max Min. 

Std. 

Dev. 
Skew. Kurt. J-B stat ADF KPSS 

CL1 0.0212 16.41 -16.54 2.357 -0.0609 4.309 4163. *** -42.86*** 0.1042 

CO1 0.0237 12.89 -14.43 2.177 -0.0685 2.971 1982. *** -42.25*** 0.1355 

NG1 0.0040 32.43 -19.89 3.340 0.5026 5.377 6704. *** -43.50*** 0.0876 

XBW1 0.0196 21.65 -25.45 2.532 -0.2336 7.048 11177. *** -42.89*** 0.0764 

HO1 0.0237 10.40 -20.97 2.226 -0.5062 5.988 8261. *** -43.04*** 0.1145 

QS1 0.0232 12.09 -15.06 2.000 -0.0664 3.519 2778. *** -41.26*** 0.1391 

GC1 0.0261 8.887 -9.820 1.092 -0.1060 6.614 9810. *** -42.13*** 0.1655 

SI1 0.0249 12.19 -19.54 1.900 -0.8286 7.687 13853. *** -42.16*** 0.1261 

PL1 0.0159 12.71 -27.19 1.472 -1.4302 25.50 1.47e+005*** -44.41*** 0.2137 

PA1 0.0328 15.25 -13.38 2.092 -0.2284 5.139 5964. *** -43.33*** 0.0805 

LA1 0.0048 9.306 -11.40 1.349 -0.3063 4.403 4427. *** -44.33*** 0.0500 

LP1 0.0202 11.92 -10.32 1.614 -0.0895 4.574 4694. *** -44.72*** 0.1502 

LX1 0.0146 20.99 -31.68 2.034 -1.0181 23.81 1.27e+005*** -46.90*** 0.1376 

LT1 0.0257 15.48 -11.45 1.613 0.0045 7.612 12982. *** -43.88*** 0.0826 
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LL1 0.0251 18.69 -18.53 2.005 -0.1698 6.609 9811. *** -44.09*** 0.0719 

LN1 0.0133 24.17 -31.31 2.456 -0.5133 16.90 64220. *** -45.87*** 0.1061 

W_1 0.0056 8.794 -9.972 1.908 0.1737 2.097 1012. *** -43.19*** 0.0559 

C_1 0.0077 12.75 -26.86 1.762 -0.5318 12.54 35524. *** -42.17*** 0.0688 

S_1 0.0064 7.629 -17.42 1.595 -1.0517 8.228 16157. *** -41.50*** 0.0749 

KC1 -0.0075 21.2 -12.84 2.204 0.2525 5.209 6135. *** -41.92*** 0.1177 

SB1 0.0029 13.06 -17.11 2.146 -0.2109 3.629 2990.3*** -42.28*** 0.0781 

QW1 0.0017 8.229 -17.04 1.651 -0.8652 8.052 15194. *** -42.74*** 0.1036 

CC1 0.0074 9.962 -10.00 1.882 -0.1212 2.475 1385.9*** -41.43*** 0.0535 

CT1 0.0016 13.62 -15.55 1.826 0.0015 4.540 4618.5*** -42.37*** 0.0623 

LB1 0.0078 17.92 -14.53 2.097 0.8412 7.587 13529. *** -43.68*** 0.0838 

LH1 -0.0032 28.56 -27.15 2.222 -0.3089 34.25 2.62e+005*** -40.57*** 0.0298 

FC1 0.0104 10.00 -8.611 0.933 -0.1802 12.20 33421. *** -40.77*** 0.0617 

LC1 0.0120 6.635 -10.59 1.097 -1.0183 9.889 22836. *** -41.41*** 0.0221 

Note: *** stands for significance at 1% level. 

 

 

Fig. 3. Heat map of the correlations  

Note: This figure shows a visual correlation matrix across different assets. The color intensity of the shaded boxes 
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indicates the magnitude of correlation. Blue indicates a positive correlation, while red indicates a negative 

correlation. 

 

4. Empirical results  

4.1. The results of DY spillover for raw return series 

Table 2 reports the matrix of total spillovers for 28 commodities (energy, precious 

metals, industrial metals, agriculture, and livestock) futures prices. It shows that total spillovers 

are 51.2%. Regarding directional spillovers transmitted to other markets (TO), tin (LT1) is the 

highest contributor of shocks to the other markets. Further, WTI and Brent crude oil markets 

(CL1 and CO1) are high contributors of shocks to the other markets, accounting for 94% and 

99%, respectively. Energy futures prices act as price discovery tools for metals, agricultural, 

and livestock markets. In contrast, lean hogs (LH1) and lumber (LB1) are the least contributors 

of risk to the other markets with 3.7% and 3.9%, respectively. In addition, gasoline (XBW1), 

cocoa (CC1), coffee (KC1), cotton (CT1), feeder cattle (FC1) and live cattle (LC1) have a low 

contribution of risk to the other markets with 12%, 14%, 16%, 19%, 20%, 23%, respectively. 

For the other markets, the degree of contribution ranges between 41% for sugar beets (QW1) 

and 78% for zinc (LX1). 

Livestock futures have no risk contribution to energy, metals and agricultural futures 

markets. This has important implications for risk management. In fact, investors in energy, 

agricultural, and metals markets can hedge their position against risk exposure by adding 

livestock futures in their portfolios. 

Regarding directional spillovers received from other markets (FROM), we observe that 

the magnitude of receiving risk from the other markets are different among the commodity 

classes (energy, precious metals, industrial metals, agricultural, and livestock) indicating 
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heterogeneity of the markets. These markets do not belong to the same commodity class. 

Moreover, the degree of the receiving risk from the other markets ranges from 5.2% for lean 

hogs (LH1) to 75.5% for Brent futures (CO1). Crude oil markets (Brent and WTI) are the two 

highest receivers of shocks from the other markets. In energy futures markets, gasoline receives 

less risk from other markets. We find that precious metals futures markets receive 

approximatively the same risk from the other markets despite Palladium (PA1) receiving the 

least risk among them. Among the five commodity groups, livestock futures markets receive 

the least risk from the other markets. This confirms the importance of these markets for 

investors in futures commodities.  

In sum, livestock futures markets have little or no contribution of risk to the other 

markets. It also receives less risk from the other markets. This indicates that this market is 

immune to the instability of the other markets. Lumber (LB1) is isolated from the other 

commodities as the degree of received risk is about 8.5%. 
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Table 2. DY’ Total spillovers index across commodity futures markets  
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Note: This total spillover table is estimated by the Diebold and Yilmaz (2012) methodology.  
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To observe the dynamics of spillovers among the 28 commodity futures during the 

sample period, we plot the trajectory of total spillovers in Fig. 4. The graph shows time-varying 

spillovers, with phases of rises and falls. We note that total volatility spillovers are 40% for some 

periods and less than 20% for others. This fluctuation in spillovers are influenced by bad and 

good market news and market data releases of heavily traded events in the commodity markets. 

External macro shocks including China’s economic slowdown of 2015, OPEC announcements, 

and the US Fed interest rates influence total risk spillovers. Investors plan their strategies in 

advance and deploy them immediately following the release of information depending on 

whether the news or data is in line with their expectations. Total spillovers are intensified by 

economic and political crises as they increase significantly during those periods. We find that a 

decrease in total spillovers is a signal of potential diversification opportunities while an increase 

in volatility spillovers reduces the possibility of spillovers and indicates an increase in 

integration among commodity futures markets. 
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Fig. 4. Time-varying total spillover index based on the Diebold and Yilmaz (2012) framework 

Note: This figure displays the time-varying behavior of the total return spillover index of the seven renewable 

energy stocks under examination computed using Diebold and Yilmaz (2012) approach. The dynamic total spillover 

index is calculated from the forecast error variance decompositions using a rolling window size of 250 days and 

forecast horizon of H=100 days.  

 

4.2. The results of DY spillover for multiscale return series 

Time investment horizon is a key factor for evaluating market risk and investors’ 

decisions. Moreover, the reaction and expectations of market participants differ from short- to 

long-term. Some investors set a long investment horizon because they feel more comfortable 

taking riskier investment decisions and capitalize on the market volatility whereas speculators 

focus only on a few days (short-term horizon). In the short term, investors tend to have low risk 

tolerance and prefer secure investments. Hence, there is a possibility of asymmetric spillovers 

because the time horizon is different.  

Tables 3 and 4 summarize the total spillovers at the short-term investment horizons (2–



21 
 

8 days) and long-term horizon (8–256 days), respectively. The value of total spillovers is high 

for long-term horizon (51%) than for short-term (50.7%).  

Conversely, the spillovers of risk from one commodity futures to another is important 

for investors and policymakers when short-term rather than long-term investment horizons are 

considered. WTI crude oil contributes 15% and 2% on the forecasting variance for Brent oil in 

the short- and long-term, respectively. Xiao and Wang (2020) showed that the WTI and Brent 

crude oil prices do not play identical roles in their interactions with multiple stock markets either 

statically or dynamically. Additionally, WTI oil contributes 0.2% on the forecasting variance for 

three livestock futures in the short term (from 2 to 8 days) but the results show an absence of 

risk transmission to the livestock markets in the long term (above 8 days). The other energy, 

metals, and agriculture futures have a low contribution of risk to livestock futures price returns 

over both time horizons. The livestock futures market is the least contributor of risk to the other 

markets. It is also the least receiver of risk from the other markets. This result persists for 

different time horizons and is in line with previous study results. Livestock assets are a good 

hedge tool for short-term and long-term investors to optimize the risk of their portfolio. The 

contribution of risk is important within each class of commodity. Taking energy as an example, 

the contribution to other markets (TO_ABS) ranges between 0.3 to 2.9 % in the short term and 

between 0 to 0.4% in the long term. The interpretations for the other markets are similar. 

Livestock futures markets receive less risk from the other markets in the short term than in the 

long term. In contrast, energy, industrial metals, precious metals, and agriculture futures markets 

receive less risk in the long-term than in the short-term. 

Overall, the decomposition of the raw return series into short- and long-term enhances 

our understanding for market risk evaluation, risk management, and diversification 

opportunities. 
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Table 3. Total spillovers at the short-term investment horizon 
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Notes: This table displays the total spillover index of Barunik and Krehlik (2018) at the short-term horizon (overall spillovers on band: 3.14 to 0.39). ABS and WTH refer to absolute and within the estimated system.  
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Table 4. Total spillovers at the long-term investment horizon  
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Notes: This table displays the total spillover index of Barunik and Krehlik (2018) at the long-term horizon (overall spillovers on band: 0.39 to 0.01). ABS and WTH refer to absolute and within the estimated system. 
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Fig. 5 displays the time-varying total spillovers among 28 commodity futures markets 

in short-term and long-term. We observe a significant upward trend in spillovers during 2008–

2009 for both short- and long-term. This shows that commodity futures markets were 

influenced by the global economic downturn. More interestingly, the magnitude of the 

spillovers is more evident in the short-term than the long-term, indicating that commodity 

markets react rapidly and absorb external shocks quickly. Investors in commodity futures 

markets react according to the external shocks. The increase in spillovers indicates that 

commodity futures markets are more vulnerable to major events and are more integrated. The 

intensity of the spillover is greater during 2007–2009 and 2011–2013, corresponding to the 

2008 GFC and 2011 European debt crisis. After 2013, the total spillovers experience a gradual 

downside trend during the rest of the periods.  

For the short-term, the total spillovers exceed 70% and the minimum is less than 30% 

whereas for the long-term, it ranges between 5% and 11%. This indicates the significant 

difference in the total spillovers between the short- and long-term horizons. It also shows the 

importance of considering time horizon in analyzing market risk. Overall, the dynamic analysis 

of spillovers is amplified by global economic and political events that are likely to have led to 

significant fluctuations in spillovers across markets: the 1998 Asian crisis, 2008 global 

financial crisis, 2012 European crisis, and the financialization of commodities.  

The net directional connectedness of stocks and commodities at short-term and long-

term are given in Figs. 6 and 7, respectively. The net directional connectedness is dynamic and 

more important in the short-term than in the long-term. The variation of net total directional 

connectedness is negative for some periods indicating that the market is a net receiver of risk 

whereas positive for other periods indicating that the market is net transmitter of risks. The 

plots of the net total directional connectedness are much smoother from 1997 to 2005 than for 

the rest of the sample period (2006–2018). 
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Fig. 5. Short- and long-term dynamic frequency connectedness between commodity futures  

Notes: These figures represent frequency connectedness; short-term (overall spillovers on band: 3.14 to 0.39); 

long-term (overall spillovers on band: 0.39 to 0.01).  
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Fig. 6. Short-term net directional connectedness of commodity futures  

Notes: The net total directional connectedness is the difference between total directional connectedness to others 

and total directional connectedness from others. 
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Fig. 7. Long-term net directional connectedness of commodity futures  

Notes: See the notes of Fig. 6. 

 

4.3 Connectedness network results  

Fig. 8 illustrates the net pairwise directional connectedness among the commodity 

futures markets under short-term (panel a) and long-term (panel b). The analysis of 

connectedness provides rich information about the intensity and pathway of risk spillover from 

one commodity futures market to another. The width of the arrows denotes the magnitude of 

spillovers and node diameter denotes the size of net spillover. The figure shows the complexity 
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of evaluating market risk and portfolio management. Panel (a) shows that PL1, LX1, LL1, LA1, 

LC1, CO1, CL1, XBW1, and HO1 are net transmitters of risk and the remaining markets are 

net receivers of risk. A bidirectional risk spillover is observed between agriculture futures 

(sugar cane (SB1) and sugar beets (QW1)), between energy futures (WTI (CO1) and Brent 

(CL1)) and precious metal futures (gold (GC1) and silver (SI1), gold (GC1) and platinum (PL1), 

platinum (PL1) and palladium (PA1)), industrial metal futures (aluminum (LP1) and copper 

(LA1)), and energy futures (WTI (CO1) and gas oil (QS1)). Livestock markets, coffee, cocoa, 

and lumber are weakly related to the other markets.  

 

(a) Short-term (overall spillovers on band: 3.14 to 0.39) 

  
(b) Long-term (overall spillovers on band: 0.39 to 0.01) 
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Fig. 8. Net pairwise directional connectedness at different frequency bands 

Notes: These figures represent the frequency connectedness networks; (a) short-term (overall spillovers on band: 

3.14 to 0.39); (b) long-term (overall spillovers on band: 0.39 to 0.01). A red (yellow) a node is the most significant 

transmitter (recipient) of spillover. The edge color ranks green (weak), light blue (medium), blue and red (strong). 

 

4.4 Portfolio risk analysis  

We assess the ability of WTI to provide risk reduction and downside risk protection to 

other commodity futures markets by quantifying risk reduction, value at risk, semivariance, 

and regret measures. Three different portfolios are considered in this analysis and compared 

with a benchmark portfolio composed only of WTI oil. Portfolio II is a risk-minimizing WTI-

commodity portfolio, Portfolio III has equal weights, and Portfolio IV’s weights are determined 

according to a variance minimization hedging strategy. 

Tables 5 and 6 report the estimates of risk evaluation for different WTI-commodity 

futures portfolios in the short-term and long-term frequencies, respectively. The results show 

that non-WTI oil futures provide significant risk reduction for short- and long-term to a 

benchmark WTI portfolio. The magnitude of risk reduction is more pronounced for short-term 
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than for long-term for 16 out of 27 cases (gas oil, gold, palladium, tin, lead, wheat, corn, coffee, 

sugar cane, sugar beets, cocoa, cotton, lumber, lean hogs, feeder cattle, and live cattle). WTI-

tin (WTI-natural gas) portfolio offers the highest risk reduction in the short-term (long-term). 

Under the long-term, Portfolio IV offers the highest risk reduction for 17 cases (particularly 

for metals and livestock markets), whereas Portfolio III (Portfolio II) provides the highest risk 

reduction for 8 cases (2 cases: natural gas and gasoline). As for the short-term, we find that 

Portfolio IV, Portfolio III, and Portfolio II offers the highest risk reductions for 12, 13, and 2 

cases, respectively. As regards downside risk reduction, the results show that Portfolio IV 

offers the best downside risk reduction regardless of the time horizon. The magnitude of 

downside risk reduction is higher in the short-term than in the long-term. In addition, the largest 

reduction in VaR is obtained for Brent-WTI crude oil and cotton-WTI portfolio for short-term 

and for natural gas-WTI portfolio for the long-term.
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Table 5. Risk evaluations for different WTI-commodity portfolios in the short-term horizon 

 
Portfolio Brent 

Natural 

Gas 
Gasoline 

Heating 

Oil 
Gas Oil Gold Silver Platinum 

Palladiu

m 

Aluminu

m 
Copper Zinc Tin Lead 

RiskRed. PII 0.1250 0.5453 0.0544 0.0590 0.2720 0.1714 0.2049 0.2319 0.2400 0.2038 0.2389 0.0506 0.2362 0.2023 

 PIII 0.1518 0.0724 0.0861 0.1556 0.3864 0.6523 0.4976 0.5944 0.4877 0.6029 0.5358 0.4713 0.5777 0.4829 

 PIV 0.1564 0.3258 0.0034 0.1413 0.3660 0.8032 0.5125 0.6647 0.4206 0.7074 0.5922 0.4806 0.6338 0.4959 

VaRRed. PII 0.0517 0.0515 0.0507 0.0496 0.0518 0.0502 0.0513 0.0517 0.0515 0.0498 0.0500 0.0470 0.0530 0.0487 

 PIII 0.0520 0.0515 0.0502 0.0515 0.0500 0.0496 0.0487 0.0513 0.0476 0.0494 0.0496 0.0463 0.0507 0.0494 

 PIV 0.0543 0.0494 0.0489 0.0526 0.0509 0.0491 0.0509 0.0479 0.0472 0.0441 0.0470 0.0459 0.0453 0.0465 

SV Red. PII 1.9087 3.4018 2.3205 2.0141 1.5258 1.3137 1.6494 1.5417 1.5591 1.6392 1.5791 1.7432 1.5612 1.6215 

 PIII 1.8603 2.1567 2.0647 1.8569 1.3193 0.8788 1.1043 0.8796 1.1376 0.8966 0.9788 1.0961 0.9266 1.1187 

 PIV 1.8768 3.0619 2.2142 1.8778 1.4083 0.6559 1.0892 0.7027 1.2497 0.6577 0.8672 1.0697 0.7172 1.0931 

ReRed PII 1.3813 1.8449 1.5231 1.4190 1.2350 1.7265 1.2827 1.2414 1.2487 1.2801 1.2566 1.3201 1.2494 1.2734 

 PIII 1.3639 1.4685 1.4369 1.3627 1.1486 0.7723 1.0508 0.9379 1.0666 0.9469 0.9893 1.0469 0.9626 1.0576 

 PIV 1.3703 1.7497 1.4884 1.3702 1.1867 0.4304 1.0439 0.8381 1.1178 0.8109 0.9311 1.0341 0.8469 1.0455 

 
 Nickel Wheat Corn Soybeans Coffee 

Sugar 

Cane 

Sugar 

Beets 
Cocoa Cotton Lumber 

Lean 

Hogs 

Feeder 

Cattle 

Live 

Cattle 
 

RiskRed. PII 0.0084 0.2565 0.2266 0.2129 0.1931 0.2137 0.2241 0.3176 0.2727 0.2642 0.0045 0.1248 0.1649  

 PIII 0.3727 0.5190 0.5454 0.5734 0.4814 0.4789 0.5737 0.5528 0.5537 0.5398 0.5024 0.7050 0.6847  

 PIV 0.2197 0.4983 0.5731 0.6262 0.3270 0.3778 0.6135 0.4923 0.5465 0.4411 0.4611 0.8713 0.8228  

VaRRed. PII 0.0438 0.0506 0.0524 0.0519 0.0485 0.0492 0.0518 0.0528 0.0502 0.0455 0.0442 0.0541 0.0515  

 PIII 0.0453 0.0485 0.0502 0.0489 0.0505 0.0489 0.0502 0.0524 0.0531 0.0478 0.0478 0.0522 0.0452  

 PIV 0.0427 0.0450 0.0483 0.0505 0.0518 0.0478 0.0459 0.0481 0.0476 0.0448 0.0517 0.0489 0.0474  

SV Red. PII 1.7471 1.5203 1.5827 1.5944 1.6312 1.6089 1.5611 1.3992 1.4945 1.4488 1.7282 1.7797 1.7059  

 PIII 1.2968 1.0917 1.0311 0.9549 1.1899 1.1872 0.9750 1.0212 1.0199 1.0375 0.9963 0.6362 0.6975  

 PIV 1.6221 1.1616 0.9116 0.8219 1.5220 1.3902 0.8226 1.1741 1.0203 1.2613 0.9908 0.2479 0.3922  

ReRed PII 1.3218 1.2329 1.2581 1.2627 1.2772 1.2684 1.2494 1.1829 1.2225 1.2036 1.3146 1.3340 1.3061  

 PIII 1.1388 1.0448 1.0154 0.9772 1.0908 1.0896 0.9874 1.0105 1.0099 1.0186 0.9982 0.7976 0.8351  

 PIV 1.2736 1.0778 0.9548 0.9066 1.2337 1.1791 0.9070 1.0835 1.0101 1.1232 0.9954 0.4979 0.6262  

Notes: This table reports the results of risk reduction and downside risk gain for portfolios composed of the WTI and commodity futures with respect to a reference portfolio composed exclusively of the WTI. Portfolio II is a 

risk-minimizing WTI-commodity portfolio, Portfolio III has equal weights, and Portfolio IV’s weights are determined according to a variance minimization hedging strategy. VaR Red.is the reduction in the VaR portfolio with 
respect to Portfolio I (where positive values indicate a VaR reduction). SV Red and Re Red are, respectively, the semi variance and regret reduction. The bold values indicate the portfolio that has the best risk reduction among 

the three portfolios for each WTI-commodity pair. 
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Table 6. Risk evaluations for different WTI-commodity portfolios in the long-term horizon 

 
Portfolio Brent 

Natural 

Gas 
Gasoline 

Heating 

Oil 
Gas Oil Gold Silver Platinum 

Palladiu

m 

Aluminu

m 
Copper Zinc Tin Lead 

RiskRed. PII 0.0226 0.9181 0.2932 0.0469 0.0108 0.0848 0.0707 0.0890 0.0827 0.0896 0.0662 0.0247 0.0063 0.0968 

 PIII 0.1371 0.1015 0.0620 0.1772 0.2138 0.6400 0.4674 0.5641 0.4349 0.6017 0.5409 0.5204 0.5391 0.4651 

 PIV 1.7702 0.2096 0.0103 0.1930 0.2531 0.7945 0.5169 0.6592 0.3556 0.7332 0.6433 0.5835 0.6123 0.4781 

VaRRed. PII 0.0416 0.0720 0.0551 0.0427 0.0493 0.0373 0.0427 0.0373 0.0439 0.0369 0.0370 0.0416 0.0401 0.0321 

 PIII 0.0375 0.0368 0.0408 0.0345 0.0337 0.0147 0.0223 0.0186 0.0250 0.0162 0.0194 0.0203 0.0185 0.0213 

 PIV 0.0352 0.0460 0.0429 0.0330 0.0309 0.0084 0.0199 0.0145 0.0272 0.0098 0.0146 0.0174 0.0156 0.0209 

SV Red. PII 0.6629 1.1751 0.8526 0.6899 0.6710 0.5907 0.7192 0.5821 0.7229 0.5699 0.5931 0.6799 0.6536 0.7051 

 PIII 0.5948 0.5969 0.6426 0.5671 0.5404 0.2442 0.3602 0.2980 0.3987 0.2754 0.3069 0.3429 0.3001 0.3590 

 PIV 0.5622 0.7431 0.6902 0.5375 0.4965 0.1364 0.8622 0.2267 0.4268 0.1635 0.2245 0.2617 0.2179 0.3089 

ReRed PII 0.8149 1.0831 0.9231 0.8329 0.8199 0.7685 0.8510 0.7680 0.8524 0.7569 0.7749 0.8301 0.8161 0.8427 

 PIII 0.7712 0.7731 0.8016 0.7531 0.7351 0.4942 0.6002 0.5459 0.6314 0.5248 0.5540 0.5856 0.5478 0.5991 

 PIV 0.7509 0.8517 0.8318 0.7333 0.7046 0.3692 0.5533 0.4761 0.6531 0.4042 0.4734 0.5082 0.4669 0.5550 

 
 Nickel Wheat Corn Soybeans Coffee 

Sugar 

Cane 

Sugar 

Beets 
Cocoa Cotton Lumber 

Lean 

Hogs 

Feeder 

Cattle 

Live 

Cattle 
 

RiskRed. PII 0.1451 0.0127 0.0166 0.0224 0.1490 0.1037 0.0157 0.0644 0.0598 0.0990 0.3623 0.0737 0.0874  

 PIII 0.3748 0.5164 0.0525 0.5595 0.4665 0.4617 0.5602 0.5150 0.5019 0.5042 0.4571 0.6881 0.6629  

 PIV 0.3315 0.4998 0.5541 0.6282 0.3899 0.4007 0.6090 0.4981 0.5152 0.2208 0.3754 0.8407 0.7846  

VaRRed. PII 0.0443 0.0384 0.0399 0.0411 0.0452 0.0437 0.0418 0.0399 0.0397 0.0427 0.0555 0.0382 0.0373  

 PIII 0.0241 0.0194 0.0196 0.0184 0.0222 0.0226 0.0186 0.0185 0.0195 0.0202 0.0228 0.0134 0.0141  

 PIV 0.0262 0.0182 0.0179 0.0144 0.0238 0.0247 0.0363 0.0163 0.0193 0.0221 0.0241 0.0068 0.0090  

SV Red. PII 0.7090 0.6036 0.6480 0.6848 0.7337 0.7221 0.6516 0.5644 0.6894 0.6725 0.8345 0.5959 0.5801  

 PIII 0.4025 0.3130 0.3225 0.3024 0.3623 0.3662 0.3092 0.3427 0.3429 0.3219 0.3567 0.2200 0.2385  

 PIV 0.4234 0.3135 0.2869 0.2455 0.4053 0.3921 0.2596 0.5911 0.3116 0.3817 0.3720 0.1049 0.1467  

ReRed PII 0.8476 0.7757 0.8065 0.8319 0.8643 0.8497 0.8086 0.7583 0.8348 0.8166 0.9159 0.7751 0.7632  

 PIII 0.6344 0.5594 0.5679 0.5499 0.6019 0.6051 0.0009 0.5856 0.5856 0.5674 0.5973 0.4691 0.4883  

 PIV 0.6504 0.5587 0.5358 0.4931 0.6340 0.6256 0.5009 0.5911 0.5579 0.6255 0.6036 0.3167 0.3820  

Notes: See the notes of Table 5. 
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5. Conclusions  

Over the last two decades, commodity prices have experienced significant instability 

(sharp falls and rises). Various stakeholders, including international investors, policymakers, 

and academicians have increased their interest in the financialization of commodities. This 

study analyzes the short- and long-term risk spillovers among 28 major commodity futures 

markets: energy, precious metals, industrial metals, agriculture, and livestock. Moreover, we 

analyze the risk reduction in general and downside risk reduction in particular by examining 

the effects of adding WTI crude oil to each of the other commodity markets. To achieve these 

objectives, we use the Diebold and Yilmaz methodology, wavelet approach, and three risk 

measures of value at risk, semivariance, and regret along with a risk reduction measure for 

three different portfolios.  

The results show that, for the raw return series, total spillovers is 51.2%. Tin is the 

highest contributor of shocks to the other markets. WTI and Brent crude oil markets are also 

high contributors of shocks to the other markets. Energy futures prices act as price discovery 

tools for metals, agricultural, and livestock markets. Lean hogs and lumber are the least 

contributors of risk to the other markets. Livestock futures have no risk contribution to energy, 

metals, and agricultural futures markets. We also show that the magnitude of receiving risk 

from the other markets is different for the four commodity classes. The risk spillover is dynamic 

and influenced by economic and geopolitical events. Total spillovers had intensified during the 

economic crises in the US and China, and 2005 commodities crisis.  

After accounting for time horizon, we find that WTI crude oil contributes 15%, and 2% 

on the forecasting variance for Brent oil in the short- and long-term. Energy, metals, and 

agriculture markets have low (no) contribution on the forecasting variance for livestock futures 

in the short-term (long-term). Livestock futures markets is the least contributor/ receiver of risk 
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to/from the other markets regardless of the time horizon. The risk spillovers among commodity 

futures shows a significant upward trend during 2008–2009 for short- and long-term due to 

economic and geopolitical events. We find that the magnitude of spillovers is more evident in 

the short-term than in long-term.  

The analysis of portfolio risk reveals that adding commodity futures to an individ

ual WTI oil portfolio provides significant risk reduction for short- and long-term. The 

magnitude of risk reduction is more pronounced for short-term than for long-term in 

many cases. Interestingly, WTI-Tin (WTI-Natural gas) portfolio offers the highest risk 

reduction in the short-term (long-term). Under the long-term, Portfolio IV offers the h

ighest risk reduction for 17 cases (particularly for metals and livestock markets), wher

eas Portfolio III (Portfolio II) provides the highest risk reduction for 8 cases (2 cases: 

natural gas and gasoline). As for the short-term, we find that Portfolio IV, Portfolio I

II, and Portfolio II offer the highest risk reduction for 12, 13, and 2 cases, respective

ly. Portfolio IV offers the best downside risk reduction regardless of the time horizon. 

These findings are relevant for investors and policymakers. Investors should keep in 

mind that risk spillovers among main commodity futures is time-varying and strong during 

episodes of economic crisis. Holding a short or long position depends on the magnitude of risk 

spillovers. Investors should be cautious in the short term (one week) as spillover is important 

and decreases after one week. Investors can consider investment in livestock futures due to 

their independence from the other markets. Our results also reveal the importance of adding 

non-WTI energy, metals, agriculture, and livestock assets to WTI crude oil portfolio in terms 

of risk reduction and downside risk reduction. Investors earn more risk reduction and downside 

gains in the short term. For policymakers, they should consider the dynamic and large extent 

of connectedness among commodity futures to formulate effective commodity policies. 
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Appendix  

 

Table A1: The description of commodity futures 

 Codes  Commodity futures contracts 

Energy CL1  WTI Crude Oil 

 CO1  Brent Crude Oil 

 NG1  Natural Gas 

 XBW1  Gasoline 

 HO1  Heating Oil 

 QS1  Gas Oil 

Precious metals GC1  Gold 

 SI1  Silver 

 PL1  Platinum 

 PA1  Palladium 

Industrial metals LA1  Aluminum 

 LP1  Copper 

 LX1  Zinc 

 LT1  Tin 

 LL1  Lead 

 LN1  Nickel 

Agriculture W 1  Wheat 

 C 1  Corn 

 S 1  Soybeans 

 KC1  Coffee 

 SB1  Sugar Cane 

 QW1  Sugar Beets 

 CC1  Cocoa 

 CT1  Cotton 

 LB1  Lumber 

Live stock LH1  Lean Hogs 

 FC1  Feeder Cattle 

 LC1  Live Cattle 
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Multivariate DCC-GARCH model 

Let 𝐷𝑗(𝑡) be a vector of wavelet return series at time t and j scale. The AR(1) of 

return process is defined as follows: 

𝐷𝑗(𝑡) = 𝜇𝑖 + 𝜓𝑖(𝐿)𝐷𝑗(𝑡) + 𝜀𝑖,𝑡,                                        (A1)  

where |𝜇𝑖| ∈ [0, ∞), |𝜓𝑖| < 1, and 𝜀𝑖,𝑡 = [𝜀𝑖,𝑡, … , 𝜀𝑛,𝑡]   is  the  vector of the residuals. The 

conditional volatilities ℎ𝑖,𝑡from the univariate GARCH (1,1) processes are described by: 

ℎ𝑖,𝑡 = 𝜔𝑖 + 𝛼𝑖𝜀𝑖,𝑡−1
2 + 𝛽𝑖ℎ𝑖,𝑡−1,                                         (A2) 

where 𝜔𝑖 > 0, 𝛼𝑖 ≥ 0, and 𝛽𝑖 ≥ 0. To estimate the conditional correlation matrix across 

stock market returns, we obtain the dynamic correlations using the conditional variance-

covariance matrix 𝐻𝑡, which can be written as:   

𝐻𝑡 = Γ𝑡
1/2

𝑅𝑡Γ𝑡
1/2

,                                                     (A3) 

where, 𝐷𝑡 = 𝑑𝑖𝑎𝑔(√ℎ𝑖,𝑡, ⋯ , √ℎ𝑛,𝑡) is a diagonal matrix of time-varying variances 𝐻𝑡 from 

the univariate GARCH process and 𝑅𝑡  is the 𝑛 × 𝑛  time-varying conditional correlation 

matrix of standardized residuals. The conditional correlation matrix 𝑅𝑡 is defined as: 

𝑅𝑡 = {𝑄𝑡
∗}−1/2𝑄𝑡{𝑄𝑡

∗}−1/2,                                              (A4) 

where an element of 𝑅𝑡 has the following form: 

𝜌𝑖,𝑗,𝑡 =
𝑞𝑖,𝑗,𝑡

√𝑞𝑖𝑖,𝑡𝑞𝑗𝑗,𝑡
,                                                      (A5) 

where 𝑄𝑡
∗ = 𝑑𝑖𝑎𝑔[𝑄𝑡] are the diagonal elements of the covariance matrix 𝑄𝑡. The covariance 

matrix 𝑄𝑡 of the DCC model evolves according to 

𝑄𝑡 ≡ [𝑞𝑖,𝑗,𝑡] = (1 − 𝑎 − 𝑏)𝑆 + 𝑎(𝑧𝑡−1𝑧𝑡−1
′ ) + 𝑏𝑄𝑡−1,                        (A6) 

where 𝑧𝑡 = [𝑧1,𝑡, ⋯ , 𝑧𝑛,𝑡]
′
  is the standardized residual (i.e., 𝑧𝑖,𝑡 = 𝜀𝑖,𝑡 √ℎ𝑖,𝑡⁄  ),  𝑆 ≡ [𝑠𝑖,𝑗] =

𝐸[𝑧𝑡𝑧𝑡
′] is the (𝑛 × 𝑛) unconditional covariance matrix of 𝑧𝑡, and 𝑎 and 𝑏 are non-negative 
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scalars satisfying (𝑎 + 𝑏) < 1. The parameters of the multivariate DCC-GARCH model are 

estimated by QMLE. 

 

 

 


