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Abstract

The search of valuable investment opportunities is one of the fundamental responsi-
bilities of corporate managers. Existing studies of this search process usually model
the investment opportunity as a binary signal and the role of the manager ends when
such a signal arrives. This paper studies a dynamic agency model in which investors
delegate a manager to find valuable investment opportunities arriving stochastically
with two novel features. First, investment targets arrive at different levels of quality
that are only observable to the manager. Second, once the investment target is cho-
sen, the same manager is also in charge of the ensuing production process and can
continue to utilize his superior information about the target to extract rents from the
investors. These novel features imply an adverse selection problem interacting with a
moral hazard problem. The optimal contract features a progressively lower threshold
for investment if a suitable target is not found in time. The investment threshold is
always lower than the first-best along the equilibrium path, consistent with the over-
investment behaviors observed in practice. The theoretical predictions of the model
offer empirically relevant hypotheses regarding the strategies and returns of mergers
and acquisitions, hedge function activism, or special purpose acquisition companies.
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1 Introduction

The ability to identify and exploit valuable investment opportunities is one of the defining

characteristics of successful managers of modern businesses. Firm managers must regularly

find and acquire new technologies in the market to maintain their growth. Managers of

activist hedge funds are on constant lookout for undervalued targets for intervention. The

massive uncertainty and market turmoil brought by the ongoing COVID-19 pandemic saw the

rapid rise of attention to the managers (known as the sponsors) of special purpose acquisition

companies, or SPACs, designated with the exclusive job of hunting for the next “unicorn”,

the most promising private firm, to merge with.1 Existing studies (e.g., Green and Taylor,

2016) usually model the search for valuable information as a random discovery process. A

principal, representing the investors, supplies the necessary resources to an agent, represents

the manager, to conduct the search, and the valuable information arrives stochastically over

time. This standard model framework acknowledges two important frictions. First, the

search requires costly but unverifiable effort from the manager. Second, the result of the

search, or the arrival of valuable information, is the manager’s private knowledge. These

features spawn a moral hazard problem, for which the solution requires the design of an

incentive contract that ensures both the exertion of search effort and the timely report of

the search result. Typically, this is done by promising the manager a reward when the

valuable information is discovered and disclosed. The size of the promised reward decreases

over time in the absent of the discovery, and the contract is terminated if the discovery is

not made after sufficiently long time.

The standard framework and its resulting contract design, however, does not capture

all the crucial features of the search for valuable information in practice. First, in the

standard framework, information is modeled as a binary signal, for which only the timing

of its arrival matters. This ignores the content of information, such as the quality of the

investment opportunity. Second, the role of the manager ends when he discloses the arrival

of the information. In practice, the manager can well be the key personnel delegated to

utilize that information for production. In cases of merger and acquisition (M&A), the

1See, e.g, coverage from Forbes (2020) and how itself plans to go public via a SPAC.
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manager of the acquirer is also the one operating the combined firm. The manager of an

activist hedge fund is also the one overseeing the revamping of the undervalued targets.

Even venture capitalists and SPAC sponsors are known to play critical roles in the growth

and development of their investments by injecting their management expertise in addition

to the capital. These realistic features have important implications on the optimal contract

design for the search process. First, the fact that information can be of different quality

generates an adverse selection problem. In addition to receiving sufficient incentives to exert

the search effort, the manager must also be given proper incentives to truthfully reveal the

quality of the information. Second, if the manager’s role continues after the information has

arrived, the manager can take advantage of his information superiority to extract personal

benefits from the subsequent production process. These benefits in turn affect the return to

the search process for the investors and the type of opportunities they are willing to invest

in.

This paper explores the implications of agency frictions in the search of valuable invest-

ment opportunities in a dynamic model that incorporates these two critical features. The

model has two distinct stages: in the first (search) stage, investors must supply resources to

the managers to find investment opportunities, or targets, which arrive randomly over time

via a Poisson process. The manager can shirk, diverting resources for his private benefit,

which results in no target arrival. Importantly, the quality of the target is a random variable,

of which the actual realization is only observable to the manager. The investors make the

decision whether to end the search and begin production based on the manager’s report of

the arrival of targets and their quality. In the second (production) stage, the productivity of

the target evolves over time subject to time-varying shocks, and its quality determines the

initial productivity. The evolution path of productivity is once again the manager’s private

information, and the investors dynamically adjust their production policies based on the

manager’s reported productivity. The investors’ objective is to design the optimal contract

that maximizes their total return from the investment net of the manager’s compensation,

which provides incentives for the manager to exert the search effort and to report all private

information truthfully in both stages.

Absent of any agency frictions, the investors’ first-best strategy is to wait for and invest
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in the first target that clears a sufficiently-high bar of quality. This cutoff level of quality,

or the investment threshold, is a constant under the assumption of zero discounting. The

aforementioned information frictions, however, create both a moral hazard and an adverse

selection problem that interact with each other. In the production stage where productivity

is the manager’s private information, the incentives for truthful reporting are provided in

the form of excess compensation, known as the manager’s information rent. This rent is

increasing in the quality of the target, which determines the expected return investors can

receive from a given investment policy. In the search stage, incentives are provided in the form

of promised utility. The investors specify in the contract their policies for investment and the

reward for reporting the arrival of suitable targets, which combined drive the evolution of the

manager’s promised utility given the path of the search results. In particular, the optimal

investment policy takes the form of a time-varying cutoff level of target quality. As long

as the manager does not report the arrival of a target the bar of investment, the promised

utility to the manager drifts down to provide incentives for the manager to maintain the

search effort. Early on in the search stage, the bar of investment is high, and the manager

is just indifferent between exerting the search effort and shirking and consuming the search

resources for private benefits. As the managers promised utility decreases over time in

the absence of high-quality targets, the optimal cutoff declines, and the manager begins to

strictly prefer to exert the effort to conduct the search. The decline continues until all targets

regardless of their quality will trigger the start of production. If a target is still not found

after sufficiently long search the manager’s contract is terminated without pay. Critically,

the optimal investment threshold induced by the agency frictions is always below first-best

level, representing overinvestment by the investors.

The main results of the model and the their comparative statics generate empirically

testable hypotheses regarding M&A, hedge fund activism (HFA), and SPAC, where there

is extensive evidence of overinvestment.2 Existing studies (e.g., Shleifer and Vishny, 1997;

Franzoni, 2009; Malenko, 2019; etc.) often attribute overinvestment to the manager’s empire-

building preferences. This paper offers an alternative explanation based on optimal con-

2See, e.g., Andrade, Mitchell, and Stafford, 2001, Eckbo, 2008, Gahng, Ritter, and Zhang, 2021, and the
references therein.
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tracting under agency frictions. Moreover, the model predicts that overinvestment should

be correlated with the frequencies of M&A, HFA, or SPAC activities; the incentive powers

of the acquirer, activist fund managers, or the SPAC sponsors; and the average level of

the search cost, which can be empirically measured by stock liquidity, analyst coverage, or

institutional holdings. The model also predicts that the returns in these markets should be

more dispersed when there are more targets available or when the incentive powers of the

managerial contract is stronger.

This paper belongs to the rich literature of dynamic contracting models with Poisson

jumps, including Biais, Mariotti, Rochet, and Villeneuve (2010), Hoffmann and Pfeil (2010,

2021), Piskorski and Tchistyi (2010, 2011), DeMarzo, Fishman, He, and Wang (2012), De-

Marzo, Livdan, and Tchistyi (2013), Myerson (2015), Guo (2016), Li and Williams (2017),

Sun and Tian (2018), Rivera (2020), and Feng (2021). The most closely-related studies are

Green and Taylor (2016), Varas (2018), Curello and Sinander (2021), Madsen (2021), Mayer

(2022), etc. These studies assume that through effort, the agent can observe a private signal

that is valuable for the principal. The optimal contract provides incentives for the agent to

exert the effort to uncover that signal and to report it as soon as it arrives. This paper differs

from these studies in two new dimensions. First, in addition to the arrival time, the agent

also privately observes the quality of the private information and must be incentivized to

truthfully convey both the arrival and the quality to the principal. Second, the contracting

relationship does not end with the disclosure of the private information. The value of the

information manifests through a production process, during which the agent can continue to

utilize his information superiority to extract rents from the investors.

The introduction of these new dimensions results in an adverse selection problem in

addition to the moral hazard problem, a feature that can be seen in Sung (2005), Sannikov

(2007), Cvitanić, Wan, and Yang (2013), and Che, Iossa, and Rey (2021), etc. In particular,

Cvitanić, Wan, and Yang (2013) studies an extension of the well-known contracting problem

in DeMarzo and Sannikov (2006) by assuming one of the agent’s characteristics (such as the

private utility he enjoys if he diverts the cash flows) is the agent’s private information, and the

principal must design a screening contract to infer that information before hiring the agent.

This turns out to be analytically difficult, as the contract must always keep track of at least
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two state variables: one for each type of the agent if he accepts the contract. Consequently,

the solution in Cvitanić, Wan, and Yang (2013) relies mainly on numerical simulation. In

contrast, this paper assumes the adverse selection arises after the manager is hired, which

allows the separation of the adverse selection from the moral hazard problem. Crucially, the

screening of the manager’s private information can be made relatively independent of the

manager’s moral hazard problem, which lowers the technical hurdles in deriving the optimal

contract substantially. Meanwhile, there is still a meaningful interaction between the two

frictions because the design of the screening contract affects the dynamics of the incentives

during the search stage. Consequently, the model yields different but practically relevant

predictions than those in models with either adverse selection or moral hazard only, which

are discussed in details in Section 4.

More broadly speaking, our paper is also related to the literature of mechanism design

in which the agent can also take private actions.3 For example, Krähmer and Strausz (2011)

and Liu and Lu (2018) study the optimal procurement policy in two-period models where

the agent is able to influence the principal’s screening outcome in the second period through

private actions in the first period. The agent makes one report only about some private

information and the contract either moves on to the next stage, if the report clears a pre-

specified hurdle, or terminates altogether. In comparison, our search stage is fully dynamic

and thus features endogenous termination and stochastic transition time to the second stage.

The agent is allowed to make repeated reports about the arrival and quality of the targets

until either transition or termination occurs. The dynamics also imply that the criterion for

transition is type-varying as the result of previous reports. Meanwhile, Halac, Kartik, and

Liu (2016) studies experiments in a learning model in which the agent’s private effort is a

necessary (but not sufficient) condition for success. The adverse selection of the underlying

success likelihood results in a screening contract with different endogenous deadlines at which

the contract is terminated if success has not been achieved. Our model shares the similarities

that “success”, the arrival of an investment target, is stochastic and only possible if the

manager exerts effort. However, our model differs in that “success” carries the additional

3See, e.g., Garrett and Pavan (2012, 2015), Gershkov and Perry (2012), Chassang (2013), Gary-Bobo
and Trannoy (2015), Gershkov, Li, and Schweinzer (2016), Duggan (2017), Shan (2017), in addition to the
studies reviewed below.
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information of quality and thus requires different levels of incentives under the optimal

screening contract. This additional dimension of the agent’s private information also implies

that the definition of “success” in our model is time-varying: earlier targets must clear a

higher hurdle in order to successfully trigger investment.

In terms of the empirical predictions, this paper complements the recent studies that also

feature overinvestment as the result of dynamic agency frictions with different mechanisms,

e.g., Bolton, Wang, and Yang (2019) and Ai, Kiku, Li, and Tong (2021) with limited com-

mitment, Gryglewicz, Mayer, and Morellec (2020) with correlated short-run and long-run

effort, Szydlowski (2019) with multi-tasking, Gryglewicz and Hartman-Glaser (2020) with

real options, and Feng (2022) with persistent effect of moral hazard. All of these studies

assume the output process is driven by Brownian shocks and the level of investment can

be adjusted constantly and smoothly. Consequently, their models apply more naturally to

operational investments such as capital expenditure or research and development expenses.

In contrast, this paper focuses on the setting in which the investment targets arrive via a

Poisson process if the manager exerts sufficient search effort. The theory is therefore more

applicable to lumpy investments such as M&A, HFA, and SPAC.

2 Model

This section introduces the model. Section 2.1 describes the basic structure of the model

and defines the contract, followed by discussions of the key assumptions in Section 2.2, and

the first-best solution in Section 2.3.

2.1 Basic Structure

Time is continuous. A principal (she), representing the investors, contracts with an agent

(he), representing a manager, to find and manage an investment. Investors have deep pockets

while the manager is protected by limited liability. Both parties are risk-neutral with no

discounting, and their outside options are normalized to 0.4 The contracting relationship

4The assumption of no discounting for both the investors and the manager is common among models in
which the arrival of valuable information follows a Poisson process (e.g., Green and Taylor, 2016; Mayer,
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has two distinct stages: the search stage, and the production stage.

2.1.1 The Search Stage

In the search stage, the manager is tasked with finding an investment opportunity, such as

a promising startup as an acquisition target, or an undervalued firm as an activism target.

The search incurs a flow cost δ that must be financed by the investors. These targets

arrive via a Poisson jump process Nt with intensity λ if the manager exerts effort. Each

target is characterized by its quality θ, which follows a known distribution with cumulative

distribution function F (θ) and probability density function f(θ).

The agency frictions in this stage is two-fold: first, the manager’s (search) effort is unob-

servable to the investors. Thus, the manager can shirk, which generates private benefit ρ < δ

for the himself, and no target arrives while he shirks. Secondly, only the manager observes

the arrival of targets and their true quality θ. The investors must make all their decisions

based on reported information from the manager. The length of this stage is endogenous: the

search ends either when the investors decide to invest and move on to the next (production)

stage, or when the contract is terminated.

2.1.2 The Production Stage

In the production stage, the manager produces output based on the target chosen by the

investors in the previous stage. The production technology is denoted by y(θ, e), where

e is the manager’s (production) effort subject to a quadratic personal cost h(e) = e2/2.

yθ(θ, e) > 0, and ye(θ, e) > 0. That is, target quality and production effort both increase

output.

Similar to the first stage, effort and target quality are both the manager’s private infor-

mation. The output y, however, is observable to the investors. This implies that the main

agency friction in the production stage is adverse selection: investors can set their desired

level of output and make compensation to the manager based on the reported target quality.

The unobservable effort is only used to conceal the manager’s report of θ. A manager with

2022; etc.). Discounting implies investors prefer earlier resolution, which distorts their investment threshold
downward. Except for this result, discounting usually adds little economic intuition in these types of models
but a substantial degree of algebraic complexity.
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a low-quality target can always mimic the output of a manager with a high-quality target

(or vice versa) by exerting higher (lower) effort. In contrast, the agency frictions in the first

stage involve both moral hazard and adverse selection, because the manager can both shirk

and lie about the arrival and the quality of the investment targets.

2.1.3 Contract

A contract C between the investors and the manager consists of the investors’ investment

and production policies, and the associated compensation to the manager. In the search

stage, the contract specifies the set of targets that will be invested in, the reward for the

manager for announcing the arrival of the target, and the condition under which the contract

is terminated. In this production stage, the contract specifies the investors’ desired level of

output and the associated compensation to the manager if he produces the required output.5

All policies are conditional on the manager’s reports θ̂t and the filtration generated. A

contract is incentive-compatible if the manager finds it optimal to always exert the desired

search effort and announce his private information truthfully.

2.2 Simplifying Assumptions

The solution of the model relies on two assumptions – one for each stage – on the functional

forms of certain key variables. These assumptions are made for analytical tractability only

and their roles in the model will be discussed below. The first assumption pertains to the

distribution of θ in the search stage:

Assumption 1 θ follows a Pareto distribution with scale parameter θmin and shape param-

eter κ. i.e.,

F (θ) = 1−
(
θκmin

θκ

)
(1)

f(θ) =
κθκmin

θκ+1
(2)

θ takes on positive values only, (i.e., θmin > 0) and has a finite variance (i.e., κ > 2).

5Because there is no noise in the production technology, and the manager is risk-neutral, it is without
the loss of generality to assume that the manager only gets paid if he produces the required level of output.
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The main analytical advantages of the Pareto distribution are two-fold: first, the inverse

hazard rate of a Pareto distribution [1 − F (θ)]/f(θ) = θ/κ is a linear function in θ. The

proof of Proposition 1 and all subsequent analyses are much simplified as a result of this lin-

earity. Secondly, a Pareto distribution truncated from below at an arbitrary point x > θmin

is still a Pareto distribution with the same shape parameter and the new scale parameter

x. As mentioned in the introduction (and will be explicitly shown soon), the optimal in-

vestment policy in the search stage is to invest in all targets with reported quality above

a certain threshold. The fact that the value of the threshold does not change the shape of

the distribution is vital for tractability. The requirement κ > 2 is a mere technical one. It

implies a sufficiently thin right tail of the distribution to ensure a finite variance of θ and,

as will be shown in Section 2.3 soon, a finite solution to the first-best.

In addition to its analytical convenience, as a member of the power-law family, Pareto

distribution is also widely applicable in describing economic activities in practice. In par-

ticular, the extreme value theory (e.g, as in Gabaix and Landier, 2008) suggests that the

tail distribution of many economic values (firm size, managerial talent, etc.) must follow

the power-law. Targets that are worth considering for investment for most firms, especially

the large ones, are likely highly promising opportunities in general. Consequently, despite

being a special case mathematically, Pareto distribution is arguably a reasonable proxy for

the actual distribution of the quality of valuable investment opportunities in practice.

The second assumption pertains to the production technology:

Assumption 2 Managerial effort and target quality are mainly complements in the produc-

tion stage, i.e., y = θe.

This assumption achieves two useful simplifications: first, in the equilibrium, production

effort will never be shut down regardless of target quality.6 Second, the manager cannot pro-

duce any output without an actual target. Consequently, while the manager can misreport

the quality of the arriving targets, he cannot fabricate their existence.7

6If y = θ+e, the optimal contract may shut down effort completely when the target quality is sufficiently
high. See the example in Feng, Wang, and Wu (2022).

7This assumption is intuitive in the context of M&A, HFA, and SPAC, because the success of the merger
and the intervention require cooperation from the targets. While managers of the acquiring firm or the
activist fund can exaggerate the true value of the targets to their investors, they are usually not able to
create phony targets.
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While Assumptions 1 and 2 are helpful in deriving various solutions in closed-form,

they are not essential for delivering the main economic implications. They are also not

the unique combination in maintaining tractability: for example, another distribution that

retain its “shape” when truncated from below is the exponential distribution. The underlying

mechanism of the paper is qualitatively intact if θ follows an exponential distribution in the

search stage, or if θ and e display a higher degree of substitution in the production technology.

2.3 The First Best

If all information is public, the first-best effort and output in the production stage solve

max
e

y − h(e) = θe− h(e) , (3)

The solution is

eFB = θ (4)

yFB = θ2 (5)

The first-best effort and output are both increasing functions in θ. The manager receives

compensation exactly equals his cost of effort, and the investors’ payoff given the quality of

the target is V FB
2 (θ) = θ2/2.

The search stage under the first-best scenario represents a standard bandit problem.

Let ΘFB denote the set of targets that will be invested in and V FB
1 denote the investors’

expected value at the outset of the research stage. The following lemma summarizes the

first-best investment policy:

Lemma 1 Under the first-best scenario when all information is public, ΘFB = {θ : θ ≥

xFB}, where

xFB =

[
λθκmin

δ(κ− 2)

] 1
κ−2

(6)
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The investors’ maximal expect payoff at the beginning of the search stage is

V FB
1 (xFB) =

κ
(
xFB

)2
2(κ− 2)

−
δ
(
xFB

)κ
λθκmin

(7)

In sum, the optimal strategy of the investors under the first-best scenario is to finance the

search with a minimal (cutoff) quality xFB arrives.8 The manager’s utility equals his outside

option (i.e., zero) because he always exerts effort during the search stage and thus receives

no private benefit from shirking. Because xFB also determines the expected duration of the

search, Lemma 1 suggests that investors on average wait longer in the first-best scenario if

there are more opportunities in the market (higher λ) or if the search cost (δ) is lower. These

results yield useful empirical implications, which are discussed in Section 3.3.

3 Optimal Contract Under Asymmetric Information

This section solves the optimal contract when the manager’s effort in both stages as well

as the quality and productivity of the investment target are his private information. The

contract is derived via backward induction: Section 3.1 solves the second (production) stage,

and Section 3.2 solves the the first (search) stage. Section 3.3 derives some useful comparative

statics and discuss their empirical implications.

3.1 The Production Stage

In this stage the investors mainly face an adverse selection problem. For ease of exposition,

imagine the following reduced problem without the search stage: the manager is endowed

with a target of quality θ that is unobservable to the investors. The manager has reservation

utility Wτ− , which later represents the utility carried over from the search stage but is

exogenous in this reduced problem. The investors must design a screening contract that

solicit the truthful reporting of θ while maximizing their payoff, which is the output minus

the compensation to the manager.

8Equations (6) and (7) illustrate the need to impose κ > 2 in Assumption 1. If κ ≤ 2, then xFB and
V FB1 are not well-defined.
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Formally, the screening contract consists of a menu of required output y(θ̂) and the

associated compensation w(θ̂) if the output is produced, both as functions of the manager’s

reported quality θ̂. The manager’s objective is to maximize his compensation minus his

(production) effort cost from the contract:

R(θ) = max
θ̂

w(θ̂)− h(e) (8)

subject to the constraint

e = y(θ̂)/θ (9)

The contract is incentive compatible if and only if

θ = arg max
θ̂

w(θ̂)− h

(
y(θ̂)

θ

)
(10)

When (10) is satisfied, R(θ) is known as the manager’s information rent : the amount of

utility (in addition to his reservation utility) that he must receive in order to truthfully

reveal his private information.

Meanwhile, because the investors do not observe θ, their objective is to maximize the

expected output minus the manager’s compensation from the contract. The expectation

is taken over the distribution of θ, which in the equilibrium is the result of the investors’

investment policy. We assume and later verify that like in the first-best scenario, the optimal

investment policy is a cutoff strategy in which all targets with reported quality θ̂ ≥ x trigger

the investment. Given that, the investor’s maximal payoff from the screening contract can

be written as V2(x)−Wτ− , where V2(x) solves

V2(x) = max
y(θ̂),w(θ̂)

∫ +∞

x

[y(θ)− w(θ)]

(
κxκ

θκ+1

)
dθ (11)

= max
y(θ̂),w(θ̂)

∫ +∞

x

[y(θ)− h(e(θ))−R(θ)]

(
κxκ

θκ+1

)
dθ (12)
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subject to the IC condition (10).9 In other words, given the investment policy x, V2(x) cap-

tures the investors’ expected payoff from production under the incentive-compatible screening

contract with optimally designed output-compensation combinations.

Deriving R(θ) and V2(x) represents a static mechanism design problem to which the

solution is summarized as follows:

Proposition 1 Let γ ≡ κ
κ+2

< 1. Given any investment threshold x ≥ θmin set in the search

stage, the optimal contract in the production stage has the following properties:

• The manager’s information rent from a target of quality θ ≥ x is given by

R(θ) =
γ2

2
(θ2 − x2) (13)

• The investor’s expected payoff from production is given by

V2(x) =
γκ

2(κ− 2)
x2 (14)

• The optimal output y∗ = γθ2 and the implied equilibrium production effort is e∗ = γθ.

Proposition 1 shows that, at the outset of the production stage, the manager’s informa-

tion rent is a quadratic function of target quality θ and the investor’s expected payoff is

a quadratic function of the investment threshold x. Compared with the first-best level of

effort eFB in (4) and the first-best level of output yFB in (5), adverse selection distorts both

the optimal effort e∗ and output y∗ downward by a constant amount: 1 − γ = 2/(κ + 2).

Intuitively, a higher κ corresponds to a lower variance in θ and therefore, less information

asymmetry.

Proposition 1 also implies the following assumption made earlier is indeed part of the

investors’ optimal strategy:

Corollary 1 Under the optimal contract the optimal investment policy is equal to a threshold

policy: Θt = {θ : θ ≥ xt}.
9The term κxκ

θκ+1 represents the distribution of θ given the investment threshold x, utilizing the convenient
property of the Pareto distribution truncated from below.
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Intuitively, the investors’ expected net return during the production stage is an increasing

function of target quality. Thus, excluding high-quality targets is sub-optimal because it

reduces the investors’ expected payoff while increasing the expected wait time before the

search ends and production begins. Given x, (13) implies that the conditional expectation

of the information rent the manager can receive is

U(x) ≡ E [R(θ)|θ ≥ x] =

∫ +∞

x

γ2

2
(θ − x)2

(
κxκ

θκ+1

)
dθ =

γ2x2

κ− 2
(15)

The closed-form expression for U(x) and V2(x) are the direct results of Assumptions 1 and

2 and greatly simplify the design of the optimal contract in the search stage in the next

section.

3.2 The Search Stage

In this stage investor faces both a moral hazard problem and an adverse selection problem:

to incentivize the search effort and to procure truthful and timely report of the quality of the

arriving targets. While the interaction of the two problems can impose substantial analytical

challenges in a general model, the setting in this paper allows them to be tackled sequentially.

In particular, Proposition 1 shows that the solution to adverse selection requires giving the

manager his information rent R(θ) for each target that receives investment. Consequently,

the design of the optimal contract in the search stage can be simplified to focus on the

incentives for the search effort only.

Similar to standard agency models with a sole moral hazard problem, incentives for search

effort are provided in the form of promised future compensation to the manager. Specifically,

let τ denote the stopping time either due to the transition to the production stage or contract

termination, {at}t∈[0,τ ] ∈ {0, 1} denote the agent’s search effort, and {Ct}t∈[0,τ ] denote the

compensation to the agent, the contract can be characterized using the agent’s continuation

utility Wt, defined as

Wt = E

[∫ τ

t

ρ(1− as)ds+

∫ τ

t

dCs +Wτ

]
. (16)
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The first term inside the integral is the agent’s private benefit if he shirks (i.e., as = 0). The

last term Wτ represents his terminal compensation. The assumptions of risk-neutrality and

zero-discounting imply that the contracting space can be simplified as follows:

Lemma 2 The optimal contract always implements no shirking (i.e., at = 1) during the

search stage. The manager is paid if and only if the contract moves to the production stage

and the manager produces the required output (i.e., dCt = 0 for all t < τ and Wτ = 0 if the

contract is terminated without production).

The first result holds because the search requires flow cost δ but shirking produces ρ < δ flow

utility to the manager while producing no target. Therefore, it is always more efficient to

award the manager with compensation and the incentives to work than to induce shirking.

The second result holds because both the investors and the manager are equally patient with

zero-discounting, so any intermediate compensation can always be delayed at no cost. Given

that the production stage is static without noise or risk, it is without the loss of generality to

accrue all payments until the required output specified and analyzed in the previous section

is produced.

With the contracting space simplified, the following proposition characterizes the dynam-

ics of the manager’s continuation utility and the IC condition in the search stage:

Proposition 2 Given the investment policy xt in the contract, the manager’s continuation

utility Wt evolves according to

dWt = U(xt)

[
dNt − λ

(
θmin

xt

)κ
dt

]
(17)

Manager exerts the search effort if and only if

[
λ

(
θmin

xt

)κ]
U(xt) ≥ ρ (18)

The contract is terminated if Wt = 0.

Proposition 2 entails three results. First, Wt drifts down in the absence of the (reported)

arrival of target. If a target arrives with sufficiently high quality, the manager is rewarded
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with an upward jump in Wt, and the contract moves on to the production stage. The speed

of the downward drift must be commensurate with the size of the upward jump to maintain

Wt as a martingale (eq. 17).

Second, unlike the standard models in which the role of the manager ends when the search

result is revealed, the existence of the production stage implies that given the investment

policy xt at each point in time, U(xt) is the manager’s expected utility reward – the additional

utility he can expect – if a suitable investment target arrives. Here a target is suitable if its

quality clears the threshold of investment, i.e., θt > xt, which happens at the rate of λ
(
θmin

xt

)κ
by the property of the Pareto distribution. Consequently, the manager faces a tradeoff

between working and shirking: shirking yields flow benefits ρdt. However, because no target

arrives while he shirks, his continuation utility drifts down at the rate of U(xt)
[
λ
(
θmin

xt

)κ]
dt.

The manager prefers not to shirk if the latter cost exceeds the former benefit, which is

captured by the IC condition (18).

Finally, given that Wt drifts downward in the absence of a suitable target, the contract

terminates and the manager receives no payment if he does not find such a target after

sufficiently long time has passed. Note that this pertains to a convenient property of the

production technology in Assumption 2: the manager can only produce something out of

an actual target. If not, the manager with a very low Wt may find it optimal to falsely

announces the arrival of a suitable target and produce the required output using his effort

only. The optimal contract in that case generally involves random termination (as in Green

and Taylor, 2016).

Investors have two controls when designing their optimal contract: the investment thresh-

old xt, and the terminal compensation Wτ . Lemma 2 implies that their payoff under the

optimal contract, denoted as V1,t solves

V1,t = E

[∫ τ

t

−δds+ yτ −Wτ

]
, (19)

subject to the IC constraints (10) and (18). yτ = y if production takes place, and zero if

the contract is terminated without production. The analyses so far have pinned down the

optimal, incentive compatible terminal compensation: if a suitable target can be found, the

17



manager receives an extra reward, which is U(x) in expectation. Otherwise, he receives

no payment if the contract terminates without production. Thus, the ensuing analyses

focuses on characterizing the optimal investment policy xt. Proposition 2 implies that the

investor’s payoff under the optimal contract can be summarized as a function of the manager’s

continuation utility, or V1(W ), which solves the following Hamilton-Jacobi-Bellman (HJB)

equation with x being the only control variable:

0 = max
x

−δ − λ
(
θmin

x

)κ
U(x)V ′1(W ) + λ

(
θmin

x

)κ
[V2(x)−W − V1(W )] (20)

subject to the IC constraint (18). The first term represents the search cost. The second

term stems from the drift of dWt, and the third term represents the change in the investor’s

payoff if a suitable target is found and the contract moves into production.10

Rearranging terms, the HJB equation can be equivalently written as

V1(W ) = max
x

V2(x)−W − U(x)V ′1(W )− δ

λ

(
x

θmin

)κ
(21)

which highlights the tradeoff investors face when setting the optimal investment threshold:

a higher x yields a higher expected payoff for the investors, once a suitable target arrives

(V ′2(x) > 0, as seen in 14). The cost, however, is two-fold: first, targets with sufficiently

higher quality arrive at a lower rate and thus requires more search cost in expectation (the

last term in 21). Second, once such targets arrive, the manager must also be given a higher

reward to truthfully reveal their quality (U ′(x) > 0, as seen in 15). This higher reward must

be accompanied by a faster decline of W to maintain W as a martingale (eq. 17), which

increases the likelihood of contract termination.

If the IC constraint (18) is slack, the optimal choice of x can be obtained by the first-order

10Conditional on moving into production, the investors’ final payoff is the output y minus two terms: the
wage w(θ) paid for production, and the manager’s residual utility W carried over from the search stage.
The former can be further divided into the compensation for the manager’s production effort h(e) and his
information rent R(θ), all embedded in the definition of V2(x) in equation (12). Put differently, the investors’
final payoff can be written as y − R − h(e) −W , where the first three terms are captured (in expectation)
by V2.
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condition:

V ′2(x)− U ′(x)V ′1(W )−
(
d

dx

)[
δ

λ

(
x

θmin

)κ]
= 0 (22)

The first term is positive (higher expected payoff from production) and the third term is

negative (higher search cost). The middle term captures the marginal value of manager’s

continuation utility for the investors and its sign depends on W . When W is large, V ′1(W ) <

0, because the promised compensation to the manager lowers the investors’ payoff if a suitable

target arrives and the search ends. When W is small, V ′1(W ) > 0, because the primary

concern for the investors is the likelihood of triggering probation and the subsequent contract

termination. Substituting in V2(x) from (14) and U(x) from (15) into (22) yields the optimal

investment policy when the IC constraint is slack:

x(W ) =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

(23)

Clearly, x′(W ) > 0 if V ′′(W ) < 0. That is, if V1(W ) is a concave function, which is verified

later. Thus, the optimal choice of the investment threshold is an increasing function of the

manager’s continuation utility. Put differently, because Wt drifts down in time, the optimal

investment strategy is to adopt a progressively lower threshold for the quality of the arriving

targets worth investing in.11

However, the left-hand-side of the IC condition (18) is decreasing in x, because the

arrival rate of high-quality targets decreases faster than the manager’s expected rent from

those targets. Therefore, there may exists W such that the IC condition is binding when

W ≥ W . In that region, x(W ) is given by the IC condition, or

x(W ) = x̄ ≡
[
λγ2θκmin

ρ(κ− 2)

] 1
κ−2

, if W ≥ W (24)

11In a recent study, Luo and Sun (2021) develops a model that also features progressively lenient selection
of targets albeit in a setting designed for SPAC only. The mechanisms differ in that the compensation
structure and the contracting horizon in Luo and Sun (2021) are both given to match the standard practices
of SPAC. In contrast, the optimal contract including its termination is endogenous in this paper, which
allows a broader application to other markets such as M&A and HFA, etc.
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In other words, the optimal investment threshold x is a constant for sufficiently high level

of W . Setting x = x̄ in (23) implies that W solves

V ′1(W ) =
κ

2

(
1

γ
− δ

ρ

)
(25)

Meanwhile, θmin represents the lowest investment threshold that the investors can set. Sub-

stituting x = θmin into (23) implies that x(W ) = θmin for all W ≤ W , where W solves

V ′1(W ) =

(
1− δ(κ− 2)

γλθ2min

)
κ

2γ
(26)

That is, when W is sufficiently low, the optimal policy is to invest in the next target that

arrives, regardless of its quality. This maximizes the probability that the contract moves to

the production stage before it is terminated.12

Finally, we impose the following parameter assumption to maximize the economic values

of the W and W derived above:

Assumption 3 The parameters λ, θmin, κ, δ, ρ satisfy the following conditions:

λθ2min >
ρ(κ− 2)

γ2
(27)

ρ > γδ (28)

The first condition ensures that W < W , so they both exist under the optimal contract.

Intuitively, this condition says that the search is fairly valuable to the investors in terms

of the arrival rate and quality of the targets. Therefore, the investors find it worthwhile to

wait for a target with sufficient quality as long as W is not too low and termination is not

imminent. If this condition is not satisfied, investors may find it optimal to minimize the

12The result that all targets triggers production when W is sufficiently low undoubtedly relies partially
on the assumptions that all targets, regardless of their quality, generate positive return to the investors and
require effort and time to be discovered. The former can be justified if the investors have a common sense
of the basic properties of investment opportunities worth taken (e.g., firms with strong growth history and
healthy balance sheet), and the latter can be understood as there is no “free lunch” in the financial market.
If, instead, the θmin target represents a “default” option that is always immediately available, then when
W is sufficiently low, investor will intuitively abandon the search by resorting to the default option in lieu
of contract termination. If θmin < 0, or if there is a substantial fixed cost for production, then the optimal
investment policy may exclude some low-quality targets even when W is low and termination is imminent.
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waiting time by investing in the first target regardless of its quality.

The second condition ensures that V ′1(W ) > 0. Intuitively, V ′1(W ) < 0 if W is sufficiently

high, because a larger promised utility to the manager diminishes the investors’ payoff when

a target is found. However, because W drifts downward in the absence of a suitable target,

investors can set the manager’s initial continuation utility at the outset of the search stage to

be W ∗ = arg maxW V1(W ), or V ′1(W ∗) = 0. Once the search begins, W drifts down into the

region in which V ′1(W ) > 0 until either a suitable target is found or the contract is terminated.

Condition (28) therefore ensures that W is on the equilibrium path taken into account this

optimal initial continuation utility for the manager. Note that since γ = κ/(κ + 2) < 1,

condition (28) can be jointly satisfied with ρ < δ, which ensures that providing the incentives

for search is better than letting the manager shirk.

Altogether, the optimal contract during the search stage can be summarized in the fol-

lowing proposition:

Proposition 3 Under the optimal contract, the investors’ value function V1(W ) solves the

HJB equation (20) subject to the IC condition (18) and the boundary condition V1(0) = 0.

Under Assumption 3, there exist {W,W} which solve (25) and (26), respectively, such that

the optimal investment policy x(W ) is given by

x(W ) =


θmin, if W < W[(

1−
(
2γ
κ

)
V ′1(W )

) (λγθκmin

δ(κ−2)

)] 1
κ−2

, if W ≤ W < W[
λγ2θκmin

ρ(κ−2)

] 1
κ−2

, if W ≥ W

(29)

where x′(W ) > 0 for all W ∈ (W,W ).

Figure 1 plots the value function V1(W ) and the three regions of the optimal investment

policy x(W ). It also plots the first-best investment policy xFB and illustrates the following

result:

Corollary 3 x(W ) < xFB for all W .

That is, the agency frictions in the model result in a lower bar for investment compared to

that under the first-best, representing overinvestment by the investors. This occurs because
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investors lower the bar for investment to reduce the likelihood of contract termination. When

W is sufficiently low, all targets trigger production regardless of their quality. When W is

larger, the concern for termination is somewhat eased but is never eliminated. Hence, the

optimal investment threshold in the presence of the agency frictions in always lower than

that without the frictions.

Figure 1: Investors’ Value Function and The Optimal Investment Policy
The left panel of this figure plots the investors’ value function V1(W ) under the optimal contract. The right

panel plots the optimal investment threshold x(W ) according to Proposition 3 and the first-best investment

threshold xFB . Parameter values are λ = 2.5, κ = 4.25, δ = 1.1, ρ = 0.8.

3.3 Comparative Statics and Empirical Implications

The simple form of the optimal investment policies xFB and x(W ) summarized in Lemma 1

and Proposition 3 allows the derivation of useful comparative statics. According to Corollary

3, agency frictions in the model lead to overinvestment, the degree of which can be measured

in at least two ways: the ratio between x(W ) and xFB (i.e., θmin/x
FB), which represents

the maximal degree of overinvestment; and the ratio between x(W ) and xFB (i.e., x̄/xFB),

which represents the minimal degree of overinvestment.13 A change to a generic parameter

is said to exacerbate overinvestment if it lowers either of the two ratios. Based on these

definitions, Lemma 1 and Proposition 3 imply the following:

13Note that condition (28) ensures that x(W ∗) = x̄. Thus, the minimal degree of overinvestment is also
equivalent to the initial level of overinvestment – the level of overinvestment at the outset of the search stage.
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Proposition 4 A higher λ or ρ and a lower δ all exacerbate overinvestment under the

optimal contract.

Intuitively, as discussed in Section 2.3, a higher target arrival rate λ and a lower search cost

δ increases xFB, which lower the ratio θmin/x
FB and thus exacerbates the maximal degree

of overinvestment. δ also does not affect x̄, which is pinned down by the IC condition.

Therefore, a lower δ also lowers x̄/xFB and exacerbates the minimal degree of overinvestment.

Meanwhile, the tightness of the IC condition depends on the manager’s private benefit from

shirking ρ. A higher ρ tightens the IC condition and lower x̄ but does not affect xFB, thus

exacerbating the minimal degree of overinvestment.

These comparative statics generate empirically relevant predictions that are testable in

the markets of M&A, HFA, or SPAC, in which there is extensive empirical evidence for

overinvestment. Existing studies (e.g., Shleifer and Vishny, 1997; Franzoni, 2009; Malenko,

2019; etc.) often attribute overinvestment to the manager’s empire-building preferences.

This paper offers an alternative explanation based on optimal contracting under agency fric-

tions. In particular, Proposition 4 implies that overinvestment is positively correlated with

λ and ρ and negatively correlated with δ. Empirically, λ can be proxied by the frequency

of M&A, HFA, or SPAC activities. ρ can be measured by the incentive power of the man-

agerial contract such as the fraction of inside equity, following the standard interpretation

in the optimal contracting literature (e.g., DeMarzo and Sannikov, 2006). δ can be proxied

by the standard measures of information frictions, such as stock liquidity, analyst coverage,

or institutional holdings. Together, the results in Proposition 4 can be translated into the

following testable hypothesis:

Hypothesis 1 Overinvestment in M&A, HFA, or SPAC is positively associated with the

frequency of deals in these markets, the average incentive powers of the bidder, activist hedge

fund managers, or SPAC sponsors, and the stock liquidity, analyst coverage, and institutional

holdings of their targets.

Meanwhile, the model also predicts that along with the equilibrium path, investors opti-

mally adopt a progressively lower investment threshold between x(W ) and x(W ). Because

a higher investment threshold is associated with higher expected payoff for the investments
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(V ′2(x) > 0), the dynamics of x can be potentially proxied by the variations in the returns

to M&A deals, activism targets, or SPAC combos. In particular, the gap between x(W )

and x(W ) can be interpreted as the return dispersion in those markets, which is arguably

straightforward to measure. Thus, Propositions 3 and 4 suggest that such dispersion is

wider if λ is higher or if ρ is lower. Therefore, Proposition 4 implies the following testable

hypothesis:

Hypothesis 2 The return dispersion of M&A deals, activism targets, or SPAC combos is

positively associated with the frequency of those activities and negatively associated with the

average incentive power of the managerial contract of the bidder, activist hedge fund man-

agers, or SPAC sponsors.

It is worth emphasizing that these hypotheses are formulated ceteris paribus. Empirical test-

ing of these hypotheses thus requires identification to control for other confounding factors.

Although rigorous empirical analysis is outside the scope of this paper, several identification

strategies, such as using the decimalization on major stock exchanges as an exogenous shock

to stock liquidity (e.g., Edmans, Fang, and Zur, 2013), already exist in the literature and

may provide useful settings to explore the predictive power of the model in this paper.

4 Discussions

The core problem analyzed in this paper is the interaction of two agency frictions: moral

hazard and adverse selection. To further illustrate the effect of such interaction, it is useful

to compare the results of this model to models with one of the frictions only.

First, imagine there is a single type of target available for investment. The gross return

of the target to the investors is V2 (now a constant), which is realized immediately when the

target is found and revealed to the investors. The the required search cost (δ) and the arrival

intensity of the target if the manager works (λ) are the same as before. This represents a

problem of moral hazard (regarding the unobservable search effort) only, and the following

proposition summarizes the optimal contract under this alternative setting:

24



Proposition 5 Suppose there is a single target worth V2 arriving via a Poisson process with

intensity λ when the manager exerts the search effort. Then, under the optimal contract,

dWt =
ρ

λ
(dNt − λdt) (30)

The investors’ value function V1(W ) solves the HJB equation

0 = −δ − ρV ′1(W ) + λ[V2 −W − V1(W )] (31)

plus the boundary conditions V1(0) = 0.

The optimal contract described in Proposition 5 has a number of different properties than

that described in Proposition 3. Most crucially, without the distribution of target quality,

investors do not have the choice of the investment threshold x, and the search ends as soon

as the target arrives. The resulting IC constraint for search effort is always binding along

the equilibrium path. This is because the rate at which W drifts down is subject to the IC

constraint only, and a higher rate of the drift carries two costs: first, it expedites termination

in the absence of the target; secondly, it must be compensated with a larger upward jump

in W when the target does arrive, which lowers the investors’ payoff.

Meanwhile, a benchmark setting with adverse selection only can be found in Malenko

(2019), who studies the optimal design of a dynamic capital allocation process in which the

division manager privately observes the arrival and quality of investment projects. There is

no moral hazard because project arrivals are stochastic and exogenous without the manager’s

effort. The optimal contract focuses on soliciting truthful report of the manager’s private

information, which is transient: each project is a take-it-or-leave-it opportunity with instant

return if invested by the headquarters, and there is an auditing technology that (for the most

part) perfectly reveals the quality of the project at a cost. The agency friction arises from the

manager’s empire-building preference: he is inclined to exaggerate the quality of the project

in order to induce a larger investment. As a result, his continuation utility drifts upward

in the absence of any reported project and jumps downward when an investment project is

taken without auditing to cancel out his private benefit from the investment. There is no
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termination under the optimal contract, because the headquarters can always prevent W

from dropping too low by shrinking the size of the investment. Finally, the optimal second-

best contract always induces underinvestment. That is, investment is always lower than the

first-best level that maximizes the headquarters and the manager’s joint surplus, .

In comparison, in this study investors face a moral hazard problem of unobservable search

effort in addition to unobservable target arrival and quality. This means that the manager’s

continuation utility must drift downward in the absence of a suitable target and jump upward

if a target triggers production.14 In particular, because the manager can divert the search

resources to generate private benefits, the search stage must end at some point, otherwise

the manager will never report the arrival of any target and enjoy unlimited utility. Moreover,

with his private information regarding the target quality, the manager can continue to extract

rents from the investors during the production stage, which imposes an additional constraint

on the size of the reward for the report of a target and likewise, the punishment for the

lack of such report. Finally, different from Malenko (2019), the optimal contract always

induces overinvestment along the same equilibrium path, which yields different empirical

implications.

5 Dynamic Adverse Selection

So far, the model assumes that production is a one-time decision. Once the investment

decision is made and the manager exerts the production effort e, a single output y is realized,

and the contracting relationship ends. This implies a static adverse selection problem and

simplifies the derivation of the optimal screening contract. However, the assumption of a

one-time production is not indispensable. This section demonstrates the robustness of the

model when the production stage is also dynamic and the manager’s private information

evolves stochastically.

Let τ represent the end of the search stage. Consider the following extension: If invest-

14In that regard this result resembles Che, Iossa, and Rey (2021) where an uninformed principal uses an-
other follow-on contract to induce the truthful report from an informed agent about the cost of implementing
an innovation idea. However, both the generation and the implementation of the idea in Che, Iossa, and
Rey (2021) are static problems. In contrast, the search stage in this paper involves a dynamic problem with
endogenous termination.
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ment is triggered, the production stage lasts an exogenous period of T > 0 (i.e., from τ to

τ +T ), during which the manager continuously produces outputs based on the target chosen

by the investors in the previous stage. The production technology is given by

yt = etξt (32)

where yt is the output; et is the manager’s (production) effort, which subject to a quadratic

personal cost h(et) = e2t/2; ξt is the productivity of the target, which now evolves over time.

For tractability, we assume the following law of motion for ξt:

Assumption 4 ξt follows to a standard geometric Brownian motion (GBM)

dξt = ξt (µdt+ σdZt) (33)

with publicly-known parameters µ and σ. θ determines the initial value of ξt, i.e., θ = ξτ .

The main advantage of this assumption is that, when ξt follows a GBM, ξt = ξτνt, where

νt = exp

[(
µ− 1

2
σ2

)
t+ σZt

]
, (ντ = 1) (34)

is an exogenous stochastic process with known distribution for any given t. Therefore,

dξt/dθ = ξt/ξτ = νt. In other words, the marginal value of target quality θ on its subsequent

productivity at any time during the production stage depends on the path of exogenous

shocks only, a property that greatly simplifies the analysis below.

If all information is public, the first-best effort and output in the production stage solve

max
et

yt − h(et) = etξt − h(et) (35)

The solution is

eFBt = ξt (36)

yFBt = ξ2t (37)
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The investors’ expected payoff given the quality of the target, denoted by V FB
2 (θ), is given

by

V FB
2 (θ) = E

∫ τ+T

τ

(
yFBt − 1

2

(
eFBt

)2)
dt =

φ

2
θ2 (38)

where

φ = E

∫ τ+T

τ

ν2t dt =
e(2µ+σ

2)T − 1

2µ+ σ2
(39)

is a constant. φ thus measures the marginal value of target quality summarizing the joint

effect of µ, σ, and T , and will be treated as a known parameter in the subsequent analyses.

The first-best investment policy is still a cutoff quality

xFB =

[
λφθκmin

δ(κ− 2)

] 1
κ−2

(40)

Investors never abandon the search, and production begins only when a target that clears

that bar arrives. Their maximal expect payoff at the beginning of the search stage is

V FB
1 (xFB) =

κ
(
xFB

)2
2(κ− 2)

−
δ
(
xFB

)κ
λθκmin

(41)

Similar to the baseline model, an adverse selection problem arises if effort and productiv-

ity are both the manager’s private information (while the output yt is still observable to the

investors). However, this adverse selection is now dynamic in nature, because the investors

must solicit the truthful reporting of ξt for the entire duration of the production stage. The

resulting screening contract now involves a series of the output target {yt}t∈[τ,τ+T ] and the

corresponding wage {wt}t∈[τ,τ+T ] if the required output is produced.

Let θ̂ and {ξ̂t}t∈[τ,τ+T ] represent the manager’s reported target quality and time-t pro-

ductivity, respectively. Conditional on any utility Wτ− carried over from the search stage,

the manager’s objective is to maximize his expected wage minus his (production) effort cost
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from the contract – his information rent – which is given by

R(θ̂) = max
θ̂

E

[∫ τ+T

τ

(wt − h(et))dt

]
(42)

subject to the constraint (32). That is, at any time t, if the manager reports ξ̂t, he must exert

effort et = yt/ξ̂t to produce the required level of output yt, similar to that in the baseline

model. The investors’ objective is to maximize the expected output minus the manager’s

wage from the contract. Following a similar argument as that used in the baseline model,

we assume and verify later that Θ is a open set bounded from below, i.e.,

Θ = {θ : θ ≥ x} (43)

for some cutoff threshold x. Then, the investors’ objective is to maximize their payoff at the

outset of the production stage, which is V2(x)−Wτ− , where

V2(x) = max
yt,wt

∫ +∞

x

E

[∫ τ+T

τ

(yt − wt)dt
]
dF (θ) (44)

subject to the IC constraint θ̂ = θ and ξ̂t = ξt for all t ∈ [τ, τ + T ].

Comparing to the existing literature, a theoretical innovation (and challenge) of this set-

ting is that the manager’s private information ξt is persistent, which implies the adverse

selection problem the investors face is dynamic. Studies exploring persistent private infor-

mation in the context of dynamic moral hazard including Williams (2011, 2015), He, Wei,

Yu, and Gao (2017), Marinovic and Varas (2019), and Feng (2022). In comparison, studies

of persistent private information in the context of adverse selection are rare, as it is known

to be a challenging problem.

Fortunately, the specific structures of this model, in particular Assumption 4, ensures

that the dynamic adverse selection problem in this model can be solved using the revenue-

maximizing direct mechanism technique developed in Bergemann and Strack (2015), which

builds on the general Myersonian mechanism of Eső and Szentes (2007) and Pavan, Segal, and

Toikka (2014) but extended to continuous time. In particular, the technique of Bergemann

and Strack (2015) is sufficient to uniquely pin down R(θ) and V2(x) under any incentive
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compatible contract (and thus the optimal contract as well), which is all that is needed to

feed back into the first, search stage. The resulting optimal contract under this extension is

summarized as follows:

Proposition 6 Under Assumption 4, for any given investment policy x, the optimal contract

in the production stage has the following properties:

• The manager’s information rent from a target of quality θ > x at the beginning of the

production stage is given by

R(θ) =
φγ2

2
(θ2 − x2) (45)

• The investor’s expected payoff at the beginning of the production stage is

V2(x) =
φγκ

2(κ− 2)
x2 (46)

• During the production stage, the investors’ optimal output target {y∗t }t∈[0,T ] is given by

y∗t = γξ2t and the implied equilibrium production effort is e∗t = γξt

The optimal contract during the search stage can be summarized by the investors’ value

function V1(W ), which solves an HJB equation analogous to (20) subject to the boundary

condition V2(0) = 0. In particular, if Assumption 3 holds, and φ ≥ 1, then there exist

{W,W} such that the optimal investment policy x(W ) is given by

x(W ) =


θmin, if W < W[(

1−
(
2γ
κ

)
V ′1(W )

) (φλγθκmin

δ(κ−2)

)] 1
κ−2

, if W ≤ W < W[
φλγ2θκmin

ρ(κ−2)

] 1
κ−2

, if W ≥ W

(47)

x(W ) < xFB, and x′(W ) > 0 for all W ∈ (W,W ).

Proposition 6 shows that, despite the dynamic nature of the adverse selection problem,

the main results from the baseline model remain qualitatively intact. In particular, in the

production stage, the manager’s information rent is still a quadratic function of target quality
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θ and the investor’s expected payoff is still a quadratic function of the investment threshold

x. In the search stage, W drifts downward in the absence of a suitable target, and the optimal

investment threshold x is progressively lower, leading to overinvestment by the investors.

The empirical implications are likewise similar to those in the baseline model except for

one additional prediction pertaining to the parameter φ, which can be interpreted as the

industry or regional average return and frequency of M&A, activism, or SPAC activities. It

is straightforward to see that a higher φ increases both xFB and x(W ) while x(W ) = θmin is

unchanged, leading to the following testable hypothesis:

Hypothesis 3 The overinvestment and return dispersion in M&A, HFA, or SPAC are pos-

itively associated with the average returns in those markets.

Overall, results in this section demonstrate the robustness of the baseline model and its

practical implications. Nevertheless, the solution technique of this dynamic version of the

adverse selection problem is far more involved than the one used in the static version and

is potentially applicable to a broad class of questions involving persistent and time-varying

private information. The technique utilizes a critical result in Bergemann and Strack (2015)

that, despite the large set of possible deviations of the manager, it is without the loss of

generality to establish the IC condition for a particular type of deviation from the manager:

if he misreports θ, the initial productivity, to be θ̂ 6= θ, his follow-up strategy is to continue

misreporting productivity as if the true quality was θ̂ and he had reported that truthfully.

More formally, at any time, the manager’s reported productivity satisfies the following so-

called consistent deviation:

ξ̂t = θ̂vt = θ̂ exp

[(
µ− 1

2
σ2

)
t+ σZt

]
(48)

where Zt represents the true productivity shocks the mis-reporting manager experiences.

This implies that although the manager’s private information regarding ξt is persistent, it

is without the loss of generality to label each manager by the quality of his target θ only.

Consequently, R(θ) and V2(x) under any incentive compatible contract can be uniquely

pinned down without solving the usual dynamic programming problem involving differential

equations. The original problem considered in Bergemann and Strack (2015) is a repeated
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sale problem in which the preference of the buyers (agents) evolve exogenously over time

and remain their private information. Despite the topical different, this critical result of

Bergemann and Strack (2015) applies in the setting in this paper because private information

(productivity ξt) also evolves exogenously.

The details of the solution technique is left in the Appendix in the interest of space. To

our knowledge, such technique has yet seen much utilization in the finance literature. The

only exceptions are Gao and Wong (2017), which adopts this method on a capital budgeting

problem, and Feng, Wang, and Wu (2022), which adopts the method on internal governance.

Compared to these two studies of adverse selection problems only, this paper considers both

dynamic adverse selection and dynamic moral hazard, and thus provides a unified framework

to study these two important agency frictions in the same model.

6 Conclusions

Valuable information hardly comes without a cost. The efficient collection and utilization of

valuable information is both an indispensable ingredient for successful business operations

in practice and an important subject for academic research. This paper studies a model in

which investors delegate the search of investment opportunities to a manger with information

superiority in several dimensions. Unlike the existing framework, the model of this paper

highlights two novel yet realistic features in the search process. First, the precise value of

the information (i.e., its quality) is private knowledge of the manager, who must receive

proper incentives to maximize the likelihood of discovering the investment targets and to

disclose their value to the investors truthfully. Second, the investors-manager relationship

does not end when the relevant information is disclosed. The manager is also delegated with

generating returns out of the investment target he uncovers, a process in which the manager’s

information superiority about the target remains. These features lead to the interaction of

an adverse selection and a moral hazard problem. The resulting optimal investment policies

exhibit overinvestment relative to the first-best, which sheds light on understanding and

predicting the returns to M&A deals, HFA targets, and/or SPAC business combinations.

This paper can be extended in several directions. For simplicity, the model assumes zero
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discounting, so that the results are not driven by the time value of money. Extending the

model to allow (potentially different) discounting for both the manager and investors can be

a fruitful exercise. The model also does not allow the manager to revert to the search stage

once production begins. In practice, the search and production processes do not always move

forward linearly. Letting the manager conduct both search and production repeatedly or

simultaneously may yield interesting insights on firms’ optimal internal organization and/or

resource allocation. We leave these topics for future studies.
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Appendix

Proof of Lemma 1

First, V FB′
2 (θ) = θ > 0. Therefore, if x ∈ ΘFB for some x, then θ ∈ ΘFB for all θ > x.

i.e., ΘFB = {θ : θ ≥ xFB}. Thus, the conditional expectation of the investors’ payoff from
setting an arbitrary cutoff investment quality x is

VFB2 (x) ≡ E
[
V FB
2 (θ)|θ ≥ x

]
=

∫ +∞

x

θ2

2

(
κxκ

θκ+1

)
dθ =

κx2

2(κ− 2)
(49)

(49) utilizes the fact that a Pareto distribution truncated from below at some x > θmin is
still a Pareto distribution with the same shape parameter κ and scale parameter x. (49) also
reveals why κ > 2 is needed for the first-best to exist. Let V FB

1 (x) be the investors’ value
function at the outset of the search stage associated with cutoff policy x, then

V FB
1 (x) = max

x

∫ +∞

0

[
−δt+ F (x)V FB

1 (x) + (1− F (x))VFB2 (x)
]
λe−λtdt (50)

The three terms inside the square brackets represent the cost of search, the payoff from
a target with quality lower than x, and the expected payoff from the arrival of a target
with quality x or above, respectively. Using the fact that F (x) = 1 − (θmin/x)κ for Pareto
distribution, V FB

1 (x) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

0 = max
x
−δ + λ

(
θmin

x

)κ [
VFB2 (x)− V FB

1 (x)
]

(51)

Substituting (49) into the HJB equation and re-arranging the terms yields

V FB
1 (x) = max

x

κx2

2(κ− 2)
− δxκ

λθkmin

(52)

The first order condition with respect to x yields xFB as in (6). Substituting xFB into (52)
yields V FB

1 (xFB) as in (7). �

Proof of Proposition 1

Let y(θ, e) = θe denote the production function. The principal offers a screening contract
{w(θ̂), y(θ̂)}. The agent reports his type θ̂, produces the required level of output, and receives
the associated compensation. With a slight abuse of notation, define

R(θ, θ̂) = w(θ̂)− h(e) (53)

as the information rent of the agent with type-θ reporting θ̂, subject to the constraint that
y(θ, e) = y(θ̂). i.e., he must produce the level of output designed for the type-θ̂ agent. Let
e(y, θ) represent the necessary effort required by a type-θ agent to produce output y. Then,
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one can define R(θ) = R(θ, θ) as the agent’s equilibrium rent under truthful reporting, and

θ̂∗(θ) = arg max
θ̂

R(θ, θ̂) (54)

as the optimal reported type chosen by a type-θ agent. This optimality implies the following
envelope condition

Rθ̂(θ, θ̂
∗(θ)) = 0 (55)

Therefore, in the equilibrium

R′(θ) =
∂R(θ, θ̂)

∂θ
= Rθ +Rθ̂(θ, θ̂

∗(θ))
dθ̂∗(θ)

dθ
= Rθ = −h′(e)eθ(y, θ) (56)

based on the envelope condition. Note that y depends on the agent’s report and thus is not
a function of θ (i.e., eθ takes y as given.)

The investors’ payoff in the production stage is therefore V2(x)−Wt− , where

V2(x) = max
y,w

∫ ∞
x

[y(θ)− w(θ)]dF (θ) = max
y,w

∫ ∞
x

[y(θ)− h(e(θ, y))−R(θ)]dF (θ) (57)

where

F (θ) = 1−
(x
θ

)κ
(58)

f(θ) =
κxκ

θκ+1
(59)

Applying integration by parts to the last term inside the integral of V2(x) yields∫ ∞
x

R(θ)dF (θ) =

∫ ∞
x

R′(θ)(1− F (θ))dθ +R(x) (60)

Substituting this into V2(x) above yields

V2(x) = max
y

∫ ∞
x

[y − h(e)−R′(θ)g(θ)]f(θ)dθ (61)

where

g(θ) ≡ 1− F (θ)

f(θ)

represents the inverse hazard function of θ. Replacing R′(θ) with (56), point-wise maximiza-
tion with respect to y yields the following optimality condition:

1− h′(e)ey(e, θ) +
dh′(e)eθ(y, θ)

dy
g(θ) = 0 (62)

which yields the optimal target y for each type θ. Because y = θe and h(e) = e2/2,
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e(y, θ) = y/θ, eθ = −y/θ2, and

dh′(e)eθ(y, θ)

dy
= −dy

2/θ3

dy
= −2y

θ3

The fact that θ follows a Pareto distribution implies that

g(θ) =
1− F (θ)

f(θ)
=
θ

κ
(63)

which is a function of κ only. Substituting these results into (62) yields

1− y

θ2
− 2y

κθ2
= 0 (64)

which implies y = γθ2, where

γ =
κ

κ+ 2
(65)

Substituting y = γθ2 into (53). The IC constraint θ̂ = θ and the fact that R(x) = 0 under
the optimal screening contract yields

R(θ) =
γ2

2
(θ2 − x2) (66)

Combine this with y = γθ2 implies that

V2(x) =
γκ

2(κ− 2)
x2 (67)

�

Proof of Corollary 1

Suppose there is an incentive-compatible optimal contract C under which an open setH exists
with the following property: there exists θ′ such that θ′ ∈ Θ but θ′ < θ̃ for all θ̃ ∈ H. Let
θ̄ ≡ max{θ : θ ∈ Θ, θ < θ̃}. Clearly, y(θ̄)−w(θ̄) > 0 and w(θ̄) ≥ h(e(θ̄)) if C is optimal. Now
consider a contract C ′ that is otherwise identical to C except for the following: for any report
θ̂ ∈ H, the required output y(θ̂) = y(θ̄) and the associated compensation is w(θ̂) = w(θ̄).
This contract is incentive-compatible because for all θ̃ ∈ H, e(θ̃) = y(θ̄)/θ̃ < e(θ̄) and is
independent of the report θ̂. Thus, w(θ̃) = w(θ̄) > h(e(θ̃)) for all θ̃. However, y(θ̄)−w(θ̄) > 0
implies that C ′ generates the same payoff as C for all θ /∈ H but positive (higher) payoff for
all θ̃ ∈ H, contradicting the assumption that C is optimal. Therefore, it must be that such
H does not exist under the optimal contract.
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Proof of Proposition 2

Let Ft denote the filtration generated by the manager’s report θt (where θt = 0 if no invest-
ment opportunity arrives). Wt is an Ft-martingale and thus, by the martingale representation
theorem for jump processes, there exists a Ft-predictable, integrable process βt such that

dWt = atβt(dNt − λ(1− F (xt))dt) (68)

Incentive compatibility of the search effort requires that λ(1 − F (xt))βt ≥ ρ. Incentive
compatibility of truthful reporting of θ requires that Wτ − Wτ− = R(θτ ) if the contract
moves to the next stage, which implies βt = E[R(θt)|θt ≥ xt] = U(xt) by the property of a
martingale.15 Thus, given the investment policy xt,

dWt = U(xt)(dNt − λ(1− F (xt))dt) (69)

where U(xt)λ(1−F (xt)) ≥ ρ. Substituting in 1−F (xt) =
(
θmin

xt

)κ
yields equations (17) and

(18). �

Proof of Proposition 3

Applying Ito’s lemma to dWt implies the investors’ value function in the search stage solves
the following HJB equation:

0 = max
x

−δ − λ
(
θmin

x

)κ
U(x)V ′1(W ) + λ

(
θmin

x

)κ
[V2(x)−W − V1(W )] (70)

subject to the IC constraint (18). Substituting U(x) from (15) and V2(x) from (14) into the
HJB equation and rearrange terms yields:

V1(W ) = max
x

(
γκ

2(κ− 2)

)
x2 −

(
γ2x2

κ− 2

)
V ′1(W )−W − δ

λ
xκθ−κmin (71)

Suppose the IC constraint is slack, then the first order condition implies

γ

κ− 2
[κ− 2γV ′1(W )]x =

δ

λ
κxκ−1θ−κmin (72)

The solution is

x(W ) =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

(73)

15Note that this also follows the definition of R(θ) in Section 3.1 which is the information rent the manager
must be given to reveal θ truthfully in addition to any utility Wτ− carried over from the search stage.
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If (18) is binding, then

λ

(
θmin

x

)κ
U(x) =

λθκmin

xκ

(
γ2x2

κ− 2

)
= ρ (74)

yields the solution

x(W ) = x̄ ≡
[
λγ2θκmin

ρ(κ− 2)

] 1
κ−2

(75)

Substituting (75) into (73) implies that there exists W such that

x(W ) =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

= x̄ (76)

That is, W solves

V ′1(W ) =
κ

2

(
1

γ
− δ

ρ

)
(77)

Meanwhile, substituting x = θmin into (73) implies that there exists W such that

θmin =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λγθκmin

δ(κ− 2)

)] 1
κ−2

(78)

That is, W solves

V ′1(W ) =

(
1− δ(κ− 2)

γλθ2min

)
κ

2γ
(79)

The existence of both {W,W} requires that W > W , which is equivalent to

κ

2

(
1

γ
− δ

ρ

)
<

(
1− δ(κ− 2)

γλθ2min

)
κ

2γ
(80)

which simplifies to (27). Finally, V ′1(W ) > 0 requires that

κ

2

(
1

γ
− δ

ρ

)
> 0 (81)

which implies (28). �

Proof of Corollary 3

We can prove this result regardless of whether Assumption 3 holds, i.e., whether the IC
constraint is binding for some W . Note that under the optimal contract, V ′(W ) > −1 for
all W . This is because investors can always make a cash transfer to the manager, which
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lowers W and V (W ) by the exact same amount. Therefore, the marginal value of building
W inside the firm can never be lower than the marginal value of cash transfer, which is −1.
Substituting V ′(W ) = −1 into the first-order condition (23) implies that

lim
W→+∞

x(W ) =

[
γ

(
1 +

2γ

κ

)(
λθκmin

δ(κ− 2)

)] 1
κ−2

(82)

if the IC constraint (18) is never binding. Because

2γ

κ
=

2κ

κ(κ+ 2)
< 1 (83)

when κ > 2, this limit is always smaller than xFB. Thus, x(W ) < xFB for all W .

Proof of Proposition 4

Equations (6) and (24) imply the following comparative statics regarding xFB and x(W ).

∂xFB

∂λ
> 0,

∂x(W )

∂λ
> 0 (84)

∂xFB

∂ρ
= 0,

∂x(W )

∂ρ
< 0 (85)

∂xFB

∂δ
< 0,

∂x(W )

∂δ
= 0 (86)

The first and third lines of these results imply that

∂

∂λ

(
x(W )

xFB

)
< 0 (87)

∂

∂δ

(
x(W )

xFB

)
> 0 (88)

given that x(W ) = θmin is a constant, while the second and the third lines imply that

∂

∂ρ

(
x(W )

xFB

)
< 0 (89)

∂

∂δ

(
x(W )

xFB

)
> 0 (90)

�
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Proof of Proposition 5

When only a single target is available, by the martingale representation theorem, there exists
βt such that

dWt = βt(dNt − λdt) (91)

Incentive compatibility requires that λβt ≥ ρ, or βt ≥ ρ/λ. Applying Ito’s lemma on (91)
implies that the investors’ value function solves the HJB equation

0 = max
β≥ρ/λ

−δ − λβV ′1(W ) + λ(V2 −W − V1(W )) (92)

subject to boundary conditions V1(0) = 0. Differentiating (92) with respect to β yields

−λ(V ′1(W ) + 1) ≤ 0 (93)

Therefore it is optimal to always set βt = ρ/λ, i.e., the IC constraint is always binding. �

Proof of Proposition 6

A. The Production Stage

This section solves the optimal screening contract in the production stage. The proof begins
with deriving the manager’s information rent for any incentive compatible contract. Consider
any report θ̂ made by a manager possessing an arbitrary θ-quality target. Based on this

report, the manager is assigned the contract C(θ̂), which imposes output target y
C(θ̂)
t and

with the recommended effort êt ≡ y
C(θ̂)
t /ξ̂t for all t, where ξ̂t is the manager’s reported

productivity. The constraint (48) implies that

etξt = êtξ̂t (94)

The payoff for the manager is

R(θ; θ̂) = Eθ

[∫ τ+T

τ

(
w(θ̂, ξ̂t)− h(et)

)
dt

]
(95)

Differentiating with respect to θ yields

∂

∂θ
R(θ; θ̂) = E

[∫ τ+T

τ

(
− ∂

∂θ
h(et)

)
dt

]
(96)

= E

[∫ τ+T

τ

(
etêtξ̂t
θξt

)
dt

]
(97)
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where the second line utilizes the constraint (94) and the property of GMB ξt = θνt. Evalu-
ating (97) at the equilibrium (êt = et, ξ̂t = ξt) and substituting et with yt/ξt implies

R′(θ) = E

[∫ τ+T

τ

1

θ

(
yt
ξt

)2

dt

]
(98)

which is the dynamic envelop condition analogous to that derived in the proof of Proposition
1 above. Integrating (98) from x up to θ̃ yields the information rent for any given θ̃-quality
target, which is given by

R(θ̃) =

∫ θ̃

x

E

[∫ τ+T

τ

1

θ

(
yt
ξt

)2

dt

]
dθ +R(x) (99)

The notation θ̃ is used because θ also represents the variable of integration.
Next, deriving the investors’ expected payoff given the distribution of θ. With a slight

abuse of notation, let
∫∞
x

(·)dF (θ;x) denote the expectation of θ taken under the support Θ
taking into account how the distribution of F (θ) shifts with x, then the investor’s payoff at
the outset of the production stage under any incentive compatible contract is V2(x)−Wτ− ,
where

V2(x) = max
yt,wt

∫ ∞
x

E

[∫ τ+T

τ

(yt − wt)dt
]
dF (θ;x) (100)

The definition of information rent R (Eq. 42) implies that

E

[∫ τ+T

τ

wtdt

]
= R(θ) + E

[∫ τ+T

τ

h(et)dt

]
(101)

Substituting this into the definition of V2(x) (Eq. 100) yields

V2(x) = max
yt

∫ ∞
x

E

[∫ τ+T

τ

(
yt −

1

2

(
yt
ξt

)2
)
dt

]
dF (θ;x)−

∫ ∞
x

R(θ)dF (θ;x) (102)

Applying integration by parts and the fundamental theorem of calculus to the last term
yields ∫ ∞

x

R(θ)dF (θ;x) =

∫ ∞
x

R′(θ)

(
1− F (θ;x)

f(θ;x)

)
dF (θ;x) +R(x) (103)

=

∫ ∞
x

R′(θ)

(
θ

κ

)
dF (θ;x) +R(x) (104)

where the second line comes from the property of the Pareto distribution. Clearly, R(x) = 0
under the optimal contract. Replacing R′(θ) with (98) and substituting the above term back
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to (102) yields

V2(x) = max
yt

∫ +∞

x

E

[∫ τ+T

τ

(
yt −

(
1

2
+

1

κ

)(
yt
ξt

)2
)
dt

]
dF (θ;x) (105)

Point-wise maximization of (105) with respect to yt yields the optimal output target y∗t and
effort e∗t :

y∗t = γξ2t (106)

e∗t = γξt (107)

where γ = κ/(κ + 2). Substituting (107) and (106) back into (99) yields the following
information rent under the optimal contract:

R(θ̃) =

∫ θ̃

x

E

[∫ τ+T

τ

1

θ
(γξ)2 dt

]
dθ (108)

R(θ̃) =

∫ θ̃

x

γ2θE

[∫ τ+T

τ

ν2t dt

]
dθ (109)

=

∫ θ̃

x

φγ2θdθ =
φγ2

2

(
θ̃2 − x2

)
(110)

for a project with quality θ̃. Again, the notation θ̃ is used because θ also represents the
generic variable being integrated. Substituting (106) back into (105) yields

V2(x) =

∫ +∞

x

E

[∫ τ+T

τ

γξ2t
2
dt

]
dF (θ;x) (111)

=

∫ +∞

x

φγκxκ

2
θ1−κdθ =

φγκ

2(κ− 2)
x2 (112)

Note that, similar to the baseline model, because the investors and the manager share
the same discount rate (both 0), and there is no endogenous turnover during the production
stage, all wage payments {wt} can be postponed until the end of the production period. Any
Wτ− carried over to the production stage can also be paid at the end of the production stage
together with all the accrued wage payments.

B. The Search Stage

Let as ∈ {0, 1} denote the manager’s shirking and working actions, respectively. Let τ and
Wτ denote the stopping time of the search stage (either due to progress to the next stage
or contract termination) and the associated promised utility to the manager. Because the
investors and the manager share the same discount rate (both 0) and ρ < δ, Lemma 2 still
applies. That is, at = 1 for all t < τ , and there is no intermediate payment during the search

42



stage. The manager’s continuation utility in this stage thus can be written as:

Wt = E

[∫ τ

t

ρ(1− as)ds+Wτ

]
. (113)

By the martingale representation theorem for jump processes, given any investment strategy
x of the investors, there exists a Ft-predictable, integrable process βt such that

dWt = atβt(dNt − λ(1− F (xt))dt) (114)

Incentive compatibility of the search effort requires that λ(1 − F (xt))βt ≥ ρ. Incentive
compatibility of truthful reporting of θ requires that Kτ − Wτ = R(θτ ) if the contract
moves to the next stage, which implies βt = E[R(θt)|θt ≥ xt] = U(xt) by the property of a
martingale, where

U(x) ≡ E [R(θ)|θ ≥ x] =

∫ +∞

x

φγ2

2
(θ2 − x2)

(
κxκ

θκ+1

)
dθ =

φγ2x2

κ− 2
(115)

Therefore, under an incentive compatible contract with investment policy xt,

dWt = U(xt)(dNt − λ(1− F (xt))dt) (116)

where λ(1−F (xt)) ≥ ρ. Then, Ito’s lemma implies the investors’ value function in the search
stage solves the HJB equation:

0 = max
x

−δ − λ
(
θmin

x

)κ
U(x)V ′1(W ) + λ

(
θmin

x

)κ
[V2(x)−W − V1(W )] (117)

subject to the IC constraint (18). Substituting U(x) from (115) and V2(x) from (46) into
the HJB equation and rearrange terms yields:

V1(W ) = max
x

(
φγκ

2(κ− 2)

)
x2 −

(
φγ2

κ− 2

)
x2V ′1(W )−W − δ

λ
xκθ−κmin (118)

Suppose the IC constraint is slack, then the first order condition implies

φγ

κ− 2
[κ− 2γV ′1(W )]x =

δ

λ
κxκ−1θ−κmin (119)

The solution is

x(W ) =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λφγθκmin

δ(κ− 2)

)] 1
κ−2

(120)

If (18) is binding, then

λ

(
θmin

x

)κ
U(x) =

λθκmin

xκ

(
φγ2x2

κ− 2

)
= ρ (121)
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yields the solution

x = x̄ ≡
[
λφγ2θκmin

ρ(κ− 2)

] 1
κ−2

(122)

Substituting (75) into (73) implies that there exists W such that

x(W ) =

[(
1−

(
2γ

κ

)
V ′1((W )

)(
λφγθκmin

δ(κ− 2)

)] 1
κ−2

= x̄ (123)

That is, W solves

V ′1(W ) =
κ

2

(
1

γ
− δ

ρ

)
(124)

Meanwhile, substituting x = θmin into (73) implies that there exists W such that

θmin = x(W ) =

[(
1−

(
2γ

κ

)
V ′1(W )

)(
λφγθκmin

δ(κ− 2)

)] 1
κ−2

(125)

That is, W solves

V ′1(W ) =

(
1− δ(κ− 2)

λφγθ2min

)
κ

2γ
(126)

The existence of both {W,W} requires that W > W , which is equivalent to

κ

2

(
1

γ
− δ

ρ

)
<

(
1− δ(κ− 2)

λφγθ2min

)
κ

2γ
(127)

or

λφθ2min >
ρ(κ− 2)

γ2

while (28) ensures V ′1(W ) > 0. �
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