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Abstract  

An average futures contract is first introduced by Yoo (2015) and characterized by  

an expiration price given as the average of its underlying asset prices on multiple  

reference dates. We revisit the effects of anti-manipulation and volatility reduction of the  

futures, which are more precisely termed fixed referencing futures here, explore another  

average futures or variable referencing futures, compare the ways in which their  

volatilities decrease, discuss which futures contract better serves hedgers and  

speculators in average futures, and find out which determines the volatility of average  

futures in general. It is not the number of reference dates but the weight of the  



remaining reference dates at a given time that determines the volatility of any kind of  

average futures at any future time.  

Average futures; Volatility; Reference dates; Manipulation  

JEL classification: G13, G14  
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1. Introduction  

Stock prices can skyrocket or plummet on or around the expiration day of a stock  

index futures or option. So-called “expiration-day effects” are, to a certain extent,  

common in the U.S., U.K., Germany, Canada, Spain, India, Taiwan, and Norway (Stoll and  

Whaley, 1987; Chamberlain et al., 1989; Pope and Yadav, 1992; Swindler et al., 1994;  

Schlag, 1996; Vipul, 2005; Illueca and Lafuente, 2006; Hsieh, 2009). The effects are  

caused by index arbitrage and price manipulation (Stoll and Whaley, 1997; Alkebäck and  

Hagelin, 2004; Hsieh, 2009; Hsieh and Ma, 2009). Because index arbitrage is likely to  

persist for some time and price manipulation is difficult to prevent, stock markets will  

not be free of expiration-day effects in the foreseeable future, although it may be  

possible to manage them to some degree. The effects can be more pronounced in  

emerging markets as these markets include more noisy traders, and are usually smaller,  



less regulated, and easier to influence than developed markets such as those in the US.  

The easier it is to manipulate the expiration price of an index futures contract, the  

worse the expiration-date effects can be. Yoo (2015) introduced average (price) futures  

contracts to alleviate these effects, defining an average futures or forward contract as  

one with an expiry settlement price that is the average of its underlying asset prices on  

multiple reference dates. He showed how this tool can reduce expiration-day effects and  

provided critical features, including volatility, of the futures.  

Although Yoo (2015) first introduced average futures and analyzed their critical  

features theoretically, it may have limitations because, in general, the first-ever paper on  

any topic in any area rarely satisfies everything such as depth of research. In this paper,  

we revisit the anti-manipulation effects of average futures and show that they can be  
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smaller than suggested by Yoo (2015), depending on manipulators’ behavior. Second, we  

introduce another type of average futures, ​variable referencing futures​, in an attempt to  

get a more effective average futures contract than that in Yoo (2015). We also find that  

variable referencing futures not only better serve hedgers and speculators, who need to  

hedge against or bet on a periodic average price, but also have much stronger volatility-  

reduction effects than do the average futures in Yoo (2015), which are more precisely  

termed ​fixed referencing futures ​in this paper. Third, we find that, in the case of variable  



referencing futures, volatility does not necessarily decrease with the number of  

reference dates. Fourth, we show that the weight of the remaining reference dates at a  

given time, rather than the number of reference dates, determines the volatility of  

average futures whether they are variable or fixed referencing ones.  

Specifically, Yoo (2015) showed that the profit from manipulating the underlying stock  

price of an average futures at expiry will be times that of a plain vanilla futures price,  

with representing the number of reference dates. We find that, if the manipulation is  

performed not only on the expiration date but also on other reference dates, the  

manipulation profit will be larger and the anti-manipulation effects of average futures  

will be smaller. Second, Yoo (2015) showed that the expected volatility of an average  

futures contract at any future time decreases with its number of reference dates.  

However, we conclude that, if the rule to set reference dates changes as in variable  

referencing futures, the relationship between the reference dates and the volatility of the  

futures can change, too. Based on an investigation of why the previously established  

relationship does not hold for all kinds of average futures, we propose a new  

relationship under general assumptions.  
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Although monthly average futures contracts on eight non-ferrous metals have been  

traded on the London Metal Exchange for many years, little theoretical or empirical  



research has been conducted on average futures other than that reported by Yoo (2015).  

This study will shed light on the depth and breadth of average futures research. Because  

average futures offer several distinctive advantages as investment choices for hedgers  

and speculators compared with plain vanilla futures, we expect that they can one day be  

traded in over-the-counter markets or on exchanges.  

The remainder of the paper is organized as follows. In Section 2, we show how the  

anti-manipulation effects of average future, as defined by Yoo (2015), can be reduced by  

a manipulator’s profit-maximizing behavior. In Section 3, we establish the volatility of  

arithmetic average futures contract, which also captures, and is not limited to, the  

variances of (fixed-referencing) average futures by Yoo (2015). In Section 4, we  

introduce variable referencing futures, compare volatility reduction effects of both fixed  

and variable referencing futures, and discuss which one is more desirable for investors  

in principle and practice. In section 5, we explore the relationship between reference  

dates and the volatility of average futures of any kind. We find that, in general, the  

volatility of an average futures contract is determined solely by the weight of its  

remaining reference dates. Section 6 concludes the paper.  

2. Revisiting anti-manipulation effects  

Throughout this paper, “the futures” refer to average futures contracts, and continuous  



compounding is used. The basic notation used in this paper is as follows.  
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1 : the number of reference dates to determine the settlement price of  

an average futures at expiry (n = 1, 2, 3, ...)  

2 (= ); the expiry date of all average futures contracts  

3 , ,..., : reference dates for the futures, where < < ⋯ < <  

4 : risk-free interest rate per annum (assumed to be constant)  

5 : the market price at time of the stock underlying the futures  

6 : dividend yield per annum of the underlying asset (assumed to be  

constant)  

7 ​, ​: the (no-arbitrage) market price of an average futures contract at time  

with reference dates, where ​, ​is the price of a plain vanilla futures  

contract.  

8 : the weight of the th reference date, , for an average price  

futures contract, where ∑ = 1,and > 0,∀  

Yoo (2015) defined average futures contracts and proved Proposition 1.  

Definition 1 (Yoo, 2015) (Average futures with n reference dates):  



A futures contract with the final settlement price at expiry being ∑ · .  

Proposition 1 (Yoo, 2015) (Theoretical price of an average futures at ​t​):  

, ​
=  
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) · , h =  

) · + · · ​( ) ​, h ≤ < , 1 ≤ ≤ − 1  

) · · ​( ) ​, h 0 ≤ <  

The following assumptions are made to show that an average futures contract can  

alleviate possible price manipulation on its expiration day.  

First, a representative stock, ​S​, exists along with its average futures contract, .  

Second, = · · + · · , where and are the (ex-dividend) mean and the  

standard deviation of the continuously compounded returns of , and is standard  

Brownian motion.​1 ​Third,the contract size and expiration date are ​L ​shares of ​S ​and  

, respectively. Fourth, there is a (male) risk-neutral, representative price manipulator,  

M. Fifth, if M takes a position in at any time before − ∆t, he can manipulate at  



time − ∆t, where ∆t is the shortest time to execute an order in the stock market.  

Sixth, for convenience, it is assumed that M takes a long position in a futures contract at  

the price of ​, ​at time τ, where 0 ≤ τ < − ∆t. Seventh, M can buy up the shares at  

time − ∆t to push up by at the expense of an irrecoverable cost, · ( ),  

where ( ) is the average irrecoverable cost of $1 of manipulation of  

given and ​∆ ​. ​
2 ​Eighth, ​( ) ​> 0 is assumed because the cost of $1 of  

1 ​This can be replaced with = ( − ) · · + · · , where = + . ​2 ​M can make a profit from his futures position by 

buying up shares of and pushing up to  
+ . However, these shares cannot be re-sold at + later because no one else wants to buy them at the price 

artificially raised by M, and M can only resell the shares at the bid prices available in  
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manipulation increases as increases ​ceteris paribus​. For convenience, ( ) = c · is  

assumed, where > 0. Finally, let = ,∀ .  

Suppose that the share price to be realized at without M’s manipulation is ​.​3  

The conditional mean of at − ∆t, is ​∆ ​= ​∆ ​· ​
·∆ ​. Given a (plain  

vanilla) futures contract , M can push up to + by spending · ( ) = ·  

, and his net profit at will be ​, ​− ​, ​− c · = + − ​, ​− c · =  

· + − ​, ​− c · . His expected net profit at expiry (Π) is therefore:  

∆ ​
[Π] = ​

∆ ​
· + − ​

, ​
− c ·  



= · ​∆ ​· ​
·∆ ​+ − ​, ​− c · .  

The relevant ​incremental ​cash flow due to the price manipulation is · − c · . To  

maximize this result, the first-order condition (FOC) with respect to is − 2c =  

0 or ​∗ ​= . The maximized ​incremental ​cash flow for M due to the price manipulation  

by ​∗ ​is therefore:  

∗ ​= ​∗ ​− c · ( ​∗​) = 2 ​− ​4 ​= ​4 ​> 0.  

Next, given an average futures contract , where ≥ 2, M similarly manipulates  

by spending · ( ) = · . Then ​, ​= ​∑ ​, and M’s net profit is:  

the limit order book (LOB) of this order-driven market, prices that are lower than . For example, suppose the 
current share price is $100. The currently available bid (ask) prices are $99, $98, and $97 ($101, $102, and 
$103), and the size of each bid or ask price is 1 share. To push the price up to $103, M should pay $306 for the 
three shares on the ask side. To resell them, M can only do so at the bid prices available in the LOB, which are 
$99, $98, and $97. Because M paid $306 and receives $294 in this round-trip transaction, the loss is $12. 
Similarly, it can be shown that the loss will be $6 or $2 if M wants to manipulate the price by $2 or $1. As is 
clear in this example, some losses will be involved when manipulating the share price. Therefore, M’s net 

profit from price manipulation is his gain in futures trading minus his loss in stock trading. ​3 ​The calculation is 

abbreviated here. For more details, refer to Yoo (2015).  
9  

· ​, ​− ​, ​− c · = · ​∑ ​− ​, ​− c · ,  

and the expected net profit at expiry is:  

∆ ​
[Π] = ​

∆  

c ·  



= ​· ​∆ ​
· ​·∆ ​+ ​∑ ​− ​, ​− c · .  

The ​incremental ​cash flow due to the manipulation is − c · . The FOC with  

respect to is − 2c = 0 or ​∗∗ ​= · = · ​∗​, and the maximized incremental  

profit ( ​∗∗​) for M is  

∗∗ ​= ·  

∗∗  

​· ​∗ ​> 0.  

Accordingly, the size of the manipulation of ​, ​will be  

+ ​∗∗ ​+ ∑ ​− ​+ ∑ ​=  
∗∗  

= ​1 ​· ​2 ​.  

= ​1 ​· ​2 ​.  

Consequently, the optimal size of manipulation decreases to ​∗∗ ​= · ​∗​. The  

nature of average futures contracts means that the impact of $1 of manipulation of  

on the average futures’ price at expiry decreases to times that of a plain vanilla  

futures. The resulting manipulation size of ​, ​therefore shrinks to × = times  

that of ​, ​, and so does M’s manipulation profit, or ​∗∗ ​= · ​∗ ​as shown in Table 1  

in Yoo (2015). Yoo’s analysis ends here.  

Table 1. (Yoo, 2015) ​(Price Manipulation Risk of Two Futures Contracts)  
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Type of futures ​( ) ​Manipulation of Manipulation of ​, ​M’s profit  

Plain vanilla ( = 1)  

Average ( ≥ 2) · · ·  

However, we find that M can ​increase ​profits by manipulating not just on the  

expiration date, but also on any other reference date, where = 2, 3, ..., . This is  

because the futures’ final settlement price, ​, ​= ∑ · , will be moved not just  

by a change in but also by a change in any . In addition, each of =  

1,2,..., } affects ​, ​equally, so any is exactly as meaningful as for M.  

Accordingly, there is no reason why M should treat any differently than . Second,  

when manipulating an , M will face the same circumstances as when manipulating  

: All but are either constants or uncontrollable variables at time ​∆ ​, just as all  

but are constants at time ​∆ ​. As a result, the optimal size of manipulation of any  

will equal that of . Third, the optimal profit from manipulating any equals  

that from manipulating . From all these observations, Proposition 1 (summarized in  

Table 1) can be established. Proofs of all propositions or lemmas are provided in the  

Appendix.  



Proposition 1 (Price manipulation effect of average futures):  

i) The manipulation size of an average futures shrinks not to times but  

times that of a comparable plain vanilla futures contract.  
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ii) The manipulation profit from an average futures for M shrinks not to times  

but times that from a comparable plain vanilla futures contract.  

iii) Not only on the expiration date but all the other values on the other  

reference dates can be manipulated by ​· ​.  

Table 2. ​(Price Manipulation Risk of Two Futures Contracts)​4  

Type of futures ​( ) ​Manipulation of Manipulation of M’s profit  

Plain vanilla ( = = 1)  

Average ( = 1,2,..., ) · · ·  

3. The volatility of average futures  

In this section, we explore the volatility of average futures of any kind, including the  



ones by Yoo (2015), which are more precisely termed ​fixed-referencing futures​.​5 ​The  

expiration date (time) of an average futures contract with reference dates is denoted  

by , not by , as it should be a fixed point of time regardless of the size of , where  

≥ ≥ ⋯ ≥ > 0. The additional notation is as follows, where ​variable referencing  

futures​, the other type of average futures, will be introduced and explained in the next  

section. Note that no special restrictions are placed on { , ,..., } for (general)  

average futures (except ≥ ≥ ⋯ ≥ ) but that some restrictions are imposed on  

4 ​The notation “ ​, ​” in Yoo (2015) has been changed to “ .” ​5 ​We also interchangeably use forward and futures 

contracts, as both are essentially the same when ​interest rates are constant, which we assumed to be the case.  
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{ ( ), = 1,2,..., } for variable referencing futures.  
9 { , ,..., }:  
reference dates for an average futures, where ≥ ≥ ⋯ ≥ > 0  
10 ( )| ( ) = + ( − ), = 1,2,..., :  
reference dates for a ​variable ​referencing futures, where 0 ≤ <  
11 ( ): the weight of remaining reference dates at ​t ​for an average futures  
contract, where ( ) = ∑  
12 ​{ ,..., }​: the price at ​t ​of an average futures with  
reference dates , ,...,  
13 ​, , ​: the price at ​t ​of an average futures with  
reference dates ( ) = + ( − ), where = 1,2,...,  
14 : the price at ​t ​of an average futures contract with ( )  
The no-arbitrage price of the futures can be expressed succinctly as:​6  

{ ,..., } ​= ​1 ​= ​1 ​( )( ) ​+ ​1 ​,  
where [·] is the expected value under the risk-neutral measure at time ​t​, and is  
the indicator function satisfying  

( ) = ​1, ∈  

0, h ​.  



Second, as in Black-Scholes (1973), follows an Ito process:  

6 ​For convenience and later use, ​{ ,..., } ​= ∑ ,where > .  
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= · · + · · , (1)  

where ​μ ​and ​σ ​are the mean and the standard deviation of the continuously  

compounded annual returns of , respectively, and B​t ​is a standard Brownian motion.  

The variance of arithmetic average futures contract is determined by Proposition  

2, which also summarizes, and is not limited to, Yoo (2015)’s findings on variances of  

(fixed-referencing) average futures contracts. Proofs of all propositions or lemmas are  

provided in the Appendix.  

Proposition 2 (Variances of average futures prices):  

Given ≥ ≥ ⋯ ≥ and ≥ , i) and ii) hold.  

i) ​var ​{ ,..., }  

= ​, , ​( ) ​, , , ​, ​, ​− 1 ​,  
,  

,  

where ​, ​= min( , ) − and ​, ​= max( − ,0).  

ii) ​var ​{ ,..., } ​> var ​{ ,..., }​, where = 2,3,..., ≥ 0 and ≥ .  

4. Variable referencing futures  



In this section, we introduce another kind of average futures, variable referencing  

futures, compare volatility reduction effects of both fixed and variable referencing  

futures, discuss which one is more desirable for investors in principle and practice, and  
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examine whether the volatility reduction rule for fixed referencing futures is also  

applicable to variable referencing futures.  

4.1 Rationale for variable referencing futures  

Proposition 2 (ii) appears to imply that an average futures contract with more  

reference dates will have a smaller variance than one with fewer reference dates.  

However, strictly speaking, the actual variance will also depend on several assumptions.  

Yoo (2015) demonstrated that the implied rule is true under two conditions. First, an  

average futures with reference dates has ( − 1) reference dates in common with one  

with ( − 1) reference dates, which are , ,..., . Second, , the other reference  

date, is the closest to time 0, or < min{ , ,..., }. In other words, as the number  

of reference dates of an average futures contract increases incrementally, its existing  

reference dates remain intact and a new one is added, which is closer to time 0 than any  

of the other existing reference dates.  



However, a superior rule of addition for reference dates may be available in light of the  

investors’ needs. Suppose investors want an average futures contract, which, given ,  

adequately represents the average of its underlying asset prices for the futures’ ​entire  

life​, . Then reference dates should be set as follows, with ( ) denoting the th  

reference date given , where = 1, 2,..., . If = 2, they should be { (2), (2)} =  

, . If = 3, they should be { (3), (3), (3)} = , , . In general,  

given = N, they should be { ( ), ( ),..., ( ), ( )} =  
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, ,..., , . As is clear, the th reference date of this futures contract with  

reference dates, ( ), changes with . That is, ( ) = ≠  

= ( ) where ≤ min{ , }, and ≠ . However, in Yoo (2015),  

( ) = ( ) = , where ≤ min{ , } and ≠ . For example, given = 3  

and 4, two sets of reference dates in Yoo (2015) can be { , , } = , , and  

{ , , , } = , , , . In general, they are { , , } =  

, , and { , , , } = , , , , where is any  

positive integer greater than 3. In other words, the time interval between reference dates  

never changes even if does, and the existing reference dates remain intact as  



increases. Consequently, the th reference date of this futures with reference dates,  

( ), remains unchanged as grows. Therefore, ( ) = ( ) = for all ≤  

min{ , }.  

To distinguish the futures by Yoo (2015) and the other futures with reference dates  

{ ( )} introduced here, we assigned them the labels of ​fixed ​referencing and ​variable  

referencing futures, respectively. The former’s existing reference dates do not change as  

grows, whereas the latter’s do. Additionally, given , the latter change in such a way  

that they become more meaningful when averaged compared with the former. Variable  

referencing futures may therefore be able to better serve hedgers and speculators, who  

typically try to hedge against or bet on a periodic average price. For example, suppose  

= 0, = 1 (year), = 3 and 4, and one year has 240 trading days. The two sets of  

reference dates for the variable referencing futures contract are ​always ​, , =  
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, , and , , , = , , , , whereas those for  

the fixed one can be any two sets such as , , and , , , .  

In this sense, variable referencing futures may be able to better represent a yearly  

average than can fixed ones.  

4.2 Volatility of variable referencing futures  



Here we determine the variance of variable referencing futures and compare it with  

that of fixed referencing futures in Yoo (2015). The general rule of setting reference  

dates for variable referencing futures is:  

( ): ( ) = + ( − ): = 1,2,..., (2)  

Equation (2) indicates that reference dates ​evenly ​divide the time period between  

and . For example, if = 0, they divide the whole period of into sub-periods of  

length . Let ​, , ​denote the time-​t ​price of a variable referencing futures contract  

with such reference dates. Then, by (i) of Proposition 2, the variance at (< ) of  

, , ​is  

var ​, , ​= ∑ ​( ) ​( , ) ​( ) ​− 1 ​( , ) ​( ) ​, ​
. (3)  

As we now know two formulas of the variances of both fixed and variable referencing  

futures, we can compare both variances in at least two ways. First, we examine how the  
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variance of an average futures contract, fixed or variable referencing, changes as its  

number of reference dates, , increases. Second, we compare two variances of a fixed  



and a variable referencing futures contract with the same number of reference dates.  

Given that = 0.08, = 0.02, = 0, = 0.4, = 0.25,and − = , ​Figure 1  

(​Figure 2​) shows how the variances of a fixed (variable) referencing futures contract  

decreases as its reference dates increase from 1 to 5. X-axis and y-axis refer to the  

passage of time and the variance of the fixed referencing futures with being 1 to 5,  

respectively.  

Figure 1 ​The variance and the number of reference dates of fixed referencing futures  
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Figure 2 ​The variance and the number of reference dates of variable referencing futures  

From these graphs, we find the following features of the two types of average futures.  

First, the volatility of fixed referencing futures does not decrease much even if their  

reference dates increase. Given that the time to expiration is 0.25, the (expected)  

variance at expiry of the fixed referencing futures only decreases by 0.0023 to 0.0026 as  

increases by 1, and the variance falls to 0.0330 when reaches 5. In contrast, the  

volatility of variable referencing futures does decrease fast as their reference dates  

increase. Given that the time to expiration is 0.25 and is only 2, the (expected)  



variance at expiry of the variable referencing futures falls down to 0.0262, which is even  

lower than 0.0330, the variance of fixed referencing futures with being 5. When is  
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5, the variance of variable referencing futures is as low as 0.0183. Third, given the same  

, the variance of fixed referencing futures never becomes smaller that that of variable  

referencing futures no matter how large is. This is because the newly added reference  

date for fixed referencing futures never gets closer to time 0 than that for variable  

referencing futures does, which is due to the reference date setting rules of both futures.  

All these results imply that, if an average futures contract is to be used to minimize  

excessive expiration day volatility, variable referencing futures are much more effective  

than are fixed referencing futures by Yoo (2015).  

4.3 Volatility and reference dates for variable referencing futures  

Here we revisit the relationship between the volatility and the reference dates of  

(fixed referencing) average futures by Yoo (2015), show that it does not hold for variable  

referencing futures, and propose a new relationship for variable referencing futures.  

Because Yoo (2015) analyzes only fixed referencing futures, his conclusions about the  

volatility of average futures may be limited to that kind of average futures. He concludes  



that the variance of the price of an average futures contract at any future time ​t  

decreases with the number of its reference dates. We investigate whether this is true for  

variable referencing futures, find that it is not, and show why it is not.  

Specifically, we show, with a counterexample, that the variance of a variable  

referencing futures contract does not always decrease as increases. Suppose the  

stochastic process of is (1), with , , , and being 10%, 30%, 0, and 1,  

respectively. Then the variances of ​, , ​and ​, , ​at ​t ​= 0.75 are:  
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. ​, , ​≈ 0.00150 × ( ​. ​) ,and  

. ​, , ​≈ 0.00151 × ( ​. ​) .  

Because var ​. ​, , ​> var ​. ​, , ​, an increase in does not always reduce the  

variance of average futures contracts. It does reduce the variance of fixed referencing  

futures, but not necessarily that of variable referencing futures.  

To determine why this is the case, the two variances at = 0.75 can be represented  

as:  

var ​. ​, , ​= var ​. ​1​4 ​,and var ​. ​, , ​= var ​. ​1​5 ​. ​
+ 

1​5 ​.  

As increases from 4 to 5 given = 0.75, two things happen simultaneously. First, the  

weight on each reference date decreases from to . Second, the sum of the weights  



increases from (of = 1) to + of = and = , making the variance of  

, , ​larger than that of ​, , ​. This reversal does not always occur at every value of  

but does so sometimes. However, the reversal or increase in the sum of weights with an  

increase of given never occurs with fixed referencing futures contracts because, for  

fixed referencing futures, the remaining reference dates at , or the set of  

{ | > , = 1,2,..., } given , are always fixed, even if increases. This feature can  

be generalized as Proposition 3.  

Proposition 3 (Variances of variable referencing futures’ prices):  

i) In general, var ​, , ​does not always decrease in .  
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ii) var ​, , ​≥ var ​, , ​,  
where ≤ , is a divisor of , and and are natural numbers  
iii) lim ​→ ​var ​, , ​= 2∫ ∫ ​( )( ) ( ( ) ) ​−  

1 ​( ) ​.  
If = ,  

lim ​→ ​var ​, , ​= ​2 ( − 1) − (3 − 4 + 1) − ( − 1)  

( + )(2 + ) ​,  

where = ( − ), and = ( − ).  
iv) var ​, , ​≥ lim ​→ ​var ​, , ​, where is a natural number.  
Let us elaborate on Proposition 3(ii). As in (i), var ​, , ​is not always a decreasing  
function of given . But if changes from to in such a way that is a  

divisor of , then var ​, , ​≥ var ​, , ​. Recalling what happens to var ​. ​, , ​=  
var ​, , ​when changes from 4 to 5,  



var ​, , ​= var < var ​, , ​= var ​. ​+ .  
However, if changes from 4 to 8 or any other multiple of 4, it can be shown that  

var ​, , ​= var ​1​4 ​> var ​, , ​= var ​1​8 ​+ 1​8 ​.  

Furthermore, if > , for example, = , then  

var ​, , ​= var ​1​4 ​> var ​, , ​= var ​1​8 ​.  

The primary reason for the first inequality is that, while the weight of remaining  
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reference dates is = 0.25 in both the left-hand side (LHS) and the right-hand side  

(RHS), half of it applies to in the RHS, the variance of which is smaller than that of  

. Further, the main reason for the second inequality is that the weight of remaining  

reference dates in the RHS is , which is just the half of the in the LHS. In either  

inequality, the variance of the futures always decreases with if increases this way.  

Additionally, (iii) and (iv) of Proposition 3 mean that the variance of the futures  

decreases in the limit as goes to infinity.  

5. General effects of reference dates on volatility  

In this section, we explore the relationship between reference dates and the volatility  

of average futures of ​any ​kind, including fixed and variable referencing futures. In  

general, there are no restrictions on how to set reference dates or their weights. For  

example, we can include an average futures with = 3, in which { , , } = , ,1  



and { , , } = {0.17,0.56, 0.27}. To this end we define the sum of the weights of  

the remaining reference dates or “sum-of-weights” for short and provide a notation  

related to it.  

Definition (sum-of-weights function)​:  

( ) = ∑ : sum of weights (of remaining reference dates) at ,  

where  

0 ≤ t ≤ ,  
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= the ​i​th reference date (set without any restrictions, and = ).  
(≥ 0) = the weight of .  
= · ​( )( ) ​+ ·  
= the time-​t ​price of an average futures, with ​W ​as its sum of weights.  
Here we analyze not just variable or fixed referencing futures but ​any possible ​kind of  
average futures. Given that { , ,..., } is the set of reference dates chosen freely,  
where > > > ⋯ > , an average futures can be identified with its sum of  
weights, ( ) = ∑ , by  
⎧ 0 ⎪⎪ ​( ) = ​⎨ ​+  

+ + ⋮ ​⎪⎪​⎩≤ ​≤ < ​≤ < ≤ <  
⋮  
= 1 0 ≤ <  
.  
As shown above, can be regarded as a weight-setting function for an average futures.  
And, because an average futures can be identified with its , becomes the time  
price of an average futures, with ( ) being its weight setting function. We introduced  
mainly because a variance of ​any ​kind of average futures is a function of ( ).  
Proposition 4 (Comparison of variances of average futures):  
The variance of the price of an average futures contract increases with the sum of  
weights of its remaining reference dates. That is,  

24  



var ≥ var , ​7  

where ,( − ) ≥ 0, < , and ( ) ≥ ( ) for all > .  

Proposition 4 demonstrates that we can determine which variance of two average  

futures is larger by comparing their sum of weights, whether they are fixed or variable  

referencing futures. In addition, Proposition 2 (ii) and Proposition 3 (ii) can be verified  

by Proposition 4, combined with the following lemma.  

Lemma 1  

(1) Suppose denotes the sum of weights for a fixed referencing futures  

{ ,..., }​. Then ( ) ≥ ( ),∀ , where < .  

(2) Suppose denotes the sum of weights for a variable referencing futures  

, , ​. Then ( ) ≥ ( ),∀ , where is a divisor of , and both are natural  

numbers.  

Figure 3 ​confirms Lemma 1 and (i) of Proposition 3. Panel 1 shows two fixed  

referencing futures with = 2 and 3, whose expiration prices are + and  

+ + , respectively. As in Lemma 1, ( ) ≥ ( ). Panel 2 shows two  



variable referencing futures with = 2 and 3, whose expiration prices are  

+ and + + , respectively. As shown clearly, ( ) ≥ ( )  

7 ​Recall that and are time ​U​-conditional expectation of final payoffs of underlying assets. ​Therefore they are 
well-defined even if ​U ​is after the maturities of the futures.  
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1 ​A. Fixed referencing futures  

n=2 n=3  

0.5​0 ​0 3/12 6/12 9/12 12/12 ​1 ​B. Variable referencing futures  

n=2 n=3  

0.50  
0 2/12 4/12 6/12 8/12 10/12 12/12  

1 ​C. Variable referencing futures  

n=2 n=4  

0.5​0 ​0 3/12 6/12 9/12 12/12 ​Figure 3 ​Sum of weights of fixed and 
variable referencing futures  

does not always hold for all values of . However, if the two values of are a divisor and  

a multiple, ( ) ≥ ( ) holds, as in Panel 3.  
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6. Conclusion  

Our research is three-fold: we revisit the anti-manipulation effects of average futures  

by Yoo (2015), explore variable referencing futures, and determine the general  

relationship between the volatility and reference dates of any kind of average futures  

contract. For the second issue, we introduce variable referencing futures, explore their  

distinctive features, compare their volatility with that of fixed referencing futures, and  

discuss which futures contract would better serve hedgers and speculators in average  

futures in theory and in practice.  

Our findings are as follows. First, the anti-manipulation effects of average futures  

(fixed referencing) can be smaller than suggested by Yoo (2015). Second, variable  

referencing futures not only better serve hedgers and speculators, who need to hedge  

against or bet on a periodic average price, but also have much stronger volatility-  

reduction effects than do the fixed referencing futures in Yoo (2015). Third, in the case of  

variable referencing futures, volatility does not necessarily decrease with the number of  

reference dates. Fourth, the weight of the remaining reference dates at a given time,  

rather than the number of reference dates, determines the volatility of average futures  

whether they are variable or fixed referencing.  



To our knowledge, this paper is the second academic work on average futures. We  

hope that this and further research will help a range of average futures or forwards  

begin to be traded in over-the-counter markets or, ultimately, on exchanges.  
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Appendix  



Proof of Proposition 1  

This proof is similar to Yoo (2015)’s proof of manipulation of , with the sixth and  

seventh assumptions replaced with the following generalized assumptions that allow M  

to manipulate any , not just :  

Sixth, M takes a long position in one futures contract at the price of ​, ​at time τ,  

where 0 ≤ τ < − ∆t;  

Seventh, M can buy shares at time − ∆t to push up by at the expense of  

an irrecoverable cost, · ( ), where ​k ​= 1, 2, ..., ​n​, and ( ) is the average  

irrecoverable cost of $1 of manipulation of given and ​∆ ​.  

Yoo (2015) proves that, from manipulation, M will receive an expected profit of ·  

and that will be moved by · at . Because the expected profit is greater  

than 0, risk-neutral M will always manipulate at − ∆t. For the same reason, if a  
29  

positive expected profit can be realized from manipulation, M will always  

manipulate . Then the relevant question becomes “is this possible?” The answer is  

yes, and, in fact, this can be proven in a way similar to manipulation. For  

convenience, manipulation will not be considered while M manipulates , and,  

afterwards, both manipulations will be combined to determine the cumulative effects on  

M’s profits and the futures’ final settlement price, ​, ​.  



Suppose that the share price to be realized at without M’s manipulation in ​2​.  

The conditional means of ​2 ​and ​at − ∆t are ​∆ ​= ​∆ ​· ​
·∆ ​and  

∆ ​
= ​

∆ ​
· ​·( ∆ )​, respectively. M manipulates ​2 ​by by spending  

· ( ) = · as in the eighth assumption in Section 1. Then, at time , ​, ​=  

∑  

, where ∑ = ∑ + ∑ . Therefore, his  

expected profit (Π) at − ∆t is  

∆ ​
[Π] = ​

∆ , ​
– ​

, ​
–c ·  

= ​∆  

+ + ∑  

− ​, ​− c ·  

= ​∆ ​+ + + ∑ ​− ​, ​− c ·  

= ​· ​∆ ​· ​·∆ ·( ∆ ) ​+ ​∑ ​− ​, ​− c · .  

The ​incremental ​cash flow due to the manipulation of by is − c ·  

. The FOC with respect to is − 2c · = 0 or = · . The maximized  

incremental ​profit ( ) for M is therefore  

= · − c · ( ) = ​· · ​− c · ​1 ​· ​2 ​= ​1 ​· ​4 ​> 0.  
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Accordingly, the size of the manipulation of ​, ​will be  



+ + ∑  

Now let us combine manipulation and manipulation. At time − ∆t, M  

will manipulate , irrespective of manipulation in the past, exactly the same way  

as . As in Yoo (2015), and manipulation are virtually identical. This result is  

intuitively appealing as there should be no difference between and in their  

meaningfulness in or M’s profit-seeking behavior. Specifically, M will spend c ·  

· to push up to + · , and receive a profit of · from it.  

Combining these two manipulations leads to the following cumulative effects:  

i) Both and are manipulated by and , respectively, and =  

= · = ​∗∗​.  

ii) M’s profit is doubled compared with that from an -only manipulation,  

changing from · to · + · = · .  

iii) Manipulation of ​, ​is double that from -only manipulation, changing  

from to + = · + · = · .  

If M does the same thing to , ,..., and , the results will be:  

i) Every is manipulated by · = ​∗∗​, where = 1, 2, ..., .  

ii) M’s profit is times higher than that from -only manipulation: It changes  

from · to · · = · . This translates to times, not times,  
31  



the profit from manipulating a comparable plain vanilla futures contract or  

.  

iii) The manipulation size of is times larger than that from -only  

manipulation, changing from · to · · = · . Again, this  

translates into times, not times, the manipulation size of a comparable  

plain vanilla futures contract or .  

Proof of Proposition 2  

As in (i) and given ≤ , it can be shown that  

{ ,..., } ​= ​1 ​( )( ) ​+ ​1  

= ​( ) ( )( ) ​+ ​( )  

= ​, ​( ) ​,  

where  

, ​
= min( , ) − ​

, ​
= max( − ,0). ​Accordingly,  

{ ,..., } ​= ​, , ​
( ) ​

, ,  

,  

.  



Because = ( , ) + | − |, it can also be shown that  
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{ ,..., }  

= ​( ) ​, , , , , ​, ​, ​| ​, , ​|  

,  

= ​( ) ​, , , , , ​, ​,  

,  

.  

Accordingly, the variance of the futures at ​t ​becomes  

var ​{ ,..., } ​= ​{ ,..., } ​− ​{ ,..., }  

= ​( ) ​, , , , , ​, ​, ​− 1 .  

,  

Then, given < ≤ ,  

var ​{ ,..., } ​= ​( ) ​, , , , , ​, ​, ​− 1  
,  

,  

which is Proposition 2 (i).  

Therefore, (ii) can be proved by Proposition 4 and Lemma 1, which will be introduced  

later.  

Proof of Proposition 3  

Proposition 3 (i) is verified by the counterexample in Section 4. Proposition 3 (ii) is a  

special case of Proposition 4 to be proven later. Proposition 3 (iv) will be proven by  



Proposition 4 and Lemma 1, which will be proven later. Here, we prove 3 (iii) only. By  

Proposition 2, the following holds as approaches infinity.  
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lim ​→ ​var ​, ,  

= ​( )( ) ( ( ) ) ​− 1 ​( )  

+ ​( )( ) ( ( ) ) ​− 1 ​( )  

= 2 ​( )( ) ( ( ) ) ​− 1 ​( ) ​.  

For reference, var ​, , ​converges to the following, depending on the range of . That  

is, given ≤ ,  

lim ​→ ​var ​, , ​= 2 ​( )( ) ( ( ) ) ​− 1 .  

Given < ≤ ,  

lim ​→ ​var ​, , ​= 2 ​( )( ) ( ( ) ) ​− 1 .  

Proof of Proposition 4  

Suppose { ,..., } is the union of two sets of reference dates for the two average  

futures, with and being their weight-setting functions or sums of weights. We  



first prove the case of = . The two futures’ prices at maturity are and .  

Then = ∑ , and = ∑ for some values of , , where  

≥ 0, and ≥ 0,∀ . Their variances can be expressed as  

= , ;  

,  

,and  
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= , ;  
,  

,  

where , ; =  

( , ​h ​) >  
. Here,  

. Here,  

, ; is increasing in and as ≥ 0. And and can be  

interpreted as the two expected values of , ; . Similarly, and can  

be interpreted as two density functions of , ; . Also ( ) ≥ ( ) for all > ,  

which implies that larger weights are always assigned to larger values of , ; in  

∑ ​, ​, ; compared with ∑ ​, ​, ; . Hence var ≥  

var .  

We can now prove the case of < < . Recall = ∑ ​( )( ) ​+  

∑ . For example, given ≤ < ,  

= ​( )( ) ​+ .  



This can be interpreted as the price of an average futures contract, for which the  

reference dates and the weights are { , ,..., , } and  

{ , ,..., ,∑ ​( )( ) ​}, respectively. Two sums of weights of remaining  

reference dates for this futures can therefore be defined as  

, ​
( ) = ​( ) ( , )  

and  
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, ​
( ) = ​( ) ( , ) ​.  

, ​
( ) and ​

, ​
( ) are decreasing in , and ​( ) ( , ) ​is increasing in .  

Here, ​, ​( )and ​, ​( ) can be interpreted as the two expected values of  

( ) ( , ) ​given . Again ( ) ≥ ( ) (for all > ), which implies that  

larger weights are assigned to larger values of ​( ) ( , ) ​in  

∑ ​( ) ( , ) ​than in ∑ ​( ) ( , ) ​. Therefore,  

, ​
( ) ≥ ​

, ​
( ).  

For convenience, let = and = for all ∈ { + 1,..., }. Similarly, we  



denote = ∑ ​( ) ​, = ∑ ​( ) ​, = , and =  

for all ∈ { + 1,..., }. Then, and can be expressed as  

= , ;  

,  

,and  

= , ;  

,  

,  

where (·) is the same function as defined above. Therefore, ≥ as  

, ; is increasing in and and ( ) ≥ ( ) for all > .  

Proof of Lemma 1  

We prove (1) first. If ≤ < , ( ) = < = ( ), where 1 ≤ ≤ −  

1 . If < , ( ) ≤ ( ) = 1. Thus ( ) ≤ ( ),∀ . (2) can be similarly  

proven.  


