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Abstract

This paper develops a pairs trading strategy via unsupervised learning. Unlike conventional pairs

trading strategies that identify pairs based on return time series, we identify pairs by incorporating

firm characteristics as well as price information. Firm characteristics are revealed to provide im-

portant information for pair identification and significantly improve the performance of the pairs

trading strategy. Applied to the US stock market for the period from January 1980 to December

2020, the long-short portfolio constructed via the agglomerative clustering earns a statistically sig-

nificant annualized mean return of 24% and a Sharpe ratio of 2.73. The strategy remains profitable

after accounting for transaction costs and removing stocks below 20% NYSE-size quantile. A host

of robustness tests confirm that the results are not driven by data snooping.
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1 Introduction

1.1 Motivation

Machine learning has gained momentum and been widely applied in various fields, including fi-

nance in recent years. It is estimated that 56% of hedge funds utilized machine learning in their

investment decisions in 2018, as compared to only 20% in 2017 (Chahn, 2018). However, most of

these applications are supervised learning-based, where they aim to predict returns, or reinforce-

ment learning-based, which are used for selecting stocks for portfolio construction. In contrast,

unsupervised learning is rarely used in the finance literature.

Unsupervised learning, also known as clustering, classifies a set of data into a group if they

exhibit more significant similarity to one another, as compared to data that are classified into

other groups. Different clustering methods can give different clustering results with the same

dataset due to the difference in their clustering algorithms, which are discussed in greater detail in

Section 3. Unsupervised learning has several applications in finance, such as industry classification

and portfolio construction. In this paper, we explore the feasibility of unsupervised learning for

pairs trading. Stocks with similar characteristics can be classified into a cluster via unsupervised

learning. These stocks are likely to have similar future price movement, and one can find arbitrage

opportunities by shorting overpriced stocks and longing underpriced stocks within the same cluster.

Existing pairs trading strategies typically identify pairs based on cointegration or some other

time series related measurements (Gatev et al., 2006; Jacobs and Weber, 2015; Vidyamurthy, 2004;

Rad et al., 2016; Huck, 2009, 2010). However, using only past price data can falsely identify

spuriously correlated pairs that may not move in tandem in the future. Unsupervised learning

allows us to identify similar stocks considering not only past price movement but also other firm

characteristics. Stocks with similar characteristics are believed to co-move with a higher probability.

1.2 Objectives

This research aims to investigate the feasibility of unsupervised learning to find potential pairs of

stocks to construct a long-short portfolio. We propose a framework to identify clusters from high

dimensional financial data and implement three popular clustering algorithms to construct pair

portfolios for statistical arbitrage. We choose k-means clustering, density-based spatial clustering

of applications with noise (DBSCAN), and agglomerative clustering as representatives of each

category of clustering methods.

The k-means clustering (MacQueen et al., 1967) is the pioneering and most popular clustering

method, which assigns data points to various clusters by minimizing the within-cluster sum of

squares (WCSS) between the centroids of the assigned clusters and the data points.

DBSCAN (Ester et al., 1996) is a density-based clustering method, where clusters are identified

based on a continuous region of high density and are separated from each other by a continuous

region of low density. Unlike k-means clustering which assigns all data points to clusters, the data
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points in the low-density area are treated as outliers and are not assigned to any cluster.

The agglomerative clustering (Johnson, 1967) is one of the most representative hierarchical

clustering methods. It is known as a “bottom-up” approach, where each data point is initially

treated as a cluster on its own before being merged with other clusters as one moves up the

hierarchy.

Our clustering-based pairs trading strategy consists of two steps. In the first step, stocks are

clustered based on their past returns and characteristics. Stocks are grouped together if their prices

move in tandem historically and have similar characteristics. We employ various firm characteristics

as well as past returns as they are believed to be forward-looking and reduce the chance of falsely

identifying spuriously correlated pairs.

The second step involves setting up a trading rule based on the divergence of the past one-month

returns. Low (high) return stocks within the same cluster are deemed undervalued (overvalued),

and a contrarian strategy is adopted by going long on the undervalued stocks and short on the

overvalued stocks. More specifically, we open long and short positions if the return difference is

greater than one cross-sectional standard deviation of the difference of past one-month returns.

The long-short portfolio is rebalanced and reinvested at the end of every month.

Pairs trading reduces the market risk and makes the trading strategy profitable with a minimal

market beta. In practice, investors do not trade only one pair but trade multiple pairs to form a

well-diversified long-short portfolio. Our strategy allows the investor to choose a desired number

of stocks by adjusting the threshold for the return divergence.

Applying clustering for pairs trading entails several difficulties and unexpected issues to be

resolved. Firstly, clusters are unbalanced in their size. Some clusters have a sufficient number of

stocks to form a portfolio, whereas other clusters have only a minimal number of stocks. In extreme

cases, there are clusters that consist of only two stocks. DBSCAN, in particular, tends to yield

a single colossal cluster comprised of the majority of the stocks, while the remaining stocks are

identified as outliers, which suggests that the high-dimensional data structure has one big cluster

that is exceptionally dense, and the rest of the stocks are scattered elsewhere.

Another issue is that some clustering methods, such as k-means clustering, assign all the stocks

into clusters without identifying and excluding outliers. Hence, some of these clusters may contain

dispersed outliers that are geometrically far from their assigned group centroids. Forming portfolios

with such outliers will diminish profitability.

To address these issues, we test the clustering methods varying the clustering parameters and

examine the impact of the number of clusters on the strategy performance. We also propose a

method to remove outliers when using the k-means clustering.

1.3 Main Findings

We test our strategies on all listed stocks in the US stock market during the sample period of

December 1979 to November 2020. The out-of-sample period is from January 1980 to December
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2020 as we form a portfolio at the end of each month and hold it for one month.

Comparing the performance of the long-short portfolios constructed by the three clustering

methods, we find that the agglomerative clustering significantly outperforms the others, attaining

an annualised mean return of 23.8%, an annualized Sharpe ratio of 2.73, and a low maximum

drawdown of 8.4%, which lasts only for one month. The k-means clustering and DBSCAN attain

an annualised Sharpe ratio of 2.33 and 1.89, respectively, exhibiting great potential of unsupervised

learning for pairs trading. They all outperform the S&P500 index and the conventional short-term

reversal strategy significantly.

Our strategies also discover a significant alpha. The agglomerative clustering-based portfolio

produces an economically and statistically significant monthly alphas of 1.8%, when regressed on

the Fama-French three factors, Fama-French three factors plus momentum and short-term reversal

factors, Fama-French five factors, and q5 factors.

When stocks are clustered using only price information, the performance diminishes consider-

ably; the Sharpe ratio decreases from 2.33 to 1.86 for k-means clustering, 1.89 to 1.57 for DBSCAN,

and 2.73 to 1.71 for agglomerative clustering, and the differences are statistically significant. This

result supports our hypothesis that the firm characteristics play a nontrivial role in identifying

pairs.

We attempt to shed light on the black-box of the clustering methods and unveil sources of

profitability. We find that all three clustering methods select stocks mainly from the manufacturing

and financial sectors. This implies that the strategies are scalable as these are the sectors that

contain the majority of the stocks in the market and their firms are usually large. This also implies

that the firms in these sectors are more similar to each other within their respective sector and are

more likely to move in tandem. Cluster are homogeneous in terms of industry, consisting of only

one or few sectors. We also find that the long positions and short positions are often from different

sectors, which implies that the profit does not only result from the divergence of the stocks in the

same industry but also from the divergence between sectors.

The breakdown of the portfolios in size reveals that they choose more stocks from the upper

half of the size deciles, which suggests that the profits are not driven by small-cap stocks.

Several robustness tests are conducted to ensure that the results are not sensitive to parameters

and not driven by data snooping. The robustness check reveals that our models perform robustly

in different parameter settings.

Excluding stocks below 20% NYSE-size quantile reduces the profitability of the strategies only

slightly, suggesting that the profits are not driven by small-cap stocks and the strategies are highly

scalable for asset management firms and hedge funds that typically trade large positions.

The turnover of the strategies is high at about 180%, which means half of the positions are

replaced when the portfolio is rebalanced. This is mainly due to the nature of the contrarian

strategy. Adding transaction costs lowers the Sharpe ratio, but the financial performance is still

promising. The agglomerative strategy attains an annualized Sharpe ratio of 1.72 and a mean
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return of 14.9% after subtracting 20 basis point transaction costs.

Our strategies perform exceptionally well during a financial crisis. All three strategies perform

robustly and significantly outperform the benchmarks during the 2007 financial crisis and the 2020

market crash caused by the Covid-19 pandemic.

1.4 Contributions

The contribution of this paper is twofold. Firstly, to our knowledge, this is one of the earliest

attempts to apply unsupervised learning to pairs trading, which extends the empirical asset pricing

literature. We offer a framework to identify pairs via clustering methods and construct portfolios

from them. Unsupervised learning appears to extract helpful information from high-noise financial

data and identify meaningful pairs. The long-short portfolios derived from the clusters are more

profitable and less volatile compared to those from conventional pairs trading strategies. This

result suggests that stocks’ behaviour and characteristics should be considered more thoroughly

when selecting pairs for pairs trading, rather than relying on the statistical measures used in

traditional pairs trading strategies.

Our study provides a big picture of how stock data in high-dimensional space are perceived

through the eyes of the various clustering methods. The analysis of clustering characteristics shows

that all clustering methods identify at least 60% of available stocks as outliers, implying more than

half of the stocks are isolated and should not enter the pairs trading portfolios. For the remaining

stocks, the k-means clustering and aggloermative clustering tend to form more than a hundred

clusters of various sizes, whereas DBSCAN tends to form one enormous cluster that encompasses

almost all the remaining stocks, and another tiny cluster containing less than ten stocks on average.

Secondly, our study reveals the importance of firm-level characteristics in identifying pairs.

Unlike traditional pairs trading strategies, unsupervised learning can incorporate the information

from firm characteristics as well as price-related information. In our study, it is found that adding

firm characteristics reduces volatility and significantly improves the performance of the pairs trad-

ing strategies. To the best of our knowledge, this paper is the first attempt to incorporate firm

characteristics in pairs trading.

This paper is organised as follows. Section 2 reviews existing pairs trading strategies in the

literature as well as the financial applications of machine learning. Section 3 describes the data and

feature generation process. It also details the working principle of the clustering methods and the

trading algorithm. Section 4 presents the empirical results, including clustering behaviour, finan-

cial performance, factor regression analysis, and sub-period analysis. Section 5 performs various

robustness checks, and Section 6 concludes.
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2 Literature Review

This paper contributes to the literature on statistical arbitrage by proposing new ways to construct

pairs trading strategies. More broadly, it extends the literature on financial applications of machine

learning by employing unsupervised learning.

2.1 Existing Pairs Trading Strategies

Krauss (2017) classifies pairs trading strategies into four groups. The most mainstream approach is

the cointegration approach, which involves the Engle and Granger (1987) cointegration test. Using

this framework, Rad et al. (2016) implement a pairs trading strategy with time-varying trading

costs. The strategy yields a mean monthly excess return of 33 basis points after transaction costs

from 1962 to 2014. Intuitively, they discover that their pairs trading strategy is more profitable

during a period of high volatility. Huck and Afawubo (2015) compare the cointegration method

with the distance approach on the constituents of S&P500 and demonstrate that the cointegration

method is stable and can generate profits consistently. They also address the meagre excess return

of the distance approach after factoring in transaction costs. Clegg and Krauss (2018) extract

pairs from the S&P500 constituents via partial cointegration. After including a mean-reverting

component in the cointegration residuals, the portfolio yields an annualized return of more than

12% after transaction costs from 1990 to 2015.

The second approach is the distance approach, which identifies co-moving pairs based on a

particular distance metric. Gatev et al. (2006) utilizes the Euclidean squared distance between

the normalized prices of securities to identify pairs and form a long-short portfolio. Positions

are opened when the distance of a pair is greater than two standard deviations of the historical

distances between the pair. Positions are closed either when mean-reversion occurs or at the end

of the trading period. This paper provides the main ideas and building blocks of pairs trading. Do

and Faff (2010) extend the study of Gatev et al. (2006) to post 2008 financial crisis and discover

that the strategy performs strongly during the recession period. The same study finds that pairs

trading is more profitable for bank stocks. Jacobs and Weber (2015) extend the distance-based

pairs trading strategy to 34 countries and discover that it is profitable in different markets, despite

its varying performance with time.

The next approach to pairs trading is the time-series approach. Cummins and Bucca (2012)

adopt a novel time-series model to identify pairs in the oil market, with a focus on West Texas

Intermediate (WTI), Brent, heating oil, and gas oil from 2003 to 2010. Their pairs trading strategy

yields a mean daily return between 0.07% and 0.55% and a Sharpe ratio greater than 2, prior

to transaction costs. However, contrary to other pairs trading strategies that are usually more

profitable during the 2008 financial crisis, the returns generated from this time-series model diminish

during the recession. Elliott et al. (2005) propose another time-series approach for pairs trading

based on the mean-reverting Gaussian Markov chain, but no backtesting is conducted on any
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market.

The most novel and relatable approach to this study is to construct pairs via supervised learning.

Huck (2009, 2010) implements an ensemble method that combines an Elman neural networks, a

recurrent neural network, and ELECTRE III to identify pairs from the S&P500 constituent stocks.1

When backtested from 1992 to 2006, the portfolio yields a weekly excess return of more than

0.8%. Krauss et al. (2017) convert pairs trading into a supervised learning problem by feeding

several features into machine learning algorithms (deep neural networks, gradient-boosted-trees,

and random forests). They forecast the probability of stock prices’ upward moving and construct

a daily rebalanced portfolio by entering long positions in the stocks with the highest probabilities

and short positions in the stocks with the lowest probabilities. From 1992 to 2015, an equally-

weighted portfolio that ensembles the three machine learning methods yields a daily excess return

of 0.45% prior to transaction costs. Huck (2019) adds more than 600 predictors to his machine

learning models hoping that the learning algorithms can digest a large dataset and extract useful

information from the extremely noisy data. Besides lagged returns, the feature set consists of

time information, size of stocks, indices, commodity prices, and many frequently used risk factors.

However, the positive excess return is negated by transaction costs, which implies that adding

too many features may not boost the performance of machine learning-based pairs trading. Kim

and Kim (2019) apply deep reinforcement learning for pairs trading to dynamically determine the

trading threshold and the stop-loss boundary, and report promising results in comparison to a static

boundary.

There are other non-conventional methods to identify pairs for pairs trading strategies, which

are less frequently used in the literature. Avellaneda and Lee (2010) utilize the principal component

analysis (PCA) on the exchange-traded funds (ETFs) listed in the US stock market and attain an

annualized Sharpe ratio of 1.51 from 2003 to 2007. Rad et al. (2016) construct pairs based on a

Copula method and gain a monthly excess return of 5 basis points after transaction costs, while

Xie et al. (2016) demonstrate that the Copula method outperforms the distance approach in terms

of average excess returns generated.

2.2 Financial Applications of Unsupervised Learning

Financial applications of unsupervised learning are relatively rare. For the distance-based clustering

method, Nanda et al. (2010) develop a portfolio strategy using k-means clustering, which is followed

by the Markowitz model to create a portfolio. Fung et al. (2002) use a modified k-means clustering

to cluster news articles, with the aim of analyzing the impact of news articles on stock prices. Ta

and Liu (2016) adopt k-means clustering as one of their clustering methods to cluster stocks listed

on the Ho Chih Minh Stock Exchange and study the impact of foreign ownership on Vietnamese

stocks’ volatility.

1ELECTRE III is an outranking method based on the concept of fuzzy logic.
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Yang et al. (2014) adopt DBSCAN to identify suspicious financial transactions. DBSCAN is

also one of the three unsupervised clustering methods explored by Pavlidis et al. (2006) to cluster

time series data before applying artificial neural networks to forecast daily foreign exchange spot

rates. Bini and Mathew (2016) also use DBSCAN as one of their clustering algorithms to cluster

stock market data before applying regression models to forecast prices of the stocks listed on the

National Stock Exchange of India.

Dose and Cincotti (2005) apply complete-link agglomerative clustering to the daily closing prices

of the S&P500 constituents to create an index and an enhanced index tracking portfolio. Babu

et al. (2012) apply agglomerative clustering on financial data before applying a recursive k-means

clustering within the agglomerative clusters to predict the direction of stock prices.

2.3 Financial Applications of Supervised Learning

The volume of the literature on the financial application of machine learning has been blooming

in recent years. Exceptional financial performances are reported when machine learning is applied

to asset return prediction, which can be easily defined as a supervised learning problem. Using

a classification tree, Moritz and Zimmermann (2016) develop a two-step portfolio sorting method

and report significant financial performance. Messmer (2017) obtains significant excess returns by

constructing a deep learning model with 68 firm characteristics as input features. Gu et al. (2020)

conduct a comparative analysis of popular machine learning algorithms in the US stock market.

They find that a deep neural network outperforms tree-based models and linear benchmarks, and

the long-short portfolio obtained from the deep neural network achieves an annualized Sharpe ratio

above 2.0. Han (2020) employs a deep neural network to predict the cross-section of stock returns

in the US market and finds that the long-short portfolio strategy derived from the model can earn

a Shape ratio greater than 2.5.

Machine learning is also found to perform well in other asset classes. Lim et al. (2019) employ

a deep neural network for time-series momentum and show that it performs robustly in the futures

market. Bianchi et al. (2020) apply the methodology of Gu et al. (2020) to the US Treasury bond

market and find machine learning-based strategies are profitable also in the bond market.

3 Methodology

3.1 Data Description and Prepossessing

This section describes the procedure to generate and process the input features. The feature set

consists of 48 momentum factors and 75 firm characteristics generated every month for the sample

period from December 1979 to November 2020. The out-of-sample period is from January 1980 to

December 2020.
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3.1.1 Data Sample

The US equity market data available from the Center for Research in Security Prices (CRSP) are

used for our empirical studies. All stocks with common shares (share code 10 or 11) listed on the

New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and Nasdaq (exchange

code 1, 2, and 3) are included. During the sample period, stocks must have a valid price on the

portfolio formation date (at the end of month t) and returns from t − 48 to t. For stocks delisted

from the exchanges, the delisted returns are computed using the method of Beaver et al. (2007):

should the delisted return with dividend is available in the CRSP delist file, it is used; otherwise,

the delisted return is assumed to be -30%.

3.1.2 Feature Generation

The feature set consists of two parts. The first set comprises 48 price momentums, i.e., 1- to

48-month price momentums. The other set consists of 75 firm characteristics chosen from Green

et al. (2017). Stocks are clustered using the features available at the end of month t − 1 and the

previous one-month return is used to identify undervalued and overvalued stocks.

Momentum features reflect the historical movement of stock prices and stocks with similar

momentum features are expected to keep the similar pace in the future. Firm characteristics can

reveal more information from accounting and asset pricing perspectives. Even when a pair of stocks

have moved in tandem in the past, if they have distinct firm characteristics, they may diverge from

each other in the future: we consider firm characteristics more forward-looking. This motivates us

to use both the momentum features and firm characteristics for clustering. A pairs trading strategy

typically uses only prices or returns and this is the first work that employs firm characteristics to

identify pairs.

Momentum features The i-month price momentum at the end of month t− 1 is defined as the

cumulative return from month t − i to t − 2 for i > 1 and as the previous one-month return for

i = 1:

momi = rt−1, i = 1,

momi =

t−2∏
j=t−i

(rj + 1)− 1, i ∈ 2, ..., 48,
(1)

where rj denotes the return in month j.

Firm characteristics The 75 firm characteristics are chosen from the firm characteristics used

in Green et al. (2017), excluding the variables that use data from IBES and other variables with

many missing values. They are listed in Table A and their exact definitions can be found in Green
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et al. (2017) or the references therein. The firm characteristics are generated using the SAS code

in Jeremiah Green’s website.2

3.1.3 Data Preprocessing

Scaling data and performing PCA prior to unsupervised clustering is common in various clustering

applications (Siraj et al., 2009; Chen et al., 2013; Sarmento and Horta, 2020). We first normalize

features using their cross-sectional means and standard deviations to eliminate any skewed clus-

tering. Unsupervised clustering methods usually cluster data points based on a certain distance

measure and features with higher magnitude, such as market capitalization, will have higher weigh-

tage in distance calculation without normalization. This would result in a skewed clustering, where

stocks are clustered chiefly based on those features that have higher magnitude in nature.

Some features must contain more information than others for the identification of similar stocks,

but the distance measures assign the same weight to all features. Therefore, inputting the features

directly into a clustering algorithm can dilute the information contained in important features. By

applying PCA to the features and using the principal components as the input, we can emphasize

those important features when clustering the stocks. Another benefit of PCA is to alleviate the curse

of dimensionality. Clustering algorithms are resource-intensive and reducing the feature dimension

via PCA can save the computational cost significantly.3

The principal components entered into clustering are determined so that the principal compo-

nents explain at least 99% of the total variation. On average, 84 principal components out of 123

are selected as input.

3.2 Clustering Methods

This section provides an in-depth discussion of the clustering algorithms we employ: k-means

clustering, DBSCAN, and agglomerative clustering, which are representatives of partition-based,

density-based, and hierarchical clustering, respectively. Clustering algorithms are unsupervised,

which means they do not have the true values (labels) to target. Therefore, they do not require a

large set of historical data to train and validate the model. By feeding the input data, clustering

algorithms find meaningful groupings that cannot be conceived easily by the human brain.

Unlike supervised learning models, e.g., deep learning or gradient boosting, which often require

many hyperparameters, clustering algorithms require very few hyperparameters and there is little

room for data snooping. We test the models with different hyperparameter values and assess their

impact on the performance of the pairs trading strategy.

2https://sites.google.com/site/jeremiahrgreenacctg/home
3For example, the time complexity of k-means clustering for each iteration is O(KNM), where K is the number

of clusters, N is the number of samples, and M is the feature dimension.
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3.2.1 k-Means Clustering

The k-means clustering (MacQueen et al., 1967) is perhaps the most popular clustering method. It

requires the number of clusters, K, to be first specified. It then identifies K centroids and groups

all data points to one of these clusters by minimizing the within-cluster sum of squares (WCSS)

between data points and their respective centroids. The objective function is given by

W = WCSS =

N∑
i=1

K∑
k=1

wik
∥∥xi − µk∥∥2

, (2)

where xi refers to i-th data point, µk the centroid of cluster k, wik = 1 if xi belongs to cluster

k, otherwise wik = 0, and N is the total number of data points. ‖·‖ denotes l2 norm.

The k-means clustering is a two-step minimization problem. W is first minimized with respect

to wik while keeping µk fixed to update the assignment of data points to clusters (Equation (3)).

After that, W is minimized with respect to µk while keeping wik fixed to recompute the centroids

(Equation (4)). The above steps are repeated until W is minimized.

wik =

1 if k = argminj
∥∥xi − µj∥∥2

0 otherwise
(3)

∂W

∂µk
= 2

N∑
i=1

wik
(
xi − µk

)
= 0

⇒ µk =

∑N
i=1wikx

i∑N
i=1wik

(4)

As k-means clustering assigns all data points into the specified number of clusters, it does not

have the capability to identify outliers. Stocks that are located far from others are still assigned to

the nearest centroid. Hence, we adopt and modify the method used by Rahmah and Sitanggang

(2016) and Elbatta (2012) to identify these stocks and remove them from the asset pool.

The procedure of removing outliers is as follows. For each data point, measure the distance

to its respective centroid and also the distance to its nearest neighbour. Sort the distances to the

nearest neighbour in ascending order and choose the distance at α percentile as the threshold, ε.

Any stock whose distance to its centroid is greater than ε is regarded as an outlier and removed.

The pseudo-code for this process is described in Algorithm 2 in the appendix. We set α = 0.5, i.e.,

identify a stock as an outlier when its distance to its centroid is greater than the median distance

between nearest stocks.

For the number of clusters, K = 5, 10, 50, 100, 500, 1000, and 1500 are tested.

3.2.2 DBSCAN

The density-based spatial clustering of applications with noise (DBSCAN) identifies areas of high

density in a high dimensional data space separated by regions of low-density (Ester et al., 1996). It
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has two parameters; the minimum number of data points per cluster, MinPts, and the maximum

distance between data points, ε, to be considered in the same cluster. Distance metrics such as

Manhattan (l1 norm), Euclidean (l2 norm), or Minkowski distance can be used to measure the

distance between data points.

DBSCAN first selects an arbitrary data point as a core point. Data points with at least MinPts

neighbours within ε are considered for the core point. All neighbouring points within ε from a core

point are clustered together with the core point, in a process called direct density reachable. Any

neighbours of these neighbouring points within ε are also included in the same cluster. This process

is called density reachable. Non-core points in a cluster are called border points, and points in the

same cluster are said to be density connected. Outliers or noises are points that are not density

reachable from any of the core points and they are not assigned to any cluster (Schubert et al.,

2017). The above process is repeated until all data points are visited. The pseudo-code of DBSCAN

is described in Algorithm 3.

Hyperparameter Selection Following Aggarwal et al. (2001), who demonstrate that l1 norm

provides more significant and meaningful clustering results for high-dimensional datasets, we choose

l1 norm as the distance metric for DBSCAN. Following Birant and Kut (2007), MinPts is set to

be the natural logarithm of the total number of data points N . The minimum distance ε is set as

the α percentile of the average distances to the nearest MinPts neighbour points. This method

is recommended by Ester et al. (1996), who proposed DBSCAN. Elbatta (2012) and Rahmah and

Sitanggang (2016) also adopt the same method to determine ε. We use α = 0.1, . . . , 0.9 for the

empirical analysis.

3.2.3 Agglomerative Clustering

Agglomerative clustering is a hierarchical clustering method and starts by treating individual data

points as a cluster on its own before merging the clusters step by step until termination criteria

are met (Gowda and Ravi, 1995). It requires the user to specify one of two hyperparameters: the

number of clusters K or the maximum distance for clusters to be merged, ε, known as linkage

distance.

Figure 1 illustrates the agglomerative clustering process. The six individual data points are

initially treated as individual clusters. Their proximity to each other is calculated, and similar

clusters are merged to form a new cluster (BC and DE), should their distance is less than ε. This

merging process is repeated until there are no more clusters whose distance to another cluster is

less than ε. If the distance between merged clusters is always below the specified ε, eventually all

cluster are merged to form cluster ABCDEF. In general, the final clustering result consists of many

small clusters rather than a few giant clusters that contain most data points.
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Figure 1: Agglomerative clustering

This figure presents a six-point dataset’s hierarchical structure and shows how the agglomerative clustering algorithm

groups data points from individual data points to the final cluster that includes all the data points.

Hyperparameter Selection In our empirical study, we specify the maximum distance ε rather

than the number of clusters K, using a method similar to the method adopted for DBSCAN: ε

is set as an α percentile of the distances between a pair of nearest data points. We implement

agglomerative clustering with α = 0.1, . . . , 0.9. Similarly to DBSCAN, l1 norm is used as the

distance metric. For the linkage distance, i.e., the distance between a pair of clusters, we adopt the

average linkage, which is defined as the average distance between the data points in one cluster and

the data points in another cluster. For instance, if there are two clusters G and H with NG and

NH data points, respectively, the average linkage distance between G and H is defined as follows:

daverage(G,H) =
1

NG ·NH

∑
xi∈G,xj∈H

||xi − xj ||. (5)

3.3 Portfolio Formation and Trading Strategy

At the end of each month during the sample period, we cluster the stocks using one of the clustering

methods described in the previous section. Through clustering, stocks are either assigned to a

cluster or identified as an outlier.

As we cluster stocks based on their price movements and firm characteristics up to month t−1,

we expect the stocks in the same cluster that temporarily diverge from each other in month t to

converge in the following month. Therefore, we detect pairs by examining the previous one-month

return (mom1). Stocks with a lower mom1 are deemed undervalued and expected to rebound in

the following month. Conversely, stocks with a higher mom1 are deemed overvalued and expected

to revert in the following month.
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We sort stocks within each cluster on mom1 and pair the stock with the highest mom1 with

the stock with the lowest mom1, the second-highest mom1 stock with the second-lowest mom1

stock, and so forth. We then construct an equally-weighted long-short portfolio using the pairs

whose mom1 difference is greater than the cross-sectional standard deviation of all pairs’ mom1

differences. It is possible for some clusters to not have any pairs that meet the trading criterion if

the mom1 differences of their pairs are not wide enough. We hold the positions for one month and

rebalance the portfolio at the end of each month. This cycle repeats until the end of the sample

period.

The clustering-based long-short portfolios are compared with two benchmarks; the S&P500

index and the short-term reversal portfolio. We use the S&P500 index including dividends available

from CRSP. For the short-term reversal portfolio, we sort stocks on mom1 and go long on the stocks

in the first decile and short on the stocks in the bottom decile.

4 Empirical results

This section presents the empirical results. We first summarize the clustering characteristics of

each clustering method and then assess the financial performances of the pairs trading strategies

from various perspectives. A host of robustness tests are conducted to ensure the findings are not

driven by data snooping.

We test each clustering method with different parameter values and use the best performing case

for the main results and later analyze the impact of the parameters on the strategy performance.

For k-means clustering, the number of clusters K = 5, 10, 50, 100, 500, 100, and 1500 are tested

and K = 500 is chosen for the main results as it gives the highest Sharpe ratio. For DBSCAN

and agglomerative clustering, α = 0.1, . . . , 0.9 are tested, and α = 0.1 is chosen for DBSCAN and

α = 0.3 for agglomerative clustering for the same reason.

4.1 Clustering Characteristics

To give a big picture of how stocks are clustered, we analyze the clustering characteristics of the

three clustering methods. The number of clusters vary significantly across the clustering methods.

Table 1 and Figure 2 summarize the results.

The k-means clustering forms an average 130 clusters after removing outliers, with the range

between 75 and 175.4 The k-means clustering clusters average 1256 (39.8%) stocks every month and

identifies the rest as outliers. Among the clustered stocks, average 64 (5.2%) stocks are contained

in the largest cluster and 51 (4.1%) stocks are contained in the second largest cluster. Figure 2

shows that the number of clusters formed every month is consistent over the sample period. After

4The number of clusters, K, is set to 500, but the outlier removing process eliminates some clusters whose data

points are far from each other and the remaining clusters are less than 200.
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applying the one standard deviation threshold, average 309 stocks remain and are used to form a

long-short portfolio.

In contrast to k-means clustering, DBSCAN tends to form one giant cluster and several small

clusters, with an average of only two clusters every month. DBSCAN clusters only 377 (12.1%)

stocks on average and 87.9% of the stocks are deemed as outliers. The giant cluster comprises

almost all the clustered stocks (88.5%) and the remaining clustered stocks are assigned to one to

six mini clusters. On average, DBSCAN trades 71 stocks every month.

Compared to k-means and DBSCAN, agglomerative clustering tends to form many small clusters

(average 223), which comprises average 1030 (33.0%) stocks. Figure 2 reveals that there are no

giant clusters as observed in DBSCAN and the number of clusters is rather consistent over the

sample period. Agglomerative clustering trades average 171 (5.49%) stocks every month.

4.2 Strategy Performance

Table 2 reports the performances of the long-short portfolios constructed via the three clustering

methods. The equally-weighted long-short portfolios outperform the S&P500 index and the bench-

mark reversal portfolio in terms of various financial performance indicators, revealing the clustering

methods’ capability to form meaningful clusters and generate significant profits.

Table 2 (a) reports the monthly return statistics of the clustering-based pairs trading strategies.

It shows that the return of the long portfolio from all three clustering methods is economically and

statistically significant with the t-statistic greater than 7. The return of the long-short portfolio,

albeit smaller in magnitude, is even more significant with the t-statistic greater than 12. In partic-

ular, the agglomerative clustering yields the highest and most significant returns: 2.3% (t = 8.89)

for the long portfolio and 2.0% (t = 16.95) for the long-short portfolio.

The mean returns of the long-short portfolios are greater than that of S&P500 and comparable

to the mean return of the reversal portfolio. However, the long-short portfolios have significantly

lower standard deviations.

Figure 3 presents the monthly return distributions in a box plot. It is apparent that all the

clustering-based trading strategies have a narrower range of returns and exhibit smaller downside

returns than the benchmarks, indicating that the clustering-based strategies are less volatile and

less likely to experience drastic drops in returns.

Table 2 (b) reports annualized risk-return metrics. Five metrics are employed to assess the

financial performance of the portfolios:

• Sharpe ratio: Mean return
standard deviation

• Sortino ratio: Mean return
Downside deviation

• Profit factor: Gross profit
Gross loss
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• Maximum drawdown (MDD): the maximum observed loss from a peak to a trough over the

portfolio formation period

• Calmar ratio: Mean return
MDD

The results suggest that the agglomerative clustering is the best performing clustering algorithm

among the three clustering methods. The long-short portfolio has a high annualized mean excess

return of 23.8% and a remarkably low standard deviation of 8.7%, resulting in the highest annualized

Sharpe ratio of 2.73. Other performance metrics also favour agglomerative clustering: e.g., it yields

the lowest maximum drawdown of mere 8.4%. During the out-of-sample period of 41 years, there

is no single year when the agglomerative clustering-based strategy suffers loss.

The long-short portfolio derived from k-means clustering also performs superbly, but has a

slightly lower mean return (21.1%) and higher standard deviation (9.1%) compared to the one

derived from agglomerative clustering, resulting in a Sharpe ratio of 2.33. Still, it significantly

outperforms the benchmarks and suffers loss only in two years out of 41 years.

DBSCAN appears to be the worst-performing among the clustering methods. It has the highest

mean return of 24.4%, but due to the relatively high standard deviation of 12.9%, it has the lowest

Sharpe ratio. Other performance metrics also suggest that it is the least favourable method: e.g.,

the maximum drawdown is 16.4%, significantly higher than those of k-means and agglomerative

clustering. Nevertheless, it significantly outperforms the two benchmarks with an annualized Sharpe

ratio of 1.89. An advantage of DBSCAN is that it requires on average only 71 stocks (35 pairs)

to be traded every month, while the k-means and agglomerative clustering require more than 170

stocks to be traded every month.

Figure 4 shows the log-scale cumulative returns of the strategies over the out-of-sample period.

The graph reaffirms that the pairs trading strategy via agglomerative clustering performs best with

the highest cumulative return. DBSCAN performs remarkably well after the financial crisis in

2008 and yields a comparable cumulative return. The reversal portfolio performs exceptionally well

before 2000, but its performance diminishes considerably thereafter. Remarkably, the portfolios

constructed by the clustering methods perform even better during the financial crisis in 2008, when

S&P500 and the reversal portfolio suffer a considerable loss.

4.3 Effects of Firm Characteristics

We hypothesize that the firm characteristics are forward-looking and would help clustering stocks

and enhance the pairs trading strategies. To test the hypothesis, we repeat the same backtest using

only the momentum features and compare the results with those reported earlier. Table 3 reports

the results obtained from the clustering methods utilizing only the momentum features.

All the clustering methods perform worse after excluding the firm characteristics, in terms of the

Sharpe ratio and other risk-adjusted performance metrics. Interestingly, they yield higher returns,

15



but the returns are more volatile resulting in lower Sharpe ratios. The mean returns of the long-

short portfolios derived from k-means, DBSCAN, and agglomerative clustering are respectively

25.6%, 23.8%, and 25.0%, whereas they are respectively 21.1%, 24.4% and 23.8% when the firm

characteristics are included. In contrast, the Sharpe ratios are reduced from 2.33 to 1.85 (k-means),

1.89 to 1.57 (DBSCAN), and 2.73 to 1.71 (agglomerative), and the differences are statistically

significant with the t-statistic greater than 3 except for DBSCAN, whose t-statistic is 2.03. The

maximum drawdown also increases substantially when the firm characteristics are removed: e.g.,

the maximum drawdown of the agglomerative clustering increases from 8.4% to 32.6%.

The results above clearly suggest that the firm characteristics help identify similar stocks and

enhance the performance of the pairs trading strategy. It is particularly notable that they reduce

the volatility and downside risk substantially, making the strategy attractive to investors.

4.4 Factor Regression

To examine whether systematic risk factors can explain the long-short portfolios’ returns, we employ

four factor models and apply them to the equally-weighted portfolios constructed via agglomerative

clustering. We focus on agglomerative clustering as it demonstrates the most promising performance

among the clustering algorithms. The factor models considered are Fama and French (1996)’s three-

factor model (FF3), FF3 plus the momentum and the short-term reversal factors (FF3+2), Fama

and French (2015)’s five-factor model, and Hou et al. (2020)’s q5 factor model. We include FF3+2

since the feature set includes momentum features and the trading strategy is a contrarian strategy,

which closely relates to the short-term reversal factor. The Fama-French factors are downloaded

from Kenneth French’s website, and the q5 factors are downloaded from the global-q website. For

the q5 factor model, the sample period ends in December 2019 as the site provides the factors only

up to 2019. Table 4 reports the regression results.

The long-short portfolio constructed from agglomerative clustering yields an economically and

statistically significant monthly alpha of 1.8% (t = 15.29) when regressed against FF3. The market

beta is also positive and significant, suggesting that the trading strategy is dollar-neutral but not

risk-neutral. The factor loading on HML is positive and weakly significant, implying that it favours

firms with a higher book-to-market ratio. The adjusted R2 from FF3 is 0.10.

The FF3+2 appears to have the best explanatory power for the strategy with the adjusted R2

of 0.30. Nevertheless, the strategy generates a significant alpha of 1.9% (t = 15.78), which is the

most significant among the four factor models. A positive, significant loading on the market factor

is observed again. In addition, the momentum and the short-term reversal factors are negative and

positive, respectively, and statistically significant. The positive loading on the short-term reversal

factor is expected as our strategy is essentially a short-term reversal strategy with a carefully

selected trading asset pool.

The FF5 and q5 models have a similar explanatory power to FF3, and the alpha remains

economically and statistically significant. The profitability and investment factors do not appear

16

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://global-q.org/factors.html


to explain the returns of our strategy. The factors in q5 are also unable to explain the returns,

suggesting that the significant return of the strategy is not a result of excessive risk taking.

4.5 Size and Industry Breakdown of the Clusters

To investigate what drives the returns of the clustering-based pairs trading strategies, we categorize

the stocks of the portfolios into size deciles and industry sectors. The results are summarized in

Table 5, where the numbers are the average percentage of the stocks in each category.

Table 5 (a) reports the average proportion of the stocks in each size decile. Decile 1 represents

the smallest stocks and decile 10 the largest stocks. All three clustering methods have a similar

distribution of the stocks across size deciles and have the average size decile above 6.0. They select

more than 10% of the stocks from each size decile above the median. This result corroborates

the finding in Section 5 that the profits of the pairs trading strategies are not driven by small-cap

stocks.

Table 5 (b) categorizes all stocks into eleven industry sectors using the North American Industry

Classification System (NAICS).5 The last column (Market) represents the proportions of all the

stocks in the US market.

The k-means and agglomerative clustering have a similar distribution of the stocks across in-

dustries and select stocks mainly from the manufacturing sector, followed by the financial sector.

Their industry composition is also similar to the industry composition of the entire market. DB-

SCAN, on the other hand, does not follow the distribution of the market but prefers stocks from

the financial sector, followed by the manufacturing sector. Having many stocks from the financial

sector is in line with Do and Faff (2010), who find that bank stocks are the most profitable when

it comes to pairs trading.

The above results imply that the stocks in these industries are more similar to each other within

their respective industry in terms of price movement and firm characteristics. Should any stock in

these industries be overpriced or underpriced relative to the others in the same industry, its return

is likely to revert back to the mean level offering a profit opportunity. Involving stocks mainly from

these industries also explains why our clustering-based strategies remain profitable after excluding

small-cap stocks: manufacturing and financial firms are usually large in market capitalization.

The number of industries within each cluster reveals that clusters are homogeneous in terms of

industry, consisting of stocks from only one or few industries. The long-short portfolios constructed

from k-means, DBSCAN, and agglomerative clustering respectively consist of 1.82, 3.45, and 1.42

industries, on average. The long and short portfolios individually consist of fewer industries: about

1.3 industries for k-means clustering, 2.7 for DBSCAN, and 1.1 for agglomerative clustering. This

result implies that the profit does not only result from the divergence of the stocks in the same

industry but also from the divergence between industries.

5https://www.naics.com/sic-codes-industry-drilldown/
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4.6 Sub-period Analysis

We divide the sample period into five sub-periods and examine the performance of the clustering

algorithms in each of these sub-periods. The results are reported in Table 6.

The first sub-period commences from January 1980 and ends in December 1999, prior to the

widespread use of quantitative and machine learning algorithms in investment (Krauss et al., 2017).

Even the benchmark reversal portfolio performs superbly during this period, attaining an annualized

mean return of 34.5% and a Sharpe ratio of 2.08. However, the portfolios constructed via k-means

and agglomerative clustering still outperform the benchmark significantly during this period: they

attain an annualized mean returns of 23.7% and 25.8%, and the Sharpe ratios of 3.55 and 3.93,

respectively. DBSCAN yields a Sharpe ratio of 2.05, which is comparable to that of the reversal

portfolio, but it has a lower maximum drawdown and higher Sortino ratio. Overall, all three

clustering methods perform superbly during this period.

The second sub-period ranges from January 2000 to December 2006, which coincides with

the advent of quantitative and machine learning algorithms for investment (Vidyamurthy, 2004;

Dempster and Leemans, 2006; Jae Won Lee, 2001). Cheaper and higher performing computing

hardware has accelerated the adoption of quantitative approaches in this period, allowing more

quantitative algorithms to be employed for portfolio construction. Hence, it is not surprising to

observe a dip in the performance of all portfolios in this period compared to the previous period.

Nevertheless, the clustering methods still manage to yield annualized mean returns above 25% and

Sharpe ratios above 2.3. These values are significantly higher than those of the benchmark reversal

portfolio, which are 21.6% and 0.51. DBSCAN performs particularly well in this period attaining

a mean return of 33.9% and a Sharpe ratio of 2.79.

The third sub-period, January 2007 to December 2009, corresponds to the financial crisis caused

by the collapse of housing prices in the US and its recovery thereafter. All three clustering methods

remain profitable during the financial crisis and fare better than the benchmark reversal portfolio,

except for DBSCAN, which performs comparably to the benchmark. To our surprise, agglomerative

clustering performs superbly during the recession, with an annualized mean return of 23.5% and a

Sharpe ratio of 2.11. Moreover, the maximum drawdown is mere 4.4%, which is significantly lower

than those of the benchmarks; 55.1% for S&P500 and 21.2% for the reversal portfolio. This finding

is in line with Do and Faff (2010) and Huck and Afawubo (2015), who find that pairs trading

strategies perform better during a financial crisis.

The fourth sub-period ranges from January 2010 to December 2019. We discover that the

returns generated by k-means and agglomerative clustering deteriorate during this period: they

earn an annualized mean return below 15%. This finding is in line with Clegg and Krauss (2018),

Rad et al. (2016), and Krauss et al. (2017), who observe that pairs trading strategies generate lower

returns in recent years due to the widespread use of quantitative and machine learning algorithms.

Any market inefficiency is rapidly arbitraged away eroding any potential profits to be generated.

However, we still observe a significant amount of profits generated by DBSCAN in this period, with
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an annualized mean return of 22.9% and a Sharpe ratio of 1.85. Agglomerative clustering attains

a comparatively lower return of 14.5% and a Sharpe ratio of 1.78. The k-means clustering is found

to be the worst-performing clustering method in this period, generating an annualized mean return

of 11.8% and a Sharpe ratio of 1.47. Nevertheless, all three clustering methods outperform both

benchmarks in terms of all metrics. The benchmark reversal portfolio underperforms S&P500 with

a mean return of 3.7% and a Sharpe ratio of 0.23, suggesting that a näıve reversal strategy can no

longer generate profits.

The last sub-period is year 2020, when the COVID-19 pandemic swept the world. To contain

the spread of the virus, governments worldwide have implemented various degrees of lockdowns,

which have severely depressed the global economy. Equity prices plummeted while the stock market

volatility skyrocketed to an unprecedented level, which surpassed what was observed during the

global financial crisis in 2008 as well as the Great Depression in 1929 (Baker et al., 2020).

The S&P500 index plunges by 27.5% until March 2020, while the reversal portfolio loses 15.9%

in the same period. In contrast, the portfolios based on clustering fall by a much smaller magnitude.

The agglomerative clustering loses only 3.5% and the other clustering methods also perform robustly

with a maximum drawdown below 8%.

During the recovery from April 2020 onward, S&P500 recovers all the losses incurred till March

2020. The clustering-based strategies recover more rapidly and achieve significantly positive re-

turns. DBSCAN performs particularly well generating a mean return higher than 50%. This result

reaffirms the superiority and resilience of our strategies in a period of economic crisis.

5 Robustness check

Given the clustering methods’ strong financial performance, coupled with the silent reproach of data

snooping with machine learning algorithms, we perform a series of robustness check to ensure the

performance is not sensitive to model parameters. Unlike many machine learning methods which

often involve dozens of parameters and have high degrees of freedom, the clustering algorithms have

few parameters, e.g., the number of clusters K for the k-means clustering or the outlier threshold α

for DBSCAN and agglomerative clustering. Besides the model parameters, we check the robustness

against firm sizes, transaction costs, and the number of principal components.

5.1 Parameter Sensitivity of the Strategy

Table 7 analyzes the sensitivity of the pairs trading strategies to parameters. We find that the

strategies are robust across a wide range of parameter values.

When we increase the number of clusters for k-means clustering from 5 to 1500, the number

of clusters after removing outliers also increases, whereas the number of clustered stocks and the

number of traded stocks decrease. This is because a large K generates many tiny clusters whose

elements do not meet the trading criteria. The mean return increases with K as only a small
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number of stocks that are closest to each other are paired and form the portfolio. But the Sharp

ratio does not exhibit a monotonic trend and has its highest value when K = 500. It appears

that the best performance requires a balance between selecting most profitable pairs and increasing

diversification. Overall, the strategy is robust to K, with the mean return ranging between 17.5%

and 27.4% and the Sharpe ratio ranging between 1.59 and 2.33.

DBSCAN clusters fewer stocks when α decreases, i.e. the maximum distance for a pair to

be connected decreases. However, the number of clusters remains at 2. A smaller α results in a

portfolio with fewer stocks and yields higher returns and Sharpe ratio, and the best performance

occurs when α = 0.1. The minimum α we test is 0.1, but decreasing α below 0.1 may improve

the portfolio performance further. The strategy based on DBSCAN appears to be more sensitive

than the one from k-means clustering: the mean return ranges between 12.7% and 24.4% and the

Sharpe ratio ranges between 0.85 and 1.89.

Agglomerative clustering trades fewer stocks as the maximum distance for linkage decreases,

i.e., α decreases. Like in k-means clustering, selecting fewer stocks yields a higher return, but the

Sharpe ratio starts to decrease when α is greater than 0.4. The performance varies rather widely,

with the range of the mean return between 14.2% and 30.9% and the range of the Sharpe ratio

between 1.22 and 2.73. Still, the strategy earns a mean return of 14.2% and a Sharpe ratio of 1.22

even in the worst case (α=0.9), in which only a small portion of the stocks (16.6%) are removed as

outliers and the portfolio consists of almost 1000 stocks, on average.

Overall, all three clustering methods perform robustly within a reasonable range of the param-

eter values.

5.2 Size Effects

It might be that the returns generated by the clustering methods are attributed to illiquid, small-cap

stocks. To assess the role of small-cap stocks, we repeat the empirical analysis after removing stocks

with market capitalization smaller the 10% or 20% NYSE-size quantile. Table 8 (rows ‘NYSE10’

and ‘NYSE20’) reports the results.

Removing small-cap stocks lowers the mean return. However, it also reduces the volatility

and the Sharpe ratio declines only moderately when the stocks below 10% NYSE-size quantile are

excluded: the Sharpe ratio is decreased from 2.33 to 2.08 for k-means clustering, 1.89 to 1.69 for

DBSCAN, and 2.73 to 2.38 for agglomerative clustering. Excluding the stocks below 20% NYSE-

size quantile does not deteriorate the performance further. The mean return and the Sharpe ratio

remain almost at the same level and even increase for k-means clustering.

Although small-cap stocks appear to have a certain extent of contribution to the strategies’

profitability, the strategies can still generate significant profits when applied to relatively large

stocks. This result reveals that the profits of the strategies are not a mere small-firm effect and

they are scalable for large position sizes.
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5.3 Value-Weighted Portfolio

For the pairs trading strategy to work as intended, the stocks in a pair should be equally weighted,

i.e., buy one stock and sell another for the same amount. As the pairs trading portfolio is simply a

group of long-short pairs, it should also be equally weighted. Nevertheless, to further investigate the

effects of firm size, we construct value-weighted pairs trading portfolios and report their performance

in Table 8 (row ‘VW’). For a fair comparison, the reversal portfolio is also value-weighted.

The value-weighted portfolios perform worse compared to their equally-weighted counterparts:

the mean returns and Sharp ratios are approximately halved, which is in line with the findings of

previous studies, e.g., Gu et al. (2020); Han (2020). Nevertheless, they still outperform the value-

weighted reversal portfolio and S&P500, generating higher returns and Sharpe ratios. In particular,

the agglomerative clustering yields an annualized mean return of 14.2% and a Sharpe ratio of 1.02.

In contrast, the S&P500 index and the reversal portfolio yield mean returns of 12.6% and 2.3% and

Sharpe ratios of 0.84 and 0.09, respectively.

5.4 Impact of Transaction Costs

Our strategies are essentially a contrarian strategy and have a relatively high turnover (about

180%). But they require rebalancing only once a month and transaction costs should have limited

impact. Table 8 (row ‘10 bps’ and ‘20 bps’) presents the portfolios’ risk-return metrics after taking

transaction costs into account. The transaction cost is assumed to be either 10 or 20 basis points

(bp) per side of transaction.

After factoring in 10 bp transaction costs, the portfolio constructed via agglomerative clustering

earns an annualized mean return of 19.4% and a Sharpe ratio of 2.23. DBSCAN and k-means

clustering earn annualized mean returns of 16.8% and 20.0% and annualized Sharpe ratios of 1.86

and 1.56, respectively, which are still promising and higher than those of the benchmarks. Even

with the conservatively assumed transaction cost of 20 bps, agglomerative clustering performs

impressively attaining an annualized mean return of 19.4% and a Sharpe ratio of 1.72. The k-

means clustering and DBSCAN earn annualized mean returns of 12.4% and 15.5% and Sharpe

ratios of 1.37 and 1.21, respectively, and outperform the benchmarks. These results suggest that

our strategies are likely to remain profitable even when the transaction costs are relatively high.

5.5 Trading Threshold

Previously, we use one standard deviation of the past one-month return difference as a threshold

to trigger pairs trading. Here, we test different thresholds and examine their impacts on portfolio

performance. A larger threshold selects pairs that have diverged more significantly in the previous

month and trades fewer stocks. Table 8 (row ‘0.5 std’, ‘1.5 std’, ‘10%’, and ‘20%’) reports the

results from different thresholds.

When the threshold is set to be 0.5 times the standard deviation (row ‘0.5 std’), the stocks
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traded are doubled, and the returns become lower while the Sharpe ratios change little. Raising

the threshold to 1.5 times the standard deviation (row ‘1.5 std’) increases the return, but lowers

the Sharpe ratio, which can be attributed to the reduced diversification effect. Still, our strategies

outperform the benchmarks in both cases.

We also test a crude approach that simply chooses a certain percentile of the stocks from the top

and the bottom. When the portfolio is formed by going long on the 10% lowest return stocks and

short on the 10% highest return stocks within each cluster (row ‘10%’), it obtains a high Sharpe

ratio, but the return tends to get lower except for DBSCAN, which earns a similar level of return:

the Sharpe ratios of k-means, DBSCAN, and agglomerative clustering are respectively 2.32, 1.86,

and 2.52, and the mean returns are 16.8%, 23.2%, and 12.0%. Choosing more extreme return stocks

with 5% threshold (row ‘5%’) renders similar results.

Choosing only a few pairs that have diverged significantly can yield a higher return, but the

Sharpe ratio can deteriorate if the portfolio is not well diversified. A balance between the return

and the volatility needs to be found. The result above suggests that the strategies perform robustly

for a range of the threshold. It also suggests that determining the threshold dynamically based

on the cross-sectional dispersion of the previous one-month return performs better than selecting

a fixed proportion of the stocks.

5.6 Number of Principal Components

Table 8 (row ‘PCA95’ and ‘PCA100’) reports the sensitivity of the clustering methods to the number

of principal components. We choose the number of principal components so that they can explain

95% or 100% of the variation. We use 100% since the objective of the PCA in our application is

not to reduce the dimension, but to transform the feature space so that the principal components

rather than the raw features receive the same weight in the distance metric. On average, 62 out of

123 principal components are selected at 95% and 84 are selected at 99%.

The results suggest that the pairs trading strategies are robust to the change of the number of

principal components. Most risk-return metrics change only slightly with the number of principal

components. Clustering algorithms are notoriously slow for a large set of high-dimensional data, and

choosing the principal components at a lower variance level, e.g., 95%, may save the computational

costs significantly without sacrificing portfolio performance.

6 Conclusion

In this paper, we develop pairs trading strategies via unsupervised learning. We employ three

clustering methods, i.e., k-means clustering, DBSCAN, and agglomerative clustering, and utilize

the information from firm characteristics as well as past returns.

We test our strategies on the US stock market during the period of January 1980 to December

2020 and find all three strategies significantly outperform the market and the short-term reversal
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strategy. The agglomerative clustering-based strategy appear to be the best performing strategy

with an annualised mean excess return of 23.8% and an annualized Sharpe ratio of 2.73. It also has

a low maximum drawdown of 8.4%, which lasts only for one month. Factor models cannot explain

the significant profits of the strategies. The strategies perform robustly during financial crises, such

as the 2007 financial crisis and the 2020 market crash.

Firm characteristics are revealed to be an important source of information in identifying pairs.

Clustering stocks based on their characteristics as well as past returns significantly reduces the

volatility and downside risk of the strategies and improves performance.

The clustering methods select stocks mainly from the manufacturing and financial sectors and

from mid- to large-cap deciles, making the strategies highly scalable. Each cluster consists of only

one or few sectors, which implies that stocks in the same industry tend to behave in a similar

manner. It appears that the profit of the strategies does not only result from the divergence of the

stocks in the same industry but also from the divergence between industries.

A sub-period analysis and robustness tests reveal that the strategies perform robustly under

different conditions and are not sensitive to changes of model parameter values.

In conclusion, clustering stocks incorporating the information from firm characteristics improves

the identification of stock pairs and the performance of the pairs trading strategy.

23



References

Aggarwal, C.C., Hinneburg, A., Keim, D.A., 2001. On the surprising behavior of distance metrics in

high dimensional space, in: International conference on database theory, Springer. pp. 420–434.

Avellaneda, M., Lee, J.H., 2010. Statistical arbitrage in the us equities market. Quantitative

Finance 10, 761–782.

Babu, M.S., Geethanjali, N., Satyanarayana, B., 2012. Clustering approach to stock market pre-

diction. International Journal of Advanced Networking and Applications 3, 1281.

Baker, S.R., Bloom, N., Davis, S.J., Kost, K.J., Sammon, M.C., Viratyosin, T., 2020. The un-

precedented stock market impact of COVID-19. Technical Report. National Bureau of Economic

Research.

Beaver, W., McNichols, M., Price, R., 2007. Delisting returns and their effect on accounting-based

market anomalies. Journal of Accounting and Economics 43, 341–368.
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Table 1: Clustering characteristics

This table reports the clustering results from the k-means clustering, DBSCAN, and agglomerative clustering. Stocks

are clustered every month during the test period from 1990.01 to 2020.12, and the reported values are time-series

averages. The values in parentheses are the percentages against the total number of stocks.

k-means DBSCAN Agglomerative

Number of clusters 130 2 223

Number of stocks in total 3157 3157 3157

Number of stocks in clusters 1256 (39.76) 377 (12.07) 1030 (32.96)

Number of outliers 1901 (60.24) 2780 (87.93) 2127 (67.04)

Number of stocks in the biggest cluster 64 (5.21) 336 (88.52) 150 (14.32)

Number of stocks in the second biggest cluster 51 (4.1) 33 (9.22) 74 (7.1)

Number of stocks in the third biggest cluster 45 (3.63) 6 (1.83) 50 (4.72)

Number of stocks traded 309 (9.66) 71 (2.34) 171 (5.49)
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Table 2: Strategy performance

This table reports the performance of the equally-weighted pairs trading portfolios constructed via k-means, DB-

SCAN, and agglomerative clustering. The test period is from 1980.01 to 2020.12. Panel (a) reports the summary

statistics of the monthly returns, and panel (b) reports annualized risk-return metrics. The t-statistic in panel (a) is

the Newey–West t-statistic. The t-statistic in panel (b) tests the difference of the Sharpe ratio from the Sharpe ratio

of the benchmark reversal portfolio. It is computed using the method of Ledoit and Wolf (2008). S&P500 denotes

the S&P500 index with dividends and Reversal denotes the equally-weighted short-term reversal portfolio.

(a) Monthly return summary statistics

k-means DBSCAN Agglomerative Benchmarks

L S L-S L S L-S L S L-S S&P500 Reversal

Mean 0.023 0.005 0.018 0.021 0.001 0.020 0.023 0.003 0.020 0.012 0.020

Standard deviation 0.059 0.047 0.026 0.054 0.047 0.037 0.055 0.046 0.025 0.049 0.070

Standard error 0.003 0.002 0.001 0.002 0.002 0.002 0.003 0.002 0.001 0.002 0.003

t-statistic 7.965 2.222 14.006 8.443 0.326 12.007 8.886 1.409 16.953 5.185 6.362

Min -0.308 -0.266 -0.080 -0.312 -0.464 -0.123 -0.262 -0.348 -0.058 -0.256 -0.363

25% -0.006 -0.019 0.002 -0.007 -0.021 -0.001 -0.005 -0.019 0.004 -0.015 -0.011

50% 0.025 0.010 0.015 0.022 0.005 0.017 0.024 0.007 0.018 0.014 0.014

75% 0.051 0.032 0.031 0.052 0.025 0.038 0.053 0.030 0.032 0.041 0.042

Max 0.310 0.202 0.159 0.216 0.156 0.180 0.262 0.167 0.158 0.185 0.800

Skew -0.281 -0.955 1.117 -0.708 -2.347 0.681 -0.409 -1.490 1.077 -0.621 3.135

Kurtosis 4.645 4.642 4.250 4.943 20.624 2.215 3.738 9.106 3.428 3.194 34.244

(b) Annualized risk-return metrics

k-means DBSCAN Agglomerative Benchmarks

L S L-S L S L-S L S L-S S&P500 Reversal

Mean return 0.272 0.060 0.211 0.253 0.009 0.244 0.276 0.038 0.238 0.143 0.239

Standard deviation 0.206 0.164 0.091 0.185 0.163 0.129 0.190 0.160 0.087 0.171 0.243

Sharpe ratio 1.319 0.367 2.331 1.365 0.054 1.891 1.454 0.234 2.729 0.840 0.983

t-statistic 8.509 4.602 9.879

Downside deviation 0.159 0.136 0.042 0.150 0.151 0.068 0.147 0.140 0.035 0.131 0.141

Sortino ratio 1.708 0.445 4.994 1.690 0.058 3.567 1.876 0.268 6.819 1.096 1.693

Gross profit 17.036 9.889 9.989 15.781 7.985 12.632 16.582 8.857 10.805 12.316 15.548

Gross loss -5.896 -7.418 -1.320 -5.411 -7.623 -2.624 -5.281 -7.319 -1.042 -6.432 -5.755

Profit factor 2.889 1.333 7.569 2.917 1.048 4.814 3.140 1.210 10.374 1.915 2.702

Profitable years 36 28 39 37 23 40 37 26 41 36 33

Unprofitable years 5 13 2 4 18 1 4 15 0 5 8

Maximum drawdown -0.480 -0.579 -0.112 -0.522 -0.816 -0.164 -0.492 -0.603 -0.084 -0.551 -0.503

Calmar ratio 0.566 0.104 1.885 0.484 0.011 1.488 0.561 0.062 2.836 0.261 0.475

Turnover 0.906 0.924 1.830 0.931 0.952 1.883 0.933 0.946 1.879
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Table 3: Strategy performance without firm characteristics

This table reports the performance of the equally-weighted pairs trading portfolios constructed via k-means, DB-

SCAN, and agglomerative clustering utilizing only momentum features. The test period is from 1980.01 to 2020.12.

Panel (a) reports the summary statistics of the monthly returns, and panel (b) reports annualized risk-return metrics.

The t-statistic in panel (a) is the Newey–West t-statistic. The t-statistic in panel (b) tests the difference of the Sharpe

ratio from the corresponding Sharpe ratio in Table 2. It is computed using the method of Ledoit and Wolf (2008).

(a) Monthly return summary statistics

k-means DBSCAN Agglomerative Benchmarks

L S L-S L S L-S L S L-S S&P500 Reversal

Mean 0.025 0.003 0.021 0.024 0.004 0.020 0.024 0.003 0.021 0.012 0.020

Standard deviation 0.075 0.053 0.040 0.070 0.054 0.044 0.077 0.057 0.042 0.049 0.070

Standard error 0.004 0.003 0.002 0.003 0.003 0.002 0.004 0.003 0.002 0.002 0.003

t-statistic 6.876 1.285 11.093 7.297 1.688 9.454 6.466 1.263 10.140 5.185 6.362

Min -0.373 -0.274 -0.137 -0.369 -0.464 -0.083 -0.296 -0.260 -0.182 -0.256 -0.363

25% -0.014 -0.023 -0.001 -0.004 -0.015 -0.003 -0.015 -0.025 -0.001 -0.015 -0.011

50% 0.020 0.006 0.016 0.021 0.006 0.014 0.021 0.006 0.016 0.014 0.014

75% 0.056 0.030 0.036 0.047 0.025 0.037 0.055 0.031 0.035 0.041 0.042

Max 0.480 0.322 0.303 0.615 0.388 0.395 0.497 0.379 0.266 0.185 0.800

Skew 0.780 -0.109 1.516 1.840 -0.348 2.259 1.158 0.450 1.212 -0.621 3.135

Kurtosis 7.390 5.595 7.994 17.883 20.097 13.615 7.319 6.598 6.862 3.194 34.244

(b) Annualized risk-return metrics

k-means DBSCAN Agglomerative Benchmarks

L S L-S L S L-S L S L-S S&P500 Reversal

Mean return 0.295 0.039 0.256 0.291 0.053 0.238 0.291 0.041 0.250 0.143 0.239

Standard deviation 0.259 0.183 0.138 0.244 0.188 0.152 0.268 0.198 0.146 0.171 0.243

Sharpe ratio 1.140 0.215 1.858 1.195 0.281 1.571 1.083 0.207 1.709 0.840 0.983

t-statistic 2.552 2.503 3.878 1.608 2.292 2.030 3.496 0.250 5.009

Downside deviation 0.171 0.138 0.070 0.171 0.162 0.066 0.163 0.141 0.088 0.131 0.141

Sortino ratio 1.730 0.286 3.630 1.703 0.327 3.591 1.781 0.290 2.853 1.096 1.693

Gross profit 19.255 9.925 12.790 17.544 9.051 12.733 19.460 10.483 12.977 12.316 15.548

Gross loss -7.154 -8.312 -2.302 -5.603 -6.882 -2.960 -7.547 -8.808 -2.740 -6.432 -5.755

Profit factor 2.691 1.194 5.555 3.131 1.315 4.302 2.579 1.190 4.737 1.915 2.702

Profitable years 36 26 39 37 27 38 34 24 38 36 33

Unprofitable years 5 15 2 4 14 3 7 17 3 5 8

Maximum drawdown -0.522 -0.656 -0.137 -0.477 -0.624 -0.129 -0.514 -0.656 -0.326 -0.551 -0.503

Calmar ratio 0.566 0.060 1.864 0.611 0.085 1.846 0.566 0.062 0.767 0.261 0.475

Turnover 0.857 0.933 1.790 0.932 0.981 1.913 0.884 0.954 1.838
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Table 4: Factor regression

This table reports the factor regression results of the equally-weighted pairs trading portfolio constructed via agglom-

erative clustering. FF3, FF3+2, FF5, and q5 respectively denote the Fama-French three factors, FF3 plus momentum

and short-term reversal factors, Fama-French five factors, and Hou-Mo-Xue-Zhang q5 factors. The sample period

is from 1980.01 to 2020.12 except for q5, for which the period ends in 2019.12. The values in parentheses are the

Newey-West t-statistics.

FF3 FF3+2 FF5 q5

Intercept 0.018*** 0.019*** 0.018*** 0.019***

(15.294) (15.776) (14.854) (13.884)

Market 0.159*** 0.067** 0.163*** 0.154***

(4.301) (2.078) (4.348) (3.893)

SMB 0.014 -0.007

(0.155) (-0.108)

HML 0.160** 0.067

(2.317) (0.968)

Momentum -0.126***

(-3.379)

Reversal 0.280***

(5.212)

SMB5 0.043

(0.622)

HML5 0.153

(1.571)

RMW5 0.086

(1.034)

CMA5 -0.017

(-0.153)

R ME 0.009

(0.096)

R IA 0.178**

(2.232)

R ROE -0.103

(-1.265)

R EG -0.026

(-0.297)

R2 0.095 0.305 0.100 0.101

Adj. R2 0.089 0.297 0.091 0.092

Num. obs. 492 492 492 480

* p < 0.10, ** p < 0.05, and *** p < 0.01

31



Table 5: Size and industry breakdown of the clusters

This table reports the composition of the stocks traded under each clustering method during the test period from

1980.01 to 2020.12. Panel (a) reports the percentage of the stocks in each size decile, where 1 (10) denotes the

smallest (largest) stocks. Panel (b) reports the industry sector composition of the stocks. The industry classification

is by the North American Industry Classification System (NAICS). The column Market denotes the composition of

the entire market. The reported values are time-series averages over the sample period.

(a) Size deciles

k-means DBSCAN Agglomerative

L S L-S L S L-S L S L-S

10 10.00 12.01 11.01 14.30 16.14 15.22 11.72 13.67 12.69

9 12.44 13.60 13.02 16.80 17.73 17.27 14.60 15.56 15.08

8 12.74 13.90 13.32 15.94 15.79 15.86 14.40 15.32 14.86

7 12.99 13.56 13.28 12.60 13.27 12.94 13.95 14.08 14.02

6 12.23 12.36 12.29 10.91 10.89 10.90 12.19 12.25 12.22

5 10.95 10.72 10.83 8.96 8.66 8.81 10.49 10.05 10.27

4 9.90 9.12 9.51 7.80 7.46 7.63 8.95 8.15 8.55

3 8.52 7.34 7.93 7.28 6.18 6.73 7.17 6.07 6.62

2 6.73 5.23 5.98 4.48 3.33 3.90 5.00 3.88 4.44

1 3.51 2.15 2.83 0.92 0.55 0.73 1.54 0.97 1.25

Average 6.17 6.47 6.32 6.79 6.93 6.86 6.52 6.76 6.64

(b) Industry breakdown

k-means DBSCAN Agglomerative Market

L S L-S L S L-S L S L-S

Manufacturing 47.32 47.15 47.23 27.51 26.56 27.04 44.42 44.39 44.41 43.56

Finance, insurance, and real estate 19.48 19.68 19.58 49.84 52.32 51.08 27.61 27.72 27.66 16.06

Services 11.07 11.26 11.17 1.92 2.06 1.99 8.30 8.36 8.33 13.78

Transportation, communications, and utilities 8.24 8.11 8.18 16.24 15.08 15.66 9.08 8.77 8.93 8.79

Retail trade 5.60 5.66 5.63 1.30 1.16 1.23 4.23 4.42 4.32 6.51

Wholesale trade 3.30 3.42 3.36 1.06 0.95 1.00 2.72 2.78 2.75 3.97

Mining 3.07 2.83 2.95 0.79 0.68 0.74 2.08 1.96 2.02 4.37

Construction 0.90 0.87 0.89 0.30 0.42 0.36 0.70 0.72 0.71 1.26

Nonclassifiable establishments 0.68 0.69 0.68 0.71 0.54 0.62 0.61 0.63 0.62 1.23

Agriculture, forestry, and fishing 0.16 0.18 0.17 0.03 0.04 0.03 0.10 0.10 0.10 0.29

Public administration (government) 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02

Number of industries within each cluster 1.31 1.32 1.82 2.73 2.68 3.45 1.07 1.07 1.42
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Table 6: Sub-period analysis

This table reports sub-period performances of the equally-weighted pairs trading portfolios constructed via k-means

clustering, DBSCAN, and agglomerative clustering. The sub-periods are defined in the table. The values are annu-

alized where applicable.

k-means DBSCAN Agglomerative S&P500 Reversal

01/1980 - 12/1999

Mean return 0.237 0.222 0.258 0.178 0.345

Sharpe ratio 3.554 2.050 3.932 1.088 2.078

Sortino ratio 8.375 3.923 11.660 1.425 3.325

Profit factor 20.019 4.908 20.464 2.301 7.493

Maximum drawdown -0.040 -0.087 -0.027 -0.314 -0.192

Calmar ratio 5.956 2.563 9.554 0.567 1.799

01/2000 - 12/2006

Mean return 0.259 0.339 0.297 0.112 0.216

Sharpe ratio 2.352 2.787 2.664 0.683 0.510

Sortino ratio 4.204 9.658 6.052 1.039 0.917

Profit factor 9.252 14.357 13.365 1.669 1.764

Maximum drawdown -0.080 -0.038 -0.058 -0.299 -0.406

Calmar ratio 3.245 8.864 5.151 0.376 0.532

01/2007 - 12/2009

Mean return 0.251 0.130 0.235 -0.004 0.165

Sharpe ratio 1.721 0.629 2.113 -0.015 0.671

Sortino ratio 6.235 1.276 5.712 -0.020 1.813

Profit factor 5.511 1.697 7.072 0.988 1.764

Maximum drawdown -0.083 -0.164 -0.044 -0.551 -0.212

Calmar ratio 3.029 0.790 5.314 -0.007 0.782

01/2010 - 12/2019

Mean return 0.118 0.229 0.145 0.139 0.037

Sharpe ratio 1.465 1.851 1.783 1.010 0.232

Sortino ratio 3.840 3.275 4.427 1.513 0.486

Profit factor 3.167 4.583 4.372 2.135 1.198

Maximum drawdown -0.112 -0.123 -0.084 -0.199 -0.260

Calmar ratio 1.053 1.872 1.723 0.698 0.141

01/2020 - 12/2020

Mean return 0.179 0.513 0.376 0.162 0.511

Sharpe ratio 1.028 2.117 2.191 0.506 1.302

Sortino ratio 2.090 7.578 24.447 0.616 3.421

Profit factor 2.286 5.592 6.938 1.495 3.389

Maximum drawdown -0.071 -0.060 -0.035 -0.275 -0.159

Calmar ratio 2.512 8.599 10.804 0.590 3.224
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Table 8: Robustness check

This table reports the results from the robustness check in Section 5. ‘NYSE10’ (‘NYSE20’) denotes the results

after excluding stocks smaller than 10% (20%) NYSE-size quantile, and ‘VW’ denotes the value-weighted portfolio

performance. ‘10 bps’ (‘20 bps’) denotes the results after considering transaction costs of 10 (20) bps. ‘0.5 std’ (‘1.5

std’) denotes the results when the trading threshold is set to 0.5 (1.5) times the cross-sectional standard deviation,

and ‘10%’ (‘5%’) denotes the results when the portfolios are constructed from the 10% (5%) highest and lowest return

stocks. ‘PCA95’ (‘PCA100’) denotes the results when the principal components are chosen so that they can explain

95% (100%) of the variation. The test period is from 1980.01 to 2020.12.

k-means DBSCAN Agglomerative Benchmarks

L S L-S L S L-S L S L-S S&P500 Reversal

NYSE10 MR 0.233 0.067 0.166 0.242 0.038 0.204 0.244 0.060 0.184 0.143 0.239

SR 1.249 0.420 2.079 1.302 0.251 1.687 1.326 0.392 2.384 0.840 0.983

MDD -0.485 -0.513 -0.078 -0.584 -0.528 -0.266 -0.481 -0.482 -0.115 -0.551 -0.503

NYSE20 MR 0.235 0.059 0.176 0.231 0.046 0.184 0.238 0.066 0.171 0.143 0.239

SR 1.293 0.385 2.100 1.277 0.315 1.504 1.345 0.439 2.239 0.840 0.983

MDD -0.474 -0.464 -0.121 -0.542 -0.546 -0.318 -0.425 -0.506 -0.110 -0.551 -0.503

VW MR 0.179 0.056 0.123 0.197 0.051 0.146 0.201 0.059 0.142 0.126 0.023

SR 0.936 0.342 1.018 0.980 0.278 0.927 1.002 0.343 1.016 0.835 0.089

MDD -0.589 -0.632 -0.224 -0.682 -0.602 -0.556 -0.593 -0.644 -0.248 -0.502 -0.747

10 bps MR 0.249 0.037 0.168 0.231 -0.015 0.200 0.252 0.012 0.194 0.143 0.239

SR 1.210 0.224 1.857 1.245 -0.092 1.561 1.329 0.078 2.234 0.840 0.983

MDD -0.499 -0.595 -0.138 -0.543 -0.890 -0.170 -0.511 -0.630 -0.105 -0.551 -0.503

20 bps MR 0.228 0.015 0.124 0.209 -0.038 0.155 0.230 -0.010 0.149 0.143 0.239

SR 1.104 0.088 1.373 1.125 -0.232 1.211 1.211 -0.065 1.717 0.840 0.983

MDD -0.518 -0.622 -0.236 -0.564 -0.939 -0.178 -0.530 -0.789 -0.146 -0.551 -0.503

0.5 std MR 0.239 0.078 0.161 0.219 0.057 0.162 0.235 0.073 0.163 0.143 0.239

SR 1.285 0.507 2.460 1.346 0.396 1.812 1.352 0.491 2.777 0.840 0.983

MDD -0.482 -0.551 -0.065 -0.500 -0.553 -0.130 -0.466 -0.553 -0.044 -0.551 -0.503

1.5 std MR 0.298 0.041 0.257 0.279 -0.013 0.291 0.293 -0.004 0.296 0.143 0.239

SR 1.274 0.223 1.945 1.276 -0.076 1.529 1.309 -0.020 2.217 0.840 0.983

MDD -0.456 -0.624 -0.241 -0.674 -0.853 -0.314 -0.518 -0.754 -0.294 -0.551 -0.503

10% MR 0.242 0.074 0.168 0.247 0.015 0.232 0.217 0.097 0.120 0.143 0.239

SR 1.270 0.470 2.315 1.357 0.100 1.863 1.256 0.635 2.520 0.840 0.983

MDD -0.503 -0.577 -0.075 -0.572 -0.713 -0.201 -0.492 -0.557 -0.053 -0.551 -0.503

5% MR 0.243 0.077 0.166 0.260 -0.015 0.276 0.215 0.102 0.113 0.143 0.239

SR 1.216 0.469 2.141 1.275 -0.098 1.752 1.227 0.654 2.382 0.840 0.983

MDD -0.530 -0.601 -0.078 -0.661 -0.847 -0.339 -0.498 -0.556 -0.059 -0.551 -0.503

PCA95 MR 0.274 0.059 0.215 0.254 0.008 0.247 0.269 0.044 0.225 0.143 0.239

SR 1.348 0.359 2.273 1.371 0.047 1.927 1.413 0.279 2.571 0.840 0.983

MDD -0.465 -0.588 -0.098 -0.509 -0.821 -0.150 -0.466 -0.566 -0.083 -0.551 -0.503

PCA100 MR 0.263 0.057 0.206 0.250 0.001 0.250 0.277 0.036 0.241 0.143 0.239

SR 1.255 0.347 2.159 1.333 0.004 1.907 1.462 0.224 2.770 0.840 0.983

MDD -0.504 -0.577 -0.198 -0.520 -0.858 -0.176 -0.488 -0.590 -0.059 -0.551 -0.503
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(c) Agglomerative

Figure 2: Number of clusters and the number of stocks in the clusters

This figure presents the number of clusters and the number of stocks in the clusters formed by k-means clustering,

DBSCAN, and agglomerative clustering. The graphs on the left show the number of clusters and the graphs on the

right show the number of stocks in the first two biggest clusters every month during the test period from 1980.01 to

2020.12.
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Figure 3: Monthly return distribution

This box plot presents the monthly return distributions of the equally-weighted pairs trading portfolios constructed

via k-means clustering, DBSCAN, and agglomerative clustering during the test period from 1980.01 to 2020.12.
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Figure 4: Cumulative returns of pairs trading portfolios

This figure presents the log-scale cumulative returns of the equally-weighted pairs trading portfolios constructed via

k-means clustering, DBSCAN, and agglomerative clustering during the test period from 1980.01 to 2020.12.
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A Appendix: Firm Characteristics

Acronym Firm characteristic Acronym Firm characteristic

absacc Absolute accruals indmom Industry momentum

acc Working capital accruals invest Capital expenditures and inventory

aeavol Abnormal earnings announcement volume IPO New equity issue

age # years since first Compustat coverage lev Leverage

agr Asset growth maxret Maximum daily return

baspread Bid-ask spread MS Financial statement score

beta Beta mve Size

betasq Beta squared mve ia Industry-adjusted size

bm Book-to-market nincr Number of earnings increases

bm ia Industry-adjusted book to market operprof Operating profitability

cash Cash holdings pchcapx ia Industry adjusted % change in capital expenditures

cashdebt Cash flow to debt pchcurrat % change in current ratio

cashpr Cash productivity pchdepr % change in depreciation

cfp Cash flow to price ratio pchgm pchsale % change in gross margin - % change in sales

cfp ia Industry-adjusted cash flow to price ratio pchsale pchrect % change in sales - % change in A/R

chatoia Industry-adjusted change in asset turnover pctacc Percent accruals

chcsho Change in shares outstanding pricedelay Price delay

chempia Industry-adjusted change in employees ps Financial statements score

chinv Change in inventory rd R&D increase

chmom Change in 6-month momentum retvol Return volatility

chpmia Industry-adjusted change in profit margin roaq Return on assets

chtx Change in tax expense roeq Return on equity

cinvest Corporate investment roic Return on invested capital

convind Convertible debt indicator rsup Revenue surprise

currat Current ratio salecash Sales to cash

depr Depreciation / PP&E salerec Sales to receivables

divi Dividend initiation securedind Secured debt indicator

divo Dividend omission sgr Sales growth

dolvol Dollar trading volume sin Sin stocks

dy Dividend to price SP Sales to price

ear Earnings announcement return std dolvol Volatility of liquidity (dollar trading volume)

egr Growth in common shareholder equity std turn Volatility of liquidity (share turnover)

ep Earnings to price sue Unexpected quarterly earnings

gma Gross profitability tang Debt capacity/firm tangibility

herf Industry sales concentration tb Tax income to book income

hire Employee growth rate turn Share turnover

idiovol Idiosyncratic return volatility zerotrade Zero trading days

ill Illiquidity

Note: This table lists the 75 firm characteristics used in the study. Readers are referred to Green et al. (2017) and

the references therein for the exact definitions.
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B Clustering Algorithms

Algorithm 1: k-means clustering

Input: X: All sample points in month t

K: Number of Clusters

MaxIter: Maximum number of iterations

Tol: tolerance for convergence

1 Initialize centroids µk’s at random points

2 for i in MaxIter do

3 for each sample point x in X do

4 Assign x to its nearest centroid

5 Update the centroids µk’s

6 if the l2 norm of the difference in the cluster centroids of two consecutive iterations is smaller

than Tol then

7 Break

Algorithm 2: Identification of outliers in k-means clustering

Input: X: All sample points in month t

α: Percentile to calculate ε, the maximum distance to the centroid for a sample point to remain in

its cluster

µx: The corresponding centroid of sample point x where x ∈ X
1 Compute the l2 distances of every point to its corresponding centroid

2 ε = the α percentile of the l2 distances

3 for each sample point x in X do

4 if ||x− µx||2 > ε then

5 Mark x as outlier
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Algorithm 3: DBSCAN

Input: X: All sample points in month t

MinPts: Minimum number of sample points per cluster

ε: Maximum distance between two samples for one to be considered the neighbourhood of the other

1 C = 0

2 for each unvisited sample point x in X do

3 Mark x as visited

4 NeighborP ts = all points within ε from x

5 if size of NeighborP ts < MinPts then

6 Mark x as NOISE

7 else

8 C = next cluster

9 Add x to C

10 for each point x′ in NeighborP ts do

11 NeighborP ts′ = all points within ε from x′

12 if size of NeighborP ts′ ≥ MinPts then

13 NeighborP ts = NeighborP ts ∪ NeighborP ts’

Algorithm 4: Agglomerative clustering

Input: X: All sample points in month t

ε: Maximum distance between two clusters for them to be merged

1 Initialization: Treat all sample points as individual clusters

2 while minimum distance between clusters < ε do

3 Compute the distances between all clusters

4 Merge the pair of clusters that has the minimum distance into a single cluster
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