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ABSTRACT 

 

This study suggests methods to estimate a stochastic volatility model using both daily high and low 

prices and close prices of underlying asset. To estimate parameters and initial volatility of volatility 

process, the likelihood-based inferences of Markov chain Monte Carlo (MCMC) are conducted. 

Simulation studies reveal that i) the model with high/low prices as well as close prices is superior to the 

traditional model using close prices only in both estimation and option prices, and ii) the leverage effect 

(the negative correlation effect of Black (1976)) is not be a crucial factor in pricing options when high 

and low prices are considered in estimation. This finding suggests that high and low prices substitute 

for the effect of correlation, known difficult to be estimated, in pricing options. 
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1. Introduction 

Stochastic movement of volatility has been well documented market-wide, and measuring 

volatility is an important issue for valuation of derivatives. Pricing options, Heston (1993) suggests a 

continuous-time square-root stochastic volatility model, in which innovations to volatility are partially 

correlated with innovations to the price of stock. He demonstrates that out-of-the-money (OTM) put 

option prices depend on the negative correlation. However, correlation is hard to be estimated and its 

estimates widely vary time to time. In this paper, we suggest a couple of estimators mitigating the 

correlation effect in option pricing. The estimators use daily high and low prices of underlying asset 

(H/L prices hereafter) in addition to daily close prices. Daily H/L prices reflect intraday movement of 

underlying asset on estimation for initial volatility as well as parameters of volatility process.  

Over-the-counter (OTC) derivatives have in general longer maturity than exchange traded options 

do. Pricing OTC options requires volatility term structure implied in plain vanilla options, but longer-

term maturity options are not frequently traded in exchanges. Black and Scholes (1973) or Heston 

models are popular in option pricing since both models provides analytic solutions. Unlike Heston 

model, Jacquier et al. (2004) and Yu (2005) propose non-affine lognormal autoregressive conditional 

volatility models. Although their models are less popular than Heston model, they fit well movement 

of stocks empirically. Because of such reason, we choose a lognormal autoregressive volatility process 

of Yu (2005).  

While most studies including Jacquier et al. (2004) and Yu (2005) use daily or weekly close price 

data for the estimation, Gallant et al. (1999) use close-to-close returns along with the range data. Range 

is defined by the difference between the daily H/L log prices. Alizadeh et al. (2002) also show that 

range-based volatility proxies are more efficient than volatilities estimated on the basis of absolute daily 

returns and robust to market microstructure noise. Recently, high frequency data are available, so that 

estimations can be easily performed on the continuous time basis. High frequency data, however, are 

expensive but daily open, close, high and low prices are cost-free and available with lengthy time-series. 
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Both bid-ask bounce and asynchronous trading problem are fairly mild as Brandt and Diebold (2006) 

point out. Horst et al. (2012) also estimates a stochastic volatility model using full opening, high, low 

and closing prices and demonstrate that the use of full information can improve estimation of volatility. 

Those studies focus on estimation, but we do option prices. In this paper, we examine whether range or 

H/L prices improve option prices and test which estimators are best. 

All models using H/L prices assume, to the best of our knowledge, independent innovations 

between prices and volatility, i.e., zero correlation. On the other way, studies on stochastic volatility 

models with correlation do not consider H/L prices. It may be because there is no explicit joint 

likelihood of H/L prices and close prices when prices and volatilities are correlated. Nonetheless, a 

negative correlation of prices and volatilities is not only empirically observed in stock market but 

theoretically meaningful since the negative correlation is well known as the leverage effect as in Black 

(1976). The leverage effect refers to the increase of volatility when stock price decreases. This leverage 

effect is a stylized fact observed in stock market. It tends to be more profound in index rather than in 

individual stocks   

In this context, this paper suggests two stochastic volatility models allowing both correlation and 

additional information on H/L prices. The first one uses daily close (close-to-close prices) returns and 

ranges, and the other adds to close returns high returns (open-to-high) and low returns (open-to-low) 

separately. Since range is identical to high return minus low return, range cannot detect asymmetric 

effect of rise or fall of prices. That is why we distinguish two models. Our models are closely related to 

those of Alizadeh et al. (2002), Brandt and Jones (2005) and Horst et al. (2012), but are extended to 

include the leverage effect.  

Initial volatility needs to be estimated since it is unobservable. Following Eraker et al. (2003), we 

apply the likelihood-based Markov chain Monte Carlo (MCMC) filtering method to estimate both 
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parameters and initial volatility1. Posterior distributions are calculated by decomposition of the entire 

likelihood into two parts applying the Bayes rule: the joint likelihood of close, high, and low returns 

and the joint likelihood of daily returns and volatilities. This is an approximation for the true likelihood.  

Conducting simulation studies, we test performance of estimations and option values. There are 

several findings. First, the parameters estimated by our model are closer to the true values than those 

estimated by the baseline model that uses daily close returns only. All parameters of volatility process 

except correlation are estimated significantly across various scenarios. Second, as for estimated 

volatilities, the root mean squared errors (RMSEs) of the baseline model compared to the true 

volatilities increase 1.54 – 1.76 times of those for our model on average. When correlation is smaller 

than -0.4, the suggested model estimates volatilities significantly better than the previous models such 

as Brandt and Jones (2005) and Horst et al. (2012) which assume zero correlation. However, range and 

H/L price models show an almost identical estimation result to initial volatility. Thirds, the close return-

based baseline model performs in option pricing much worse than range- or H/L-based model. This 

observation is more apparent in low persistency than in high persistency. Fourth, the negative 

correlation between return and volatility does not have so large impact on put option prices as Black 

(1976) claims. Adjusting the long-term mean of volatility, two models with/without correlation shows 

minor difference in RMSEs performance, even though correlation is significantly estimated as nonzero.  

The rest of this paper is organized as follows. In Section 2, we introduce the stochastic volatility 

models and explain how the information on high/low prices is incorporated into the model. In Section 

3 we present the estimation method. In Section 4, we demonstrate estimation result of models through 

simulation. In Section 5, we compare performance of models for option prices. Finally, Section 6 

                                          

1 There are alternative filtering methods such as particle filtering (Horst et al. (2015)) and Kalman filter. Kalman filter is 

more efficient in computation time than other two methods but assumes Gaussian state space for an unobservable variable. 

See Johannes et al. (2003) for details for MCMC filtering method  
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summarizes the contents of this paper and suggests directions for further research. 

 

2. Stochastic Volatility Models 

2.1. Baseline model 

Among the various stochastic volatility models in continuous-time economy, affine or log-

volatility models are widely used. While people prefer affine models to log-volatility models from the 

perspective of pricing options, log-volatility models are often used for examining statistical behavior of 

an underlying asset. We also choose a log-volatility process in a continuous time economy. Let 𝑆𝑡 be 

an asset’s price and 𝜎𝑡 volatility of log-return at time 𝑡. We assume that the log-returns of stock prices 

evolve below:  

 

𝑑 ln 𝑆𝑡 = 𝜇𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡
1 

𝑑 ln 𝜎𝑡 = 𝜅(𝜃 − ln 𝜎𝑡)𝑑𝑡 + 𝜐𝑑𝑊𝑡
2 

(1) 

 

where 𝑊𝑡
1  and 𝑊𝑡

2  are Wiener processes correlated with < 𝑑𝑊𝑡
1, 𝑑𝑊𝑡

2 >= 𝜌𝑑𝑡  for a constant 𝜌 

and 𝜇 is the instantaneous expected rate of log return. If 𝜌 = 0, it coincides with the models proposed 

by Alizadeh et al. (2002) and Horst et al. (2012). The log-volatility process of eq. (1) is a latent variable 

and is assumed that it follows a mean-reverting Ornstein–Uhlenbeck process. The parameter 𝜅 is a 

mean-reverting factor, 𝜃 is a long-term mean of log-volatility, and 𝜐 is the volatility of stock returns’ 

volatility.  

For empirical purpose, following Yu (2005), we assume a basic stochastic volatility model 

discretized as follows: For 𝑡 = 1,2, ⋯ , 𝑇, trading days 

 

𝑦𝑡 = 𝜎𝑡−1𝜀𝑡
𝑦

  

ln 𝜎𝑡 = 𝛼 + 𝛿 ln 𝜎𝑡−1 + 𝜐𝜀𝑡
𝜎 

(2) 

 

where 𝑦𝑡 is a log return of the asset, and 𝜀𝑡
𝑦

, 𝜀𝑡
𝜎 have a bivariate standard normal distribution with the 



5 

 

correlation 𝜌. Here 𝑦𝑡 becomes a daily log return and 𝛼 equals 𝜅𝜃, and 𝛿 corresponds to 1 − 𝜅 

which represents the autocorrelation of volatilities. If 𝛿 is positively large, autocorrelation is strong so 

that the persistence of volatility is high. We denote this discretized model of eq. (2) as SV. It is worthy 

to note that the return at 𝑡 is conditioned on the volatility estimated at 𝑡 − 1. We ignore the drift term 

𝜇  in eq. (2) because short-term data like daily prices are used, so that we focus on parameters of 

volatility and volatility itself. Horst et al. (2012) also support the driftless model by estimating the drift 

of weekly log price near 0.  

2.2. The model using ranges and high/low prices  

In order to incorporate intraday data into the model, the continuous model in eq. (1) cannot be 

discretized as eq. (2). Instead we keep a continuous framework as follows: with the same notation as in 

eq. (2) and for 𝑡 = 1,2, ⋯ , 𝑇, trading days, 

 

𝑦𝑠 = 𝜎𝑡𝜀𝑠
𝑦

, for 𝑡 − 1 < 𝑠 ≤ 𝑡, 

ln 𝜎𝑡 = 𝛼 + 𝛿 ln 𝜎𝑡−1 + 𝜐𝜀𝑡
𝜎 . 

(3) 

 

Note that unlike the basic model, returns continuously move with constant conditional volatility 

𝜎𝑡  over intraday (𝑡 − 1, 𝑡]  but volatility is approximately discretized. Since volatility is constant 

during a day, the correlation measuring leverage effect is not taken into account over intraday but 

updated daily. Two discretized models in eq. (2) and eq. (3) are slightly different in the conditional 

volatility affecting the return. Jacquire et al. (2004) and Brant and Jones (2005) adopt the same volatility 

as in eq. (3) but Yu (2005) argues that the contemporaneous dependence between the two disturbances 

of eq. (2) makes 𝑦𝑡 a martingale difference whereas 𝑦𝑡 in eq. (3) is not.2. Thus the model of eq. (3) is 

not consistent with the efficient market hypothesis. The reason that we mix discretization of volatility 

                                          
2 Instead of the log-volatility process, Yu (2005) assumes the log-variance process. In the process, the conditional volatility 

of a return is just a square root of updated variance, so the difference of the two processes is little.  
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with continuous movement of returns is to incorporate both information on extreme values and the 

leverage effect simultaneously. This will be explained in more detail in the next section.  

 

3. Estimation Methodology 

In this section we combine the model given by eq. (3) with intraday data through two different 

rules. In the first rule, we exploit range information with daily returns, precisely open-to-close returns. 

Since range is defined by the value of subtraction of the open-to-low log return from the open-to-high 

log return, it does not distinguish the rise and fall over a day as long as the high and low returns have 

same absolute value. The model of eq. (3) with returns and ranges is denoted by RR. This RR estimator 

is a correlated proxy corresponding to the model of Brandt and Jones (2005) that assumes zero 

correlation. The other estimator uses H/L returns separately. It is denoted by RHL. The RHL is a 

correlated counterpart corresponding to the CHLO model of Horst et al. (2012). They demonstrate 

information on levels of extreme values improves the estimation of volatility, although zero correlation 

is assumed. We test whether the same phenomena are observed in a correlated case. Using separate 

returns rather than ranges seems more useful but has both pros and cons. Ranges use only high and low 

prices that occur mainly during consecutive trades, so that these prices may be considered as the values 

from a theoretical continuous-time series. On the contrary, the RHL exploits both the H/L and open 

prices but open prices may be easily influenced by market microstructure due to trading mechanisms of 

stock markets.3  

3.1 The RHL model 

We first explain the RHL estimator since the density of range can be derived from the joint density 

of high and low returns. To exploit information on high and low prices during trading hours, we define 

                                          
3 Amihud and Mendelson (1987) show that open-to-open returns exhibit greater dispersion and non-normality by the trading 

mechanism. There are studies that opening or closing prices do not represent appropriate stock values but are affected by 

market structures (e.g., Harris (1989), Stoll and Whaley (1990)), and those prices may be noisy. 
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daily high and low returns as 𝐻𝑡 = max
𝑡−1<𝑠≤𝑡

𝑦𝑠 and 𝐿𝑡 = min
𝑡−1<𝑠≤𝑡

𝑦𝑠, respectively, i.e. daily open-to-

high and open-to-low returns. The joint density of high and returns conditioned on return and the 

volatility can all be derived from the results of Feller (1951), Freedman (1971), and Klebaner (2005). 

Since the return 𝑦𝑡 is a driftless Brownian Motion with a constant volatility 𝜎𝑡 over the interval (𝑡 −

1, 𝑡], the joint density of 𝐻𝑡 and 𝐿𝑡 is 

𝑝(𝐻𝑡 ∈ 𝑑𝑏,  𝐿𝑡 ∈ 𝑑𝑎| 𝑦𝑡 = 𝑦, 𝜎𝑡)                                                                                    

=
1

𝜎𝑡
2

1

𝜙 (
𝑦
𝜎𝑡

)
∑ [4𝑛2 (

(2𝑛(𝑏 − 𝑎) − 𝑦)2

𝜎𝑡
2 − 1) 𝜙 (

2𝑛(𝑏 − 𝑎) − 𝑦

𝜎𝑡
)

∞

𝑛=−∞

 

                        −4𝑛(𝑛 − 1) (
(2𝑛(𝑏 − 𝑎) + 𝑦 − 2𝑏)2

𝜎𝑡
2 − 1) 𝜙 (

2𝑛(𝑏 − 𝑎) + 𝑦 − 2𝑏

𝜎𝑡
)] 

(4) 

 

where 𝜙(𝑧) =
1

√2𝜋
𝑒−

𝑧2

2 , a standard normal density. The density of eq. (4) involves a calculation of an 

infinite sum but the sum quickly converges. (see Choi and Roh (2013)).  

In order to consider the joint likelihood for extreme and daily returns, we decompose the likelihood 

into two terms using Bayes rule: 

 

𝑃(𝑦, 𝐻, 𝐿|Θ, 𝜎) = 𝑃(𝐻, 𝐿|𝑦, Θ, 𝜎)𝑃(𝑦|Θ, 𝜎) 

                                        ≈ 𝑃(𝐻, 𝐿|𝑦, Θ, 𝜎, (−𝜌))𝑃(𝑦|Θ, 𝜎) 
(5) 

 

where 𝑦, 𝐻 and 𝐿  are vectors of time series data of open-to-close, open-to-high, and open-to-low 

returns. Θ  represents a vector of model parameters {𝛼, 𝛿, 𝜐}  and 𝜎  is a vector of a time series of 

volatility. The first term, 𝑃(𝐻, 𝐿|𝑦, Θ, 𝜎), is the joint density of high and low returns conditioned on 

returns, volatility, and parameters. Due to this term, information on the high and low prices can be 

incorporated when the model parameters are estimated. The second term, 𝑃(𝑦|Θ, 𝜎), is the likelihood 

of open-to-close returns given volatility and parameters. In eq. (3), the model assumes the daily 

correlation between the return process and the volatility process, so the leverage effect can be measured 
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from the second term as in the case of general stochastic volatility models. The distribution, 𝑃(𝑦|Θ, 𝜎), 

can be calculated exactly from return data, but in this model the joint likelihood 𝑃(𝐻, 𝐿|𝑦, Θ, 𝜎) is 

approximated by 𝑃(𝐻, 𝐿|𝑦, Θ, 𝜎, (−𝜌)) which denotes the likelihood for the case of zero correlation. 

This approximation is inevitable from the model since volatility is assumed constant over intraday and 

is updated at the end of a day. If innovations are uncorrelated, eq. (5) holds exactly.  

Since we measure the leverage effect only from the 𝑃(𝑦|Θ, 𝜎)  term, correlation may be 

underestimated. Nonetheless we may argue that the contemporaneous dependence between the return 

process and the volatility process of eq. (3) gauges the leverage effect appropriately. Suppose volatility 

increases from 𝜎𝑡−1  to 𝜎𝑡 , i.e., 𝜎𝑡−1 < 𝜎𝑡 . Then the return 𝑦𝑡  is more likely to decrease but the 

increase in 𝜎𝑡 can cause a large gap between the maximum and the minimum returns, which means 

that returns and ranges are negatively correlated. For the case of the inter-temporal dependence as in eq. 

(2), the gap 𝐻𝑡 − 𝐿𝑡 tends to have a small value because the likelihood of returns and extreme returns 

are affected by the lower value of 𝜎𝑡−1 instead of 𝜎𝑡.4 

3.2 The RR model 

Instead of using the level of extreme values we also use ranges to exploit the symmetric 

information of high and low prices level. By a change of variables, the density of range conditioned on 

constant volatility and an absolute value of return can be derived from eq. (5) as follows:  

 

𝑝((𝐻𝑡 − 𝐿𝑡) ∈ 𝑑𝑅 |𝜎𝑡 , |𝑦𝑡| = |𝑦|)                                                                         

                        =
1

𝜎𝑡
2𝜙 (

|𝑦|
𝜎𝑡

)
∑ [4𝑛2 (

(2𝑛𝑅 − |𝑦|)2

𝜎𝑡
2 − 1) 𝜙 (

2𝑛𝑅 − |𝑦|

𝜎𝑡
) (𝑅 − |𝑦|)

∞

𝑛=−∞

 
(6) 

                                          
4 We tested the inter-temporal dependence model, but leverage effect was considerably underestimated when high and low 

prices are used.  



9 

 

−2𝑛(𝑛 − 1)(2(𝑛 − 1)𝑅 + |𝑦|)𝜙 (
2(𝑛 − 1)𝑅 + |𝑦|

𝜎𝑡
) 

+2𝑛(𝑛 − 1)(2𝑛𝑅 − |𝑦|)𝜙 (
2𝑛𝑅 − |𝑦|

𝜎𝑡
)].                    

Again, Bayes rule yields the joint density of ranges and returns below: 

 

𝑃(𝑦, 𝑅|Θ, 𝜎) = 𝑃(𝑅|𝑦, Θ, 𝜎)𝑃(𝑦|Θ, 𝜎)   

                        ≈ 𝑃(𝑅|𝑦, Θ, 𝜎, (−𝜌))𝑃(𝑦|Θ, 𝜎) 

(7) 

 

where 𝑅 is a vector of a time series of ranges and other notations are the same with those of eq. (6). 

From the first term, 𝑃(𝑅|𝑦, Θ, 𝜎), we exploit the information on ranges by using the density in equation 

(6). Correlation is estimated through the second term, 𝑃(𝑦|Θ, 𝜎). As in the case of RHL estimator, the 

likelihood 𝑃(𝑅|𝑦, Θ, 𝜎) is approximated by 𝑃(𝑅|𝑦, Θ, 𝜎, (−𝜌)) because piecewise constant volatility 

is assumed.  

3.3 MCMC Method 

The Markov chain Monte Carlo (MCMC) method is an exact likelihood-based inference and 

highly efficient, making it widely used to estimate model parameters and unobservable variables such 

as volatility (see Eraker et al. (2003), Eraker (2004)). In addition to estimating latent variables, MCMC 

provides parameters estimation risk and is a useful tool for estimation under complex distribution. Since 

our estimation involves an unobservable variable, volatility and its posterior distribution is not known, 

MCMC is an appropriate methodology. Moreover, Jacquier et al. (1994) insist MCMC outperforms 

GMM and QMLE in the estimation of stochastic volatility models.  

The MCMC draws samples from each conditional posterior distribution which is factored into 

likelihood and a prior by Bayes rule. In the case of the stochastic volatility model without considering 

extreme values, the likelihood of 𝑃(𝑦|Θ, 𝜎)  is well known, so that sampling is routine. This is no 

longer true for the RR and RHL models, specifically when return and volatility are correlated. Bayes 
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rule makes the posteriors factored below: 

 

𝑅𝐻𝐿: 𝑃(Θ𝑖|Θ(−𝑖), 𝑦, 𝐻, 𝐿, 𝜎) ∝ 𝑃(𝑦, 𝐻, 𝐿|Θ, 𝜎)𝑃(𝜎|Θ)𝑃(Θ𝑖)  

𝑅𝑅: 𝑃(Θ𝑖|Θ(−𝑖), 𝑦, 𝑅, 𝜎) ∝ 𝑃(𝑦, 𝑅|Θ, 𝜎)𝑃(𝜎|Θ)𝑃(Θ𝑖) 

(8) 

 

where Θ𝑖 represents each parameter of the volatility process and Θ(−𝑖) indicates the parameter set 

except the parameter Θ𝑖. The likelihoods, 𝑃(𝑦, 𝐻, 𝐿|Θ, 𝜎) and 𝑃(𝑦, 𝑅|Θ, 𝜎), are calculated from the 

approximated likelihoods of eq. (5) and eq. (7).  

The approximated likelihoods are advantageous in the aspect of estimation. Since the joint 

densities given in eq. (4) and eq. (6) are not dependent on any parameters except for volatility, Gibbs 

sampler can be used for sampling the parameters 𝛼, 𝜅, and 𝜐. That is, these parameters are sampled 

directly from known distributions whose conjugate priors are given by 

 

(𝛼, 𝜅)~𝐵𝑉𝑁 (0, (
1 0
0 1

)) and 𝜐2~𝐼𝐺(2.5,0.1) 

 

where 𝐵𝑉𝑁 and 𝐼𝐺 refer to a bivariate normal and an inverse gamma distribution, respectively. In 

order to sample the parameter 𝜌, we use an independent Metropolis-Hastings algorithm. The proposal 

density we use in the Metropolis-Hastings algorithm is 𝑈(−1,1)   where 𝑈  represents a uniform 

distribution.  

As for volatility estimation, it is well-known that the conditional posterior of volatility is not 

recognizable, so the Gibbs sampler is no longer applicable. In its place, a random walk Metropolis-

Hastings algorithm is commonly used. We sample volatilities using the same algorithm for the RR and 

RHL estimators. The conditional posteriors are calculated as follows 
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𝑅𝐻𝐿: 𝑃(𝜎𝑡|Θ, 𝜎𝑡−1, 𝜎𝑡+1, 𝑦𝑡 , 𝐻𝑡 , 𝐿𝑡 , 𝑦𝑡+1, 𝐻𝑡+1, 𝐿𝑡+1)

∝ 𝑃(𝑦𝑡+1, 𝐻𝑡+1, 𝐿𝑡+1|Θ, 𝜎𝑡 , 𝜎𝑡+1)𝑃(𝑦𝑡 , 𝐻𝑡 , 𝐿𝑡|Θ, 𝜎𝑡 , 𝜎𝑡−1)

× 𝑃(𝜎𝑡+1|Θ, 𝜎𝑡)𝑃(𝜎𝑡|Θ, 𝜎𝑡−1)  

𝑅𝑅: 𝑃(𝜎𝑡|Θ, 𝜎𝑡−1, 𝜎𝑡+1, 𝑦𝑡 , 𝑅𝑡 , 𝑦𝑡+1, 𝑅𝑡+1)  

∝ 𝑃(𝑦𝑡+1, 𝑅𝑡+1|Θ, 𝜎𝑡 , 𝜎𝑡+1)𝑃(𝑦𝑡 , 𝑅𝑡|Θ, 𝜎𝑡 , 𝜎𝑡−1)

× 𝑃(𝜎𝑡+1|Θ, 𝜎𝑡)𝑃(𝜎𝑡|Θ, 𝜎𝑡−1). 

(9) 

 

In the MCMC algorithm, the sampling of parameters and volatility is iterated from the eq. (8) and 

eq. (9). Before the Markov chain converges, initial sampling values are discarded. We use the first 

10,000 samplings as a burn-in period and 90,000 samplings for estimation after the burn-in period. 

Through trace plots, we check the convergence of the algorithm in the next simulation and empirical 

analysis sections. 

 

4. Simulation Analysis 

The RR and the RHL are the first estimators considering both the leverage effect and information 

on extreme prices, to the best of our knowledge. Through the simulation, we examine performance on 

two aspects. In one aspect, we see how close the estimated parameters are to the realized parameters. 

Another aspect is to contrast the RMSEs between volatilities estimated and volatilities calculated from 

simulation. We compare the RR and the HRL with the basic SV model and existing estimators, the 

RR(−𝜌) and the RHL(−𝜌) which are the counter parts with no correlation to the RR and the RHL, 

respectively. In other words, the RR(−𝜌)  and the (RHL(−𝜌))  are the same estimators as the RR 

(RHL) except imposition of zero correlation. 

First, we test the case that each simulation path has 500 lengths which mean 500 trading days, 

about 2 years. Each path is generated from the SV model. Next we extend the total number of trading 

days to 1,000 days. For both cases, we generate 500 paths. Each trading day consists of 1,000 sub-
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periods to produce intraday returns whose maximum and minimum returns correspond to the high and 

the low returns, respectively. In order to compare against the results of Brandt and Jones (2005), we use 

the same parameter values and test three levels of persistency of volatility: low, medium, and high. The 

persistency is determined by the parameter, 𝛿(= 1 − 𝜅), which is the autocorrelation coefficient of 

volatility process. The higher the mean-reversion coefficient is, the lower autocorrelation is, which 

makes persistency low. Because the leverage effect is taken into account in this paper, we also test four 

cases of correlation, 0.0, -0.2, -0.4 and -0.6.  

Table 1 provides interesting features of estimation results for total simulation length T=500. The 

mean of estimates is reported and the values in parentheses are the root mean square errors (RMSEs). 

Regardless of correlations and persistency, the parameters of the volatility process, 𝛼, 𝛿, and 𝜐, are 

better estimated in estimators relating intraday data than in SV model both in terms of the means and 

the RMSEs even though paths are generated by the SV model. Specifically, the parameters measuring 

persistency and variation of volatility are much more improved. This result is because additional 

information on high/low prices gets rid of noises embedded in returns and so lead to accurate inference 

of volatility dynamics. One special feature of Table 1 is that the SV model overestimates the volatility 

parameter of volatility process 𝜐 considerably and the extent of overestimation also severely grows as 

persistency increases. As Brandt and Jones (2005) point out, a highly persistent volatility process 

generates less volatile daily volatility and hinders the inference of 𝜐. In other words, intraday data 

makes estimation more accurate than returns only do when market is calm. As for the estimate of 𝛼, it 

seems to be sensitive in all models. All estimates are statistically significant in all estimators but 

marginal in SV model. This happens since 𝛼  heavily depends on the persistency of parameter 𝛿 . 

Nonetheless, all models have analogous long-term means of volatility when these values are calculated 

from the estimated parameters. The average level of volatility is well measured without high/low prices. 

This result seems natural since the intraday data movement has a small effect on the average value of 

volatilities. In the comparison between the RR and the RHL, it seems there is no difference as we find 
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no evidence that there is an asymmetric impact of high/low price levels in the simulation.  Horst et al. 

(2012) also document similar evidence. 

 

Panel A to D show the results according to the correlation levels 0.0, -0.2, -0.4 and -0.6. We confirm 

that the absolute value of estimates of 𝜌 increases in the SV, RR, RHL models as the absolute value of 

the true 𝜌  increases. Panel A shows, however, that the estimated correlations are close to 0 but 

insignificant in all three models. While all three estimators are able to estimate various magnitudes of 

the leverage effect suitably, the estimates of 𝜌 are slightly underestimated when compared to the true 

values across all the estimators. Although no distinction between the RR and the RHL appear, the mean 

values of estimates of 𝜌  in the SV model are closer to the true values in the low and medium 

persistence cases. This may occur because the simulated paths are not continuous but discrete or due to 

the approximation of joint densities given by eq. (5) and eq. (7). For high persistency cases, regardless 

of how large the correlation is, the mean values of estimated 𝜌 from the RR and the RHL are closer to 

the true values than those of the SV. In the high persistence case of the SV model, since the parameters 

defining the volatility dynamics are poorly estimated, the estimation of correlation is also affected. As 

for RMSEs of 𝜌, the RR and the RHL outperform the SV model in all cases.  

Panel A to D also show the parameter estimates by the RR(−𝜌)  and the RHL(−𝜌)  i.e., no 

correlation assumed. In Panel B, since correlation is low, the parameter estimates by the RR(−𝜌) and 

the RHL(−𝜌) are very close to those estimated by the RR and the RHL in low and medium persistency. 

For high persistency, estimates of RR(−𝜌)  are not significant while estimates of RHL(−𝜌)  are 

significant. From Panel C and D, we find that the parameter estimates are closer to the true value in the 

RR/RHL than in the RR(−𝜌)/RHL(−𝜌) and the RMSEs are smaller. However, the difference is not 

as much as we originally expected. This may be due to the limitations of the RR and the RHL estimator, 

i.e., volatility is constant over intraday but is daily correlated with returns.  

(Table 1) 
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Table 2 present the results of estimations, where sample paths are extended to 1,000 days. The 

results show similar patterns of parameter estimation as seen in Table 1 but provide better estimates in 

terms of both the means and the RMSEs. However, the degree of improvement is more noticeable in 

the SV model than in other models. The same phenomenon is observed in Alizadel et al. (2002). This 

can be interpreted as the effect of information. While the RR and the RHL estimator exploit the 

additional information on high/low prices more effectively in a short period, it appears the 

improvements of estimates are not large enough given a longer period.5 This is anticipatable in light of 

Parkinson (1980) which shows theoretically that in order to obtain same amount of standard deviation 

of continuous random walk using daily returns, the number of observations for returns is needed about 

2.5 times more than that for ranges. In examination of correlation parameter, mean values of SV are a 

little bit closer to the true values except for the high persistency cases, but the RMSEs of the RR and 

the RHL models are mostly smaller than those of SV. 

(Table 2) 

In addition to inferring parameters, estimating volatility is also important in stochastic volatility 

models. Table 3 reports ratios of the RMSEs between models. Each simulated volatility series with 500 

lengths is produced from the simulation in Table 1. Using the simulated volatility series and the 

estimated volatility series, root mean square error is calculated per path. The table shows the means and 

the values at the 5% and 95% percentiles (values in parenthesis). For example, “SV/RR” denotes value 

of the RMSE from SV divided by the RMSE from RR. Other symbols have similar meaning. The closer 

to 1 the ratio, the more similar the models are in sense of volatility estimates. We find the ratios SV/RR 

and SV/RHL moderately increase as persistency increases but the RR/RHL is almost identical. It is 

worthy to note RMSEs of SV are at least 1.5 times larger than those of RR/RHL, which implies that 

                                          
5 We also tested 2000 lengths of the sample period. There is not much difference with the results of T=1000. 

When the sample period increases, the benefit of using high/low prices still appears.  
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volatilities are estimated more accurately when intraday data are added rather than when only returns 

are used. Since the SV model shows poor results in the case of high persistency, this also affects 

volatility estimates. Within the same persistency level, the ratios remain stable across correlations. 

These finding suggests volatility estimates are not heavily dependent upon correlation but rather 

persistency which is dependent upon information about fluctuation embedded in maximum and 

minimum values. The RR(−𝜌)/RR reports the comparison of our RR estimator with the RR(−𝜌), a 

proxy used by Brandt and Jones (2005). When correlation is low ρ = −0.2, the two estimators are 

statistically identical with 95% confidence levels. When the correlation is absolutely larger than -0.4, 

the RMSEs of RR  are 4 − 10%  smaller on average than those of  RR(−𝜌)  and the difference is 

statistically significant. As we can see, the similar results hold for RHL and RHL(−𝜌).6  

(Table 3) 

 

5. Option prices  

Given parameters and volatilities estimated in simulation, we evaluate European put options with 

two different maturities: one month and one year. We assume that the current asset price is 100, zero 

risk-free rate, and no risk premium for volatility. Since there is no closed-form solution for our models, 

we simulate 1,000 paths with 20-time steps for a 1-month option and 500 paths with 50-time steps for 

a 1-year option, respectively. Since RR and RHL show no difference in parameters as well as volatility, 

options are calculated in RHL(−𝜌) and RHL when correlations are -0.4 and -0.6.  

Table 4 reports RMSEs of prices for European put OTM options with strike price 90, ATM with 

100, and ITM with 110 maturing in 1 month. Panel A presents the results when correlation is -0.4. ATM 

                                          

6 We perform the same simulation with 1,000 days. Unlike enhancement of parameter estimates for SV model shown in 

Table2, SV/RR and SV/RHL ratios do not improve much. Hence the effect of incorporating H/L prices appears more 

precisely in estimation of volatilities than of parameters. 
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options’ error is the most in terms of the absolute error but ITM is the least in relative error since ITM 

put is the most expensive. As for comparison among models, SV performs poorly compared to the other 

two model in both absolute and relative error. RMSEs of the absolute error for RHLs decrease to around 

two thirds of those for SV across all scenarios regardless of strike prices. In relative error terms, RHLs 

dominate SV for OTM puts, which errors of RHLs are one half of those of SV. However, performance 

drastically diminishes for ATM puts and shows no difference for ITM puts. This is due to the level of 

option prices. ITM put prices are 10 times larger than OTM puts. This result implies that RHLs performs 

better than SV does for OTM puts. One interesting point of Table 4 is that option prices show minor 

difference between RHL(−𝜌) and RHL. RHL improves RHL(−𝜌) within 2% at most. We recall that 

estimates of correlation are significant in Table 1 although they are underestimated compared to the true 

value. Instead, RHL(−𝜌) consistently estimates the higher long-term mean of volatility than RHL to 

adjust impact of correlation.  

Panel B presents the results when correlation is -0.6. Both absolute and relative errors have similar 

patterns as in Panel A overall. Magnitudes of RMSEs are also close in both panels. These results clearly 

provide evidence that information of H/L prices helps estimating stochastic volatility and calculating 

option values as a result.  

(Table 4) 

Table 5 presents a parallel result of Table 4 when option’s maturity is 1 year. Its prices are around 

6 units higher on average than 1-month option’s price due to the time value. Compared to Table 4, we 

find a couple of distinctions. First, performance of RHLs to SV is less dominant for the options with 

longer maturity. Prices of option with long maturity tend to be affected more by time value rather than 

volatility itself. Second, relative errors over OTM, ATM and ITM are flatter than those of short maturity 

options. In Table 4, relative errors between SV and RHLs for ITM options are negligible, 1% to 2%, 

but they are slightly higher 3% to 5% in Table 5. Finally, we do not find noticeable difference between 

RHL(−𝜌) and RHL for puts with long maturity. The leverage effect seems to be weakening as option’s 
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maturity becomes longer.  

This fact suggests that correlation of stochastic volatility model can be a minor factor in an option 

price whose maturity is long although it could be important in static analysis, all else being equal, as in 

Heston (1993). If we assume that correlation is zero, not only the exact likelihood for close and H/L 

returns is known, but the analytic formula for European options is also given. Zero correlation between 

returns and volatility makes empirical estimation simple and allows OTC products to be priced easily. 

The longer the maturity of OTC derivatives is, the more negligible the correlation effect is.  

(Table 5) 

 

 

6. Conclusions  

Volatility changes over time. It is also well known that volatility rises when market returns fall. 

Many researches model this financial leverage effect as the negative correlation between market returns 

and changes of volatility. In this context, we have suggested stochastic volatility models that incorporate 

both the leverage effect and information on high /low prices.  

To compare performance of models, we executed the MCMC simulation study. With changes in 

the correlation, the models using the additional information on ranges or high/low prices give better 

estimates of the true parameters than the baseline stochastic volatility model does. The same was also 

true when estimating volatility. As the correlation level increased, our proposed model performed better 

than the proxy models of Alizadeh et al. (2002) and Horst et al. (2012) and it was statistically significant. 

Given parameters and volatility estimated, we test performance of each model in option pricing. We 

confirmed that information on daily high/low prices helps put option prices improved regardless of 

moneyness. We did not find the notable effect of correlation in put option prices, which indicates that 

zero correlation between return and volatility may be acceptable in estimation of stochastic volatility 

model for the purpose of pricing option. Empirical analysis with option data leaves for future work.  
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Table 1 

Parameter Estimation Results of Simulation with T=500 

This table shows the result of parameter estimation of simulated 500 paths. Each path is produced from a discretized stochastic volatility model: 

 

𝑦𝑡 = 𝜎𝑡−1𝜀𝑡
𝑦
 

ln 𝜎𝑡 = 𝛼 + 𝛿 ln 𝜎𝑡−1 + 𝜐𝜀𝑡
𝜎 

 

where 𝜀𝑡
𝑦

 and 𝜀𝑡
𝜎 have a bivariate standard normal distribution with correlation 𝜌. The return and volatility series of each path has 500 lengths, so a trading 

day 𝑡 has a value from 1 to 500. During each time step from 𝑡 − 1 to 𝑡, there are 1,000 sub-periods. We set three different levels of persistence: “Low”, 

“Medium”, and “High”, by changing the values of volatility parameters. We vary the level of correlation: the case of no correlation (Panel A), -0.2 (Panel B), 

-0.4 (Panel C), and -0.6 (Panel D). Parameter estimation is conducted through three different models. “SV” denotes the basic stochastic volatility model. “RR” 

denotes the stochastic volatility model incorporating ranges. “RHL” denotes the stochastic volatility model incorporating high and low prices. These values 

are means of estimates and the values in parenthesis are root mean square errors. “RR(−𝜌)” (RHL(−𝜌)) is a same estimator as RR (RHL) except imposition 

of zero correlation. 

 

Panel A: Parameter Estimation with ρ=0 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True  -0.368  0.900  0.182  0.000   -0.184  0.950  0.130  0.000   -0.074  0.980  0.083  0.000  
                

SV 
 -0.521  0.859  0.202  -0.004   -0.362  0.902  0.174  -0.002   -0.278  0.927  0.147  -0.009  
  (0.246)  (0.066)  (0.032)  (0.140)   (0.255)  (0.068)  (0.049)  (0.142)   (0.285)  (0.074)  (0.067)  (0.160) 

                

RR (-ρ) 
 -0.382  0.897  0.173  Null  -0.236  0.937  0.138  Null  -0.150  0.960  0.106  Null 
  (0.092)  (0.025)  (0.015) Null   (0.090)  (0.024)  (0.013) Null   (0.104)  (0.027)  (0.024) Null 

                

RHL (-ρ) 
 -0.383  0.897  0.174  Null  -0.236  0.937  0.138  Null  -0.150  0.960  0.107  Null 
  (0.093)  (0.025)  (0.015) Null   (0.091)  (0.024)  (0.013) Null   (0.105)  (0.027)  (0.025) Null 

                

RR 
 -0.384  0.896  0.174  0.005   -0.237  0.936  0.139  0.001   -0.151  0.960  0.107  0.002  
  (0.093)  (0.025)  (0.015)  (0.079)   (0.091)  (0.024)  (0.014)  (0.085)   (0.106)  (0.027)  (0.026)  (0.101) 

                

RHL 
 -0.385  0.896  0.175  0.006   -0.238  0.936  0.139  0.002   -0.152  0.960  0.108  0.002  

   (0.093)  (0.025)  (0.015)  (0.078)    (0.092)  (0.024)  (0.014)  (0.084)    (0.106)  (0.027)  (0.026)  (0.100) 
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Panel B: Parameter Estimation with ρ=-0.2 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True  -0.368  0.900  0.182  -0.200   -0.184  0.950  0.130  -0.200   -0.074  0.980  0.083  -0.200  
                

SV 
 -0.549  0.851  0.202  -0.165   -0.364  0.902  0.171  -0.145   -0.276  0.928  0.146  -0.125  
  (0.274)  (0.074)  (0.033)  (0.138)   (0.242)  (0.064)  (0.045)  (0.158)   (0.273)  (0.071)  (0.065)  (0.179) 

                

RR (-ρ) 
 -0.393  0.894  0.175  Null  -0.243  0.935  0.138  Null  -0.238  0.936  0.138  Null 
  (0.092)  (0.024)  (0.015) Null   (0.097)  (0.025)  (0.013) Null   (0.092)  (0.024)  (0.013) Null 

                

RHL (-ρ) 
 -0.394  0.894  0.175  Null  -0.244  0.935  0.138  Null  -0.154  0.960  0.106  Null 
  (0.093)  (0.024)  (0.015) Null   (0.098)  (0.025)  (0.013) Null   (0.105)  (0.027)  (0.024) Null 

                

RR 
 -0.390  0.895  0.175  -0.141   -0.242  0.935  0.139  -0.138   -0.152  0.960  0.106  -0.134  
  (0.090)  (0.024)  (0.015)  (0.094)   (0.096)  (0.025)  (0.013)  (0.108)   (0.104)  (0.027)  (0.024)  (0.122) 

                

RHL 

 -0.391  0.895  0.175  -0.140   -0.242  0.935  0.139  -0.137   -0.153  0.960  0.106  -0.133  

   (0.091)  (0.024)  (0.015)  (0.094)    (0.097)  (0.025)  (0.013)  (0.108)    (0.105)  (0.027)  (0.024)  (0.123) 

 

Panel C: Parameter Estimation with ρ=-0.4 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True  -0.368  0.900  0.182  -0.400   -0.184  0.950  0.130  -0.400   -0.074  0.980  0.083  -0.400  
                

SV 
 -0.526  0.857  0.201  -0.309   -0.363  0.902  0.172  -0.306   -0.283  0.925  0.147  -0.265  
  (0.235)  (0.064)  (0.031)  (0.155)   (0.241)  (0.065)  (0.046)  (0.169)   (0.289)  (0.075)  (0.066)  (0.205) 

                

RR (-ρ) 
 -0.386  0.896  0.175  Null  -0.238  0.936  0.138  Null  -0.144  0.962  0.105  Null 
  (0.089)  (0.024)  (0.014) Null   (0.092)  (0.024)  (0.013) Null   (0.094)  (0.024)  (0.023) Null 

                

RHL (-ρ) 
 -0.386  0.896  0.176  Null  -0.238  0.936  0.138  Null  -0.153  0.960  0.106  Null 
  (0.089)  (0.024)  (0.014) Null   (0.092)  (0.024)  (0.013) Null   (0.104)  (0.027)  (0.024) Null 

                

RR 
 -0.367  0.900  0.173  -0.286   -0.225  0.939  0.136  -0.294   -0.144  0.962  0.105  -0.286  
  (0.079)  (0.021)  (0.015)  (0.135)   (0.078)  (0.021)  (0.012)  (0.136)   (0.094)  (0.024)  (0.023)  (0.152) 

                

RHL 

 -0.368  0.900  0.173  -0.284   -0.226  0.939  0.136  -0.292   -0.144  0.962  0.106  -0.284  

   (0.079)  (0.021)  (0.015)  (0.136)    (0.078)  (0.021)  (0.012)  (0.137)    (0.094)  (0.024)  (0.024)  (0.154) 
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Panel D: Parameter Estimation with ρ=-0.6 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True  -0.368  0.900  0.182  -0.600   -0.184  0.950  0.130  -0.600   -0.074  0.980  0.083  -0.600  
                

SV 
 -0.509  0.862  0.197  -0.477   -0.358  0.904  0.169  -0.458   -0.269  0.929  0.145  -0.394  
  (0.209)  (0.057)  (0.026)  (0.168)   (0.225)  (0.060)  (0.043)  (0.192)   (0.262)  (0.068)  (0.064)  (0.254) 

                

RR (-ρ) 
 -0.382  0.897  0.174  Null  -0.245  0.934  0.138  Null  -0.135  0.964  0.104  Null 
  (0.089)  (0.024)  (0.015) Null   (0.097)  (0.025)  (0.013) Null   (0.084)  (0.022)  (0.022) Null 

                

RHL (-ρ) 
 -0.383  0.897  0.175  Null  -0.245  0.934  0.138  Null  -0.156  0.959  0.106  Null 
  (0.090)  (0.024)  (0.015) Null   (0.097)  (0.025)  (0.013) Null   (0.109)  (0.028)  (0.024) Null 

                

RR 
 -0.340  0.907  0.167  -0.454   -0.215  0.941  0.133  -0.458   -0.135  0.964  0.104  -0.446  
  (0.074)  (0.020)  (0.018)  (0.162)   (0.066)  (0.018)  (0.009)  (0.162)   (0.084)  (0.022)  (0.022)  (0.180) 

                

RHL 

 -0.340  0.907  0.167  -0.453   -0.215  0.941  0.133  -0.457   -0.135  0.964  0.104  -0.444  

   (0.074)  (0.020)  (0.018)  (0.164)    (0.066)  (0.018)  (0.009)  (0.164)    (0.084)  (0.022)  (0.022)  (0.181) 
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Table 2 

Parameter Estimation Results of Simulation with T=1,000 

This table shows the result of parameter estimation of simulated 500 paths. Each path is produced from a discretized stochastic volatility model: 

 

𝑦𝑡 = 𝜎𝑡−1𝜀𝑡
𝑦
 

ln 𝜎𝑡 = 𝛼 + 𝛿 ln 𝜎𝑡−1 + 𝜐𝜀𝑡
𝜎 

 

where 𝜀𝑡
𝑦

 and 𝜀𝑡
𝜎 have a bivariate standard normal distribution with correlation 𝜌. The return and volatility series of each path has 1,000 lengths, so a 

trading day 𝑡 has a value from 1 to 1,000. During each time step from 𝑡 − 1 to 𝑡, there are 1,000 sub-periods. We set three different levels of persistence: 

“Low”, “Medium”, and “High”, by changing the values of volatility parameters. We vary the level of correlation: the case of no correlation (Panel A), -0.2 

(Panel B), -0.4 (Panel C), and -0.6 (Panel D). Parameter estimation is conducted through three different models. “SV” denotes the basic stochastic volatility 

model. “RR” denotes the stochastic volatility model incorporating ranges. “RHL” denotes the stochastic volatility model incorporating high and low prices. 

These values are means of estimates and the values in parenthesis are root mean square errors. 

Panel A: Parameter Estimation with ρ=-0.2 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True  -0.368  0.900  0.182  -0.200   -0.184  0.950  0.130  -0.200   -0.074  0.980  0.083  -0.200  
                

SV 
 -0.442  0.880  0.188  -0.159   -0.274  0.926  0.153  -0.151   -0.171  0.954  0.122  -0.140  

  (0.139)  (0.037)  (0.022)  (0.107)   (0.129)  (0.034)  (0.028)  (0.116)   (0.126)  (0.033)  (0.040)  (0.134) 
                

RR  
 -0.364  0.902  0.172  -0.144   -0.211  0.943  0.133  -0.142   -0.114  0.970  0.097  -0.143  

  (0.061)  (0.016)  (0.014)  (0.077)   (0.056)  (0.015)  (0.008)  (0.086)   (0.055)  (0.014)  (0.015)  (0.094) 
                

RHL  
 -0.365  0.902  0.173  -0.143   -0.212  0.943  0.133  -0.141   -0.114  0.970  0.097  -0.142  

  (0.061)  (0.016)  (0.014)  (0.077)    (0.056)  (0.015)  (0.008)  (0.086)    (0.056)  (0.014)  (0.015)  (0.094) 
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Panel B: Parameter Estimation with ρ=-0.4 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True  -0.368  0.900  0.182  -0.400   -0.184  0.950  0.130  -0.400   -0.074  0.980  0.083  -0.400  
                

SV 
 -0.429  0.883  0.186  -0.330   -0.269  0.927  0.153  -0.327   -0.168  0.955  0.123  -0.307  

  (0.120)  (0.033)  (0.019)  (0.116)   (0.115)  (0.031)  (0.028)  (0.123)   (0.114)  (0.030)  (0.041)  (0.149) 
                

RR  
 -0.341  0.907  0.169  -0.297   -0.198  0.946  0.131  -0.305   -0.108  0.971  0.096  -0.309  

  (0.062)  (0.017)  (0.016)  (0.116)   (0.043)  (0.011)  (0.008)  (0.111)   (0.047)  (0.012)  (0.014)  (0.114) 
                

RHL  
 -0.342  0.907  0.169  -0.296   -0.199  0.946  0.131  -0.303   -0.108  0.971  0.096  -0.307  

  (0.061)  (0.017)  (0.016)  (0.117)    (0.043)  (0.012)  (0.008)  (0.112)    (0.047)  (0.012)  (0.014)  (0.116) 

Panel C: Parameter Estimation with ρ=-0.6 

    Low persistence   Medium persistence   High persistence 

    α δ ν ρ   α δ ν ρ   α δ ν ρ 

True  -0.368  0.900  0.182  -0.600   -0.184  0.950  0.130  -0.600   -0.074  0.980  0.083  -0.600  
                

SV 
 -0.433  0.882  0.184  -0.502   -0.272  0.926  0.151  -0.493   -0.167  0.955  0.122  -0.454  

  (0.111)  (0.030)  (0.018)  (0.131)   (0.111)  (0.030)  (0.025)  (0.141)   (0.111)  (0.029)  (0.040)  (0.179) 
                

RR  
 -0.322  0.912  0.164  -0.465   -0.189  0.948  0.127  -0.473   -0.101  0.972  0.094  -0.478  

  (0.065)  (0.017)  (0.020)  (0.144)   (0.036)  (0.010)  (0.007)  (0.139)   (0.040)  (0.011)  (0.012)  (0.139) 
                

RHL  
 -0.322  0.911  0.164  -0.463   -0.189  0.948  0.127  -0.471   -0.102  0.972  0.094  -0.476  

  (0.065)  (0.017)  (0.020)  (0.146)    (0.036)  (0.010)  (0.007)  (0.140)    (0.041)  (0.011)  (0.012)  (0.141) 
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Table 3 

Ratio of Root Mean Square Error for Volatility with T=500 

This table reports means of the ratio of root mean square errors for volatility. Each simulated volatility series with 

500 lengths is produced from the simulation in Table 1. Throughout the parameter estimation in Table 1, latent 

volatilities are estimated from the three SV, RR, and RHL models. Using the simulated volatility series and the 

estimated volatility series, root mean square error is calculated per path. “SV/RR” denotes the value of the root 

mean square error from SV over that from RR. “SV/ RHL” denotes the value of the root mean square error from 

SV over that from RHL. “RR/ RHL” denotes the value of the root mean square error from RR over that from RHL. 

From the 500 simulated paths, this table shows means and 5% and 95% percentiles (values in parenthesis) of the 

ratios. Varying the levels of persistence and correlation, the ratio of root mean square error is calculated. “RR (-ρ) 

/ RR” denotes the value of the root mean square error from RR over that from RR (-ρ). “RHL (-ρ) / RHL” denotes 

the value of the root mean square error from RR over that from RR (-ρ). 

  

Panel A: Low Persistence 

Model   ρ = 0 ρ = -0.2 ρ = -0.4 ρ = -0.6 
      

SV / RR  1.55 (1.36, 1.74) 1.55 (1.37, 1.78) 1.55 (1.36, 1.78) 1.54 (1.33, 1.77) 
      

SV / RHL  1.55 (1.36, 1.75) 1.55 (1.36, 1.78) 1.55 (1.36, 1.77) 1.53 (1.32, 1.76) 
      

RR / RHL  1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 
      

RR (-ρ) / RR  1.00 (1.00, 1.01) 1.01 (1.00, 1.02) 1.04 (1.02, 1.06) 1.10 (1.07, 1.14) 
      

RHL (-ρ) / RHL  1.00 (1.00, 1.01) 1.01 (1.00, 1.02) 1.04 (1.02, 1.06) 1.10 (1.07, 1.14) 
          

  

Panel B: Medium Persistence 

Model   ρ = 0 ρ = -0.2 ρ = -0.4 ρ = -0.6 
      

SV / RR  1.61 (1.37, 1.92) 1.63 (1.38, 1.92) 1.62 (1.37, 1.91) 1.64 (1.38, 1.94) 
      

SV / RHL  1.61 (1.37, 1.92) 1.63 (1.38, 1.92) 1.62 (1.37, 1.90) 1.64 (1.37, 1.95) 
      

RR / RHL  1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 
      

RR (-ρ) / RR  1.00 (1.00, 1.01) 1.01 (1.00, 1.02) 1.04 (1.02, 1.06) 1.11 (1.07, 1.15) 
      

RHL (-ρ) / RHL  1.00 (1.00, 1.01) 1.01 (1.00, 1.02) 1.04 (1.02, 1.06) 1.11 (1.07, 1.15) 
          

  

Panel C: High Persistence 

Model   ρ = 0 ρ = -0.2 ρ = -0.4 ρ = -0.6 
      

SV / RR  1.69 (1.37, 2.09) 1.72 (1.39, 2.12) 1.72 (1.38, 2.09) 1.76 (1.4, 2.21) 
      

SV / RHL  1.68 (1.36, 2.09) 1.71 (1.39, 2.12) 1.72 (1.38, 2.09) 1.76 (1.40, 2.20) 
      

RR / RHL  1.00 (0.98, 1.01) 1.00 (0.99, 1.01) 1.00 (0.98, 1.01) 1.00 (0.98, 1.01) 
      

RR (-ρ) / RR  1.00 (0.99, 1.02) 1.01 (0.99, 1.02) 1.04 (1.01, 1.07) 1.10 (1.06, 1.15) 
      

RHL (-ρ) / RHL  1.00 (0.99, 1.02) 1.01 (0.99, 1.02) 1.04 (1.01, 1.07) 1.10 (1.06, 1.15) 
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Table 4 

 RMSEs of European put option prices when option’s maturity is 1 month 

This table reports root mean square errors for European put option prices with the parameters given Table 1. It is assumed that a risk-free rate is 0%, current price of stock is 

100, and risk premium for variance is 0. Maturity of each option is 1 month and time steps are assumed by 20. Option prices are averaged over 1,000 simulations. K represents 

strike price. Values in parenthesis are 5 and 95 percentiles. “SV” denotes the basic stochastic volatility model. “RHL” denotes the stochastic volatility model incorporating 

high and low prices. “RHL(−𝜌)” is the same model as RHL except imposition of zero correlation. 

 

Panel A: Correlation = -0.4 

Absolute error       

   OTM put option with K=90  ATM put option with K=100   ITM put option with K=110 

Model Low persistency Medium  High  Low  Medium  High  Low  Medium  High  

SV 0.76(0.03,1.58) 0.68(0.03,1.45) 0.55(0.02,1.17) 1.05(0.06,2.07) 0.91(0.05,1.83) 0.75(0.04,1.51) 0.75(0.03,1.58) 0.66(0.02,1.40) 0.53(0.01,1.14) 

RHL (-ρ) 0.52(0.02,1.12) 0.45(0.02,0.96) 0.34(0.01,0.73) 0.70(0.04,1.42) 0.58(0.03,1.19) 0.45(0.02,0.92) 0.51(0.01,1.09) 0.42(0.01,0.91) 0.32(0.00,0.70) 

RHL 0.50(0.02,1.07) 0.43(0.02,0.92) 0.32(0.01,0.70) 0.67(0.03,1.37) 0.56(0.03,1.15) 0.43(0.02,0.89) 0.49(0.01,1.05) 0.41(0.01,0.89) 0.31(0.00,0.68) 

Relative error       

SV 1.28(0.04,2.55) 0.91(0.03,1.77) 0.74(0.03,1.45) 0.26(0.01,0.52) 0.22(0.01,0.43) 0.18(0.01,0.35) 0.06(0.00,0.13) 0.05(0.00,0.11) 0.04(0.00,0.09) 

RHL (-ρ) 0.55(0.03,1.01) 0.42(0.02,0.75) 0.33(0.02,0.63) 0.15(0.01,0.29) 0.12(0.01,0.24) 0.10(0.01,0.19) 0.04(0.00,0.09) 0.03(0.00,0.07) 0.03(0.00,0.06) 

RHL 0.53(0.01,1.07) 0.40(0.02,0.73) 0.32(0.02,0.61) 0.14(0.01,0.28) 0.12(0.01,0.23) 0.10(0.01,0.19) 0.04(0.00,0.08) 0.03(0.00,0.07) 0.03(0.00,0.06) 
 

Panel B: Correlation = -0.6 

Absolute error       

   OTM put option with K=90  ATM put option with K=100   ITM put option with K=110 

Model Low persistency Medium  High  Low  Medium  High  Low  Medium  High  

SV 0.70(0.03,1.47) 0.63(0.03,1.34) 0.52(0.02,1.11) 0.97(0.06,1.92) 0.85(0.05,1.72) 0.71(0.04,1.44) 0.69(0.02,1.44) 0.61(0.01,1.30) 0.50(0.01,1.08) 

RHL (-ρ) 0.52(0.02,1.11) 0.44(0.02,0.94) 0.33(0.01,0.72) 0.69(0.04,1.40) 0.57(0.03,1.17) 0.44(0.02,0.91) 0.49(0.01,1.06) 0.41(0.01,0.89) 0.31(0.01,0.68) 

RHL 0.47(0.02,1.00) 0.39(0.01,0.84) 0.30(0.01,0.64) 0.67(0.03,1.27) 0.52(0.03,1.06) 0.40(0.02,0.83) 0.45(0.01,0.97) 0.37(0.01,0.81) 0.29(0.00,0.62) 

Relative error       

SV 1.15(0.03,2.27) 0.85(0.03,1.66) 0.72(0.03,1.41) 0.24(0.01,0.48) 0.21(0.01,0.41) 0.17(0.01,0.34) 0.06(0.00,0.12) 0.05(0.00,0.11) 0.04(0.00,0.09) 

RHL (-ρ) 0.56(0.03,1.00) 0.42(0.02,0.75) 0.34(0.02,0.63) 0.15(0.01,0.29) 0.13(0.01,0.24) 0.10(0.01,0.19) 0.04(0.00,0.09) 0.03(0.00,0.07) 0.03(0.00,0.06) 

RHL 0.50(0.02,0.91) 0.37(0.02,0.68) 0.30(0.02,0.58) 0.14(0.01,0.26) 0.11(0.01,0.22) 0.09(0.01,0.18) 0.04(0.00,0.08) 0.03(0.00,0.07) 0.02(0.00,0.05) 
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Table 5 

RMSEs of European put option prices when option’s maturity is 1 month 

This table reports root mean square errors for European put option prices with the parameters given Table 1. It is assumed that a risk-free rate is 0%, current price of stock is 

100, and risk premium for variance is 0. Maturity of each option is 1 year and time steps are assumed by 50. Option prices are averaged over 500 simulations. K represents 

strike price. Values in parenthesis are 5 and 95 percentiles. “SV” denotes the basic stochastic volatility model. “RHL” denotes the stochastic volatility model incorporating 

high and low prices. “RHL(−𝜌)” is the same model as RHL except imposition of zero correlation. 

 

Panel A: Correlation = -0.4 

Absolute error       

   OTM put option with K=90  ATM put option with K=100   ITM put option with K=110 

Model Low persistency Medium  High  Low  Medium  High  Low  Medium  High  

SV 2.07(0.12,4.14) 1.93(0.11,3.91) 1.69(0.09,3.48) 2.20(0.13,4.37) 2.04(0.12,4.11) 1.79(0.10,3.66) 2.07(0.12,4.13) 1.93(0.11,3.92) 1.70(0.09,3.50) 

RHL (-ρ) 1.37(0.08,2.76) 1.23(0.07,2.51) 1.03(0.05,2.11) 1.43(0.08,2.87) 1.28(0.07,2.57) 1.07(0.06,2.17) 1.35(0.08,2.72) 1.19(0.07,2.42) 0.99(0.05,2.03) 

RHL 1.30(0.07,2.64) 1.18(0.06,2.10) 1.00(0.05,2.06) 1.38(0.08,2.76) 1.24(0.07,2.51) 1.06(0.06,2.15) 1.30(0.07,2.62) 1.17(0.06,2.39) 1.00(0.05,2.05) 

Relative error       

SV 0.39(0.02,0.72) 0.31(0.02,0.57) 0.26(0.01,0.47) 0.20(0.01,0.39)  0.17(0.01,0.33) 0.15(0.01,0.28) 0.12(0.01,0.23) 0.10(0.01,0.20) 0.09(0.01,0.18) 

RHL (-ρ) 0.21(0.01,0.39) 0.17(0.01,0.33) 0.15(0.01,0.28) 0.13(0.01,0.24)  0.10(0.01,0.20) 0.09(0.01,0.17) 0.08(0.00,0.15) 0.06(0.00,0.13) 0.05(0.00,0.10) 

RHL 0.20(0.01,0.38) 0.16(0.02,0.31) 0.14(0.01,0.27) 0.12(0.01,0.23)  0.10(0.01,0.20) 0.09(0.01,0.17) 0.07(0.00,0.14) 0.06(0.00,0.12) 0.05(0.00,0.10) 

 

Panel B: Correlation = -0.6 

Absolute error       

   OTM put option with K=90  ATM put option with K=100   ITM put option with K=110 

Model Low persistency Medium  High  Low  Medium  High  Low  Medium  High  

SV 1.90(0.11,3.80) 1.80(0.10,3.64) 1.58(0.08,3.24) 2.03(0.12,4.02) 1.90(0.11,3.83) 1.68(0.09,3.41) 1.90(0.11,3.79) 0.85(0.03,1.81) 0.70(0.01,1.49) 

RHL (-ρ) 1.35(0.08,2.71) 1.21(0.07,2.46) 1.03(0.05,2.09) 1.41(0.08,2.82) 1.25(0.07,2.51) 1.05(0.06,2.13) 1.34(0.08,2.68) 0.59(0.01,1.25) 0.44(0.01,0.94) 

RHL 1.20(0.07,2.42) 1.08(0.06,2.19) 0.92(0.05,1.89) 1.27(0.07,2.54) 1.13(0.07,2.28) 0.98(0.05,1.98) 1.20(0.07,2.40) 0.53(0.01,1.13) 0.40(0.01,0.86) 

Relative error       

SV 0.36(0.02,0.66) 0.29(0.01,0.53) 0.25(0.01,0.46) 0.19(0.01,0.37) 0.16(0.01,0.32) 0.14(0.01,0.28) 0.11(0.01,0.21) 0.10(0.01,0.19) 0.09(0.01,0.17) 

RHL (-ρ) 0.21(0.01,0.40) 0.17(0.01,0.33) 0.15(0.01,0.29) 0.13(0.01,0.25) 0.11(0.01,0.20) 0.09(0.01,0.17) 0.08(0.00,0.15) 0.06(0.00,0.13) 0.05(0.00,0.10) 

RHL 0.19(0.01,1.36) 0.15(0.01,0.29) 0.13(0.01,0.26) 0.11(0.01,0.22) 0.10(0.01,0.18) 0.08(0.01,0.16) 0.07(0.00,0.13) 0.06(0.00,0.13) 0.05(0.00,0.10) 
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