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ABSTRACT

Individuals are often overcon�dent, especially those in positions to in�uence

outcomes. The impact of hiring an overcon�dent portfolio manager is studied

here within the standard principal-agent framework. Overcon�dence induces

a higher level of e�ort until the e�ects of restrictions on portfolio formation

emerge. Further, by increasing the incentive fee and sharing more risk, the

investor can curb excessive managerial risk taking. When compensation is

endogenously determined, we �nd that investors can bene�t from manage-

rial overcon�dence. However, excessive overcon�dence is detrimental to the

investor. In addition, we also �nd empirical support for some of our model

predictions.
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Introduction

There is overwhelming evidence that investors are biased and irrational in

making investment decisions (see Shleifer (2003), Barberis and Thaler (2003),

and Subrahmanyam (2008)). One of the most widely studied behavioral bi-

ases is investor overcon�dence (see Barber and Odean (2001), Gervais and

Odean (2001), and Ben-David et al. (2018)). Although the phenomenon

is well documented, most empirical studies and theoretical models limit

their focus to overcon�dence in individual investors who are not necessar-

ily marginal investors.1 In this paper, we analyze the decision to hire an

overcon�dent portfolio manager where compensation mechanism and invest-

ment constraints can address some of the agency concerns.

It is quite common for �nancial institutions to delegate the decisions of

portfolio formation to professional managers.2 Delegation is optimal because

managers possess superior skills that allow them to collect and process infor-

mation regarding the movement of security prices. Bhattacharya and P�ei-

derer (1985), in their seminal paper, consider the problem of delegation in

portfolio management. They propose a compensation contract that screens

agents based on their privately known ability. Such a contract also elicits

truthful revelation of their private signals from the manager. In this paper,

we ask whether screening for overcon�dent managers is in the best interest

of the investor or whether hiring such a manager improves investors' welfare.

We study the above question within the standard principal-agent frame-

work. A risk-averse principal who is aware of the manager's biases sets the

contract parameters, and she o�ers it to the agent. If the contract is feasible

to the risk-averse manager, he accepts it and exerts e�ort. The manager

then observes a signal and updates his beliefs about the future return distri-

1Palomino and Sadrieh (2011) and Adebambo and Yan (2016) are a few exceptions
that deal with overcon�dence in investment management.

2In what follows, the manager who makes the portfolio decision is also called the agent.
The principal who hires the manager is often referred to as the investor.
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bution. An overcon�dent manager updates his beliefs in a biased way and

wrongfully estimates the precision of his signal and hence the precision of the

ex-post distribution of returns. Based on his beliefs, the manager then makes

a decision about the riskiness of the portfolio. We derive the comparative

statics of hiring an overcon�dent manager within this framework. Although

contract parameters are endogenously determined, we do not solve for the

optimal contract conditional on hiring an overcon�dent manager. Instead, we

evaluate the decision to hire an overcon�dent manager within the standard

compensation structure used in the industry.3

We study the problem in two distinct scenarios. First, we solve the prob-

lem where there are no constraints on the portfolio holdings of the manager.

In this case (�unconstrained scenario�), an overcon�dent manager overesti-

mates the perceived marginal bene�t of e�ort, for any given level of com-

pensation, and will always exert a higher level of e�ort. Although a perverse

result, this scenario captures the essence of hiring an overcon�dent manager.

The principal gains from higher managerial e�ort and, in addition, can use

the incentive parameter in the contract to mitigate excessive risk taking. The

optimal e�ort, however, is not a function of the incentives parameter in the

contract (see Stoughton (1993)). Overall, the investor's expected utility is

higher from hiring an overcon�dent manager.

Second, we impose the commonly observed constraints on the manager's

portfolio choices (�constrained scenario�). A nontrivial 91% of funds face

constraints relating to buying on margin, and about 69% of funds do not al-

low short-selling (see Almazan et al. (2004, Table 1)).4 Unlike before, when

constrained, the optimal e�ort level is an increasing function of the incentive

parameter (see Gómez and Sharma (2006)). Importantly, the equilibrium

e�ort is no longer strictly an increasing function of the manager's overcon-

�dence. First, the overcon�dent manager overestimates the extent to which

3E�ort levels are unobservable and hence cannot be contracted.
4Dybvig, Farnsworth and Carpenter (2010) also stress the importance of trade restric-

tions when studying the optimal contract design problem.
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his actions in�uence the �nal outcome and will put in more e�ort. Second,

for any given signal, an overcon�dent manager always demands a higher

absolute quantity of risky assets. Therefore, when constraints on portfolio

formation are imposed, the set of signals for which the manager can demand

his utility-maximizing quantity shrinks. He is at the boundary of the allowed

quantity more often than a rational manager. Because his additional e�ort

is not rewarded, the manager is bound to reduce his e�ort level. Therefore,

the equilibrium e�ort increases in overcon�dence until it reaches a threshold,

after which it decreases. Further, to accommodate managers' bias regarding

the marginal bene�t of their e�ort, in our model we allow for the managers'

reservation utility to increase in their overcon�dence. Overall, it is still bene-

�cial for an investor to hire an overcon�dent manager up to a certain thresh-

old, beyond which the investor's expected utility diminishes. For robustness,

we also solve for the case where the risk preferences of the principal and agent

di�er and for the case where convex compensation contracts are used.

Conceptually, this paper is similar to Gervais et al. (2011), where overcon-

�dent CEOs make investment decisions for the shareholders. The results of

Gervais et al. (2011) are similar to the non-monotonic utility gains attributed

to hiring an overcon�dent manager here. The di�erence is that the focus of

the current paper is on delegated portfolio management issues, dealing with

the consequences of moral hazard and constraints on portfolio formation. An

important advantage of the model presented here is that managerial e�ort is

endogenously chosen, whereas in Gervais et al. (2011), the manager's skill is

exogenously speci�ed. Overall, the channels through which the implications

of overcon�dence are presented here are vastly di�erent from Gervais et al.

(2011).

Palomino and Sadrieh (2011) also solve a model of moral hazard where

the portfolio manager is overcon�dent. The focus of their paper, however, is

to solve for the optimal contract in which the manager truthfully reveals his

signal to the principal. However, their model does not consider restrictions on
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portfolio formation, something that we think is critical. Moreover, the truth

telling contract that Palomino and Sadrieh (2011) propose are not commonly

found in the mutual fund industry.

We also empirically test some of the implications of our model. Choi

and Lou (2010) provide evidence of self-attribution bias by showing that

managers adjust their portfolio holdings and deviate from their benchmarks

di�erently upon receiving news con�rming their private signal than upon re-

ceiving news that discredits it. Within this framework, we follow Almazan

et al. (2004) and create a composite index that quanti�es the severity of

constraints that managers face. We then show that these constraints sig-

ni�cantly mitigate the e�ect of the above discussed attribution bias. This

evidence is in line with our model that shows that portfolio constraints are

more binding on an overcon�dent manager and hence moderate his actions.

In a separate speci�cation, we test for the e�ect of managerial ownership in

the fund, our proxy for variable incentive parameter, on the above mentioned

bias.5 As overcon�dence increases, the principal must increase the variable

component of the contract to increase the variance in the agent's payo� and

hence moderate his portfolio decisions. Consistent with this explanation, we

empirically �nd evidence of diminished self-attribution bias in funds having

a higher percentage of managerial ownership.

Our main contribution is to help understand the welfare implications

of hiring an overcon�dent manager and the resulting contract design and

risk taking in a delegated portfolio management setting. Empirical evidence

of self-attribution bias clearly shows the presence of overcon�dent portfolio

managers. The obvious question, then, is why such managers are not screened

for. It could mean either that screening mechanisms do not work or that

there might be bene�ts to hiring a moderately overcon�dent manager. Using

a standard model, as in Stoughton (1993), we highlight the gains to hiring

5Portfolio manager compensation contracts are private contracts, and hence the con-
tract details are not observable.
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an overcon�dent portfolio manager and explain why such managers continue

to exist in equilibrium.

1 Model

The model captures the contracting problem between an investor and a port-

folio manager. We abstract away from all other agency problems by assuming

that the investment adviser, the board of directors of the fund, and the in-

dividual investors are one unit.

1.1 Problem description and preferences

The investor (principal) and the manager (agent) are both risk averse. They

are assumed to have a negative exponential utility function where a and b

are the absolute risk aversion coe�cient of the manager and investor, respec-

tively. Both a and b are non-negative real numbers. The contracting problem

begins with the investor seeking to hire a manager who is to employ his skills

and extract private signals about future market prices. The investor strategi-

cally chooses the contract parameters. In this article, we do not solve for the

shape of the optimal contract. Instead, we take the contract form, commonly

found in the mutual fund industry, as given and study the choice of contract

parameters and evaluate the implications of the hiring decision.6 The fees

have two components: a �xed �at fee, F , and a performance adjustment fee,

α. The investor has $1 to begin with and requires the manager to invest this

sum.

The manager has two assets to choose from. He has the option of investing

in a risky asset that yields the net return of x̃ or investing in a risk-free asset.

The performance adjustment fee is paid when the returns are in excess of

6We begin with the linear contract space because most investment advisory contracts
are linear. For robustness, we also address the case of convex contracts in the later part
of the paper.
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a benchmark. The performance fee is assumed to be benchmarked against

the risk-free bond, the net return of which is normalized to be zero. After

the contract parameters are o�ered to the manager, the manager decides to

accept or reject the contract based on whether his unconditional expected

utility meets the reservation utility. The game ends if the manager refuses

to accept the contract. Competition in the managerial labor market is not

explicitly modeled here. However, the reader could think of the reservation

utility as representing the utility from the equilibrium compensation. If the

contract is accepted, the manager strategically chooses a level of e�ort, e, to

be exerted. The e�ort expended allows the manager to observe a random

signal , ỹ, which is correlated with the future states of the world. After

observing the signal, the manager picks the level of risky assets, θ(y), in his

portfolio. All the above decisions are made at the beginning of the period.

One period later, the payo�s are realized and contracts are settled. However,

no renegotiations are allowed.

Since both the investor and the manager are risk averse, they maximize

the expected utility of their respective terminal wealth. The manager will

receive a �xed compensation F and a share, α, in the di�erence between the

fund's value, (1 + θx̃), and the $1 invested in the risk-free rate. The terminal

wealth of the manager is given by

W̃M (y) = F + αθx̃. (1)

Moral hazard in the model is motivated by the fact that unobservable e�ort is

costly and a source of disutility to the manager. The cost function, V (a, e),

is a convex increasing function in e�ort that is twice di�erentiable. The

following cost function is assumed:

V (a, e) = ae2. (2)

The terminal wealth of the principal is the value of the portfolio at the
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end, net of the compensation to the manager. It should be equal to (1+θx̃)−
F − αθx̃. Ignoring the initial capital, as it does not a�ect the maximization

problem, the following is the terminal wealth of the investor:

W̃I (y) = (1− α) θx̃− F. (3)

1.2 Rational and overcon�dent manager

The prior distribution of the net returns on the risky asset, x̃, is common

knowledge and follows a standard normal distribution. The signal, ỹ, is

assumed to be a noisy indication of the future returns and given as

ỹ = x̃+ ξ̃ (4)

where ξ̃ is the noise term. It is further assumed that higher levels of e�ort help

in reducing the noise in the signal. In other words, the variance of the noise

term decreases with the level of e�ort; i.e., ξ̃ ∼ N
(
0, 1

e

)
. Stoughton (1993)

also shares a similar modeling assumption.7 Based on these assumptions, for

any chosen level of e�ort, the distribution of the signal is ỹ ∼ N
(
0, 1+e

e

)
.

Note, the precision of the signal increases with manager's e�ort. In this

model, the manager is assumed to be Bayesian. So, after observing the

signal, the manager updates his beliefs about the distribution of the risky

asset's return8 to

x̃|y ∼ N

(
e

1 + e
y,

1

1 + e

)
. (5)

The above beliefs are that of a rational manager. An overcon�dent man-

ager believes that, for any level of e�ort he chooses, the following is the

distribution of the noise in his signal:

7Although productivity of e�ort depends on skill, to make the larger point, we assume
that managerial skill is cross-sectionally the same.

8This is the conditional normal distribution of the returns given e�ort and the signal.
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ξ̃ψ ∼ N(0,
1

ψe
) (6)

where ψ ≥ 1 is the level of overcon�dence. A higher ψ implies that the

agent is more overcon�dent. In the case when ψ = 1, we return to the

rational world. An overcon�dent manager assumes that his e�ort reduces

the variance in the noise term much more than a rational manager does.9

One possible criticism of the above setup is that overcon�dence is exoge-

nously speci�ed. To mitigate this concern, the reader should think of this

model as one period in a multi-period setup where nobody, including the

manager, knows the true ability of the manager. They update their beliefs

about his ability after every round of trading. The overcon�dent manager up-

dates his belief in a biased way such that he takes undue credit in instances of

success but fails to take proportional responsibility for failure. The investor,

however, rationally updates her beliefs about the manager. Gervais and

Odean (2001) show that this mechanism, referred to as self-attribution bias,

endogenously leads to overcon�dence. Therefore, the model presented here

is just the nested version of the above described framework. This abstrac-

tion is helpful because we use a simple model to present important e�ects of

managerial overcon�dence. What really matters for the analysis is that there

is heterogeneity in beliefs; the source of it is less relevant. Given the above

beliefs, the overcon�dent manager will have the following as the conditional

distribution for asset return:

x̃|y ∼ N

(
eψ

1 + eψ
y,

1

1 + eψ

)
. (7)

9Manifestation of overcon�dence happens in three distinct ways: overestimation, over-
placement, and overprecision (Moore and Healy (2008)). Our modeling assumption is more
akin to overestimation, where the manager overestimates his ability or the value of his ef-
fort. Below, you will see that our modeling choice a�ects not only the mean but also the
standard deviation of the conditional return distribution (overprecision).
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1.3 Unconstrained problem

To solve her problem, the investor must �rst solve the manager's problem.

Here, in the �rst case, the manager strategically chooses a level of e�ort and

the quantity of the risky asset in an unconstrained way. For any given level

of e�ort and signal, the manager will maximize his conditional utility by

choosing a utility maximizing quantity. Solving the manager's utility maxi-

mization problem, we get the following expression for the optimal quantity

demanded:

θ =
eψ

aα
y. (8)

All proofs are provided in the appendix. First, the proportion of wealth

invested in the risky asset is an increasing function of the manager's over-

con�dence and e�ort and, understandably, decreases in the level of his risk

aversion. Second, as expected, a higher positive signal implies that a larger

proportion of the wealth is invested in the risky asset.

The next step in this method of backward induction is to solve for the

agent's equilibrium e�ort. The manager has to weigh the marginal bene�t of

e�ort, which is a higher signal precision, against the marginal cost of e�ort.

The following equation represents the unconditional expected utility function

of the manager:

Em(U |e) = − exp{−aF + V (a, e)}.g(e) (9)

where g(e) =
(

1
1+eψ

) 1
2
. It is evident from the above equation that the man-

ager's expected utility increases in the function g(e). Note that in equation

(9), the unconditional expected utility of the manager is not a function of the

incentive parameter α. Stoughton (1993) was the �rst to show that linear

contracts cannot be used to induce higher e�ort from the manager. Overall,

the optimal e�ort that maximizes the manager's expected utility should solve

the following �rst-order condition:
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V ′(a, efb) =
ψ

2
(

1

1 + ψefb
). (10)

Because the expected utility function does not depend on α, the optimal

e�ort also will not be a function of the incentive parameter. The question

that is of interest to this paper is the response in e�ort choice to changes in

the level of overcon�dence. Because the overcon�dent manager thinks that

the precision of his signal is high, he is bound to overestimate the marginal

bene�t of his e�ort. Therefore, the point of indi�erence between the marginal

utility of e�ort and the marginal cost of e�ort will be at a higher e�ort level

than it is for a rational manager.10

Proposition 1. Given any contract (α, F ), the optimal e�ort, efb, of the

manager increases with overcon�dence, ψ.

The fact that the e�ort increases with overcon�dence also has to do with

the modeling assumptions of complementarity between e�ort and overcon�-

dence. Although in some instances they could be thought of as substitutes,

Bénabou and Tirole (2002) argues that substitutability typically occurs when

the reward for performance is of a "pass-fail" (binary) nature, which is not

the case here. The manager faces a continuum of outcomes on the return

distribution.

Since the investor in the model is rational, the distributions used in com-

puting her expected utility are those of a rational person. In deriving the

investor's expected utility function, we de�ne the following two functions:

m(α) =
(1− α)

α
ψ,

M(α) = m(α)(2−m(α)). (11)

10Solving equation (10), the optimal e�ort (efb) is equal to
−a+
√
aψ2+a2

2ψa . This e�ort
function is positive and increases with ψ.
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The following is the investor's unconditional expected utility:

Ei(U) = − exp{aF}
(

1

1 + eM(α, ψ)

)1/2

. (12)

Along with satisfying the incentive compatibility constraint in equation (10),

the investor also has to ensure that the minimum reservation utility, Uo, is

met to secure the manager's participation. The following is the participation

constraint:

− exp{−aF + V (a, efb)}
(

1

1 + efbψ

)1/2

= −Uo. (13)

Above, we assume that the investor and the manager have the same level

of risk aversion a. This is done to study the e�ects of overcon�dence in

isolation and to exclude any confounding e�ects arising from the di�erences

in the agent's risk preferences. We relax this constraint below and show the

e�ects of di�erences in risk preferences.

Lemma 1. In the unconstrained scenario, for a given level of managerial

overcon�dence ψ, the investor chooses

αfb =
ψ

1 + ψ
and

F =

(
1

a
V (a, efb) +

1

2a
log

(
1

1 + efbψ

)
− 1

a
log(Uo)

)
as the contract parameters.

The potential bene�ts of hiring an overcon�dent manager are presented

below.

Proposition 2. The expected utility of a rational investor always increases

with the level of managerial overcon�dence.

Intuitively, because, for any given contract, an overcon�dent manager will

always choose a higher equilibrium e�ort, there should be bene�ts from hiring
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an overcon�dent manager. However, an overcon�dent manager, because of

his bias, will always pick a riskier portfolio for any given signal; i.e., when

compared to that of a rational person (see equation (8), θ(y) increases with

ψ). However, by choosing an appropriate α, the principal can address this

problem and implicitly choose the level of portfolio risk. To see this, compute

the quantity of the risky asset that the principal will demand in the event

that she observes the signal herself. Given her expected utility function, the

optimal quantity, based on rational beliefs, is the following:

θi(y) =
e

a(1− α)
y. (14)

When α = ψ
1+ψ

, as in Lemma 1, θi(y) = θ, the exact quantity that the

manager will pick. Higher equilibrium e�ort and the ability to weigh in on the

extent of portfolio risk, using the variable compensation parameter, ensures

that it is always optimal for the investor to hire an overcon�dent investor in

the unconstrained case.

Daniel et al. (1998), through their model, argue that when individu-

als/traders are overcon�dent they trade more often and hold riskier posi-

tions. Barber and Odean (2001) and Grinblatt and Keloharju (2009) provide

empirical support for these claims. We also support these �ndings.

Proposition 3. The quantity of the risky asset demanded by an overcon�dent

agent is always higher than the quantity demanded by a rational manager.

Whether the additional risk in the portfolio generates higher returns is

an empirical question. However, it is important to note that the outcome of

Proposition 3 is optimal from the principal's perspective.

1.4 Constrained problem

Portfolio managers often do not make decisions in an unconstrained way, as

was depicted in section 1.3. Almazan et al. (2004) reports that a vast majority
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of funds have a variety of constraints on the portfolio holdings. Regardless

of the source of the constraint, imposing such constraints can have profound

e�ects on contracting decisions ( see Dybvig et al. (2010)).

We follow Gómez and Sharma (2006) and model the constraint by re-

stricting the absolute value of the amount of the risky asset demanded to a

positive constant k in the following way:

|θ(y)| ≤ k. (15)

The value of k is exogenously speci�ed and used here just to illustrate a point.

As k tends toward in�nity, we would be back to the case of no constraints.

The demand function for the quantity of the risky asset is no longer a smooth

function as in the unconstrained case. Instead, we now have a piecewise

function depending on the value of k:

θ(y)


k y > kaα

ψe

ψe
aα
y |y| < kaα

ψe

−k y < −kaα
ψe
.

(16)

The manager can get the quantity of his choice as long as that quantity

corresponds to the signal in [−kaα
ψe
, kaα
ψe

]. However, for any signal outside this

range, i.e., y < −kaα
ψe

and y > kaα
ψe

, the quantity demanded is restricted to

−k and k, respectively.

1.4.1 Manager's problem

From the manager's demand function, we can derive his unconditional ex-

pected utility function.

Lemma 2. The unconditional expected utility function of the manager is

given by
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Em[U] = −exp(−aF + V (a, e)).g(e, ψ|α), (17)

with

g(e, ψ|α) = (
1

1 + ψe
)
1
2 Φ(

(kaα)2

ψe
) + exp(

(kaα)2

2
)(1− Φ(

(kaα)2

ψe
(1 + ψe)))

where Φ is the distribution function of a χ2(1) random variable.

The function g(e, ψ|α) now has two distinct components. The �rst com-

ponent corresponds to the set of signals within the bounds where the over-

con�dent manager is not a�ected by this constraint. The second term relates

to signals where the constraint is binding. The manager's expected utility

function leads to the following �rst-order condition for e�ort:

V ′(a, e∗)g(e∗, ψ|α) + g′(e∗, ψ|α) = 0 (18)

where

g′(e, ψ|α) =
−ψ
2

(
1

1 + ψe

)3/2

Φ

(
(kaα)2

ψe

)
. (19)

The key distinction here, from the unconstrained case, is that g(e, ψ|α)

now depends on α. This is one of the main contributions of Gómez and

Sharma (2006).

Lemma 3. The manager's equilibrium constrained e�ort increases with per-

formance adjustment fee α.

In the presence of a constraint on the quantity demanded, two opposing

forces in�uence the choice of e�ort for an overcon�dent manager. As shown

in the unconstrained case, overcon�dence leads to an increase in the amount

of e�ort because the manager perceives the marginal bene�t of his e�ort to be

high. However, in the presence of constraints, the signal space for which the
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manager can choose the utility maximizing quantity decreases with the level

of his overcon�dence. This is evident from the fact that the measure of the

set [−kaα
ψe
, kaα
ψe

] decreases as overcon�dence, ψ, increases. This implies that

the unconditional probability of the manager being forced to pick quantities

k or −k is higher when the manager is overcon�dent than when he is rational.

As this is bound to decrease the overcon�dent manager's expected utility, his

intuitive response is to then reduce the e�ort ex-ante. The tradeo� between

these two e�ects will determine the equilibrium level of e�ort. This line of

thought also provides an economic explanation for Lemma 3. As α increases,

the measure of set [−kaα
ψe
, kaα
ψe

] also increases, meaning that the set of possible

signals for which the manager can pick his optimal quantity increases. This

in turn raises his expected utility and hence induces higher e�ort.

Unfortunately, it is extremely hard to compute an analytical expression

for the level of e�ort from (18). It is also not feasible to do any comparative

statics given that we already expect a non-monotonic relationship between

e�ort and overcon�dence. Therefore, we present a numerical solution for the

choice of e�ort.

Proposition 4. Due to higher perceived precision by the manager, the con-

strained optimal e�ort increases with overcon�dence up to a certain point.

However, as overcon�dence increases beyond this level, it has a negative im-

pact on e�ort.

Figure 1 plots the optimal e�ort as a function of overcon�dence. The plot

is generated by assuming values of 1 and 0.2 for k and α, respectively.11 We

follow Haubrich (1994) and set a = 1.25 because it explains the empirical

pay-performance relationship in CEO compensation. The concave down re-

lationship between e�ort and overcon�dence meets the expectation presented

earlier regarding the two opposing e�ects of overcon�dence.

11The results are qualitatively similar to those of other choices of parameters.
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Figure 1: Optimal level of e�ort chosen by the manager as a function of the level of his overcon�dence.

Equation (18) presents the �rst-order condition for e�ort. It has been solved for e�ort by assuming values

of 1, 1.25, and 0.2 for k, a, and α, respectively, at di�erent levels of overcon�dence.

1.4.2 Investor's problem and numerical results

Earlier, in the unconstrained case, it is assumed that all managers have the

same reservation utility. However, if an overcon�dent manager perceives the

marginal bene�t of his e�ort to be high, then he, arguably, could also demand

higher compensation. To address this, we allow the reservation utility of the

manager to be an increasing function of his overcon�dence. The following is

the new participation constraint:

−exp(−aF + V (a, e)).g(e, ψ|α) ≥ −exp(−a · r(ψ)), (20)

where r(ψ) is the reservation wealth of the agent. To compute the contract

parameters, we have to specify the investor's objective function.

Lemma 4. The investor's constrained unconditional expected utility function

is given by

Ei (U) = −exp{aF} · f(α, e), (21)
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where

f(α, e) =

(
1

1 + eM (α)

) 1
2

Φ

(
(kaα)2

eψ2

1 + eM (α)

1 + e

)
+

exp(
(ka (1− α))2

2
)

(
1− Φ

(
(kaα)2

eψ2

(1 + em (α))2

1 + e

))
.

Φ above is the distribution function of a χ2(1) random variable. Given the

nature of the above expression, there are no closed-form solutions for the

contract parameters α and F . Therefore, we explore numerical solutions.

Note that the agent's choice of e�ort is not a function of the �xed compen-

sation F , a standard result in most principal-agent models. Additionally,

from (21) we know that the investor's expected utility decreases with F and

from (20) that the manager's expected utility increases with F . This means

that the participation constraint has to be binding at the optimum. So the

investor's problem can be reduced further to make it a function of only one

choice variable α in the following way:

Ei (U) = −exp{V (a, e) + a · r(ψ)} · g(e, ψ|α) · f(α, e). (22)

Importantly, by changing α, the investor can control managerial e�ort

and moderate risk taking. To execute the numerical procedure, k is set to

1 for all further numerical computations. The algorithm starts by creating

a grid for the possible values of the incentive parameter α, i.e., between 0

and 1. In each iteration, one of the possible hundred values of α is selected.

Conditional on the chosen α, the next step involves solving the manager's

problem and evaluating the optimal e�ort. Subsequently, for each pair of

(α, e) and the given level of overcon�dence, the investor's expected utility

is computed using (22). Having evaluated the expected utility of the in-
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vestor over all the possible values of α, the �nal step is to choose the α that

provides the maximal expected utility. This procedure is then repeated for

multiple levels of managerial overcon�dence. The results of the numerical

computations are reported in Table 1. Based on these �ndings, the following

proposition is in order.

Proposition 5. Assuming a symmetric linear compensation structure,

a) It is always bene�cial for the risk-averse investor to hire a moderately

overcon�dent manager in the constrained case.

b) The level of portfolio risk is higher when an overcon�dent manager is hired.

Panels A - D of Table 1 present results to support the above proposition.

The four di�erent panels report results for each of the di�erent assumptions

regarding the reservation wealth. In Panel A, it is assumed that the rational

manager, ψ = 1, desires 1% of assets under management (AUM) as reserva-

tion wealth. It is further assumed that the manager's expectation increases

linearly in ψ: e.g., 0.1×ψ×AUM . Similarly, Panel B assumes that a rational

manager expects to earn 3% of the assets as fees. In Panel C, risk aversion

parameter is changed. Finally, in Panel D, we assume that the expected

reservation wealth increases quadratically. The �rst row in each of these

panels reports the investor's expected utility (IEU ) from hiring managers of

di�erent overcon�dence levels. In Panels B, C, and D, the investor's expected

utility increases with overcon�dence up to a point and then decreases subse-

quently. There are two main e�ects of overcon�dence. First, it increases the

level of equilibrium e�ort, causing the mean and the precision of conditional

return to go up. Second, the overcon�dent manager will hold a riskier port-

folio than appropriate conditional on his signal. This decreases the investor's

expected utility as it increases the variance of the portfolio. Traditionally, the

compensation contract is used to trade o� between incentives and insurance.

The principal's rational response will be to increases the incentive parameter

and share more risk with the agent. The manager's participation is ensured

because of his bias and the associated increase in expected utility. Increasing
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α also reduces the quantity of the risky asset demanded (see equation (16)).

Therefore, overall, one expects to see α increase with overcon�dence.

The second row in all the panels of Table 1 details the amount of money

invested in risky assets.12 As expected, overcon�dent managers invest a

higher proportion of wealth in the riskier asset. As overcon�dence increases,

it becomes increasingly expensive for the investor to ensure participation, so

the shape of the expected reservation wealth function determines the degree

of trade-o�s. The �nal row in Table 1 shows that the equilibrium e�ort chosen

increases with overcon�dence. This should not be construed as a violation of

Proposition 4, which holds only ceteris paribus. As the incentive parameter

changes with each level of overcon�dence, so does the e�ort. Note that the

�rst-order condition for e�ort choice, equation (18), is not a function of the

reservation utility, r(ψ). Therefore, the optimal e�ort is the same in Panels

A, B, and D.

2 Role of risk aversion

In our analysis thus far, we assumed that the investor and the manager have

the same risk aversion levels. To highlight the role of overcon�dence and

heterogeneity in beliefs, it was imperative to eliminate the e�ects, if any,

of the di�erences in risk aversion on e�ort choice and portfolio formation.

Here, we explore the contracting problem by allowing risk aversion levels to

di�er. It is standard to assume that the manager is more risk averse than

the investor, who represents the group of investors.

From Grossman and Hart (1983), we already know that when the agent

has a CARA utility function, the loss to the principal on account of the moral

hazard increases with the agent's degree of absolute risk aversion. Therefore,

a priori, the expectation is that the investor's expected utility should decrease

12The proportion of wealth invested in the risky asset is contingent on the signal. �$ in
risky� reported here is in expectational terms.
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Table 1: Investor's Expected Utility in Constrained Case

Results from the numerical computations for the constrained case are reported here. The investor's
expected utility, IEU, is computed using equation (22). Details of the exact algorithmic procedure
are presented in the main text of the paper. $ in risky is the expected % of initial capital that is
invested in the risky asset by the manager. The performance adjustment fee, α, is the value of the
optimal contract parameter chosen by the investor. E�ort, e, is endogenously chosen by the manager
given the contract parameters. The degree of portfolio constraints is uniformly set, k = 1. The
values are reported for di�erent levels of overcon�dence, ψ. Panel A reports the values assuming
that the reservation wealth of the manager is 1% of AUM and linearly increases with overcon�dence.
The values are reported under the assumption that the absolute risk aversion parameter for both the
agents is 1.25. In Panel B, the reservation wealth of the manager is assumed to be 3% of AUM. In
Panel C, the values are reported assuming a risk aversion parameter of 2. In Panel D, it is assumed
that the reservation wealth increases quadratically with overcon�dence.

Value of overcon�dence (ψ)

1 1.5 2 2.5 3 3.5 4 4.5 5

Panel A: risk aversion parameter a = 1.25 - Linear 0.01

IEU -0.908 -0.875 -0.850 -0.830 -0.814 -0.800 -0.788 -0.779 -0.771

$ in risky 0.485 0.559 0.617 0.661 0.693 0.720 0.741 0.758 0.774

α 0.52 0.61 0.66 0.69 0.72 0.74 0.76 0.78 0.79

E�ort 0.156 0.194 0.217 0.230 0.240 0.246 0.250 0.253 0.254

Panel B: risk aversion parameter a = 1.25 - Linear 0.03

IEU -0.931 -0.909 -0.894 -0.884 -0.877 -0.873 -0.872 -0.872 -0.874

$ in risky 0.485 0.559 0.617 0.662 0.694 0.720 0.741 0.758 0.774

α 0.52 0.61 0.66 0.69 0.72 0.74 0.76 0.78 0.79

E�ort 0.156 0.194 0.217 0.230 0.240 0.246 0.250 0.253 0.254

Panel C: risk aversion parameter a = 2 - Linear 0.03

IEU -0.979 -0.965 -0.954 -0.947 -0.943 -0.942 -0.945 -0.949 -0.955

$ in risky 0.281 0.347 0.409 0.464 0.515 0.554 0.587 0.617 0.642

α 0.5 0.6 0.66 0.7 0.72 0.74 0.76 0.77 0.78

E�ort 0.112 0.151 0.179 0.199 0.212 0.222 0.229 0.234 0.238

Panel D: risk aversion parameter a = 1.25 - Quadratic 0.01

IEU -0.908 -0.883 -0.872 -0.870 -0.877 -0.893 -0.916 -0.949 -0.990

$ in risky 0.485 0.559 0.617 0.662 0.694 0.720 0.741 0.758 0.774

α 0.52 0.61 0.66 0.69 0.72 0.74 0.76 0.78 0.79

E�ort 0.156 0.194 0.217 0.230 0.240 0.246 0.250 0.253 0.254
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as the manager's risk aversion increases. We follow the numerical procedure

detailed in Section 1.4.2 and analyze the problem when there are di�erences

in the risk aversion levels.

Having di�erences in the risk aversion levels will not a�ect the manager's

problem. However, the investor has to solve the following equation instead

of equation (22):

Ei (U) = −exp{V (a, e)
b

a
+ b · r(ψ)} · g(e, ψ|α)

b
a · f(α, e), (23)

where

m(α) =
b

a

(1− α)

α
ψ,

M(α) = m(α)(2−m(α)),

and

f(α, e) =

(
1

1 + eM (α)

) 1
2

Φ

(
(kaα)2

eψ2

1 + eM (α)

1 + e

)
+

exp(
(kaαm (α))2

2ψ2
)

(
1− Φ

(
(kaα)2

eψ2

(1 + em (α))2

1 + e

))
.

Table 2 presents the results in a manner similar to that presented in

Table 1. The results are presented in a way that facilitates easy comparison.

The only way that Panel A of Table 2 di�ers from Panel B of Table 1 is

that it assumes that the manager's risk aversion coe�cient, a, is 2.5 instead

of 1.25. Comparing these two tables, one can observe that the investor's

expected utility (row 1) is lower for all levels of overcon�dence when the

manager's risk aversion is higher. A similar conclusion can be drawn by
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Table 2: Investor's Expected Utility - Di�erences in Risk Aversion.

Results from the numerical computations for the second-best case are reported here. The investor's
expected utility, IEU, is computed using equation (22). Details of the exact algorithmic procedure
are presented in the main text of the paper. $ in risky is the expected % of initial capital that is
invested in the risky asset by the manager. The performance adjustment fee, α, is the value of the
optimal contract parameter chosen by the investor. E�ort, e, is endogenously chosen by the manager
given the contract parameters. The degree of portfolio constraints is uniformly set, k = 1. The values
are reported for di�erent levels of overcon�dence , ψ. Panel A reports the values assuming that
the reservation wealth of the manager is 3% of assets under management, and it linearly increases
with overcon�dence. The values are reported under the assumption that the absolute risk aversion
parameter for the investor is 1.25 and that for the manager is 2.5. In Panel B, reservation wealth
of the manager is assumed to be 1% of assets under management and that it increases quadratically
with overcon�dence. As in Panel A, the absolute risk aversion parameter for the investor is assumed
to be 1.25 and that for the manager to be 2.5.

Value of overcon�dence (ψ)

1 1.5 2 2.5 3 3.5 4 4.5 5

Panel A: risk aversion parameter a = 2.5, b = 1.25 - Linear 0.03

IEU -0.983 -0.975 -0.971 -0.969 -0.970 -0.973 -0.977 -0.983 -0.990

E�ort 0.091 0.125 0.150 0.169 0.183 0.194 0.201 0.208 0.212

α 0.34 0.43 0.5 0.54 0.58 0.6 0.62 0.64 0.65

$ in risky 0.295 0.346 0.390 0.439 0.476 0.516 0.548 0.574 0.601

Panel B: risk aversion parameter a = 2.5, b = 1.25 - Quadratic 0.01

IEU -0.958 -0.948 -0.947 -0.954 -0.970 -0.994 -1.027 -1.069 -1.121

E�ort 0.091 0.125 0.150 0.169 0.183 0.194 0.201 0.208 0.212

α 0.34 0.43 0.5 0.54 0.58 0.6 0.62 0.64 0.65

$ in risky 0.295 0.346 0.390 0.439 0.476 0.516 0.548 0.574 0.601

comparing Panel D of Table 1 and Panel B of Table 2, where the expected

reservation wealth increases quadratically. Other values for the manager's

risk aversion are also tried, and the results are qualitatively similar. These

results con�rm our earlier intuition about the e�ects of di�ering risk aversion

levels. Importantly, the investor's expected utility still increases from hiring

a manager who is moderately overcon�dent.
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3 Convex contracts, including hedge funds

Another possible limitation of our model is that it assumes linear contracts.

In the mutual fund industry, it is common practice for investment advisers to

provide convex or asymmetric contracts to portfolio managers (see Ma et al.

(2019) and Lee et al. (2019)). This structure implies that incentive fees are

paid when the fund earns a positive return but no money is deducted in the

event of negative returns. Hedge funds also use a similar type of compen-

sation contract.13 Given this compensation structure, is it still pro�table to

hire an overcon�dent manager?

In the spirit of our main analysis, we present a simple two-state model

for the case where the manager has a convex contract. Using this setup,

we show that the earlier arguments, made using linear contracts, continue

to hold. Consider a two-state economy where the risky asset could either

return x1 or −x1, where x1 > 0. The prior probability is that the two states

are equally likely. Similar to the earlier setup, the manager now exerts e�ort

and observes a signal regarding the future returns of the risky asset. If the

manager observes the signal, s1, then the probability of the future return

being x1 is given by p(ψ, e). Assume that the posterior probability is given

by

p(ψ, e) =
1

2
+

1

2

ψ

1 + ψ

e

1 + e
. (24)

The posterior probability, p(ψ, e), increases with overcon�dence, ψ, and in

e�ort, e, and is higher than the prior probability of 0.5. This would also

imply that the probability of −x1 given s1 is less than 0.5. The wealth of the

manager in the two states would be given by

13Hedge funds use a fee structure that is commonly referred as two and twenty fees.
More speci�cally, the manager earns 2% of total asset value as a management fee and an
additional 20% of any pro�ts earned.
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W̃M =

F + βx1θ with probability p

F with probability (1− p)

where F is the �xed fee, β is the incentive fee, and θ is the quantity of

the risky asset demanded. The di�erence in the payo�s of the two states

showcases the convexity in the compensation.

A portfolio manager with a CARA utility function (like the negative

exponential) and normally distributed returns is similar to a mean-variance

maximizer. Therefore, we assume that the expected utility of the manager

with terminal wealth, W̃ , is given by

Em (U) = E(W̃ )− 1

2
a V ar(W̃ )− V (a, e). (25)

The �rst step in solving the manager's problem is to compute the propor-

tion of wealth invested in the risky asset. The optimal amount of the risky

portfolio is given by

θ =
1

a (1− p)x β
. (26)

The proof of the above follows much like the proof provided in the ap-

pendix, section A.1. The quantity of the risky asset demanded is contingent

on the signal that is observed. 1
a (1−p)x1 β and − 1

a (1−p)x1 β are the amounts

of the risky asset demanded when the signals are s1 and −s1, respectively.

Further, because p(ψ, e) increases with both overcon�dence and e�ort, it is

easy to see that the amount invested in risky assets also increases with ψ,

and e.

Having solved the investment problem, the expected utility of the man-

ager (given e�ort) will be
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Em(U |e) = F +
p

2a (1− p)
. (27)

Equation (27) can be further used to compute the optimal e�ort expended

by the manager. The �rst-order condition for e�ort is the following:

1

a

ψ(1 + ψ)

(1 + e+ ψ)2
− 2ae = 0. (28)

The crucial relationship is the one between managerial overcon�dence and

the level of e�ort chosen. We de�ne the left hand side of the above �rst-order

condition, equation (28), as H. The partial derivatives of H with respect to

ψ and e are given by

∂H

∂ψ
=

1 + ψ + e+ 2ψe

(1 + ψ + e)3
> 0, and

∂H

∂e
=
−2ψ(1 + ψ)

a(1 + ψ + e)3
− 2a < 0.

Using the implicit function theorem, we can conclude that managerial over-

con�dence increases the endogenously chosen e�ort level ( ∂e
∂ψ

> 0) in the

current case of an unconstrained manager having a convex payo�. This re-

sult combined with the implications of equation (26) ensures that the results

presented in the constrained case (Section 1.4) also hold for a manager with

convex compensation.

4 Empirical analysis

In this section, we use the model insights and empirically test some of our

predictions. It is very hard to get any data on the direct assessment of

managerial overcon�dence.14 Gervais and Odean (2001), however, show that

14Grinblatt and Keloharju (2009), to the best of our knowledge, is the �rst and only
study to employ direct psychological assessment of overcon�dence among traders. The
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biased attribution of outcomes to one's ability leads to overcon�dence. Biased

attribution occurs when a Bayesian manager updates his priors about his

private signal more aggressively after receiving evidence con�rming his earlier

signal than he does after receiving refuting subsequent evidence. Using a

stylized model, Choi and Lou (2010) show that biased attribution on the

part of portfolio managers a�ects subsequent portfolio choices. Within the

framework of their model, Choi and Lou (2010) establish that the number

of positive/con�rming signals the managers receive, measured by the sum

of positive benchmark-adjusted return (SPR), is positively related to the

manager's portfolio risk choices, measured as the sum of absolute deviations

from one's benchmark index (Active Share).

We borrow the empirical design in Choi and Lou (2010) to test their pre-

dictions and con�rm the existence of such a bias. Further, in section 1.4,

we have clearly shown the importance of portfolio constraints and how they

are more binding on overcon�dent managers. The presence of the portfolio

constraints ex-ante lowers managerial e�ort, the precision of the signal, and

hence the extent of portfolio deviation. Of course, this is after controlling for

the direct e�ect of constraints on such deviations.

Hypothesis 1: The e�ect of con�rming positive signals on future portfolio de-

viations diminishes in the presence of more portfolio constraints.

Endogoneity of compensation and the ability to constrain managers are the

main reasons that make it feasible to hire moderately overcon�dent man-

agers. Lemma 1 and the results of Table 1 clearly show that as managerial

overcon�dence increases, the variable compensation needs to increase with

it. More variable compensation increases the risk sharing and also moderates

the overcon�dent manager's portfolio decisions. Fund managers often have

data on traders' psychological evaluation are available because standard psychological as-
sessments are performed on all Finnish males at the time of their induction into mandatory
military service.
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ownership in the fund that they manage, and as this ownership increases, it

increases the variability of their payo�.

Hypothesis 2: The e�ect of con�rming positive signals on future portfolio

deviations diminishes in the presence of higher managerial ownership in the

fund.

4.1 Mutual fund and benchmark index data

Data for the empirical analysis are drawn from two main sources. First,

we extract mutual fund holdings data from the Thomson Reuters Mutual

Funds Holdings database from 2000 to 2014. Most funds in this database

�le a quarterly holdings report. Moreover, the �ling date (fdate) is often

di�erent from the report date for which the holdings are valid (rdate), and

the reported number of shares in Thomson is split-adjusted as of the �ling

date. Following Choi and Lou (2010), we reverse the adjustment process

done by Thompson because we need to compute the number of shares held

on the report date.

Our second source of data is the Center for Research in Security Prices

(CRSP) Mutual Fund database, which includes fund characteristics, net as-

set values (NAVs), and returns for each share class. Although all these in-

formation is provided at the share class level, the underlying portfolio for

the di�erent share classes within a fund is the same. Therefore, to aggregate

data at the fund level, we use the MFLINKS data provided by Wharton Re-

search Data Services (WRDS). Fund's expense ratio and turnover ratio are

the weighted averages of the ratios of its di�erent share classes. The weights

are based on the total net assets (TNA) of each share class at the beginning

of the period. Finally, we merge the Thompson Reuters Mutual Funds Hold-

ings database with the CRSP Mutual Fund database using MFLINKS data.

We remove index funds from the sample by removing funds that have index,
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indx, and idx in their names.

In our analysis, following Cremers and Petajisto (2009), we consider 19

widely used indices from three major U.S. index families. From the S&P

indices, we pick the S&P 500, S&P500/Barra Growth, S&P500/Barra Value,

S&P MidCap 400, and S&P SmallCap 600. From the Russell indices, we pick

Russell 2000, Russell 2000 Growth, Russell 2000 Value, Russell 1000, Russell

1000 Growth, Russell 1000 Value, Russell 3000, Russell 3000 Growth, Russell

3000 Value, Russell Midcap, Russell Midcap Growth, and Russell Midcap

Value. Finally, from Wilshire indices, we pick Wilshire 4500 and Wilshire

5000. Index constituents data are obtained directly from the companies that

manage those indices.

4.2 Active share and delta active share

We are interested in documenting the e�ect of observing public signals on

changes in the deviation of the portfolio from its benchmark. According to

Cremers and Petajisto (2009), Active Share is de�ned as one half of the sum

of absolute deviations in the portfolio weight of the mutual fund from its

benchmark index:

ActiveShare =
1

2
∗

N∑
N=1

|wfundn − windexn | (29)

where wfundn and windexn are the portfolio weight of stock n in the fund and that

of each constituent in the fund's benchmark index, respectively. The sum is

taken over the universe of all assets. Following Cremers and Petajisto (2009),

we compute the Active Share of a fund with respect to nineteen indices and

assign the index with the lowest Active Share as the fund's benchmark. This

index has the largest overlap with the fund holdings.

However, one limitation of the Active Share is that there can be an ar-

ti�cial variation in the Active Share when a stock price changes are not

accompanied by the actual trading of fund holdings. Choi and Lou (2010)
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e�ectively circumvent such mechanical variation by using the Delta Active

Share (∆AS). The Delta Active Share is de�ned as the Active Share of a fund

at the end of quarter t minus the Active Share of a hypothetical portfolio

if a manager does not trade during the quarter t. The Delta Active Share

will be zero if the portfolio weights of funds holdings change because of the

price e�ect. That is, the Delta Active Share gauges the incremental changes

in Active Share driven by actual trading in quarter t.

4.3 Investment constraints and ownership variables

Almazan et al. (2004) discuss the six speci�c investment practices that are

relevant to the operations of equity funds: (i) borrowing of money, (ii) margin

purchases, (iii) short selling, (iv) writing or investing in options on equities,

(v) writing or investing in stock index futures, and (vi) investments in re-

stricted securities. Fund managers are required to disclose information about

(i) whether speci�c investment policies are permitted and (ii) (if permitted)

whether they engage in these investment practices during the reporting pe-

riod by responding �yes� or �no� in Form N-SAR. The �rst three practices

are related to leverage constraints, the fourth and �fth practices are related

to derivatives constraints, and the last practice is related to illiquid assets

constraints. Those practices will impose a binding constraint on managers'

investment decisions because these variables a�ect the extent to which a

fund deviates from its benchmark. To measure the extent of constraints that

fund managers face, following Almazan et al. (2004), we compute an aggre-

gate score to summarize a fund's overall constraint. The constraint score

approach of Almazan et al. (2004) places an equal weight across the three

distinct constraint categories. More precisely,
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Investment Constraints =
1

3
∗ (

1

3
∗ total leverage constraints)+

1

3
∗ (

1

2
∗ total derivaties constraints) +

1

3
∗ (illiquid assets constraints).

(30)

The aggregate score varies between 0 and 1, and a higher score corre-

sponds to a more constrained fund.15 We also modify the original measure

by focusing on the leverage constraint only, as this is a directly relevant

constraint for altering the (Delta) Active Share.

The SEC required the disclosure of ownership starting in 2005. The

disclosure is in six categories ($0-$10,000; $10,000-$50,000; $50,000-$100,000;

$100,000-$500,000; $500,000-$1M; above $1 million) and is required for all

portfolio managers of a fund. We obtain these data from Morningstar and

created two variables: sum of maximum ownership and maximum ownership.

The �rst ownership variable is the sum of the upper bound of each manager's

ownership interval. The second ownership variable is the maximum of the

upper bound of each manager's ownership interval. We have data on this

variable from 2007 until the end of our sample in 2013.

4.4 The e�ects of overcon�dence

4.4.1 Regression speci�cation

To investigate the e�ect of overcon�dence, following Choi and Lou (2010),

we estimate the following regression model:

15See sections 2.2.1 and 2.2.2 of Almazan et al. (2004) for a more detailed explanation.
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∆ASi,q,y = α + β1 ∗ SPRi,q−4:q−1 + β2 ∗ Experiencei,y
+β3 ∗ Experiencei,y ∗ SPRi,q−4:q−1 + β4 ∗ Investment Constraintsi,y
+β5 ∗ Investment Constraintsi,y ∗ SPRi,q−4:q−1 + β6 ∗Ownershipi,y

+β7 ∗Ownershipi,y ∗ SPRi,q−4:q−1 + γ ∗ Controls, (31)

where the dependent variable (∆ASi,q) is the change in the Active Share of

fund i in quarter q that is purely attributable to the incremental trading

activity. ∆ASi,q is the di�erence between the Active Share constructed from

the holdings reported at the end of quarter q and the hypothetical Active

Share constructed from the portfolio if the manager simply carries forward

the position from quarter q-1 to q. The most important independent variable

SPRi,q−4:q−1 is de�ned as the sum of only the positive excess return relative

to the benchmark in the previous twelve months. The intuition behind this

variable is that managers become overcon�dent because of the bias in their

learning. They increase the precision of their signal when they get a positive

feedback. However, they do not proportionately reduce their precision when

their signals are not corroborated by future outcomes. The higher the sum

of positive returns, the greater the magnitude of con�rming signals.

We incorporate benchmark adjusted return from quarter q-4 to q-1 (past

return) as a control variable. In addition, we include the tracking error and

turnover in the concurrent period to re�ect the investment styles. Cremers

and Petajisto (2009) argue that tracking error and the Active Share are

distinct active management measures in that one can choose tracking error

as a proxy for factor bets and the Active Share for stock selection.16 Other

control variables are fund �ows from q-4 to q-1, expense ratio, dummies for

fund size, fund age, and fund styles at the end of quarter q-1. The regression

speci�cations include quarter-�xed e�ects, and standard errors are clustered

16Our results are not sensitive to the exclusion of tracking error.
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Table 3: Summary Statistics

This table provides the summary statistics for the sample of funds used in the paper. Active Share
is de�ned as half of the sum of absolute deviations in portfolio weights of a fund from its benchmark
index during the quarter q. DeltaActive Share is de�ned as the Active Share of a fund at the end
of quarter q minus the Active Share of a hypothetical portfolio if a manager does not trade during
the quarter q. Sumof PositiveReturns (SPR) is de�ned as the sum of positive benchmark-adjusted
returns during the past 12 months. PastReturn is de�ned as the sum of benchmark-adjusted returns
during the past 12 months. Tracking Error is de�ned as the standard deviation of the benchmark-
adjusted returns during the past 12 months. Turnover is de�ned as the minimum of aggregated sales
or aggregated purchases of securities, divided by the average 12-month total net assets of the fund.
FundAge is the number of years since the inception of a fund. InvestmentConstrains is an aggregate
score to summarize a fund's overall investment constraint. The aggregate score varies between 0 and
1, and a higher score refers to a more constrained fund. Ownership in the fund is disclosed in six
categories ($0-$10,000; $10,000-$50,000; $50,000-$100,000; $100,000-$500,000; $500,000-$1M; above
$1 million) and is required for all portfolio managers of a fund. Sumof MaximumOwnership is
the sum of the upper bound of each manager's ownership interval. MaximumOwnership is the
maximum of the upper bounds of each manager's ownership interval.

Mean Std 25th Median 75th
Dev Pct Pct

Active Share 77% 16% 67% 79% 90%
Delta Active Share (%) -3% 10% -3% -1% 0%
Sum of Positive Returns (SPR) 8% 8% 3% 6% 10%
Past Return (12months) (%) 0% 8% -4% -1% 3%
Tracking Error (12months) (%) 2% 1% 1% 1% 2%
Expense Ratio (%) 1.25% 0.43% 0.99% 1.20% 1.48%
Turnover (%) 89% 104% 36% 66% 110%
Fund Age 15.28 13 7 12 18
Investment Constraints(%) 22% 21% 11% 22% 28%
Sum of (each)MaximumOwnership ($) 0.65 mil 0.92 mil 0 0.27 mil 1 mil
Maximum Ownership ($) 0.39 mil 0.41 mil 0 0.1 mil 1 mil

at both the quarter and fund levels.

Table 3 provides the summary statistics of Active Share, Delta Active

Share, and other fund characteristics used in the analyses. We are con�dent

that the distribution of our Active Share measure is similar to that of Cre-

mers and Petajisto (2009). Our average Active Share of about 80%, with a

standard deviation of 16%, is very close to the summary statistic presented in

Cremers and Petajisto (2009). On average, our Delta Active Share displays a

mean (median) of -3% (-1%), which is comparable to the results of Choi and

Lou (2010). However, a 10% standard deviation of change in Active Share

clearly indicates a substantial variation among mutual funds. On average,

the annual benchmark-adjusted return is close to 0 with a median of about
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-100 basis points. Our main independent variable of interest, SPR, has a

mean of 8% and a standard deviation of 8%. The 6% median indicates that

the distribution of this variable is slightly right skewed. Finally, the mean

investment restrictions proxied by the aggregate constraint score is 0.22, and

portfolio managers, on average, own about 0.39 to 0.65 million dollars in the

fund, depending on the de�nition of ownership.

4.4.2 Empirical results

We estimate a pooled OLS regression, and the unit of our analysis is at the

fund-quarter level. Table 4 presents our �rst regression results. We �rst

replicate the baseline results of Choi and Lou (2010) to test for the existence

of self-attribution bias among fund managers. Consistent with their �ndings,

SPRi,q−4:q−1 is positive and statistically signi�cant after including a host of

control variables. Importantly, the benchmark-adjusted return over the past

four quarters (past return) has no e�ect on the ∆AS. This further illustrates

that managers do not decrease the perceived precision of their private signals

upon receiving discon�rming feedback.

Managerial experience plays a crucial role in learning. With time, man-

agers learn about their own ability and exhibit lower bias (see Gervais and

Odean (2001)). We use the number of years since fund inception as our

measure of the manager's experience. We de�ne a new dummy variable,

Experience Proxy, which takes a value of one if the manager has above the

median experience in that quarter. Column 2 of Table 4 displays the ef-

fect of managerial experience on the attribution bias. Consistent with prior

literature, more experienced managers show signi�cantly lower bias.
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Table 4: Overcon�dence and Fund Investment Constraints

This table presents the regression of DeltaActive Share on SPR, Past Return, and other fund
characterstics. Regression results include an interaction term of SPR with (i) Experience Proxy and
(ii) InvestmentConstraints, respectively. We use the number of years since the fund's inception
as a proxy for the manager's experience. Experience Proxy takes a value of one if the manager
has above median experience in that quarter. InvestmentConstraints is an aggregate score to
summarize a fund's overall investment constraint. The aggregate score varies between 0 and 1,
and a higher score refers to a more constrained fund. In addition to a constraint score measure
(InvestmentConstraints) speci�ed in Eq. (30), we modify the original measure by focusing on the
leverage constraint only (NarrowConstraints). InvestmentConstraints takes a value of one if
the manager has above median constraints in that quarter. DeltaActive Share is de�ned as the
Active Share of a fund at the end of quarter q minus the Active Share of a hypothetical portfolio if
a manager does not trade during the quarter q. Sumof PositiveReturns (SPR) is de�ned as the
sum of positive benchmark-adjusted returns during the past 12 months. PastReturn is de�ned as
the sum of benchmark-adjusted returns during the past 12 months. Tracking Error is de�ned as
the standard deviation of the benchmark-adjusted returns during the past 12 months. Turnover
is de�ned as the minimum of aggregated sales or aggregated purchases of securities, divided by the
average 12-month total net assets of the fund. FundAge is the number of years since the inception of
a fund. StyleCode 1-4 are investment objective code dummies (2 = aggressive growth, 3 = growth,
4 = growth and income). AgeCategories 1-4 are the age (number of years since inception) quartile
dummies (1 = youngest). SizeCategories 1-4 are the fund size quartile dummies (1 = largest).
The subscript q represents quarter q and the timing of the variables. Heteroskedasticity-consistent
t-statistics are in parentheses. The signi�cance levels are denoted by *, **, and *** and, indicate
whether the results are statistically di�erent from zero at the 10%, 5%, and 1% signi�cance levels,
respectively.

VARIABLES (1) (2) (3) (4) (5) (6)

SPRq−4:q−1 (%) 0.150*** 0.176*** 0.125** 0.155** 0.133*** 0.163**
(0.055) (0.061) (0.048) (0.063) (0.049) (0.065)

Experience Proxy 0.002 0.003 0.003
(0.005) (0.005) (0.005)

SPRq−4:q−1*Experience Proxy -0.047** -0.056*** -0.055***
(0.020) (0.018) (0.018)

InvestmentConstrains 0.008*** 0.008***
(0.002) (0.002)

SPRq−4:q−1*InvestmentConstrains -0.029* -0.030*
(0.015) (0.015)

Narrow Constraints 0.005*** 0.006***
(0.002) (0.002)

SPRq−4:q−1*Narrow Constraints -0.028** -0.031**
(0.013) (0.015)

Tracking Errorq−4:q−1(%) -0.111 -0.016 -0.035 0.039 -0.034 0.039
(0.224) (0.241) (0.200) (0.258) (0.200) (0.257)

Past Returnq−4:q−1(%) -0.032 -0.037 -0.016 -0.019 -0.017 -0.020
(0.027) (0.032) (0.024) (0.030) (0.024) (0.030)

Expense Ratioq−4:q−1 (%) 1.102*** 1.192*** 0.555*** 0.554** 0.576*** 0.579**
(0.329) (0.390) (0.207) (0.236) (0.208) (0.237)

Turnover Ratioq−4:q−1 (%) -0.010*** -0.012*** -0.011*** -0.013*** -0.011*** -0.013***
(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)
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VARIABLES (1) (2) (3) (4) (5) (6)

Fund F lowsq−4:q−1 (%) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Style 1 0.002 0.002 -0.000 -0.000 -0.000 0.000
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Style 2 0.001 0.001 -0.001 -0.001 -0.001 -0.001
(0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

Style 3 0.009*** 0.007** 0.003 0.002 0.003 0.001
(0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

Size 1 -0.002 -0.000 -0.002 -0.001 -0.003 -0.002
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Size 2 -0.002 0.000 -0.001 0.000 -0.002 -0.000
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Size 3 -0.003* -0.001 -0.000 0.001 -0.001 0.000
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Age Category 1 0.003 0.002 0.001 0.001 0.002 0.001
(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)

Age Category 2 0.005** 0.005 0.004* 0.004 0.004** 0.004
(0.002) (0.004) (0.002) (0.005) (0.002) (0.005)

Age Category 3 0.005* 0.004 0.001 0.000 0.002 0.001
(0.003) (0.005) (0.002) (0.005) (0.002) (0.005)

Observations 73,372 56,370 54,971 44,916 54,971 44,916
Adjusted R-squared 0.023 0.030 0.029 0.036 0.028 0.035
Fixed E�ect Qtr Qtr Qtr Qtr Qtr Qtr
Clustering Qtr & Qtr & Qtr & Qtr & Qtr & Qtr &

Fund Fund Fund Fund Fund Fund

The main variable of our focus is InvestmentConstraints and its ef-

fect on SPR. The computed portfolio constraints variable is a continuous

variable between 0 and 1. To make sense of the interaction coe�cient, we

convert it into a dummy variable that takes a value of one if the manager has

above the median constraints in that quarter. Column 3 presents our main

�ndings. Contrary to reasonable expectations, having additional investment

constraints does not directly reduce the magnitude of portfolio deviations.

However, the coe�cient of interaction between InvestmentConstraints and

SPR is negative and statistically signi�cant, providing support for hypothesis

1. In addition, focusing on leverage constraints makes more sense because the
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other two constraints are not likely to be related to the deviation from bench-

mark holdings. Therefore, we also interact SPR with NarrowConstraints,

a dummy variable that takes a value of one if the manager has above the

median � leverage� constraints in that quarter. A strong negative result con-

tinues to emerge when we use a narrower measure of investment constraints.

It is evident that the presence of portfolio constraints signi�cantly inhibits

the attribution bias the managers display, and hence overcon�dence. We also

acknowledge the endogeneity of the portfolio constraints that managers face.

Nevertheless, our results show an association between investment constraints

and the bias in the manager's action as we analyze managerial behavior in

the quarter after observing the constraints. Importantly, after controlling for

the direct e�ect, InvestmentConstraints diminishes the e�ect of SPR on

∆AS. The magnitude of the two-way interaction term is about 4 times the

size of the direct e�ect.

We now focus on the manager's variable compensation and its e�ect on

attribution bias. Information on managerial ownership, our proxy for variable

compensation, is presented as a range. We use the upper bound of these

intervals and convert them into dollar values. Also, we convert the ownership

variables into dummy variables that take a value of one if they are above the

median in that quarter. Results for two di�erent measures of ownership

are displayed in Table 5. Consistent with hypothesis 2, if managers display

attribution bias, this e�ect is substantially diminished in the presence of

managerial ownership. We do not make a causal claim here. Clearly, the

ownership in the fund depends on the personal portfolio decision of the fund

manager. However, fund families often require managers to invest in their

own fund(s) (see Laise (2006)).

Overall, we �nd that the empirical results are consistent with the predic-

tions of our model. Portfolio constraints and compensation parameters can

be, and often are, designed to mitigate some of the known agency problems

and induce higher e�ort when hiring an overcon�dent manager.
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Table 5: Overcon�dence and Manager Ownership

This table presents the regression of DeltaActive Share on SPR, Past Return, and other fund char-
acterstics. Regression results include an interaction term of SPR with (i) the manager's ownership in
the fund and (ii) Experience Proxy, respectively. DeltaActive Share is de�ned as the Active Share
of a fund at the end of quarter q minus the Active Share of a hypothetical portfolio if a manager
does not trade during the quarter q. Sumof PositiveReturns (SPR) is de�ned as the sum of pos-
itive benchmark-adjusted returns during the past 12 months. PastReturn is de�ned as the sum of
benchmark-adjusted returns during the past 12 months. Tracking Error is de�ned as the standard
deviation of the benchmark-adjusted returns during the past 12 months. Turnover is de�ned as
the minimum of aggregated sales or aggregated purchases of securities, divided by the average 12-
month total net assets of the fund. FundAge is the number of years since the inception of a fund.
Ownership in the fund is disclosed in six categories ($0-$10,000; $10,000-$50,000; $50,000-$100,000;
$100,000-$500,000; $500,000-$1M; above $1 million) and is required for all portfolio managers of a
fund. Sumof MaximumOwnership is the sum of the upper bound of each manager's ownership
interval. MaximumOwnership is the maximum of the upper bounds of each manager's ownership
interval. Each ownership variable takes a value of one if the manager has above median ownership in
the fund that quarter. StyleCode 1-4 are investment objective code dummies (2 = aggressive growth,
3 = growth, 4 = growth and income). AgeCategories 1-4 are the age (number of years since incep-
tion) quartile dummies (1 = youngest). SizeCategories 1-4 are the fund size quartile dummies (1
= largest). The subscript q represents quarter q and the timing of the variables. Heteroskedasticity-
consistent t-statistics are in parentheses. The signi�cance levels are denoted by *, **, and *** and,
indicate whether the results are statistically di�erent from zero at the 10%, 5%, and 1% signi�cance
levels, respectively.

VARIABLES (1) (2) (3) (4)

SPRq−4:q−1 (%) 0.291** 0.301** 0.333** 0.341**
(0.121) (0.125) (0.120) (0.124)

Sum of MaximumOwnership 0.018*** 0.018***
(0.004) (0.004)

SPRq−4:q−1 (%) * Sum of MaximumOwnership -0.131*** -0.133***
(0.043) (0.044)

MaximumOwnership 0.020*** 0.020***
(0.005) (0.005)

SPRq−4:q−1 (%) * MaximumOwnership -0.142*** -0.145***
(0.050) (0.050)

Experience Proxy 0.008 0.007
(0.005) (0.005)

SPRq−4:q−1 (%) * Experience Proxy -0.050 -0.045
(0.036) (0.036)

Tracking Errorq−4:q−1(%) -0.081 -0.066 -0.137 -0.120
(0.406) (0.404) (0.402) (0.400)

Past Returnq−4:q−1(%) -0.072 -0.070 -0.077 -0.074
(0.047) (0.046) (0.047) (0.046)

Expense Ratioq−4:q−1 (%) 0.816* 0.819** 0.802* 0.808*
(0.398) (0.397) (0.413) (0.412)

Turnover Ratioq−4:q−1 (%) -0.014*** -0.014*** -0.014*** -0.014***
(0.003) (0.003) (0.003) (0.003)
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VARIABLES (1) (2) (3) (4)

Fund F lowsq−4:q−1 (%) 0.000** 0.000** 0.000** 0.000**
(0.000) (0.000) (0.000) (0.000)

Style 1 0.002 0.002 0.002 0.002
(0.003) (0.003) (0.003) (0.003)

Style 2 0.001 0.001 0.001 0.001
(0.003) (0.003) (0.003) (0.003)

Style 3 0.005 0.004 0.004 0.004
(0.003) (0.003) (0.003) (0.003)

Size 1 -0.001 -0.001 -0.001 -0.001
(0.003) (0.003) (0.003) (0.003)

Size 2 0.001 0.002 0.001 0.001
(0.003) (0.003) (0.003) (0.003)

Size 3 -0.001 -0.000 -0.001 -0.001

(0.002) (0.002) (0.002) (0.002)
Age Category 1 -0.001 -0.001 -0.000 -0.000

(0.004) (0.004) (0.004) (0.004)
Age Category 2 0.001 0.001 -0.002 -0.003

(0.003) (0.003) (0.006) (0.006)
Age Category 3 -0.002 -0.002 -0.006 -0.006

(0.004) (0.004) (0.005) (0.005)

Observations 28,152 28,152 27,724 27,724
Adjusted R-squared 0.043 0.044 0.047 0.048
Fixed E�ect Qtr Qtr Qtr Qtr
Clustering Qtr & Qtr & Qtr & Qtr &

Fund Fund Fund Fund

5 Conclusion

It is well established that individuals are overcon�dent. Barring a few ex-

ceptions, most papers ignore this trait in designing compensation contracts.

Similarly, when studying behavioral biases, it is imperative that we include

the agent's incentives in the analysis.

Here, we study the problem of a principal who wishes to delegate portfo-

lio management to an overcon�dent agent and has to choose an appropriate

compensation contract. In this framework, we �nd that managerial e�ort as a

function of overcon�dence increases up to a threshold. Thereafter, it decrease
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on account of restrictions on the agent's portfolio choices. The investor can

gain from commitment to such high e�ort because this increases the condi-

tional expected return of the portfolio. However, additional e�ort also leads

to incremental risk taking. By designing appropriate incentives, the investor

can reduce the level of portfolio risk to some optimal level. These gains

are not unbounded because the costs outweigh the bene�ts beyond a certain

threshold. Overall, it is not surprising that we �nd evidence of overcon�-

dence in fund management. A moderate amount of it seems to be optimal.
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A Proofs

A.1 Optimal level of risky assets

The optimal quantity chosen is the solution to the following maximization

problem

maxθ Em(U(Wm)) = maxθ Em(− exp{−aF − aθx̃|y}),

where x̃|y is the return distribution conditional on observing the signal y.

Given the distribution of x̃|y

Em(U(Wm)) = − exp{−aF} exp
{
−aαθy eψ

1+eψ
+ 1

2
(aαθ)2 1

1+ψe

}
and the �rst order condition for the quantity demanded θ is going to be

aαθ 1
1+ψe

− aαy eψ
1+eψ

= 0.

This implies that the optimal level of risky assets in the portfolio is given by

θ =
eψ

aα
y. (a.1)

A.2 Expected Utility of the Manager

Knowing the quantity demanded by the manager, his expected utility given

the level of e�ort and the signal is given by

Em(U|y) = −E[exp{−aF − aαθ(y)x̃|y + V (a, e)}]

= −
∫ ∞
−∞

exp{−aF − aαθ(y)x̃|y + V (a, e)}f(x|y)dx.

f(x|y) is the conditional return distribution. The above integral is over all

the states that are possible after the portfolio has been picked. Simplifying

the expression further we have
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Em(U|y) = −
∫ ∞
−∞

exp

{
−aF − aαeψ

aα
yx̃|y + V (a, e)

}
f(x)dx

= − exp{−aF + V (a, e)}
∫ ∞
−∞

exp{−eψyx̃|y}f(x)dx

= − exp{−aF + V (a, e)} exp

{
−eψy eψ

1 + eψ
y +

1

2

(eψy)2

(1 + eψ)

}

Em(U |y) = − exp{−aF + V (a, e)} exp

{
−1

2

(eψy)2

(1 + eψ)

}
.

The unconditional expected utility of the manager, which is the integral of

above with respect to all the possible signals is going to be

Em(U |e) = − exp{−aF + V (a, e)}E
[
exp

{
−1

2

(eψỹ)2

(1 + eψ)

}]

= − exp{−aF+V (a, e)}

√
eψ

1 + eψ

∫ ∞
−∞

exp

{
−1

2

(eψy)2

(1 + eψ)

}
1√
2π

exp

{
− eψ

1 + eψ

y2

2

}
f(y)

= − exp{−aF+V (a, e)}

√
eψ

1 + eψ

∫ ∞
−∞

1√
2π

exp

{
−1

2

eψ

(1 + eψ)
(y2eψ + y2)

}
f(y)

= − exp{−aF + V (a, e)}

√
eψ

1 + eψ

∫ ∞
−∞

1√
2π

exp

{
−1

2
eψy2

}
.

For a random variable which is distributed N
(

0, 1
eψ

)
the following is true
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∫ ∞
−∞

f(y)dy =

∫ ∞
−∞

1√
2π
eψ

exp

{
−1

2
eψy2

}
= 2 ∗

∫ ∞
0

1√
2π
eψ

exp

{
−1

2
eψy2

}
dy.

Using the above expression we have

Em(U |e) = − exp{−aF +V (a, e)}2 ∗
√

1

1 + eψ

∫ ∞
0

1√
2π
eψ

exp

{
−1

2
eψy2

}
dy.

At this point substitute s = eψy2. This substitution will give us 1
2eψy

ds = dy.

Also if y = 0 then s = 0 and if y =∞ then s =∞. Since y =
√

s
eψ

we have

Em(U |e) = − exp{−aF+V (a, e)}2∗
√

1

1 + eψ

∫ ∞
0

1√
2π
eψ

exp
{
−s

2

} 1

2eψ
√

s
eψ

ds.

Em(U |e) = − exp{−aF + V (a, e)}
√

1

1 + eψ

∫ ∞
0

1√
2π

exp
{
−s

2

}
s
−1
2 ds.

The term in the integral is the distribution function of the χ2(1) random

variable so
∫∞

0
1√
2π

exp
{
− s

2

}
s
−1
2 ds→ 1. Therefore the unconditinal expec-

tation of the portfolio manager is given

Em(U |e) = − exp{−aF + V (a, e)}
(

1

1 + eψ

)1/2

. (a.2)

A.3 Proof to Proposition 1

Equation (10), the �rst order condition for e�ort, can be written as the

following
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V ′(a, efb)−
ψ

2
(

1

1 + ψefb
) = 0

Let the function F be

F = V ′(a, efb)−
ψ

2
(

1

1 + ψefb
)

Based on the implicit function theorem we have that

∂e

∂ψ
= −

∂F
∂ψ

∂F
∂e

By de�nition of optimality we know that ∂F
∂efb

< 0. So, in order to prove the

proposition need to show that ∂F
∂ψ

> 0. Di�erentiating F with respect to ψ

we have

∂F
∂ψ

= 1
2

(
1

1+eψ

)
− ψe

2

(
1

(1+eψ)2

)
=1

2

(
1

(1+eψ)2

)
>0.

Therefore we are done.

A.4 Investor's Expected Utility function

As mentioned in the main text,we are going to assume that the investor has

the same preferences as the manager; including the level of risk aversion.

Using the investor's conditional terminal wealth given in equation (3) the

conditional expected utility of the investor is going to be

Ei(U |y) = −E
[
exp

{
−a(1− α)

eψ

aα
yx̃|y + aF

}]

= − exp{aF}
∫ ∞
−∞

exp

{
−a(1− α)

eψ

aα
yx̃|y

}
f(x|y)dx
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= − exp{aF} exp

{
−(1− α)eψ

α

e

1 + e
y2 +

1

2

(
(1− α)eψ

α

)2
y2

1 + e

}

= − exp{aF} exp

{
−(1− α)ψ

α

e2

1 + e
y2

(
1− 1

2

(
(1− α)ψ

α

))}
.

De�ne two new variables

m(α) =

(
1− α
α

)
ψ, and

M(α) = m(α)(2−m(α)).

Substituting these variables in the above equation we have

Ei(U |y) = − exp{aF} exp

{
− e2

2(1 + e)
y2M(α)

}
. (a.3)

We can now compute the unconditional expected utility of the investor by

integrating over the range of possible signals y

Ei(U) = − exp{aF}
√

e

1 + e

∫ ∞
−∞

exp

{
− e2

2(1 + e)
y2M(α)

}
1√
2π

exp

{
− e

1 + e

y2

2

}
dy

= − exp{aF}
√

e

1 + e

∫ ∞
−∞

1√
2π

exp

{
− e2

2(1 + e)
y2M(α)− e

1 + e

y2

2

}
dy

= − exp{aF}
√

e

1 + e

∫ ∞
−∞

1√
2π

exp

{
− ey2

2(1 + e)
(eM(α) + 1)

}
dy.
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Substitute s = ey2

2(1+e)
(eM(α)+1) in the above equation. Simplifying it further

leads to the following expression for the investor's unconditional expected

utility

Ei(U) = − exp{aF}
(

1

1 + eM(α, ψ)

)1/2

. (a.4)

A.5 Proof to Lemma 1

In order to compute the contract parameters the investor has to solve a

constrained optimization problem where the constraint is on participation

given by (13). The Lagrangian of the problem is the following

L = −eaF
(

1
1+efbM(α,ψ)

) 1
2

+ λ

(
− exp{−aF + V (a, efb)}

(
1

1+efbψ

) 1
2

+ U0

)
.

Notice that the participation constraint is not a function of α. We have the

following �rst order condition with respect to α

∂L
∂α

= − exp{aF}(−1
2

)
(

1
1+efbM(α,ψ)

)3/2

efbM
′(α, ψ)=0.

Look in the proof of expected utility of the investor for de�nitions of m(α)

and M(α). The above condition is equivalent to

∂M(α,ψ)
∂α

= 2ψ
α2 (m(α)− 1) = 0.

Solving the above equation for α

αfb = ψ
1+ψ

.

The other �rst order condition is with respect to F ( ∂L
∂F

) and is given by

−aeaF
(

1
1+efbM(α,ψ)

)1/2

+ λ

(
ae−aF+V (a,efb)

(
1

1+efbψ

)1/2
)

= 0

(
1+efbψ

1+efbM(α,ψ)

)1/2

= λe−2aF+V (a,efb)
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taking the log of both sides we have

1
2
log
(

1+efbψ

1+efbM(α,ψ)

)
= log(λ)− 2aF + V (a, efb).

Notice that at the point of optimality

M(αfb) = 1
ψ
ψ
(

2− 1
ψ
ψ
)

= 1.

Substituting this is previous equation and solving for F will gives us

F =
1

2a

[
log(λ) + V (a, efb)−

1

2
log

(
1 + efbψ

1 + efb

)]
. (a.5)

However, this is still an unknown function of λ. Since the investor does not

gain from paying anything more than the reservation utility, the participation

constraint will be binding at the optimum. So the following equality should

hold

exp{−aF ∗ + V (a, efb)}
(

1
1+efbψ

)1/2

= U0.

Expanding this further and taking the log of both sides we get

log(λ) =
1

2
log

(
1 + efbψ

1 + e∗

)
+ V (a, efb) + log

(
1

1 + efbψ

)
− 2 log(Uo). (a.6)

Substituting (a.6) in (a.5) we get

F =
[

1
a
V (a, efb) + 1

2a
log
(

1
1+efbψ

)
− 1

a
log(Uo)

]
.

A.6 Proof to Proposition 2

From Lemma 1 we know the optimal contract parameters. Substituting

them in the expected utility function of the investor, equation (12), we get

the following
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Ei(U) = −e
[V (a,efb)−log(Uo)+ 1

2
log

(
1

1+efbψ

)
]
(

1
1+efbM(α,ψ)

)1/2

.

In order to determine if this function is increasing in overcon�dence, di�er-

entiate the above equation with respect to ψ. Below is the expression

∂
∂ψ

[
−eV (a,e∗)+ 1

2
log( 1

1+e∗ψ )
(

1
1+eM(α,ψ)

)1/2
]

= −eV (a,e∗)+log( 1
1+e∗ψ )

1
2 ∂
∂ψ

((
1

1+eM(α,ψ)

)1/2
)
−(

1
1+eM(α,ψ)

)1/2
∂
∂ψ

[
eV (a,e∗)+log( 1

1+e∗ψ )
1
2

]
.

Remember, M(αfb) = 1. Lets focus on

∂

∂ψ

[
eV (a,e∗)+ 1

2
log( 1

1+e∗ψ )
]

=
∂

∂ψ

[
eV (a,e∗)

(
1

1 + e∗ψ

) 1
2

]

=

[(
1

1+e∗ψ

) 1
2
eV (a,e∗) ∂V (a,e∗)

∂e∗
∂e∗

∂ψ
+ eV (a,e∗)

(
−1

2

) (
1

1+e∗ψ

) 3
2
(
∂e∗

∂ψ
ψ + e∗

)]

=

[(
1

1+e∗ψ

) 1
2
eV (a,e∗) ∂e∗

∂ψ

(
∂V (a,e∗)
∂e∗

− Ψ
2

(
1

1+e∗ψ

))
− eV (a,e∗) e∗

2

(
1

1+e∗ψ

) 3
2

]
.

Note, that the �rst order condition for e�ort(
∂V (a,e∗)
∂e∗

− Ψ
2

(
1

1+e∗ψ

))
= 0.

Therefore,

∂
∂ψ

[
eV (a,e∗)+ 1

2
log( 1

1+e∗ψ )
]

= −eV (a,e∗) e∗

2

(
1

1+e∗ψ

) 3
2
< 0.

Also, since we already know that e�ort is increasing in overcon�dence, it has

to be that ∂
∂ψ

[(
1

1+e∗

)1/2
]
< 0. Therefore ∂EI(U)

∂ψ
> 0 ∀ψ.
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A.7 Proof to Proposition 3

From Lemma 1 we already know that αfb = ψ
1+ψ

. We also know that the

quantity of risky asset demanded by the manager is given by θ(y) = eψ
aα
y.

Substituting the value of αfb in the demand function we get that

θ(y) =
ey

a
(1 + ψ).

From the above equation it is clear that the equilibrium risky quantity is

increasing in ψ.

A.8 Proof to Lemma 2

Given the e�ort level and the signal observed the expected utility of the

manager hinges on the quantity demanded. We have the following expression

for the utility function

Em(U |y) = −E[exp{−aF − aαθ(y)x̃|y + V (a, e)}]

= −e−aF+V (a,e)

∫ ∞
−∞

exp{−aαθ(y)x̃|y}f(x|y)dx.

For signals below the bound (y < −kaα
ψe

)

∞∫
−∞

exp{aαkx̃|y}f(x|y)dx = exp

{
ψe(aαky)

1 + ψe
+

(kaα)2

2

1

1 + ψe

}

= exp

{
ψe

1 + ψe
kaα

(
y +

(kaα)

2ψe

)}
. (a.7)

For signals above the bound (y > kaα
ψe

)

51



∞∫
−∞

exp{−aαkx̃|y}f(x|y)dx = exp

{
−ψe(aαky)

1 + ψe
+

(kaα)2

2

1

1 + ψe

}

= exp

{
−ψe

1 + ψe
kaα

(
y − (kaα)

2ψe

)}
. (a.8)

For signals within the bound (|y| ≤ kaα
ψe

)

∞∫
−∞

exp

{
−aαeψ

aα
yx̃|y

}
f(x|y)dx = exp

{
−(ψey)2

1 + ψe
+

1

2

(ψey)2

1 + ψe

}
= exp

{
−1

2

(ψey)2

1 + ψe

}
.

Now lets integrate over all possible signals and solve for the unconditional

expected utility of the manager. We still have to deal with the three regions

separately. For the signals below the threshold we get the following expression

as the share towards expected utility

−e−aF+V (a,e)

− kaα
ψe∫
−∞

e{
ψe

1+ψe
kaα(y+

(kaα)
2ψe )}f (y) dy

where f (y) is the distribution function of a random variable which is dis-

tributed N
(

0, 1+ψe
ψe

)
. Applying the normal distribution's density function

to the above equation we get

= −e−aF+V (a,e)

− kaα
ψe∫
−∞

1√
2π

(
ψe

1 + ψe

)1/2

e
−y2
2 ( ψe

1+ψe)e{
ψe

1+ψe
kaα(y+

(kaα)
2ψe )}dy.

Using completion of squares we have
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= −e−aF+V (a,e)

− kaα
ψe∫
−∞

1√
2π

(
ψe

1 + ψe

)1/2

e{
−eψ

2(1+eψ)
(y−kaα)2}e

(kaα)2

2 dy.

Going to make a substitution s = eψ
1+eψ

(y − kaα)2. It can be proved that

after this substitution the share of expected utility from the signal below the

threshold is given by

= −1

2
(e−aF+V (a,e))

(
e

(kaα)2

2

) ∞∫
(kaα)2

ψe
(1+ψe)

1√
2π
e{−

s
2} 1√

s
ds.

The function in the integral is the probability density function of a χ2(1)

random variable. Let φ and Φ be the density density and the cumulative

distribution function of χ2(1) random variable. Also, one would get an exact

same equation for the part above the threshold. For brevity, we don't show

that proof here. Now, for the contribution of the part of the signal space

which is within the bounds (|y| ≤ kaα
ψe

). The expression below represents

that part of the expected utility.

−e−aF+V (a,e)

kaα
ψe∫
− kaα

ψe

exp

{
−1

2

(ψey)2

1 + ψe

}
f (y) dy

= −e−aF+V (a,e)

kaα
ψe∫
− kaα

ψe

1√
2π

(
ψe

1 + ψe

)1/2

e
−y2
2 ( ψe

1+ψe)−
1
2

(ψey)2

1+ψe dy.

Substituting s = ψey2 we get the following

53



= −e−aF+V (a,e)

(
1

1 + ψe

)1/2

(kaα)2

ψe∫
0

1√
2π
e
−s2
2

1√
s
ds.

Adding the three parts we get the following expression as the uncondi-

tional expected utility of the manager

Em(U) = −e−aF+V (a,e)

[(
1

1 + ψe

) 1
2

Φ

(
(kaα)2

ψe

)]
+

− e−aF+V (a,e)

[
exp

(
(kaα)2

2

)(
1− Φ

(
(kaα)2

ψe
(1 + ψe)

))]
.

A.9 Proof to Lemma 3

Credit for the proof goes to Gómez and Sharma (2006). The result almost

follows from the Lemma 1 and Corollary 2 in their paper. Equation (18)

describes the �rst order condition for e�ort. Lets de�ne a function M as

follows

M := V ′(a, e∗)g(e, ψ|α) + g′(e∗, ψ|α).

Then, using M and the implicit function theorem the proof would be

complete if we can show that ∂M
∂α

< 0. This is true because by de�nition,
∂M
∂e∗

> 0. Further, using Lemma 1 in Gómez and Sharma (2006) ∂g(e∗,ψ|α)
∂α

< 0.

Also, from the de�nition of g′(e∗, ψ|α) in equation (19), we can see that
∂g′(e∗,ψ|α)

∂α
< 0.Moreover, by assumption the e�ort function, V (a, e), is convex

and increasing function for all levels of e�ort therefore V ′(a, e∗) > 0. Using

these facts, ∂M
∂α

= V ′(a, e∗)∂g(e
∗,ψ|α)
∂α

+ ∂g′(e∗,ψ|α)
∂α

< 0.

This concludes the proof. On a related note, the proofs relating to the

existence of a unique optimal second best e�ort, the continuity of the e�ort

function with respect to α, and the di�erentiability of the e�ort function with
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respect to α are all applicable to the model here just as they were in Gómez

and Sharma (2006).

A.10 Proof to Lemma 4

Note, the principal in this case is a rational person. Therefore, in evaluating

investor's expected utility rational beliefs should be used. Expected utility

of the investor given the e�ort level and the signal is

Ei (U |y , e) = −E [exp (−a (1− α) θx̃ |y + aF )] .

But the θ is dependent on the signal and on account of the constraints on

holdings, like the proof of Lemma 2, there are three distinct cases to deal with.

Conditional Expectation

For signals within the bound (|y| ≤ kaα
ψe

)

Ei (U |y, e) = −E
[
exp

(
−a (1− α) eψ

aα
yx̃ |y + aF

)]
= − exp (aF )E

[
exp

(
−a (1− α) eψ

aα
yx̃ |y

)]
.

Knowing the distribution of the x̃ |y , the above expectation can be written

as following

= − exp (aF )

[
exp

(
− (1−α)

α
e2y2ψ
1+e

+ 1
2

(
(1−α)
α

)2
e2ψ2y2

1+e

]
.

Simplifying this further we have

= − exp (aF )
[
exp

(
− (1−α)

α
ψ e2y2

1+e

(
1− 1

2

(
(1−α)
α

)
ψ
)]

.

Like before, let us assume m (α) = ψ (1−α)
α

and M (α) = m (a) (2−m (a)) .

Then,

55



Ei (U |y, e) = − exp (aF ) exp
(
−1

2
e2y2

1+e
M (α)

)
.

For signals below the bound (y < −kaα
ψe

)

Ei (U |y, e) = − exp (aF )E [exp (−a (1− α) (−k) x̃ |y )].

Evaluating the expectation we have the following

Ei (U |y, e) = − exp (aF ) exp
(
ak(1−α)

1+e

(
ye+ 1

2
ak (1− α)

))
.

For signals above the bound (y > kaα
ψe

)

Ei (U |y, e) = − exp (aF )E [exp (−a (1− α) kx̃ |y )] .

Evaluating the expectation we get the following expression

Ei (U |y, e) = − exp (aF ) exp
(
−ak(1−α)

1+e

(
ye− 1

2
ak (1− α)

))
.

Unconditional Expectaion

Using the above computed conditional expected utility, now we are going

to compute the unconditional expected utility, which is taking the expecta-

tion over all possible signals. Like before, there are going to be three di�erent

regions over which we need to integrate.

For signals within the bound (|y| ≤ kaα
ψe

)

Ei (U |e) = − exp (aF )

kaα
ψe∫
− kaα

ψe

exp
(
−1

2
e2y2

1+e
M (α)

)
f (y) dy,

where f (y) is the density function of the normal distribution given asN
(
0, 1+e

e

)
.

Using the distribution function of the gaussian random variable we get

= − exp (aF )

kaα
ψe∫
− kaα

ψe

exp
(
−1

2
e2y2

1+e
M (α)

)
1√
2π

(
e

1+e

) 1
2 exp

(
−y2

2
e

1+e

)
dy.
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Simplifying this further we get

= − exp (aF )

kaα
ψe∫
− kaα

ψe

1√
2π

(
e

1+e

) 1
2 exp

(
−1

2
ey2

1+e
(eM (α) + 1)

)
dy.

Notice that we have the density function of a
(

1
1+eM(α)

) 1
2
N
(

0,
(

1+e
e(1+eM(α))

))
distributed random variable in the above integral. Using the symmetry of

the Normal distribution we have

Ei (U |e) = −2 exp (aF )

kaα
ψe∫
0

1√
2π

(
e

1+e

) 1
2 exp

(
−1

2
ey2

1+e
(eM (α) + 1)

)
dy.

Substitute s = ey2

1+e
(eM (α) + 1) . Then, ds = 2ey

1+e
(eM (α) + 1) dy. For the

limits of the integral: when y = 0 we have s = 0 and when y = kaα
ψe

we

have s = (eM(α)+1)
1+e

(kaα)2

ψ2e
. Using the above expression for s, we also get that

y = ±
(

(1+e)s
e(1+eM(α))

) 1
2
. Since in the above integral y is strictly positive we can

ignore the negative sign. Substituting this in the expectation we have

Ei (U |e)

∣∣∣∣∣
|y|≤ kaα

ψe

= −eaF
(

1

1 + eM (α)

) 1
2

(eM(α)+1)
1+e

(kaα)2

ψ2e∫
0

1√
2π

exp
(
−s

2

) 1√
s
ds.

The function inside the integral is the density function of a χ2 (1) random

variable. Let Φ represent the cumulative distribution of a χ2 (1) variable.

So, for this part we get

Ei (U |e)

∣∣∣∣∣
|y|≤ kaα

ψe

= −eaF
(

1

1 + eM (α)

) 1
2

Φ

(
(eM (α) + 1)

1 + e

(kaα)2

ψ2e

)
. (a.9)
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For signals below the bound (y < −kaα
ψe

)

The expected utility of the investor in this region ignoring − exp (aF ) is

=

− kaα
ψe∫
−∞

exp
(
ak(1−α)

1+e

(
ye+ 1

2
ak (1− α)

))
1√
2π

(
e

1+e

) 1
2 exp

(
−y2

2
e

1+e

)
dy,

=

− kaα
ψe∫
−∞

1√
2π

(
e

1+e

) 1
2 exp

(
−1
2

e
1+e

(
y2 − 2ayk (1− α)− (ak(1−α))2

e

))
dy.

Multiply and divide the integral by exp
(
−1

2
e

1+e
(ak (1− α))2). Then for

the above equation we have

=

− kaα
ψe∫
−∞

1√
2π

(
e

1+e

) 1
2 exp

(−1
2

e
1+e

(
(y − ak (1− α))2 − 1+e

e
(ak (1− α))2)) dy,

= exp
(

(ak(1−α))2

2

) − kaα
ψe∫
−∞

1√
2π

(
e

1+e

) 1
2 exp

(−1
2

e
1+e

(y − ak (1− α))2) dy.
Now make the following substitution s = e

1+e
(y − ak (1− α))2 . Then

ds = 2e
1+e

(y − ak (1− α)) dy. Based on the above equation y = ±
(

1+e
e
s
) 1

2 +

ak (1− α) . Since we are strictly restricting ourselves to the real line it has to

be that s > 0. Note, in this case using the negative part of the expression of

y is the only sensible thing to do since it is the only thing that will work when

y = −∞. For the limits of integral, when y = −∞ s =∞ and when y = −kaα
ψe

s = e
1+e

(
kaα
ψe

+ ka (1− α)
)2

. It can be seen that e
1+e

(
kaα
ψe

+ ka (1− α)
)2

can be expressed as (kaα)2

ψ2e
(1+em(α))2

1+e
. Making these substitutions we get the

following

Ei (U |e)

∣∣∣∣∣
y<−kaα

ψe

=
1

2
exp

(
(ak (1− α))2

2

) ∞∫
(kaα)2

ψ2e

(1+em(α))2

1+e

1√
2π

exp

(
−s
2

)
(−ds)√

s
.
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This gives the expected utility for this region

Ei (U |e)

∣∣∣∣∣
y<−kaα

ψe

= −e
aF

2
exp

(
(ak (1− α))2

2

)(
1− Φ

(
(kaα)2

ψ2e

(1 + em (α))2

1 + e

))
.

(a.10)

For signals above the bound (y > kaα
ψe

)

The expected utility of the investor in this region ignoring − exp (aF ) is

=
∞∫
kaα
ψe

exp
(
−ak(1−α)

1+e

(
ye− 1

2
ak (1− α)

))
1√
2π

(
e

1+e

) 1
2 exp

(
−y2

2
e

1+e

)
dy

=
∞∫
kaα
ψe

1√
2π

(
e

1+e

) 1
2 exp

(
−1

2
e

1+e

(
y2 + 2 ya k (1− α)− (ak(1−α))2

e

))
dy.

Multiplying and dividing by exp
(
−1

2
e

1+e
(ak (1− α))2) we get that above is

= exp
(

(ak(1−α))2

2

) ∞∫
kaα
ψe

1√
2π

(
e

1+e

) 1
2 exp

(
−1

2
e

1+e
(y + ak (1− α))2) dy.

Now make the following substitution s = e
1+e

(y + ak (1− α))2 . Then ds =

2e
1+e

(y + ak (1− α)) dy. Based on the above equation y = ±
(

1+e
e
s
) 1

2 −
ak (1− α) . In this case using the positive part of the expression of y is the

only sensible thing to do. For the limits of integral, when y = ∞ s = ∞
and when y = kaα

ψe
, s = (kaα)2

ψ2e
(1+em(α))2

1+e
. Substituting these in the equation

for expected utility we have

Ei (U |e)

∣∣∣∣∣
y> kaα

ψe

=
1

2
exp

(
(ak (1− α))2

2

) ∞∫
(kaα)2

ψ2e

(1+em(α))2

1+e

1√
2π

exp
(
−s

2

) 1

2
√
s
ds.

This gives the expected utility for this region
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Ei (U |e) = −e
aF

2
exp

(
(ak (1− α))2

2

)(
1− Φ

(
(kaα)2

ψ2e

(1 + em (α))2

1 + e

))
(a.11)

Adding these three parts up, equation(a.9), equation(a.10), and equation(a.11),

we have the following expression for the overall unconditional expected utility

E (Ui |e) = − exp (aF ) f (α, e),

where

f (α, e) =

(
1

1 + eM (α)

) 1
2

Φ

(
(kaα)2

ψ2e

(eM (α) + 1)

1 + e

)
+

exp

(
(ak (1− α))2

2

)(
1− Φ

(
(kaα)2

ψ2e

(1 + em (α))2

1 + e

))
.
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