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1. Introduction 

 Option traders use several option pricing models to obtain both theoretical and practical value 

of options. Although Black-Scholes model (BS model) in 1973 is still widely used for its simplicity, it 

has received numerous criticisms such as constant risk-free rates and volatility over the option’s 

lifespan. Further, an implied volatility of BS model appears to be different across exercise prices and 

maturities thus results in mispricing the options.1 

 To mitigate these shortcomings of BS model, the mathematically sophisticated model such as 

stochastic volatility model (SV model) has been thoroughly examined (Hull & White, 1987; Johnson & 

Shanno, 1987; Stein & Stein, 1991; Heston, 1993; Duan, 1995; Heston & Nandi, 2000; Kim & Kim, 2004).2 

Amongst, Heston (1993) introduces the stochastic volatility models with a closed-form solution by 

accounting BS model’s limitations that do not explain non-normal distribution of asset returns and 

mean-reverting volatility. Previous studies not only consider the mathematically sophisticated models 

with stochastic volatility factor but also stochastic interest rates or jumps. When a random jump is 

added, the model is significantly improved for short-term options (Bakshi et al. ,1997; Kim & Kim, 2005) 

while interest rate factor is essential to price the options with relatively longer time-to-maturity (Bakshi 

et al., 2000). However, Bakshi, Cao and Chen (1997, 2000) and Kim and Kim (2005) confirm that the 

most important impact factor is the stochastic volatility while the other factors marginally improve the 

performance of SV model. 

 The growing body of empirical evidence suggests that traders’ rule (i.e. ad-hoc Black-Scholes 

model, AHBS model) is well-adopted by market practitioners 3  and has become a benchmark for 

 
1 These phenomena are known as “volatility smile” and “volatility term structure”. 
2 Other related mathematically sophisticated models are stochastic volatility with jumps model (SVJ), 
GARCH model, and variance gamma model (VG). A random jump can increase its complexity and 
does not necessarily provide better results than SV (Bakshi et al., 1997; Kim and Kim, 2005). Although 
GARCH and VG yield the closed-form solutions of an option, Kim and Kim (2004) find that GARCH 
and VG show the worst performance while SV model performs the best. 
3 Hull and White (1987) state that “traders allow the implied volatility to depend on time to maturity 
and strike prices. Also, volatility surfaces combine volatility smiles with the volatility term structure to 
tabulate the volatility appropriate for pricing an option with any strike price and any maturity”. Further, 
Dumas et al. (1998) quote that “To account for the sneer patterns in Black-Scholes implied volatilities, 
many market makers simply smooth the implied volatility relation across exercise prices (and days to 
expiration) and then value options using the smoothed relation”. 
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evaluating the option pricing models (Dumas et al., 1998; Jackwerth & Rubinstein, 2001; Li & Pearson, 

2007; Kim, 2009; Choi & Ok, 2012). In practice, traders estimate the volatility surfaces for different 

underlying assets from the market prices of options and allow the implied volatility to be increasing or 

decreasing function of strike price and time-to-maturity. The current literature finds that AHBS models 

are superior to mathematically sophisticated models. However, most studies in this area focus on short-

term options and there has been little attention paid to long-term options.  

 The purpose of this paper is to compare the distinct attributes between short-term and long-

term options on traders’ rule by examining the performance of options with longer time-to-maturity. 

In other words, if traders’ rule still outperforms using long-term options can be checked. To the best of 

our knowledge, this paper provides the first evidence that documents the performance of AHBS models 

with long-term options. 

 There are several reasons to investigate the options with longer time-to-maturity. Firstly, 

option’s time-to-expiration is an important feature that must be considered when finding the value of 

the options. Although the most traded contracts in the current options market are short-term options, 

managers often utilize more than one hedging instrument via longer-term contracts. It is crucial to 

study the options with longer time-to-maturity because option traders frequently use long-term options 

for hedging purposes whereas short-term options can be used for speculation purposes. Also, low 

volume of long-term options allows traders to have unique preferences on option pricing models. There 

exists relatively less noise involved in pricing long-term options and thus the mathematical 

sophisticated models can be expected to be more appropriate for the options with longer time-to-

maturity. Next, by examining longer-term options, one can intuitively understand the over-the-counter 

(OTC) options market since options traded in OTC market are mostly long-term contracts. There is 

paucity in the current literature focusing on OTC market. Because the option contracts in OTC market 

last until its maturity and the market prices do not normally exist, finding an optimal option pricing 

model for OTC products has not been an interest of current researchers. Options in OTC markets and 

long-term options in S&P 500 are comparable since they share similar characteristics: longer time-to-

maturity, low trading volume, and being traded by institutional investors for hedging purposes. 
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Despite this, the existing literature pays very little attention on longer-term options. Bakshi et al. (2000) 

argue that short-term and long-term options do contain distinguished information. This paper not only 

fills the gap in the current literature by suggesting the optimal option pricing model for long-term 

options but also enhances the understanding of longer time-to-expiration for option traders. 

 To preview the results, this paper finds evidence that traders’ rule still outperforms other 

models in pricing errors with short-term options whose time-to-maturity is less than 60 days. However, 

mathematically sophisticated model shows the least pricing and hedging errors for long-term options 

with time-to-maturity more than 60 days. On average, SV model shows the overall best pricing and 

hedging performances regardless of time-to-maturity. 

 The remainder of this paper proceeds as follows. The next section introduces two models: 

stochastic volatility and ad-hoc Black Scholes models. The subsequent section discusses the data 

followed by the empirical results of pricing and hedging performance with respect to moneyness and 

time-to-maturity. For the robustness check, statistical validation and sub-periods analyses are reported, 

and the last section finally concludes. 

 

2. Option Pricing Models 

2.1. Stochastic Volatility Model 

 Heston (1993) introduces the mathematically sophisticated model referring to continuous-time 

stochastic volatility model (SV model) which assumes the mean-reverting square-root process. It is 

preferred over other similar SV models because it allows the correlation between asset returns and 

volatility in the closed-form solution. The model builds on the following stochastic process for 

underlying assets and the variance. 

 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + √𝜈𝑡𝑆𝑡𝑑𝑊𝑆 (1) 

𝑑𝜈𝑡 = 𝜅(𝜃 − 𝜈𝑡)𝑑𝑡 + 𝜎𝑣√𝜈𝑡𝑑𝑊𝜈 (2) 
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 where 𝑑𝑊𝑆 and 𝑑𝑊𝜈 are the Wiener stochastic processes with an arbitrary correlation 𝜌, 𝑆𝑡 

is a spot price at time 𝑡, 𝜈𝑡 is an instantaneous variance at time 𝑡, σ𝑣  is a volatility of variance, μ is 

a drift of the underlying asset return, θ is a long run variance, and κ is a mean reversion rate. The 

closed-form pricing model of European call options with risk-neutral probability is shown whereas the 

price of European put options on the same stock can be obtained from the put-call parity. 

 

𝐶𝑡 = 𝑆𝑡𝑃1 − 𝐾𝑒−𝑟𝜏𝑃2 (3) 

𝑃𝑗 =
1

2
+

1

𝜋
∫ 𝑅𝑒 [

𝑒−𝑖𝜑 𝑙𝑛[𝐾]𝑓𝑗(𝑥, 𝑣𝑡 , 𝜏 ; 𝜑)

𝑖𝜑
]

∞

0

𝑑𝜑 (𝑗 =  1, 2) 
(4) 

 

 where 𝐾 is a strike price, 𝜏 is a time-to-maturity, i is an imaginary number. 𝑅𝑒[⋅] denotes the 

real part of complex variables. 𝑓𝑗(𝑥, 𝑣𝑡 , 𝜏 ; 𝜑) = 𝑒𝑥𝑝[𝐶(𝜏 ; 𝜑) + 𝐷(𝜏 ; 𝜑)𝑣𝑡 + 𝑖𝜑𝑥]  with 𝐶(𝜏 ; 𝜑) and 

𝐷(𝜏 ; 𝜑) are functions of  𝜃, 𝜅, 𝜌, 𝜎𝑣 and 𝜈𝑡. 

 The closed-form option pricing equation makes it possible to derive comparative statics and 

hedge ratios analytically. There are two sources of stochastic variations over time, price risk 𝑆𝑡, and 

volatility risk 𝑣𝑡. Consequently, there are two deltas: 

 

∆𝑆,𝑡=
𝜕𝐶𝑡

𝜕𝑆𝑡

= 𝑃1 
(5) 

∆𝑣,𝑡=
𝜕𝐶𝑡

𝜕𝑣𝑡

= 𝑆𝑡

𝜕𝑃1

𝜕𝑣
− 𝐾𝑒−𝑟𝜏

𝜕𝑃2

𝜕𝑣
 

(6) 

𝜕𝑃𝑗

𝜕𝑣
=

1

𝜋
∫ 𝑅𝑒 [(𝑖𝜑)−1𝑒−𝑖𝜑 𝑙𝑛[𝐾]

𝜕𝑓𝑗

𝜕𝑣
]

∞

0

𝑑𝜑 (𝑗 = 1,2) 
(7) 

 

 For unobserved parameters, the model needs to be calibrated to find the parameters obtained 

from option pricing model very close to the market price of the option. Given the closed-form solutions, 
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the parameters are estimated by minimizing the sum of squared errors between market and model 

prices for every single day in the sample.4 

 

𝑚𝑖𝑛
∅𝑡

∑ [𝑂𝑖
∗(𝑡, 𝜏 ; 𝐾) − 𝑂𝑖(𝑡, 𝜏 ; 𝐾)]2𝑁

𝑖=1  (𝑡 = 1, ⋯ , 𝑇) (8) 

 

 where 𝑂𝑖
∗(𝑡, 𝜏 ; 𝐾) denotes the model price of the option 𝑖 on day 𝑡 and 𝑂𝑖(𝑡, 𝜏 ; 𝐾) denotes 

the market price of the option 𝑖 on day 𝑡. ∅𝑡 refers to a set of model’s parameters. 𝑁 is the number 

of options on day 𝑡, and 𝑇 is the number of days in the sample. 

 

2.2. Ad-hoc Black Scholes Model 

 To deal with the drawbacks of BS model, Dumas et al. (1998) calibrate the volatility smile using 

implied volatility and find that AHBS model helps overcoming the traditional BS model’s major 

criticism of constant volatility. A number of studies support that AHBS model tends to outperform 

other alternatives models in the options market (Jackwerth & Rubinstein, 2001; Li & Pearson, 2007; Kim, 

2009). 

 Unlike BS model, AHBS model allows options to have different implied volatilities by strike 

price and time-to-expiration. Figure 1 describes the Black-Scholes implied volatility surface. It clearly 

shows a smile phenomenon as an indication of negatively skewed risk-neutral distribution with excess 

kurtosis. Therefore, the alternative option pricing models to BS model need to be considered. 

 AHBS model incorporates two smile approaches: “absolute smile” and “relative smile”. The 

key difference is that the “absolute smile” approach treats its implied volatility as a function of strike 

price while implied volatility is treated as a function of moneyness in the “relative smile” approach. 

Dumas et al. (1998), Jackwerth and Rubinstein (2001), Li and Pearson (2007) and Kim (2009) conclude 

that the “absolute smile” approach of AHBS model significantly outperforms the “relative smile” 

 
4 Estimating the parameters from asset returns is an alternative method but it has limitations. Using 
historical data from asset returns only reflects what happened in the past and the risk premiums cannot 
be easily identified. 
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approach. Thus, this paper focuses only “absolute smile” approach with time-to-maturity. In addition, 

the main goal of this paper is comparing the best model among traders’ rule (i.e. ABHS models) with 

the mathematically sophisticated model (i.e. SV model), so the results of “relative smile” approach are 

not reported but readily available upon request. 

 In the “absolute smile” approach, its implied volatility is treated as a function of strike price. It 

means that the implied volatility of the “absolute smile” approach does not vary with the underlying 

assets given fixed strike prices. There are four models as shown below.5 

 

A1T2:  𝜎𝑖,𝑗 = 𝛽1 + 𝛽2 ⋅ 𝐾𝑖 + 𝛽3 ⋅ 𝜏𝑗+𝛽4 ⋅ 𝜏𝑗
2 (9) 

A1T2C: 𝜎𝑖,𝑗 = 𝛽1 + 𝛽2 ⋅ 𝐾𝑖 + 𝛽3 ⋅ 𝜏𝑗+𝛽4 ⋅ 𝜏𝑗
2+𝛽5 ⋅ 𝐾𝑖 ⋅ 𝜏𝑗 (10) 

A2T1C: 𝜎𝑖,𝑗 = 𝛽1 + 𝛽2 ⋅ 𝐾𝑖 + 𝛽3 ⋅ 𝐾𝑖
2 + 𝛽4 ⋅ 𝜏𝑗+𝛽5 ⋅ 𝐾𝑖 ⋅ 𝜏𝑗 (11) 

A2T2C: 𝜎𝑖,𝑗 = 𝛽1 + 𝛽2 ⋅ 𝐾𝑖 + 𝛽3 ⋅ 𝐾𝑖
2 + 𝛽4 ⋅ 𝜏𝑗+𝛽5 ⋅ 𝜏𝑗

2+𝛽6 ⋅ 𝐾𝑖 ⋅ 𝜏𝑗 (12) 

 

 where σ𝑖,𝑗  is an implied volatility of option price, 𝐾𝑖  is a strike price and τ𝑗  is a time-to-

maturity. The models are based on the “absolute smile” approach with a strike price (Ki ) as the 

independent variables. A1T2 is the “absolute smile” model with constant (β1), strike price (Ki), time-to-

maturity (τj) and the square of the time-to-maturity (τj
2); A1T2C is the “absolute smile” model with 

constant (β1 ), strike price (Ki ), time-to-maturity (τj) and strike price (Ki ) multiplied with time-to-

maturity (Ki ⋅ τj); A2T1C is the “absolute smile” model with constant (β1), strike price (Ki), the square 

of the strike price (Ki
2), time-to-maturity (τj) and strike price multiplied with time-to-maturity (Ki ⋅ τj); 

A2T2C is the “absolute smile” model with constant (β1), strike price (Ki), square of the strike price (Ki
2), 

time-to-maturity (τj), the square of the time-to-maturity (τj
2) and strike price multiplied with time-to-

maturity (Ki ⋅ τj). By comparing A1T2 with A1T2C, the interaction effects can be examined while the 

 
5 This paper originally had sixteen models in total including “absolute smile” and “relative smile” 
approaches with interactions and high-order terms. However, this set-up may increase the chance of 
AHBS models outperforming other models thus only the top four versions of AHBS models that 
perform the best are included to compare with the mathematically sophisticated models. 
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higher-order effects can be inspected among A1T2C, A2T1C, and A2T2C. In all models, implied 

volatility (σi,j) is the dependent variable.6 

 The AHBS model requires the following four steps to implement. First, BS model’s implied 

volatility is generated from each option. Second, the ordinary least square regression model is run with 

implied volatility as an explained variable while strike price and time-to-maturity as explanatory 

variables to estimate the parameters. Third, using the obtained parameters from the second step, the 

volatility in each option’s strike price and time-to-maturity is calibrated. Last, the calibrated implied 

volatility from the third step is used to theoretically price the options with BS formula: 

 

𝐶𝑡 = 𝑆𝑡𝑁(𝑑1) − 𝐾𝑒−𝑟𝜏𝑁(𝑑2) (13) 

𝑃𝑡 = 𝐾𝑒−𝑟𝜏𝑁(−𝑑2) − 𝑆𝑡𝑁(−𝑑1) (14) 

𝑑1 =
𝑙𝑛[𝑆𝑡/𝐾]+(𝑟+𝜎2/2)𝜏

𝜎√𝑇−𝑡
, 𝑑2 = 𝑑1 − 𝜎√𝜏 (15) 

 

 where 𝐶𝑡 and 𝑃𝑡 are the call and put option prices at time 𝑡. 𝐾 is a strike price and 𝜏 is a 

time-to-maturity. 𝑟 is a risk-free rate and 𝜎 is an implied volatility. 𝑆𝑡 is a spot price at time 𝑡 and 

𝑁(∙)  denotes the standard normal cumulative distribution function. In gauging the hedging 

performance, deltas for BS and AHBS model are 𝑁(𝑑1) for call options and 𝑁(−𝑑1) for put options.  

  

3. Data 

 The sample contains Standard & Poor’s 500 (S&P 500) index European-style option contracts 

traded on the Chicago Board Options Exchange (CBOE) from Option Metrics L.L.C database. With a 

 
6 This paper does not include the higher degrees such as the third and the fourth power of the variables 
in the models because it only marginally explains the role of additional variables and does not improve 
the overall 𝑅2. 
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twenty-year period7 spanning from 1996 to 2015, daily information from the average of the best bid 

and ask price of each option contracts are used.8 

 This paper focuses on S&P 500 index option contracts for many reasons. 9  First, S&P 500 

provides a higher volume and greater liquidity of both short-term and long-term options. Second, a 

style of exercising the rights of S&P 500 options is European which is appropriate to analyze the option 

pricing models. Third, the leading studies in this area use the data from S&P 500 options so this paper 

will offer a direct comparison with their work (Bakshi et al., 1997, 2000; Dumas et al., 1998, Li and 

Pearson, 2007). 

  The summary of the option price and the total number of observations are in Table 1 with 

six intervals of moneyness and five extended intervals of time-to-maturity.10 Overall, there are 

664,449 observations for calls and 1,233,983 observations for puts. The number of observations for out-

of-the-money (OTM) options are higher than others which indicates that they are the most active traded 

options. The price of the option is calculated as the average of the best bid and ask quote at the end of 

each trading day using OTM calls and puts.11 Put options are more frequently traded than call options 

indicating that there is a high demand for portfolio insurance. Although the trading volumes for 

shorter-term options are higher than longer-term options, S&P 500 options are the most frequently 

 
7 Twenty years-long data from S&P 500 index option contracts from 1996 to 2015 are used. This is a 
lengthy sample period that includes major financial crises in the world. For example, the Asian financial 
crisis in 1997, the global financial crisis in 2007-2008, the European sovereign debt crisis in 2010-2011. 
Consequently, sub-periods analyses are conducted for the robustness check. 
8 S&P 500 index option contracts offer higher frequency data such as intraday. However, the main 
purpose of this paper is to compare prior studies that used daily data for short-term options with daily 
data for long-term options. To compare apples to apples, daily information from S&P 500 is used since 
higher frequency data will not provide a significant implication. 
9 There exist studies on the performance of AHBS model using the Korea Composite Stock Price Index 
(KOSPI) 200 options (Kim, 2009; Choi and Ok, 2011; Choi et al., 2012) but their analyses are concentrated 
on short-term options only. 
10 Five categories of time-to-maturity are divided as follows: less than 60 days (𝜏 < 60), between 60 days 
and 120 days (60 <  𝜏 < 120), between 120 days and 300 days (120 < 𝜏 < 300), between 300 days and 
600 days (300 <  𝜏 < 600), and lastly more than 600 days (600 <  𝜏). 
11 In-the-money (ITM) options are not considered because the trading volumes are significantly low 
and thus any information regarding ITM can be doubtful. Moreover, it may cause possible duplicates 
from double counting since in-the-money (ITM) calls and out-of-the-money (OTM) puts are equivalent 
for a specified strike price according to put-call parity. 
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traded contracts for the options with longer time-to-expiration and nearly the only options market to 

investigate the performance of AHBS models on the long-term options. 

 In assembling the data, this paper follows the convention of previous studies (Bakshi et al., 

1997, 2000). Any duplicates or missing values in bid or ask quote, the strike price or time-to-maturity 

are excluded. Options with less than 7 days are removed to avoid any liquidity bias and the prices 

lower than 3/8 are also excluded to control for the price discreteness. Finally, the prices that are not 

satisfying no-arbitrage conditions are eliminated. 

 Table 2 illustrates the implied volatility calculated by BS model which is used to obtain Figure 

1. The implied volatility is an average value for each moneyness across different time-to-maturity. It is 

clear to observe the “volatility smile” or “volatility sneer” effects irrespective of time-to-maturity. In 

general, the implied volatility decreases to near-the-money (NTM) but increases to OTM. Also, the 

implied volatility is mostly higher for longer time-to-maturity with an exception of deep OTM options. 

Hence, it is important to consider the alternative option pricing models to mitigate these smiling or 

sneer phenomena. 

 

4. Empirical Results 

 The theoretical prices derived from the previously discussed models, AHBS and SV, differ from 

the actual market prices of the options. The empirical results of both pricing and hedging performance 

must be compared consistently with the previous literature (Bakshi et al., 1997, 2000; Kim & Kim, 2004, 

2005; Kim, 2009; Choi & Ok, 2012). 

 Two comparison measures across different models are used: mean absolute errors (MAE) and 

root mean squared errors (RMSE).  

 

MAE = 
1

𝑇
∑

1

𝑁
∑ |𝑂𝑖(𝑡, 𝜏 ; 𝐾) − 𝑂𝑖

∗(𝑡, 𝜏 ; 𝐾)|𝑁
𝑖=1

𝑇
𝑡=1  (16) 

RMSE = √
1

𝑇
∑

1

𝑁
∑ [𝑂𝑖(𝑡, 𝜏 ; 𝐾) − 𝑂𝑖

∗(𝑡, 𝜏 ; 𝐾)]𝑁
𝑖=1

2𝑇
𝑡=1  

(17) 
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 where 𝑇  is the number of days in sample and 𝑁  is the number of options on day 𝑡 . 

𝑂𝑖
∗(𝑡, 𝜏 ; 𝐾) denotes the model price of the option 𝑖 with the time-to-maturity 𝜏 and the strike price 𝐾 

on day 𝑡. 𝑂𝑖(𝑡, 𝜏 ; 𝐾) denotes the market price of the option 𝑖 with the time-to-maturity 𝜏 and the 

strike price 𝐾 on day 𝑡. The magnitude of the error is measured by MAE with an absolute value of 

difference between market prices and model prices whereas the volatility of the error is calculated by 

RMSE with its standard deviation. It is preferred as MAE gets closer to zero and RMSE gets smaller. 

  

4.1. In-sample Pricing Performance 

The spot volatility and structural parameters are unobservable in option pricing models thus 

it is necessary to estimate the parameters of each model. The ordinary least square procedure for AHBS 

models is used and for BS model and the sum of squared errors between market prices and model 

prices of options are minimized for SV model (Bakshi et al., 1997, 2000). Using these unconstrained 

parameters, in-sample analysis compares the market prices with model prices since an estimation 

procedure indicates the market sentiment on a daily basis. 

Table 3 reports the mean and standard error of the parameter estimates for AHBS models in 

Panel A and for BS and SV models in Panel B. The majority of estimated parameters are statistically 

significant with small standard errors. Additionally, as the number of independent variables increase 

(i.e. models including higher-order terms and/or interaction terms), 𝑅2 increases which may suggest 

an overfitting problem.12 The correlation, 𝜌 , for SV model has a negative value implying that the 

implied risk-neutral distribution is negatively skewed which supports the “volatility sneer” 

phenomenon. 

 The major contribution of this paper is that it incorporates the longer time-to-maturity in the 

option pricing models to observe the extended time effect. In this study, the five categories of time-to-

maturity are divided as follows: less than 60 days (𝜏 < 60), between 60 days and 120 days (60 <  𝜏 < 

 
12 To solve an over-fitting problem, this paper examines the out-of-sample pricing performance in the 
next section. 
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120), between 120 days and 300 days (120 < 𝜏 < 300), between 300 days and 600 days (300 <  𝜏 < 600), 

and lastly more than 600 days (600 <  𝜏). 

In Table 4, the results for in-sample pricing errors by moneyness are presented. Using the 

estimated parameters, market prices with model prices are compared each day. There are three results. 

First, SV model performs the best with the smallest mean absolute errors (MAE) and root mean squared 

errors (RMSE) across six intervals for the degree of moneyness and in total. Among AHBS models, 

A1T2C (A2T1C) shows the least mean absolute errors (root mean squared errors) for in-sample pricing 

performance. When comparing SV model that has five parameters with ABHS model that has the same 

number of parameters (i.e. A2T2C model), SV model shows about half size of in-sample pricing errors 

than A2T2C model. So, the result is not simply driven by the number of parameters rather it concludes 

that SV model explains the current option’s market better than ABHS models with respect to 

moneyness. 

Second, MAE and RMSE are smaller for NTM options and increase as moneyness moves to 

OTM options for BS model. Since two measures of pricing errors, MAE and RMSE, are based on the 

absolute price of options, it is expected to see increased pricing errors as it moves to the options with a 

greater absolute value of price (i.e. NTM). SV and AHBS models generally experience the decreased 

pricing errors as moneyness moves from NTM to OTM. However, BS model shows that OTM errors 

are larger than those of NTM options. BS model still suffers from the lack of market explanation power. 

Further, AHBS models show the lowest in-sample pricing error in OTM put options implying that 

AHBS models are broadly used by professional traders and practitioners in the options market.  

Third, it is necessary to include the option’s time-to-maturity and its interaction terms as they 

demonstrate the smallest in-sample pricing errors. The model with an interaction term outperforms the 

one without it (A1T2 vs A1T2C). Likewise, the higher-order term with respect to time (A2T1C vs A2T2C) 

shows the least pricing error in total but the higher-order term with respect to strike price (A1T2C vs 

A2T2C) does not always offer smaller errors. This is because the volatility surface of time-to-maturity 

is nonlinear which can be adopted well in its square term. Overall, SV model explains the current S&P 

500 options market well with the least in-sample pricing errors. 
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The results for in-sample pricing errors by time-to-maturity are shown in Table 5. In all five 

intervals of time periods, SV model shows the least mean-absolute-errors (MAE) except for the options 

whose time-to-maturity is less than 60 days (𝜏 < 60).13 For short-term options less than 60 days (𝜏 < 

60), A2T1C illustrates the least in-sample pricing errors. It indicates that traders’ rule still shows the 

smallest in-sample pricing errors for short-term options but when it comes to the options with longer 

time-to-maturity, the mathematically sophisticated model performs the best.  

These results reaffirm the previous studies that have shown the decent performance of AHBS 

models in short-term options. Nevertheless, SV model performs the best for the entire options, 

especially long-term options. When examining the out-of-sample pricing performance of long-term 

options, it can be predicted that SV model outperforms AHBS models as well. 

 

4.2. Out-of-sample Pricing Performance 

To solve an over-fitting problem from in-sample pricing performance, the model’s out-of-

sample pricing performance is. Having more parameters may improve the in-sample setting but also 

get penalized if the extra parameter does not enhance the model’s overall fit. In this way, out-of-sample 

pricing performance controls for the stability of parameters over time and serves as an information 

constancy indicator. Using the current day’s estimated parameters, the price of options in one-day-

ahead and one-week-ahead is measured.  

One-day-ahead and one-week-ahead out-of-sample pricing errors by moneyness are shown 

in Table 6. There are four outcomes to highlight. First, SV model has the smallest mean absolute errors 

(MAE) and root mean squared errors (RMSE). Unlike the prior studies, SV model outperforms AHBS 

models when time-to-maturity is taken into consideration. Second, among AHBS models, A1T2C 

(A2T1C) performs the best with mean absolute error (root mean squared errors) for one-day-ahead out-

of-sample pricing errors. For one-week out-of-sample, A2T1C outperforms other models for both types 

of errors. Also, A1T2C outperforms A1T2 demonstrating that the models with time-to-maturity and 

 
13 RMSE results do not change MAE’s ranks. The results for MAE are not shown in the paper for saving 
the space. 
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interaction terms show smaller out-of-sample pricing errors. Thus, time-to-maturity improves the 

options' pricing performance. Yet, the models with higher-order terms do not essentially enhance the 

model fit. Third, out-of-sample pricing performance results are similar to those of in-sample pricing 

performance. For BS model, the pricing errors are smaller for NTM options and increase as moneyness 

moves to OTM while the errors decrease as moneyness moves from NTM to OTM for SV and AHBS 

models. In addition, A1T2C model among AHBS models outperforms SV model for OTM put options 

where 1.00 < 𝑆/𝐾. This result can be interpreted as the trading volumes for put options are generally 

higher than those of call options. It indicates that AHBS models are used extensively by option traders 

and propose better performance (Bollen & Whaley, 2004; Bondarenko, 2014). Fourth, the pricing errors 

increase from in-sample to out-of-sample. For MAE, the average of in-sample pricing errors is increased 

by 0.093 for one-day-ahead and 0.434 for one-week-ahead out-of-sample pricing. On average, in-sample 

pricing errors for SV model are less than those of AHBS model which means that there exists the over-

fitting problem in all models, although SV model suffers the least. To sum up, the mathematically 

sophisticated model (SV model) becomes the best model surpassing other models regardless of the 

moneyness and time-to-maturity. 

Table 7 illustrates one-day-ahead and one-week-ahead out-of-sample pricing errors by time-

to-maturity. For both one-day-ahead and one-week-ahead pricing errors, A2T1C outperforms other 

models for short-term options less than 60 days (𝜏< 60) but SV model shows the least out-of-sample 

pricing errors for longer time-to-maturity and for all maturities combined. This result suggests that 

while traders’ rule still can be useful for short-term options, option traders must consider longer time 

effect using the mathematically sophisticated models.  

It is natural to expect that traders’ rule fits the best for the options that are liquid. Because 

option traders follow traders’ rule to trade short-term options, the prices of short-term options reflect 

traders’ rule accurately. On the other hand, the trading volumes for long-term options are low which 

means that long-term options are not likely to be affected by traders’ rule. It explains why AHBS models 

do not work well for long-term options unlike short-term options. This phenomenon is known as self-

fulfilling prophecy. Self-fulfilling prophecy is defined as a situation that evokes a new behavior which 
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makes the original concept to be truly real as people adapt their behavior to it (Merton, 1959). Azariadis 

(1981) applies the self-fulfilling prophecy to the price investors conjecture based on their simultaneous 

expectations. For example, a bank is forced to default and liquidate assets because asset prices are low 

or asset prices are low as a result of mass bankruptcy and thus associated liquidation of bank assets 

(Allen & Gale, 2004). According to Cherian and Jarrow (1998), the Black-Scholes formula can be a self-

fulfilling prophecy in an incomplete market. Option traders trade short-term options more frequently 

than long-term options so unsurprisingly traders’ rule works the best for short-term options. Longer-

term options are illiquid because they are less frequently traded by traders therefore traders’ rule 

cannot be well-applied. This paper argues that traders’ rule should be more proper for short-term 

options with the most actively traded volume while the mathematically sophisticated model equips the 

best when pricing the illiquid long-term options. 

 So far, the previous studies that focus on AHBS models use short-term options and have not 

incorporated the effect of a longer period. The key contribution of this paper is that the extended 

intervals of time-to-maturity from S&P 500 index option contracts are used and conclude that traders’ 

rule is no longer useful, and the mathematically sophisticated model should be considered when 

pricing long-term options. 

 

4.3. Hedging Performance 

In addition to the pricing performance, it is important to examine the hedging performance 

since it provides essential information for professional traders in the options market. Hedging 

performance can be used to forecast the volatility of options’ price while pricing performance can be 

used to estimate and forecast the options’ price level. 

Following Baskhi et al. (1997), this paper employs the underlying asset as a single instrument 

for the hedging performance. This type of procedure allows the dimensions of uncertainty that move a 

target value of option but are not associated with the price of underlying stock to be uncontrolled. In 

practice, option traders mainly focus on the underlying asset price volatility thus hedging by an 

underlying stock as a single instrument is the most feasible for option traders to implement. 
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Assume a firm intends to hedge a short position in a call option with strike price, 𝐾, and 𝜏 

periods to expiration. Let 𝑋0,𝑡 be the residual cash position and 𝑋𝑆,𝑡  be the number of shares of the 

underlying asset to be purchased. This paper employs the delta hedging strategy solving for the 

standard minimum-variance hedging problem under SV model. The number of shares of the stock to 

be purchased as follows. 

 

𝑋𝑆,𝑡 =
𝐶𝑜𝑣[𝑑𝑆𝑡 , 𝑑𝐶𝑡]

𝑉𝑎𝑟[𝑑𝑆𝑡]
= ∆𝑆,𝑡 + 𝜌𝜎𝑣∆𝑣,𝑡

1

𝑆𝑡

 
(18) 

𝑋0,𝑡 = 𝐶𝑡 − 𝑋𝑆,𝑡 ∙ 𝑆𝑡 (19) 

 

 Suppose that portfolio rebalancing takes place at intervals of length ∆𝑡. On day 𝑡, we take a 

short position in the call option, a long position in 𝑋𝑆,𝑡 shares of the stock and invest the residual, 𝑋0,𝑡, 

in a risk-free bond maturing instantaneously. Then, on day 𝑡 + ∆𝑡, we calculate the hedging error as 

follows.  

 

𝐻𝑒𝑑𝑔𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 = 𝑋𝑆,𝑡 ∙ 𝑆𝑡+∆𝑡 + 𝑋0,𝑡𝑒𝑟∆𝑡 − 𝐶𝑡+∆𝑡 (20) 

 

 This paper employs three steps. First, we estimate the parameters implied by all options of 

day 𝑡 − 1. Next, we use these parameters with the current day’s spot index and interest rates on day 𝑡 

to construct the hedged position. Finally, the hedging errors as of day 𝑡 + 1 or 𝑡 + 7 are obtained. 

These steps are repeated for each option and every trading day in the sample. 

Table 8 presents one-day-ahead and one-week-ahead hedging errors by moneyness. Similar 

to the pricing performance, SV model shows the smallest hedging errors while BS model shows the 

largest hedging errors for both one-day-ahead and one-week-ahead irrespective of moneyness. AHBS 

models are generally improved particularly for A2T2C which performs the best among AHBS models. 

Also, the hedging performance errors becomes greater as the time period for hedging shifts from one-

day to one-week just like pricing performance outcomes. While the hedging error for BS model 

decreases as it moves from OTM call options (𝑆/𝐾 < 0.97) to OTM put options (𝑆/𝐾 > 1.06 ), the edging 
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errors for SV and AHBS models are the least for both OTM call and OTM puts. In consideration of the 

most frequently traded OTM put options and the biggest pricing and hedging errors for BS model, SV 

and AHBS model must be adopted by the market participants. 

One-day-ahead and one-week-ahead hedging errors by time-to-maturity are displayed in 

Table 9. Regardless of time-to-maturities, SV model has the lowest hedging errors while BS model has 

the highest hedging errors for both one-day-ahead and one-week-ahead. Although AHBS model 

outperforms SV model for short-term options with pricing performance, SV model is superior to other 

models in all six-time intervals. 

Looking at different time-to-maturity, the hedging errors for short-term and long-term options 

are greater than mid-term options. Considering higher prices for long-term options, the hedging errors 

for short-terms options are relatively larger than options with longer time-to-maturity. This supports 

that short-term options suffer the most errors which makes it challenging to price and hedge in the 

options market. In short, SV model is superior to other models in hedging performance irrespective of 

moneyness and time-to-maturity. 

 

5.  Robustness Check 

 For the robustness check, statistical validation tests and sub-periods analyses are conducted by 

different time-to-maturity. Table 10 represents the t-statistics of the difference between the errors of 

each model from the pair-wise comparison results. Panel A (Panel B) reports the t-statistics of the 

difference between each model’s one-day-ahead (one-week-ahead) out-of-sample absolute pricing 

errors. Likewise, Panel C (Panel D) reports the t-statistics of the difference between each model’s one-

day-ahead (one-week-ahead) hedging errors. 

 Consistent with the results in Table 7, SV model performs the best with statistically significant 

t-statistics except for short-term options. For short-term options, AHBS models are superior than SV 

model. Among the intricate AHBS models with an exception of A1T2, there is no substantial difference 

especially for mid-term and long-term options. Additionally, the significance level for pricing errors 

reduces as it moves from one-day-ahead to one-week-ahead out-of-sample pricing. 
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 Unlike pricing performance in Panel A and Panel B, hedging performance errors in Panel C 

and Panel D are not considerably different among models. The most statistically significant model is 

SV model regardless of time-to-maturity. Among the intricate AHBS models, there is no substantial 

difference except for A1T2. Also, the significance level for hedging errors reduces as it shifts from one-

day-ahead to one-week-ahead hedging. In other words, the longer the forecasting period, the smaller 

the differences between pricing and hedging errors of each model. 

 Further, supplementary analyses using sub-periods by different time-to-maturity are 

conducted. With twenty years-long data spanning from 1996 to 2015 this paper confirms whether the 

findings are maintained yearly basis. The sample period includes the major financial crises such as the 

Asian financial crisis in 1997, the global financial crisis in 2007-2008, and the European sovereign debt 

crisis in 2010-2011.  

 In Table 11, one-day-ahead and one-week-ahead out-of-sample pricing errors are presented by 

sub-periods whereas Table 12 illustrates one-day-ahead and one-week-ahead hedging errors by sub-

periods. In both tables, SV model shows the smallest pricing and hedging errors irrespective of years. 

For short-term options (𝜏 < 60), AHBS model performs slightly better than SV model in earlier years 

(1996 – 2000) but SV model continuously improves and outperforms AHBS model in recent times. This 

confirms that SV model is well-utilized in the current options market. The sub-periods analyses using 

the yearly data support that the results do not vary over time as shown in Table 11 and Table 12. The 

option pricing and hedging errors surge consistently in the market conditions such as Asian Financial 

Crisis in 1997, the global financial crisis in 2007-2008, and the European sovereign debt crisis in 2010-

2011. In such highly volatile markets, this paper confirms that the pricing and hedging performance 

deteriorates, regardless of the option pricing model. 

 

6. Conclusion 

 The option’s time-to-maturity is an important factor that must be considered when finding the 

value of the options. Since the advent of ad-hoc Black-Scholes models, traders’ rule is commonly viewed 

superior to the mathematically sophisticated models. However, most studies in this area focus only on 
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short-term options and less is known about the options with longer time-to-maturity. Using various 

time-to-maturity intervals of S&P 500 index options from 1996 to 2015, this paper investigates if traders’ 

rule still outperforms mathematically sophisticated models in the current options market with 

extended time-to-expiration. 

 With the pricing and hedging performance measures, this paper renders the following results. 

Consistent with previous studies, traders’ rule is superior to price the short-term options. This is 

because of the liquid short-term options and AHBS models well-adapted by professional traders and 

practitioners. There is no doubt the prices of short-term options reflect the traders’ rule accurately. 

 However, SV model shows the least pricing and hedging errors for the options with longer 

time-to-expiration. Since long-term options are limited in terms of their availability and popularity, the 

theoretical mathematically sophisticated model can be the most suitable. The results are statistically 

significant and remain consistent in sub-periods analyses with yearly data. 

 In a nutshell, the current literature finds that traders’ rule is useful in the options market, but 

those findings only apply to the options with shorter time-to-maturity. This paper proposes that the 

mathematically sophisticated model should be considered when pricing and hedging the long-term 

options. Future researchers and option traders must be careful with various time-to-maturity when 

applying traders’ rule in the current options market. 
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Table 1. S&P 500 Options Data 

This table describes the summary statistics. For each call and put options, the average option price and the total number of observations in six intervals of 
moneyness (𝑆/𝐾) and five extended intervals of time-to-maturity (𝜏) are reported. The sample period is from 1996 to 2015. S&P 500 option prices are 
calculated as the average of the best bid and ask quote of each option contracts. 
 

  𝝉 < 60 60 < 𝝉 < 120 120 < 𝝉 < 300 300 <  𝝉 < 600 600 <  𝝉  

 Moneyness Price Number Price Number Price Number Price Number Price Number Total 

Calls 

S/K < 0.94 2.9484 49,598 5.2724 73,915 13.1292 101,878 27.8338 108,887 46.5911 67,689 401,967 

0.94 < S/K < 0.97 6.1322 46,496 16.3747 33,428 42.2753 21,942 79.8294 15,958 126.1401 7,988 125,812 

0.97< S/K < 1.00 15.8007 56,520 33.0853 35,008 61.8184 21,138 101.7847 15,805 147.2193 8,199 136,670 

 Total 8.2938 152,614 18.2441 142,351 39.0743 144,958 69.8160 140,650 106.6502 83,876 664,449 

Puts 

1.00< S/K < 1.03 18.4877 53,669 37.6650 32,394 62.3191 20,235 100.1988 15,222 149.5359 7,938 129,458 

1.03< S/K < 1.06 10.4095 47,304 26.7345 28,202 49.8719 18,598 85.4935 14,425 135.9664 7,137 115,666 

1.06 < S/K 3.5029 223,841 7.1706 226,254 15.2203 210,412 27.8658 209,337 50.4614 119,015 988,859 

 Total 10.8000 324,814 23.8567 286,850 42.4704 249,245 71.1860 238,984 111.9879 134,090 1,233,983 
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Table 2. Black-Scholes Implied Volatility 

This table reports the implied volatility calculated by Black-Scholes model using S&P 500 options from 
1996 to 2015. The implied volatility of options is the average within each value in six intervals of 
moneyness (𝑆/𝐾) and across different time-to-maturity (𝜏). 
 

    𝜏 < 60 
60 < 𝜏  
< 120 

120 < 𝜏  
< 300 

300 < 𝜏  
< 600 

600 < 𝜏 

Calls 
S/K < 0.94 0.2230 0.1744 0.1660 0.1605 0.1570 

0.94 < S/K < 0.97 0.1510 0.1483 0.1591 0.1605 0.1588 
0.97< S/K < 1.00 0.1531 0.1583 0.1667 0.1641 0.1576 

Puts 
1.00< S/K < 1.03 0.1854 0.1939 0.2100 0.2194 0.2355 
1.03< S/K < 1.06 0.2083 0.2088 0.2194 0.2254 0.2405 

1.06 < S/K 0.3257 0.3117 0.3075 0.3068 0.3139 
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Table 3. Parameters 

The table reports the mean and the standard error of the parameter estimates for each model. R2s and 
the standard deviation for AHBS models are reported. In AHBS models, the implied volatility is treated 
as a function of strike price (𝐾) and time-to-maturity (𝜏) with higher-order terms and/or interaction 
terms. For AHBS models, each parameter is estimated by the ordinary least squares every day. BS is 
the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option pricing model with 
stochastic volatility. For BS and SV models, each parameter is estimated by minimizing the sum of 
squared errors between model and market prices every day. * p<0.05, ** p<0.01, *** p<0.00 
 

Panel A. AHBS Models 

 C 𝐾 𝐾2 𝜏 𝜏2 𝐾 ∙ 𝜏 𝑅2 

A1T2 
0.5573*** 
(0.0015) 

-2.909e-04*** 
(1.504e-06) 

 
-0.0121*** 
(0.0009) 

0.0049*** 
(0.0003) 

 
0.8137 

(0.0809) 

A1T2C 
0.7166*** 
(0.0019) 

-4.332e-04*** 
(2.046e-06) 

 
-0.1708*** 
(0.0013) 

0.0049*** 
(0.0003) 

1.441e-04*** 
(1.0727e-06) 

0.8853 
(0.0743) 

A2T1C 
0.7733*** 
(0.0030) 

-5.166e-04*** 
(5.395e-06) 

1.569e-08*** 
(4.364e-09) 

-0.1530*** 
(0.0010) 

 
1.327e-04*** 
(1.0454e-06) 

0.9021 
(0.0563) 

A2T2C 
0.7827*** 
(0.0030) 

-5.291e-04*** 
(5.186e-06) 

2.384e-08*** 
(4.141e-09) 

-0.1684*** 
(0.0012) 

0.0080*** 
(0.0003) 

1.314e-04*** 
(1.0364e-06) 

0.9080 
(0.0497) 

 
Panel B. Other Models 

 𝜎     

BS 
0.1933*** 
(0.0007) 

    

 𝜅 𝜃 𝜎𝑣 𝜌 𝑣𝑡 

SV 
0.1694*** 
(0.0073) 

0.0403*** 
(0.0005) 

0.6143*** 
(0.0033) 

-0.7649*** 
(0.0015) 

0.0483*** 
(0.0006) 
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Table 4. In-sample Pricing Errors by Moneyness 

This table reports in-sample pricing errors for S&P 500 options with respect to moneyness. Each model 
is estimated every day during the sample period and in-sample pricing errors are computed using the 
estimated parameters from the current day. BS is the Black-Scholes (1973) option pricing model. SV is 
Heston’s (1993) option pricing model with stochastic volatility. In AHBS models, the implied volatility 
is treated as a function of strike price (𝐾) and time-to-maturity (𝜏) with higher-order terms and/or 
interaction terms. 
 

Panel A. Mean Absolute Errors 

 
S/K < 0.94 

0.94 < S/K 
< 0.97 

0.97< S/K 
< 1.00 

1.00< S/K 
< 1.03 

1.03< S/K 
< 1.06 

1.06 < S/K Total 

BS 12.5548 10.6309 9.5508 8.5704 8.9864 9.8939 10.3359 
SV 2.3178 3.7641 6.4751 5.5188 4.1959 1.8727 2.8138 

A1T2 5.6630 8.8355 10.6142 5.9612 4.2879 2.3697 4.4508 
A1T2C 5.6555 7.1489 8.9826 4.4574 3.3818 1.7467 3.7378 
A2T1C 4.1450 6.2920 8.0575 4.9952 3.9964 2.5223 3.7727 
A2T2C 4.7484 6.0516 7.8355 5.4608 4.3640 2.2128 3.7614 

 
Panel B. Root Mean Squared Errors 

 S/K < 0.94 
0.94 < S/K 

< 0.97 
0.97< S/K 

< 1.00 
1.00< S/K 

< 1.03 
1.03< S/K 

< 1.06 
1.06 < S/K Total 

BS 16.3150 13.6213 12.2454 13.7642 14.7018 15.9262 15.4162 
SV 4.3208 7.2462 9.6610 9.3224 7.4736 3.4976 5.4638 

A1T2 8.9463 11.2420 13.1924 10.3320 8.1716 4.7144 7.7959 
A1T2C 11.7949 12.9103 14.0600 7.4747 6.0699 3.2317 8.1381 
A2T1C 8.2510 9.8349 11.4340 9.3133 8.3314 5.5952 7.5291 
A2T2C 10.5383 10.6361 11.8641 9.6725 8.4613 4.8287 8.0020 
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Table 5. In-sample Pricing Errors by Time-to-maturity 

This table reports in-sample pricing errors for S&P 500 options with respect to time-to-maturity, 
measured by mean absolute errors. Each model is estimated every day during the sample period and 
in-sample pricing errors are computed using the estimated parameters from the current day. BS is the 
Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option pricing model with stochastic 
volatility. In AHBS models, the implied volatility is treated as a function of strike price (𝐾) and time-
to-maturity (𝜏) with higher-order terms and/or interaction terms. 
 

 
𝜏 < 60 

60 < 𝜏 < 
120 

120 < 𝜏 < 
300 

300 < 𝜏 < 
600 

600 < 𝜏 Total 

BS 3.4269 5.5307 9.0209 15.7663 27.9278 12.3345 
SV 1.5636 1.3070 1.7212 3.9056 8.6027 3.4200 

A1T2 2.6070 2.6070 2.9351 5.1570 12.0983 5.0809 
A1T2C 1.6396 1.8208 2.5101 4.9285 12.2698 4.6338 
A2T1C 1.5286 1.6984 2.5954 4.8793 12.9937 4.7391 
A2T2C 1.6305 1.7161 2.3004 5.0249 12.9110 4.7166 

 



26 

Table 6. Out-of-sample Pricing Errors by Moneyness 

This table reports one-day-ahead and one-week-ahead out-of-sample pricing errors for S&P 500 options with respect to moneyness. Each model is estimated 
every day during the sample period and out-of-sample pricing errors are computed using the estimated parameters from the previous day or week. BS is 
the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option pricing model with stochastic volatility. In AHBS models, the implied volatility 
is treated as a function of strike price (𝐾) and time-to-maturity (𝜏) with higher-order terms and/or interaction terms. 
 

Panel A. One-day-ahead Out-of-sample Pricing Errors 

Mean Absolute Errors Root Mean Squared Errors 

 
S/K < 
0.94 

0.94 < 
S/K < 
0.97 

0.97< 
S/K < 
1.00 

1.00< 
S/K < 
1.03 

1.03< 
S/K < 
1.06 

1.06 < 
S/K 

Total  
S/K < 
0.94 

0.94 < 
S/K < 
0.97 

0.97< 
S/K < 
1.00 

1.00< 
S/K < 
1.03 

1.03< 
S/K < 
1.06 

1.06 < 
S/K 

Total 

BS 12.5624 10.6955 9.6846 8.6658 9.0113 9.8884 10.3566 BS 16.3907 13.7355 12.4227 13.9001 14.7569 15.9388 15.4683 
SV 2.6847 4.1277 6.7085 5.9076 4.5212 2.0425 3.0671 SV 4.7702 7.5874 10.0387 9.6700 7.7408 3.7742 5.7736 

A1T2 5.6965 8.8123 10.6226 6.0973 4.4443 2.4425 4.5137 A1T2 9.0475 11.2889 13.2707 10.4616 8.3284 4.7925 7.8809 
A1T2C 5.7197 7.1447 9.0006 4.6233 3.5558 1.8268 3.8160 A1T2C 12.0371 13.0122 14.1713 7.6527 6.2587 3.3712 8.2860 
A2T1C 4.2265 6.3030 8.0880 5.1571 4.1627 2.5835 3.8458 A2T1C 8.4087 9.8998 11.5253 9.4131 8.4309 5.6544 7.6194 
A2T2C 4.8384 6.0660 7.8714 5.6230 4.5338 2.2883 3.8447 A2T2C 10.8772 10.7769 12.0043 9.7999 8.6003 4.9142 8.1704 

 
Panel B. One-week-ahead Out-of-sample Pricing Errors 

Mean Absolute Errors Root Mean Squared Errors 

 
S/K < 
0.94 

0.94 < 
S/K < 
0.97 

0.97< 
S/K < 
1.00 

1.00< 
S/K < 
1.03 

1.03< 
S/K < 
1.06 

1.06 < 
S/K 

Total  
S/K < 
0.94 

0.94 < 
S/K < 
0.97 

0.97< 
S/K < 
1.00 

1.00< 
S/K < 
1.03 

1.03< 
S/K < 
1.06 

1.06 < 
S/K 

Total 

BS 12.5811 10.8666 9.9401 8.8956 9.1453 9.8717 10.4055 BS 16.6057 14.0993 12.8243 14.2140 15.0214 15.9943 15.6263 
SV 3.2975 4.8777 7.2325 6.6443 5.2322 2.4710 3.6008 SV 5.7164 8.4492 10.7873 10.3864 8.4864 4.4176 6.4755 

A1T2 5.7987 8.7356 10.5620 6.4898 4.8957 2.6817 4.7045 A1T2 9.2975 11.3856 13.3824 10.9140 8.8126 5.1485 8.1513 
A1T2C 5.9189 7.1323 8.9471 5.0776 4.0359 2.0910 4.0511 A1T2C 13.2170 13.4200 14.4869 8.3252 6.9993 3.9603 8.9392 
A2T1C 4.4481 6.2973 8.0436 5.5665 4.5908 2.7798 4.0453 A2T1C 8.9099 10.0385 11.6092 9.7577 8.7443 5.8766 7.8947 
A2T2C 5.1186 6.1219 7.8659 6.0326 4.9638 2.5222 4.0831 A2T2C 12.5039 11.3521 12.4279 10.2984 9.1025 5.2936 8.9240 
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Table 7. Out-of-sample Pricing Errors by Time-to-maturity 

This table reports one-day-ahead and one-week-ahead out-of-sample pricing errors for S&P 500 options 
with respect to time-to-maturity, measured by mean absolute errors. Each model is estimated every 
day during the sample period and out-of-sample pricing errors are computed using the estimated 
parameters from the previous day or week. BS is the Black-Scholes (1973) option pricing model. SV is 
Heston’s (1993) option pricing model with stochastic volatility. In AHBS models, the implied volatility 
is treated as a function of strike price (𝐾) and time-to-maturity (𝜏) with higher-order terms and/or 
interaction terms. 
 

Panel A. One-day-ahead Out-of-sample Pricing 
 𝜏 < 60 60 < 𝜏 < 120 120 < 𝜏 < 300 300 < 𝜏 < 600 600 < 𝜏 Total 

BS 3.4545 5.5617 9.0463 15.7767 27.9214 12.3521 
SV 1.7585 1.6353 2.0386 4.1193 8.7890 3.6681 

A1T2 2.6750 3.4395 3.0050 5.2144 5.2144 3.9097 
A1T2C 1.7297 1.9111 2.5725 4.9867 12.3604 4.7121 
A2T1C 1.6149 1.7965 2.6522 4.9324 13.0524 4.8097 
A2T2C 1.7228 1.8144 2.3758 5.0823 13.0037 4.7998 

 
Panel B. One-week-ahead Out-of-sample Pricing 

 𝜏 < 60 60 < 𝜏 < 120 120 < 𝜏 < 300 300 < 𝜏 < 600 600 < 𝜏 Total 

BS 3.5367 5.6559 9.1058 15.7794 27.8666 12.3889 
SV 2.1332 2.2623 2.6984 4.6688 9.2317 4.1989 

A1T2 2.8368 3.5844 3.2379 5.4265 12.3871 5.4945 
A1T2C 1.9129 2.1301 2.8076 5.2010 12.7768 4.9657 
A2T1C 1.7922 2.0333 2.8558 5.1056 13.2632 5.0100 
A2T2C 1.9093 2.0543 2.6225 5.2756 13.4150 5.0553 
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Table 8. Hedging Errors by Moneyness 

This table reports one-day-ahead and one-week-ahead hedging errors for S&P 500 options with respect to moneyness. Following Bakshi et al. (1997), the 
underlying asset is used as a single hedging instrument. Parameters implied by all options of the previous day are used to establish the current day’s hedging 
portfolio, which are then liquidated the following day or week later. For each target option, the hedging error is the difference between its market price and 
the replicating portfolio value. BS is the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option pricing model with stochastic volatility. In 
AHBS models, the implied volatility is treated as a function of strike price (𝐾) and time-to-maturity (𝜏) with higher-order terms and/or interaction terms. 
 

Panel A. One-day-ahead Hedging 

Mean Absolute Errors Root Mean Squared Errors 

 
S/K < 
0.94 

0.94 < 
S/K < 
0.97 

0.97< 
S/K < 
1.00 

1.00< 
S/K < 
1.03 

1.03< 
S/K < 
1.06 

1.06 < 
S/K 

Total  
S/K < 
0.94 

0.94 < 
S/K < 
0.97 

0.97< 
S/K < 
1.00 

1.00< 
S/K < 
1.03 

1.03< 
S/K < 
1.06 

1.06 < 
S/K 

Total 

BS 1.3957 1.3960 1.1301 1.1296 1.0566 0.7531 1.0056 BS 2.2695 2.1255 1.6597 1.8905 1.8152 1.4187 1.7576 
SV 0.8403 1.2023 1.1056 1.0670 0.9329 0.4952 0.7225 SV 1.6557 1.9416 1.6266 1.6955 1.5160 0.9408 1.3462 

A1T2 1.0686 1.3626 1.1149 1.0557 0.9415 0.5247 0.7942 A1T2 2.0100 2.1008 1.6293 1.6663 1.5228 0.9954 1.4713 
A1T2C 0.9893 1.2648 1.0940 1.0643 0.9446 0.5159 0.7665 A1T2C 1.9248 1.9798 1.6057 1.6802 1.5264 0.9845 1.4330 
A2T1C 0.9825 1.2648 1.0918 1.0693 0.9507 0.5206 0.7683 A2T1C 1.8973 1.9777 1.6025 1.6971 1.5418 0.9975 1.4320 
A2T2C 0.9745 1.2653 1.0918 1.0667 0.9497 0.5220 0.7672 A2T2C 1.8734 1.9796 1.6020 1.6885 1.5396 0.9998 1.4258 

 
Panel B. One-week-ahead Hedging 

Mean Absolute Errors Root Mean Squared Errors 

 
S/K < 
0.94 

0.94 < 
S/K < 
0.97 

0.97< 
S/K < 
1.00 

1.00< 
S/K < 
1.03 

1.03< 
S/K < 
1.06 

1.06 < 
S/K 

Total  
S/K < 
0.94 

0.94 < 
S/K < 
0.97 

0.97< 
S/K < 
1.00 

1.00< 
S/K < 
1.03 

1.03< 
S/K < 
1.06 

1.06 < 
S/K 

Total 

BS 3.2655 2.4626 1.7438 2.5857 2.3029 1.6273 2.1970 BS 5.7682 3.6773 2.5090 5.0008 4.2970 3.2066 4.1665 
SV 2.0553 2.2026 1.7263 2.2909 1.9419 1.0281 1.5136 SV 4.4851 3.3978 2.4977 4.1389 3.4224 2.0280 3.1160 

A1T2 2.5209 2.4051 1.7097 2.3156 1.9978 1.1244 1.7023 A1T2 5.1528 3.6229 2.4593 4.2656 3.5716 2.2543 3.4864 
A1T2C 2.3296 2.2580 1.6837 2.3303 2.0004 1.1010 1.6327 A1T2C 4.9103 3.4332 2.4325 4.2766 3.5653 2.2294 3.3743 
A2T1C 2.3171 2.2549 1.6812 2.3433 2.0110 1.1054 1.6326 A2T1C 4.8782 3.4276 2.4244 4.3244 3.6025 2.2524 3.3742 
A2T2C 2.3095 2.2611 1.6840 2.3422 2.0132 1.1078 1.6333 A2T2C 4.8478 3.4346 2.4321 4.3222 3.6095 2.2629 3.3694 
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Table 9. Hedging Errors by Time-to-maturity 

This table reports one-day-ahead and one-week-ahead hedging errors for S&P 500 options with respect 
to time-to-maturity, measured by mean absolute errors. Following Bakshi et al. (1997), the underlying 
asset is used as a single hedging instrument. Parameters implied by all options of the previous day are 
used to establish the current day’s hedging portfolio, which are then liquidated the following day or 
week later. For each target option, the hedging error is the difference between its market price and the 
replicating portfolio value. BS is the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) 
option pricing model with stochastic volatility. In AHBS models, the implied volatility is treated as a 
function of strike price (𝐾) and time-to-maturity (𝜏) with higher-order terms and/or interaction terms. 
 

Panel A. One-day-ahead Hedging 

 𝜏 < 60 60 < 𝜏 < 120 120 < 𝜏 < 300 300 < 𝜏 < 600 600 < 𝜏 Total 

BS 0.8992 0.8593 0.9294 1.0725 1.3415 1.0056 
SV 0.6989 0.5969 0.6397 0.7629 0.9908 0.7225 

A1T2 0.7933 0.7078 0.7078 0.8039 1.0275 0.7942 
A1T2C 0.7237 0.6315 0.6660 0.8010 1.1114 0.7665 
A2T1C 0.7238 0.6363 0.6712 0.8035 1.1031 0.7683 
A2T2C 0.7268 0.6361 0.6643 0.7995 1.1112 0.7672 

 
Panel B. One-week-ahead Hedging 

 𝜏 < 60 60 < 𝜏 < 120 120 < 𝜏 < 300 300 < 𝜏 < 600 600 < 𝜏 Total 

BS 2.2398 2.0266 1.9603 2.1728 2.6829 2.1970 
SV 1.7441 1.3171 1.2546 1.4625 1.9378 1.5136 

A1T2 2.0933 1.6830 1.4235 1.5500 2.0127 1.7023 
A1T2C 1.8904 1.4451 1.3188 1.5457 2.1737 1.6327 
A2T1C 1.8915 1.4604 1.3269 1.5402 2.1591 1.6326 
A2T2C 1.9032 1.4559 1.3138 1.5350 2.1819 1.6333 
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Table 10. Differences between the Errors of Each Model by Time-to-maturity 

This table reports the t-statistics of the difference between the errors by time-to-maturity in each model. Panel A reports the t-statistics of the difference 
between one-day-ahead out-of-sample pricing errors of each model. Panel B reports the t-statistics of the difference between one-week-ahead out-of-sample 
pricing errors of each model. Panel C reports t-statistics of the difference between one-day-ahead hedging errors of each model. Panel D reports t-statistics 
of the difference between one-week-ahead hedging errors of each model. BS is the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option 
pricing model with stochastic volatility. In AHBS models, the implied volatility is treated as a function of strike price (𝐾) and time-to-maturity (𝜏) with 
higher-order terms and/or interaction terms. 
 

 Panel A. 
One-day-ahead Out-of-sample Pricing 

Panel B. 
One-week-ahead Out-of-sample Pricing 

Panel C.  
One-day-ahead Hedging 

Panel D.  
One-week-ahead Hedging 

 BS SV A1T2 A1T2C A2T1C BS SV A1T2 A1T2C A2T1C BS SV A1T2 A1T2C A2T1C BS SV A1T2 A1T2C A2T1C 

 𝜏<60 

SV 266.33     197.47     69.16     56.91     

A1T2 105.73 -161.57    89.57 -107.6    33.10 -36.16    24.48 -31.59    

A1T2C 267.69 6.56 164.21   235.13 40.69 146.33   59.10 -9.97 26.12   47.57 -9.02 22.53   

A2T1C 293.62 34.77 190.78 27.03  259.82 65.98 171.15 24.69  60.84 -8.64 27.69 1.40  49.28 -7.54 24.12 1.52  

A2T2C 269.87 8.20 166.26 1.54 -25.65 236.92 41.70 147.85 0.69 -24.23 58.30 -10.95 25.24 -0.95 -2.36 46.74 -9.86 21.71 -0.83 -2.35 

 60<𝜏<120 

SV 469.82     366.07     112.56     96.87     

A1T2 207.58 -245.06    194.96 -161.0    57.86 -52.45    51.61 -43.39    

A1T2C 413.89 -52.61 193.86   380.06 20.71 176.77   91.90 -19.06 33.03   80.84 -14.83 28.32   

A2T1C 435.21 -32.54 213.53 20.11  397.40 37.27 192.81 15.74  91.15 -20.43 32.00 -1.23  79.46 -16.32 26.91 -1.45  

A2T2C 432.28 -35.93 210.67 16.90 -3.27 394.04 33.65 189.55 12.25 -3.54 91.02 -20.51 31.90 -1.32 -0.09 79.66 -16.11 27.11 -1.25 0.20 

 120<𝜏<300 

SV 604.86     509.76     125.01     122.82     

A1T2 474.52 -123.15    442.93 -61.15    88.98 -34.98    91.38 -30.12    

A1T2C 543.77 -83.15 52.03   503.19 -14.22 49.20   108.52 -15.45 19.35   109.04 -12.73 17.25   

A2T1C 535.43 -94.56 42.18 -11.30  499.79 -20.54 43.77 -6.36  104.79 -18.35 16.20 -3.00  106.05 -15.17 14.68 -2.49  

A2T2C 571.01 -56.24 78.75 29.83 41.49 527.34 10.39 73.05 25.65 32.40 110.77 -13.83 21.16 1.70 4.70 109.78 -12.16 17.87 0.59 3.08 

 300<𝜏<600 

SV 643.78     582.02     122.94     123.90     

A1T2 553.98 -87.82    523.76 -56.58    104.33 -18.60    106.22 -17.17    

A1T2C 571.54 -71.21 16.79   540.24 -40.58 16.01   104.94 -17.71 0.84   106.13 -17.14 0.01   

A2T1C 585.65 -70.03 21.59 4.25  556.79 -34.96 23.76 7.21  103.32 -18.92 -0.45 -1.28  104.94 -17.96 -0.87 -0.88  

A2T2C 558.72 -76.54 9.48 -7.00 -11.39 530.40 -45.13 10.48 -5.28 -12.54 106.74 -16.01 2.56 1.71 2.99 107.13 -16.34 0.84 0.83 1.71 

 𝜏>600 

SV 453.48     430.57     90.64     86.51     

A1T2 356.17 -103.97    341.60 -94.07    79.57 -10.77    76.16 -10.36    

A1T2C 304.76 -86.74 -4.76   277.36 -78.65 -8.29   53.88 -35.44 -24.73   53.69 -31.84 -21.63   

A2T1C 319.03 -120.09 -23.67 -15.15  305.42 -109.4 -22.34 -9.84  58.88 -31.27 -20.45 4.47  56.67 -29.63 -19.31 2.51  

A2T2C 300.84 -107.16 -20.44 -13.20 1.11 269.26 -94.67 -22.26 -11.58 -3.12 55.28 -34.86 -24.03 0.93 -3.57 53.10 -33.02 -22.72 -0.92 -3.45 
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Table 11. Out-of-sample Pricing Errors for Sub-periods by Time-to-maturity 

This table reports one-day-ahead and one-week-ahead out-of-sample pricing errors by time-to-maturity for sub-periods from 1996 to 2015, measured by 
mean absolute errors. Each model is estimated every day during the sample period and out-of-sample pricing errors are computed using the estimated 
parameters from the previous day or week. BS is the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option pricing model with stochastic 
volatility. In AHBS models, the implied volatility is treated as a function of strike price (𝐾) and time-to-maturity (𝜏) with higher-order terms and/or 
interaction terms. 
 

Panel A. One-day-ahead Out-of-sample Pricing 
 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

 𝜏<60 

BS 1.329 2.060 3.160 4.003 2.870 2.932 2.979 1.927 2.152 1.934 2.196 3.270 5.359 2.828 3.242 3.908 3.721 3.757 3.903 4.535 

SV 0.672 1.206 1.969 2.514 1.613 1.283 1.236 1.031 1.459 1.301 1.347 1.779 2.311 1.575 1.986 2.067 1.809 1.452 1.846 2.127 

A1T2 0.809 1.349 2.312 2.370 1.956 2.170 1.989 1.528 1.485 1.512 1.835 2.517 2.805 2.590 2.728 3.119 2.728 2.592 3.747 4.302 

A1T2C 0.603 0.967 1.550 1.595 1.560 1.636 1.435 1.093 1.069 1.060 1.245 1.721 2.177 1.741 1.819 1.974 1.556 1.657 2.163 2.396 

A2T1C 0.533 0.903 1.520 1.797 1.477 1.288 1.221 1.025 1.147 1.128 1.178 1.585 1.950 1.487 1.770 1.815 1.571 1.685 1.939 2.147 

A2T2C 0.544 0.938 1.535 1.610 1.502 1.439 1.334 1.056 1.079 1.073 1.217 1.669 2.030 1.577 1.856 1.934 1.648 1.814 2.236 2.486 

 60<𝜏<120 

BS 2.489 3.246 5.604 6.264 4.727 4.369 4.209 3.162 3.407 3.029 3.609 5.829 7.436 4.886 5.221 6.274 5.886 5.463 6.151 7.006 

SV 0.710 1.113 1.743 1.728 1.569 1.239 1.184 0.956 0.920 1.038 1.314 2.020 2.464 1.517 1.705 1.995 1.620 1.286 1.707 1.906 

A1T2 0.964 1.283 2.364 2.299 2.402 2.710 2.480 1.846 1.562 1.852 2.416 3.248 4.419 3.145 3.316 4.151 3.403 3.049 4.487 4.933 

A1T2C 0.725 0.957 1.330 1.311 1.805 2.051 1.665 1.151 0.963 1.211 1.511 2.020 3.417 1.770 1.885 2.471 1.661 1.605 2.065 2.295 

A2T1C 0.677 0.951 1.319 1.356 1.612 1.470 1.264 1.035 0.952 1.207 1.441 1.912 3.055 1.407 1.749 2.093 1.655 1.748 2.030 2.325 

A2T2C 0.670 0.946 1.311 1.323 1.620 1.515 1.305 1.045 0.961 1.207 1.459 1.919 2.995 1.427 1.787 2.112 1.681 1.749 2.077 2.370 

 120<𝜏<300 

BS 3.906 5.053 9.554 11.461 8.640 6.616 6.243 5.805 6.911 5.824 6.603 10.210 10.478 8.581 9.494 10.652 10.500 9.167 10.019 12.525 

SV 1.255 1.497 1.955 2.318 1.942 1.518 1.502 1.274 1.455 1.607 2.117 2.820 3.038 2.045 2.092 2.429 2.128 1.948 1.989 2.253 

A1T2 1.404 1.803 2.181 2.279 2.450 2.736 2.673 2.277 2.033 1.990 2.939 3.325 4.667 3.573 3.032 3.896 3.324 2.852 2.927 4.035 

A1T2C 1.406 1.803 2.140 2.171 2.378 2.701 2.511 1.847 1.707 1.688 2.390 3.096 3.939 3.086 2.517 3.376 2.420 2.255 2.725 3.036 

A2T1C 1.370 1.873 2.169 2.593 2.267 2.425 2.377 1.693 1.728 1.720 2.341 3.239 4.501 2.506 2.383 3.110 2.544 2.500 2.919 3.739 

A2T2C 1.344 1.841 2.085 2.136 1.946 1.904 1.833 1.553 1.651 1.671 2.342 3.027 3.388 2.291 2.169 2.624 2.500 2.412 2.776 3.221 

 300<𝜏<600 

BS 7.486 8.682 15.364 18.738 15.181 11.369 9.736 9.886 12.039 10.753 11.247 16.373 17.066 13.665 15.264 18.688 19.902 15.735 18.745 21.270 

SV 2.881 3.184 3.773 3.636 3.311 2.475 2.569 2.733 2.982 3.520 4.510 5.720 5.284 3.613 3.837 4.703 5.191 4.071 4.735 4.638 

A1T2 3.447 4.348 6.127 6.446 4.520 4.236 3.984 3.579 3.607 4.010 4.909 6.429 6.618 4.818 4.836 6.030 5.904 4.634 5.989 5.733 

A1T2C 3.330 3.809 4.913 4.364 4.049 4.123 4.218 3.679 3.478 4.171 4.932 6.329 6.267 4.590 4.669 5.871 5.661 4.442 5.893 5.786 

A2T1C 2.995 3.489 4.846 4.543 3.841 3.250 3.220 3.606 3.726 4.286 4.737 5.887 6.359 3.897 4.227 5.495 6.052 4.818 5.856 6.491 

A2T2C 3.021 3.608 4.909 4.391 3.994 3.520 3.196 3.596 3.688 4.261 4.782 6.103 6.663 3.937 4.363 5.596 6.161 4.973 6.361 6.607 

 𝜏>600 

BS 11.094 12.647 20.019 25.678 20.000 15.655 14.361 14.956 18.069 16.482 17.713 25.691 27.427 19.835 26.762 30.832 33.524 29.311 31.727 38.554 

SV 4.967 5.047 6.066 6.148 5.186 4.074 4.136 5.122 5.214 6.579 9.017 10.934 9.087 6.348 7.441 8.976 10.058 9.621 10.000 11.221 

A1T2 5.478 5.645 10.900 12.701 7.425 8.155 8.420 6.752 6.753 8.048 10.723 14.691 14.253 8.845 9.835 11.442 11.852 11.768 14.335 18.304 

A1T2C 6.505 7.499 11.312 11.537 8.980 10.964 10.174 8.905 7.887 9.546 11.452 15.281 15.634 11.099 10.709 13.684 13.208 11.011 11.960 15.683 

A2T1C 6.011 6.377 10.838 12.814 9.940 8.456 7.846 8.112 8.720 9.851 10.975 13.775 15.556 9.387 11.657 14.295 15.487 13.670 13.417 16.546 

A2T2C 5.796 6.373 10.747 11.982 9.215 6.533 6.619 8.047 8.716 9.699 11.083 13.898 13.569 9.309 11.641 14.659 15.517 13.543 13.580 17.236 
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Panel B. One-week-ahead Out-of-sample Pricing 

 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

 𝜏<60 

BS 1.358 2.145 3.253 4.082 2.972 3.010 3.051 1.959 2.209 1.964 2.223 3.317 5.533 2.872 3.346 4.032 3.805 3.814 3.955 4.657 

SV 0.767 1.479 2.385 2.774 1.988 1.853 1.762 1.223 1.618 1.386 1.463 2.162 3.135 1.853 2.339 2.624 2.053 1.662 2.148 2.740 

A1T2 0.835 1.506 2.395 2.470 2.197 2.556 2.196 1.613 1.600 1.561 1.875 2.626 3.286 2.742 2.857 3.383 2.803 2.638 3.777 4.600 

A1T2C 0.666 1.185 1.652 1.739 1.858 2.019 1.683 1.185 1.180 1.105 1.270 1.853 2.728 1.888 1.989 2.284 1.632 1.678 2.159 2.788 

A2T1C 0.618 1.126 1.622 1.908 1.769 1.634 1.459 1.117 1.240 1.160 1.194 1.715 2.469 1.636 1.938 2.114 1.651 1.711 1.959 2.506 

A2T2C 0.628 1.159 1.640 1.755 1.798 1.830 1.590 1.156 1.192 1.119 1.243 1.807 2.569 1.739 2.031 2.242 1.729 1.843 2.248 2.864 

 60<𝜏<120 

BS 2.527 3.353 5.740 6.416 4.854 4.514 4.335 3.192 3.457 3.030 3.655 5.809 7.717 4.933 5.316 6.391 5.986 5.544 6.219 7.093 

SV 0.967 1.440 2.622 2.503 2.249 2.099 1.896 1.247 1.250 1.229 1.621 2.662 3.608 2.047 2.468 2.874 2.089 1.730 2.343 2.546 

A1T2 1.063 1.499 2.562 2.428 2.534 3.064 2.655 1.955 1.652 1.885 2.464 3.407 4.671 3.392 3.551 4.355 3.535 3.128 4.505 5.032 

A1T2C 0.886 1.230 1.640 1.630 2.079 2.398 1.898 1.307 1.075 1.267 1.587 2.258 3.762 2.033 2.212 2.777 1.849 1.712 2.178 2.518 

A2T1C 0.865 1.229 1.626 1.666 1.911 1.836 1.537 1.190 1.062 1.264 1.522 2.189 3.443 1.731 2.079 2.451 1.832 1.854 2.170 2.547 

A2T2C 0.863 1.220 1.636 1.644 1.915 1.892 1.595 1.201 1.070 1.266 1.541 2.187 3.406 1.749 2.119 2.470 1.857 1.861 2.199 2.617 

 120<𝜏<300 

BS 3.910 5.123 9.648 11.514 8.725 6.786 6.322 5.840 6.913 5.820 6.619 10.220 10.685 8.618 9.581 10.696 10.527 9.228 10.045 12.567 

SV 1.455 1.830 3.128 3.263 2.765 2.359 2.241 1.653 1.827 1.814 2.350 3.659 4.014 2.557 3.003 3.416 2.670 2.386 2.594 2.955 

A1T2 1.550 2.081 2.558 2.603 2.766 3.099 2.945 2.466 2.101 2.062 2.973 3.537 4.889 3.967 3.433 4.225 3.578 2.981 3.102 4.130 

A1T2C 1.567 2.084 2.530 2.567 2.698 3.023 2.791 2.072 1.788 1.779 2.481 3.388 4.213 3.434 2.900 3.695 2.676 2.349 2.906 3.075 

A2T1C 1.492 2.084 2.562 2.934 2.610 2.819 2.686 1.882 1.821 1.806 2.432 3.455 4.732 2.854 2.802 3.319 2.734 2.613 2.981 3.707 

A2T2C 1.505 2.116 2.548 2.543 2.331 2.193 2.200 1.733 1.762 1.762 2.438 3.335 3.723 2.641 2.553 2.932 2.680 2.539 2.951 3.312 

 300<𝜏<600 

BS 7.499 8.658 15.421 18.860 15.305 11.535 9.684 9.899 12.033 10.789 11.227 16.275 16.951 13.776 15.273 18.658 19.896 15.725 18.716 21.221 

SV 3.027 3.458 5.145 4.752 4.191 3.365 3.165 3.050 3.286 3.708 4.648 6.396 6.224 3.952 4.654 5.470 5.602 4.327 5.243 5.099 

A1T2 3.614 4.577 6.634 6.874 4.889 4.648 4.264 3.757 3.646 4.120 4.978 6.720 6.921 5.159 4.958 6.469 6.122 4.693 6.194 5.702 

A1T2C 3.452 4.033 5.449 4.725 4.379 4.502 4.426 3.861 3.567 4.272 5.019 6.714 6.638 4.905 4.817 6.315 5.819 4.495 6.100 5.815 

A2T1C 3.144 3.690 5.380 4.919 4.274 3.750 3.524 3.743 3.822 4.355 4.822 6.109 6.561 4.121 4.523 5.653 6.159 4.908 5.889 6.500 

A2T2C 3.197 3.861 5.480 4.730 4.340 3.771 3.446 3.694 3.784 4.334 4.871 6.489 7.194 4.119 4.618 5.851 6.230 5.077 6.568 6.497 

 𝜏>600 

BS 11.044 12.685 19.795 25.820 20.171 15.693 14.251 15.012 18.076 16.453 17.717 25.514 26.867 20.001 26.736 30.713 33.512 29.297 31.676 38.467 

SV 5.091 5.178 8.061 7.440 5.918 5.347 4.811 5.465 5.612 6.773 9.077 11.358 9.715 6.735 8.161 9.636 10.402 9.867 10.323 11.478 

A1T2 5.617 5.871 11.487 13.248 7.763 8.642 8.713 6.984 7.026 8.155 10.823 15.089 14.554 9.205 10.112 11.608 12.072 11.976 14.696 18.200 

A1T2C 6.514 7.560 11.818 11.646 9.042 11.055 10.363 9.176 8.082 9.741 11.569 15.291 15.621 11.446 11.154 14.085 13.555 11.842 13.382 15.327 

A2T1C 6.194 6.441 11.555 13.642 9.912 8.401 8.162 8.378 8.955 10.119 11.066 13.985 15.823 9.718 11.949 14.675 15.544 14.013 13.849 16.160 

A2T2C 5.946 6.413 11.339 12.164 9.267 7.191 7.052 8.352 8.895 9.891 11.243 14.010 13.794 9.658 11.935 15.064 15.617 14.421 15.068 16.773 
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Table 12. Hedging Errors for Sub-periods by Time-to-maturity 

This table reports one-day-ahead and one-week-ahead hedging errors by time-to-maturity for sub-periods from 1996 to 2015, measured by mean absolute 
errors. Following Bakshi et al. (1997), the underlying asset is used as a single hedging instrument. Parameters implied by all options of the previous day are 
used to establish the current day’s hedging portfolio, which are then liquidated the following day or week later. For each target option, the hedging error is 
the difference between its market price and the replicating portfolio value. BS is the Black-Scholes (1973) option pricing model. SV is Heston’s (1993) option 
pricing model with stochastic volatility. In AHBS models, the implied volatility is treated as a function of strike price (𝐾) and time-to-maturity (𝜏) with 
higher-order terms and/or interaction terms. 

Panel A. One-day-ahead Hedging 
 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

 𝜏<60 

BS 0.401 0.783 0.958 1.112 1.320 0.984 0.911 0.572 0.592 0.526 0.559 1.161 1.701 0.795 0.884 1.136 0.644 0.660 0.734 1.148 

SV 0.349 0.711 0.819 0.969 1.178 0.864 0.772 0.513 0.523 0.427 0.465 0.927 1.407 0.655 0.703 0.853 0.491 0.471 0.544 0.832 

A1T2 0.359 0.712 0.867 0.981 1.225 0.947 0.877 0.560 0.539 0.477 0.518 1.026 1.648 0.748 0.777 0.962 0.556 0.562 0.639 0.999 

A1T2C 0.352 0.695 0.819 0.936 1.186 0.906 0.814 0.530 0.512 0.440 0.477 0.947 1.536 0.672 0.711 0.863 0.495 0.504 0.565 0.893 

A2T1C 0.349 0.693 0.820 0.948 1.185 0.882 0.790 0.526 0.517 0.446 0.473 0.940 1.481 0.661 0.719 0.869 0.503 0.512 0.569 0.891 

A2T2C 0.350 0.694 0.821 0.937 1.186 0.895 0.809 0.529 0.513 0.442 0.475 0.944 1.517 0.666 0.722 0.872 0.505 0.517 0.571 0.903 

 60<𝜏<120 

BS 0.488 0.749 1.111 1.101 1.357 1.002 0.833 0.548 0.571 0.494 0.596 1.285 1.729 0.838 0.905 1.171 0.765 0.680 0.853 1.077 

SV 0.414 0.681 0.898 0.852 1.143 0.827 0.642 0.423 0.417 0.351 0.459 0.948 1.367 0.603 0.612 0.768 0.512 0.426 0.531 0.638 

A1T2 0.417 0.674 0.924 0.895 1.188 0.922 0.766 0.478 0.460 0.411 0.526 1.069 1.758 0.712 0.740 0.941 0.611 0.522 0.662 0.833 

A1T2C 0.412 0.670 0.890 0.858 1.158 0.874 0.698 0.442 0.427 0.377 0.482 0.977 1.623 0.619 0.651 0.816 0.538 0.456 0.560 0.713 

A2T1C 0.409 0.670 0.892 0.861 1.155 0.854 0.678 0.437 0.429 0.378 0.479 0.974 1.584 0.611 0.661 0.822 0.550 0.471 0.572 0.725 

A2T2C 0.409 0.670 0.892 0.860 1.156 0.859 0.685 0.438 0.429 0.378 0.479 0.974 1.592 0.612 0.663 0.823 0.550 0.469 0.569 0.722 

 120<𝜏<300 

BS 0.453 0.748 1.162 1.241 1.426 1.048 0.922 0.608 0.668 0.580 0.679 1.435 1.751 0.963 1.052 1.303 0.876 0.768 0.840 1.124 

SV 0.405 0.695 0.952 1.013 1.188 0.832 0.663 0.431 0.471 0.358 0.475 0.977 1.159 0.635 0.659 0.751 0.560 0.469 0.465 0.597 

A1T2 0.384 0.669 0.939 1.020 1.184 0.874 0.757 0.485 0.512 0.404 0.523 1.089 1.427 0.762 0.782 0.908 0.643 0.534 0.546 0.747 

A1T2C 0.383 0.668 0.935 1.016 1.180 0.864 0.720 0.462 0.494 0.377 0.486 1.028 1.329 0.681 0.716 0.820 0.591 0.491 0.488 0.654 

A2T1C 0.382 0.667 0.933 1.015 1.178 0.857 0.711 0.457 0.494 0.377 0.484 1.032 1.382 0.657 0.725 0.831 0.600 0.504 0.500 0.685 

A2T2C 0.383 0.669 0.934 1.015 1.175 0.839 0.692 0.452 0.496 0.379 0.484 1.026 1.273 0.652 0.720 0.819 0.598 0.501 0.495 0.665 

 300<𝜏<600 

BS 0.571 0.890 1.469 1.598 1.770 1.267 1.095 0.699 0.759 0.726 0.796 1.524 2.173 1.020 1.225 1.508 1.092 0.802 1.030 1.298 

SV 0.519 0.848 1.346 1.394 1.525 1.050 0.800 0.503 0.564 0.472 0.581 1.087 1.378 0.620 0.785 0.881 0.749 0.513 0.616 0.707 

A1T2 0.502 0.815 1.341 1.402 1.526 1.053 0.825 0.538 0.576 0.512 0.600 1.157 1.457 0.706 0.874 0.996 0.821 0.552 0.669 0.777 

A1T2C 0.502 0.816 1.329 1.422 1.529 1.059 0.844 0.546 0.589 0.519 0.595 1.168 1.456 0.695 0.873 0.998 0.811 0.544 0.662 0.758 

A2T1C 0.498 0.815 1.328 1.422 1.530 1.051 0.817 0.537 0.592 0.522 0.592 1.163 1.500 0.653 0.880 1.001 0.813 0.557 0.673 0.781 

A2T2C 0.499 0.815 1.328 1.424 1.530 1.044 0.798 0.535 0.592 0.522 0.592 1.164 1.408 0.644 0.863 0.983 0.810 0.554 0.674 0.777 

 𝜏>600 

BS 0.714 0.926 2.105 1.886 2.114 1.776 1.470 0.914 1.007 0.896 0.894 1.715 2.467 1.168 1.385 1.734 1.288 1.121 1.285 1.596 

SV 0.650 0.902 1.963 1.705 1.921 1.602 1.183 0.712 0.764 0.604 0.688 1.276 1.610 0.751 1.002 1.112 0.983 0.819 0.866 1.042 

A1T2 0.647 0.863 1.988 1.701 1.931 1.605 1.191 0.735 0.796 0.646 0.705 1.366 1.755 0.813 1.045 1.180 1.006 0.852 0.908 1.069 

A1T2C 0.658 0.869 1.999 1.777 1.988 1.670 1.298 0.780 0.860 0.695 0.743 1.476 1.915 0.950 1.167 1.385 1.091 0.918 0.998 1.221 

A2T1C 0.653 0.868 1.999 1.797 1.996 1.609 1.180 0.766 0.876 0.709 0.733 1.457 1.841 0.849 1.164 1.343 1.098 0.931 0.998 1.192 

A2T2C 0.652 0.867 2.002 1.782 1.997 1.625 1.222 0.768 0.873 0.705 0.734 1.459 1.818 0.855 1.176 1.387 1.102 0.942 1.020 1.246 
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Panel B. One-week-ahead Hedging 

 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

 𝜏<60 

BS 0.843 1.753 2.223 2.601 2.677 2.426 2.072 1.569 1.394 1.191 1.274 2.337 3.613 1.865 2.057 2.247 1.686 1.467 1.738 2.875 

SV 0.758 1.629 1.879 2.340 2.446 2.174 1.899 1.461 1.272 1.055 1.067 1.900 3.352 1.638 1.662 1.775 1.346 1.039 1.253 2.313 

A1T2 0.770 1.632 1.984 2.355 2.542 2.357 2.106 1.534 1.289 1.119 1.172 2.102 3.809 1.809 1.838 1.978 1.501 1.239 1.522 2.596 

A1T2C 0.760 1.594 1.868 2.280 2.471 2.271 2.011 1.480 1.244 1.061 1.096 1.953 3.637 1.669 1.697 1.791 1.359 1.109 1.327 2.384 

A2T1C 0.755 1.583 1.870 2.301 2.463 2.226 1.960 1.478 1.252 1.072 1.090 1.934 3.511 1.648 1.711 1.794 1.373 1.126 1.320 2.403 

A2T2C 0.758 1.588 1.872 2.282 2.469 2.251 1.998 1.481 1.247 1.064 1.091 1.943 3.589 1.659 1.720 1.806 1.380 1.136 1.339 2.412 

 60<𝜏<120 

BS 0.942 1.388 2.132 2.273 2.500 2.233 1.825 1.200 1.223 1.017 1.312 2.335 3.751 1.824 2.185 2.417 1.796 1.486 1.935 2.485 

SV 0.779 1.254 1.495 1.703 2.136 1.772 1.452 0.954 0.918 0.796 0.960 1.667 3.164 1.415 1.445 1.670 1.206 0.892 1.180 1.706 

A1T2 0.776 1.242 1.612 1.789 2.197 2.016 1.731 1.033 0.993 0.860 1.129 1.898 3.832 1.581 1.757 1.969 1.448 1.097 1.497 2.076 

A1T2C 0.767 1.230 1.482 1.709 2.135 1.885 1.603 0.966 0.933 0.809 1.026 1.732 3.608 1.430 1.549 1.725 1.267 0.954 1.274 1.829 

A2T1C 0.764 1.231 1.488 1.714 2.130 1.849 1.561 0.966 0.938 0.810 1.019 1.722 3.555 1.419 1.575 1.738 1.295 0.985 1.282 1.864 

A2T2C 0.764 1.231 1.489 1.711 2.132 1.856 1.578 0.965 0.938 0.810 1.019 1.720 3.556 1.419 1.578 1.738 1.296 0.980 1.275 1.858 

 120<𝜏<300 

BS 0.865 1.329 2.454 2.551 2.620 2.199 1.974 1.332 1.333 1.138 1.402 2.603 3.435 2.059 2.534 2.684 2.067 1.696 1.851 2.444 

SV 0.758 1.262 1.705 1.905 2.090 1.639 1.428 0.930 0.944 0.772 0.971 1.728 2.493 1.569 1.592 1.651 1.281 0.995 1.034 1.445 

A1T2 0.677 1.201 1.752 1.935 2.054 1.750 1.613 1.027 0.993 0.819 1.054 1.891 2.870 1.688 1.867 1.912 1.507 1.130 1.205 1.755 

A1T2C 0.681 1.202 1.721 1.922 2.033 1.717 1.545 0.974 0.965 0.778 0.977 1.790 2.732 1.585 1.724 1.761 1.371 1.042 1.104 1.566 

A2T1C 0.682 1.200 1.725 1.927 2.038 1.697 1.528 0.966 0.969 0.781 0.973 1.787 2.820 1.551 1.747 1.772 1.397 1.069 1.110 1.617 

A2T2C 0.683 1.202 1.727 1.923 2.026 1.666 1.489 0.963 0.970 0.782 0.972 1.782 2.666 1.547 1.738 1.754 1.394 1.061 1.112 1.596 

 300<𝜏<600 

BS 1.076 1.506 2.978 3.111 3.078 2.517 2.232 1.515 1.499 1.484 1.660 2.871 4.296 2.184 3.076 3.096 2.504 1.760 2.336 2.594 

SV 0.917 1.500 2.428 2.540 2.500 1.985 1.619 1.034 1.113 1.013 1.218 2.084 3.050 1.522 2.020 1.895 1.709 1.128 1.363 1.493 

A1T2 0.846 1.409 2.424 2.548 2.462 1.978 1.655 1.111 1.111 1.078 1.216 2.184 3.151 1.598 2.253 2.091 1.867 1.204 1.504 1.665 

A1T2C 0.846 1.388 2.479 2.591 2.478 2.017 1.709 1.144 1.133 1.094 1.207 2.199 3.149 1.586 2.255 2.092 1.845 1.189 1.482 1.637 

A2T1C 0.836 1.382 2.486 2.595 2.485 2.002 1.662 1.131 1.140 1.102 1.201 2.179 3.225 1.527 2.267 2.086 1.853 1.214 1.491 1.670 

A2T2C 0.837 1.383 2.486 2.597 2.484 1.998 1.625 1.131 1.140 1.102 1.201 2.192 3.096 1.526 2.242 2.060 1.846 1.208 1.504 1.662 

 𝜏>600 

BS 1.275 1.309 4.582 3.639 3.382 3.633 3.093 1.952 2.162 1.799 1.854 3.579 4.636 2.358 3.626 3.734 3.020 2.413 2.760 3.154 

SV 1.100 1.293 3.898 3.082 3.035 3.106 2.489 1.512 1.615 1.265 1.403 2.718 3.361 1.707 2.680 2.446 2.327 1.687 1.812 2.123 

A1T2 1.105 1.222 3.909 3.080 2.995 3.133 2.399 1.553 1.704 1.336 1.434 2.883 3.496 1.718 2.790 2.602 2.380 1.788 1.929 2.258 

A1T2C 1.124 1.217 4.183 3.258 3.063 3.379 2.689 1.655 1.834 1.413 1.494 3.071 3.751 1.921 3.088 2.983 2.581 1.928 2.101 2.437 

A2T1C 1.107 1.216 4.190 3.304 3.078 3.172 2.467 1.644 1.865 1.443 1.478 3.023 3.633 1.846 3.088 2.892 2.601 1.955 2.102 2.418 

A2T2C 1.108 1.217 4.198 3.275 3.071 3.236 2.516 1.643 1.858 1.434 1.477 3.024 3.674 1.863 3.112 2.977 2.611 1.981 2.147 2.489 
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Figure 1. Volatility Surface 

This figure illustrates S&P 500 volatility surface using Black-Scholes implied volatility from the sample 
period from 1996 to 2015. With six intervals of moneyness (𝑆/𝐾) and five intervals of time-to-maturity 
(𝜏), the implied volatility is the average value for each moneyness across different time-to-maturity. 
 

 

 

 


