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Abstract

We study whether regulators should reveal stress test results which contain imperfect

information about banks’ financial health. Although disclosure restores market confi-

dence in banks, it misclassifies some healthy banks as risky. This encourages banks to

choose portfolios that are deemed safe by regulators, leading to model monoculture and

making the financial system less diversified. Optimal policy involves a commitment to

a bang-bang policy that is non-monotonic in the severity of adverse selection problems:

the regulator should fully reveal stress test results when adverse selection is very severe

or very mild, but should never disclose the results otherwise.
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1 Introduction

Stress tests have become a key tool for supervisors since the 2007 – 2009 Global Financial

Crisis. By providing credible information about the financial health of banks, stress tests

can restore confidence in the banking system in a crisis; a testing regime can also guard

against the accumulation of risks that can lead to a financial crisis. However, stress tests

cannot perfectly predict how banks will react to all possible adverse shocks. Tests use only

a few stress scenarios, so will inevitably leave out some sources of risk; they may not even

correctly predict how bank capital evolves in the stress scenarios that do materialize.1 This

raises the concern that routine stress testing and full disclosure of test results may lead to

model monoculture (Bernanke, 2013; Schuermann, 2013).2 That is, banks may ignore their

own, possibly superior risk management systems, and instead choose portfolios to game the

regulators’ models, leaving the whole banking system vulnerable to risks which are not well

captured by these models – such as the ongoing effects of the COVID-19 pandemic.

The discussion above highlights a tradeoff in the design of supervisory stress test poli-

cies: disclosing (imperfect) stress test results can reduce uncertainty in financial markets, but

may increase systemic risk by encouraging model monoculture. In this paper, we ask how reg-

ulators should optimally trade off these costs and benefits when deciding whether to release

stress test results.

To address this question, we develop a stylized theoretical model to capture the tradeoff

associated with supervisory stress tests. In our model, “good” banks choose ex ante whether

to invest in either type γ or type δ financial project. Each project yields a positive return in

a different state of the economy: project γ gives a positive return in state G but zero return

in state D, and project δ gives a positive return in state D but yields zero return in the

1Frame, Gerardi and Willen (2015) present a cautionary example. Before the outbreak of the subprime
mortgage crisis, the Office of Federal Housing Enterprise Oversight (OFHEO) conducted a stress test regarding
the adequacy of the risk-based capital of government-sponsored enterprises (GSEs) such as Fannie Mae and
Freddie Mac. However, the OFHEO’s stress test underestimated both the downside risk to house prices – the
adverse house price scenario used in the stress test (an 11 percent peak-to-trough decline) was less severe than
the actual decline, ex post (18 percent) – and the GSEs’ exposure to this risk. As a result, realized defaults
were 4-5 times greater than those predicted by OFHEO’s model, and Fannie Mae and Freddie Mac were both
deemed insolvent in September 2008, even though OFHEO’s stress test reported that the GSEs were well
capitalized as late as the first quarter of 2008.

2Gillian Tett, a columnist in the Financial Times, also expressed a similar concern: “what (stress test)
models cannot measure is the chance that banks all act as a herd — creating financial panics” (“Stress tests
for banks are a predictable act of public theatre” The Financial Times, March 5, 2015).
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other state.3 After choosing which type of the project to undertake, each bank must borrow

funds from competitive outside investors to continue the project. In addition, some measure

of “bad” banks, which can only invest in type β projects yielding zero return in any state, also

attempt to raise funds. The population of these bad banks is a random variable and realized

when the capital market is open. The outside investors cannot observe what kind of financial

project each bank chooses, which creates an adverse selection problem: if the fraction of bad

banks is high enough, banks’ cost of funding increases and they may be unable to continue

their projects.4

To resolve the adverse selection problem, the regulator can conduct a stress test and

disclose its result to outside investors. However, the regulator’s information is imperfect –

it cannot assess all the risks banks are exposed to. Specifically, the regulator can conduct a

stress test based on state G, and determine whether each bank will have a positive return in

this state, but she has no ability to assess whether banks will have a positive return in state

D. As a result, the regulator can verify whether or not each bank invests in project type γ,

but cannot distinguish type δ banks from type β banks. We assume that before the good

(non-β) banks choose their projects and the fraction of type β banks is realized, the regulator

can commit to a disclosure policy contingent on the fraction of type β banks, which specifies

the probability α ∈ [0, 1] with which a randomly selected type γ bank is revealed to pass the

test. Test results are revealed to outside investors before all banks issue bonds to fund their

projects but after good banks choose their types and the fraction of type β banks is realized.

Although the regulator’s information is imperfect, releasing this information can alle-

viate adverse selection problem in the capital market ex post, i.e., after all good banks choose

their types and the fraction of bad banks is realized. Specifically, releasing information al-

ways weakly increases ex-post social welfare, for two reasons. First, disclosure fully eliminates

adverse selection for type γ banks, allowing them to be fully funded. Second, there is less

socially wasteful lending to type β banks: outside investors believe that failing banks are likely

to be those of type β, and therefore curtail lending to them. In addition, these ex-post welfare

benefits of disclosure are larger, the more severe the adverse selection problem in the capital

market.

Despite these benefits, a policy of full disclosure of stress test results (i.e., α = 1 with

probability 1) makes the financial system more exposed to risks which are not captured by the

3As we discuss below, a bank’s project can be alternatively interpreted as its choice of portfolio or risk
model.

4Throughout, we call a bank running a type γ, δ, or β financial project a type γ, δ, or β bank, respectively.

3



regulator’s model (i.e., the realization of state D). Banks know that the only way to pass the

stress test and thus easily obtain external financing is to choose project γ. However, if banks

choose project δ, they will definitely fail the test, increasing their cost of borrowing due to

the severe adverse selection. Knowing this, an inefficiently large fraction of banks will choose

project γ rather than δ, making the banking system relatively under-diversified compared to

the case without disclosure.5 As a result, the whole economy becomes more vulnerable to state

D in which project γ gives zero return. We interpret this phenomenon as model monoculture:

too many banks choose portfolios according to the regulator’s model which focuses on the

risk realized in state G, while relatively few banks adjust their portfolios to prepare for an

alternative risk realized in state D.

Given this tradeoff, we next ask what disclosure policy maximizes social welfare ex

ante. The optimal policy features corner solutions for α, i.e., α ∈ {0, 1} for each fraction of β

banks. In particular, the optimal policy exhibits non-monotonicity with respect to the severity

of adverse selection: the regulator should commit to reveal all the type γ banks (α = 1) when

the fraction of type β banks is either very high or very low, but should never disclose any type

γ bank (α = 0) otherwise.

To see why, suppose there are sufficiently many type β banks. When adverse selection

problems are severe, disclosure increases welfare by reducing adverse selection, and this benefit

is higher if the regulator discloses more information, or if adverse selection becomes more

severe. On the other hand, the welfare cost of disclosure also arises because disclosure adversely

incentivizes good banks to choose type γ. If the regulator were to disclose only a small fraction

α of γ banks – confirming to outside investors that these are good banks – these good banks

will borrow at very low interest rates, due to their scarcity in the capital market. Since being

identified as a good bank is very profitable, even if unlikely, many good banks will choose

project γ, worsening model monoculture. Thus, any disclosure policy with a small α > 0 is

strictly dominated by zero disclosure (α = 0). However, if the regulator were to disclose a

high fraction α of γ banks, these “confirmed-to-be-good” banks are no longer scarce, so their

borrowing terms are only slightly favorable, relative to the banks whose type is not identified

by the regulator. It follows that a marginal increase in α, starting from a high level, only

slightly increases the incentive to choose project γ. In other words, the marginal welfare cost

of disclosure decreases with α, which implies that the net marginal benefit of disclosure is

5This explains our choice of notation for the states G and D and project types γ and δ. While γ projects are
known by the regulator to be good because they perform well under its stress scenario (state G), an additional
δ project increases diversification in the financial system – since an inefficiently large fraction of banks choose
project γ in equilibrium – but is disfavored by the regulator’s model.
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increasing in the degree of disclosure α increases as the regulator discloses more stress test

results. Consequently, the optimal policy is bang-bang: the regulator either discloses all γ

banks, or none of them. In particular, since the net benefit from disclosure is increasing in the

severity of adverse selection b, full disclosure is optimal when adverse selection is sufficiently

severe, and zero disclosure is optimal for moderate values of b.

Next, suppose there is a small number of type β banks. Under mild adverse selection,

the good banks, regardless of their type, are fully funded even in the absence of the stress test.

Thus, disclosing stress test results only influences the good banks’ ex-ante incentive to choose

project γ, and thus model monoculture; it does not affect the degree to which banks’ projects

are funded. Since type δ banks are scarce relative to type γ banks, outside investors are willing

to pay a high price for bonds issued by type δ banks – if these banks can be identified as such

– as a hedge against the risk associated with state D. With a small number of type β banks,

banks whose types are not identified by the regulator are likely to be of a “non β” type. If the

regulator increases α, i.e. they reveal a large fraction of type γ banks, investors will deem it

more likely that a remaining “unclassified” bank is type δ. Consequently, these “unclassified”

banks will enjoy a scarcity premium — a low borrowing cost relative to the banks identified

as type γ — making project δ more profitable, relative to project γ. Thus from an ex ante

perspective, fully disclosing the regulator’s information when the fraction of β banks is low

reduces the incentive to choose project γ, reducing the model monoculture problem.

The remainder of this paper proceeds as follows. Section 2 presents our model. Sec-

tion 3 characterizes the partial equilibrium at date 1. In Section 4, we characterize the full

equilibrium at date 0 and find an ex-ante optimal disclosure policy. In Section 5 we extend

our baseline model to discuss how our results depend on investors’ risk aversion and on the

extent to which stress tests are predictably biased. Section 6 reviews related work. Finally,

Section 7 concludes the paper. All proofs are relegated to Appendix.

2 Model

There are three dates: t = 0, 1, 2. At date 0, there is a continuum of “good” banks with

measure 1 that undertake long-term financial projects that create stochastic returns at date

2. Moreover, a continuum of outside investors with measure 1 fund those projects at date 1

by purchasing bonds issued by the banks. Finally, a regulator, who seeks to maximize social

welfare, decides whether to reveal information about banks at date 1, before outside investors
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purchase bonds. At date t = 2, the returns of the financial projects are realized and accrue

to the banks and the outside investors.

At date 0, nature randomly draws a state ω ∈ {G,D}, where Pr(ω = G) = p ∈ (0, 1);

the two states represent different crisis scenarios. No one knows the true state until t = 2.

After the underlying state of the economy is drawn, each “good” bank chooses one of two

financial projects θ ∈ {γ, δ}, where project γ returns one unit of cash flow at t = 2 if ω = G

and nothing if ω = D, and project δ returns one unit of cash flow at t = 2 only in state

ω = D. As will become clear, state G represents a crisis scenario which is well-understood by

the regulators and captured in their stress test models, while state D represents a scenario

which is not. We prefer to think of the “project” as the bank’s portfolio: project γ represents a

portfolio robust to the risks captured by the regulators’ models, while δ represents a portfolio

vulnerable to these risks. One can also interpret the banks’ choice of project as a choice of risk

model. That is, choosing project γ can be interpreted as choosing the same risk model as the

regulator (and choosing a portfolio based on that model), while choosing δ can be interpreted

as choosing a different risk model.

After the good banks choose their projects, a continuum of “bad” banks with measure

b ≥ 0 enters. Their project – henceforth called type β – produces zero output in every state,

but yields a private benefit to each bad bank. Thus these banks always strictly prefer to

continue their projects, if they can do so at zero cost.6 The measure of these bad banks

b ≥ 0 is a random variable with a continuous distribution function F (·) over the support

[0,∞). This captures the idea that adverse selection problems may be more or less severe at

different times and allows us to ask how disclosure policy should optimally adjust to high-

and low-stress episodes.7 We call each bank’s financial project θ ∈ {γ, δ, β} selected at t = 0

its “type.”

At t = 1, banks – including the bad ones – must raise x ∈ (0, 1) dollars to continue

their financial projects. They raise these funds by issuing bonds to a continuum of outside

investors with measure one. We assume

x < min{p, 1− p}, (1)

6When we study optimal policy, we will assume the private benefit accruing to bad banks is not added to
the regulator’s social welfare function. The reader is welcome to assume that the bad banks’ private benefit
converges to zero.

7Flannery, Kwan and Nimalendran (2013) document empirically that bank opacity, or the accuracy with
which outsiders can assess a bank’s value, varies substantially over time and that it increased substantially
during the 2007-2009 Global Financial Crisis.
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which guarantees that investing in any good project θ ∈ {γ, δ} has a positive net present

value. The bidding game is described in detail in Appendix B. In brief, the bonds issued

by the banks are sold as follows. Each investor i ∈ [0, 1] places a buy order (qi, Ri) such

that the investor offers to purchase qi units of bonds for repayment terms Ri per unit of

capital. Whenever possible, trade takes place at a market-clearing interest rate R such that

the supply of bonds issued by banks equals the amount demanded by investors requesting a

rate of return R or lower. At this market-clearing interest rate, each bank is matched with

a representative sample of investors, who lend to the banks at the rates promised. However,

if the total supply of bonds exceeds the demand at the highest interest rate Ri offered by

investors, banks are stochastically rationed such that only some fraction of banks are matched

with investors. Finally, at date 2, each bond-holder receives Ri per bond issued by a solvent

bank, i.e. a bank whose payoffs from its project exceed its liabilities. If the liabilities of a

bank exceed the return from its project, we assume for simplicity a 100% bankruptcy cost,

i.e., the bank’s equity holders receive nothing. Appendix B shows that all investors place the

same buy order, i.e., (qi, Ri) = (q, R) for all i ∈ [0, 1] in any equilibrium.

Every investor has preferences represented by

U(c1, c2) = c1 + E[u(c2)] = c1 + pu(cG) + (1− p)u(cD),

where c1 is consumption at date 1, and cG, cD denote consumption at date 2, in states G and

D respectively. Our baseline model assumes u(x) = log x; thus investors’ utility becomes8

U(c1, c2) = c1 + p log cG + (1− p) log cD. (2)

Note that since the investors are risk averse, they would ideally like to hold bonds issued by

both γ and δ banks to smooth consumption across states G and D at date 2. Each investor is

endowed with a sufficiently large amount of cash to fund all the banks’ projects at date 1. For

analytical simplicity, we further assume that each investor owns an equal amount of shares

issued by every bank. Under this assumption, all residual returns of the banks after repaying

the bonds are equally distributed to the investors; thus, social welfare is simply calculated as

the aggregated expected utility of the investors. All the good banks, whether type γ or δ,

behave in the best interest of their equity holders (i.e., the investors). Finally, each bank’s

type is private information, which creates an adverse selection problem.

8In Section 5.1, we show that our results are not qualitatively changed if investors have CRRA utility with
risk aversion greater than log.
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A regulator maximizes the social welfare by deciding whether to reveal its superior

but imperfect information about the banks’ private types before the capital market opens at

date 1. Specifically, the regulator can conduct a stress test to determine whether each bank’s

project pays off in state G (a crisis scenario which is well-understood by the regulator and

captured in its models), but cannot determine whether the bank’s project pays off in state D

(which is not well-understood). All banks are subject to the regulator’s stress test. Thus, after

conducting the stress test, the regulator can distinguish type γ banks from the others, but

cannot distinguish between type δ and β banks. Formally, we assume that for each individual

bank indexed by k ∈ [0, 1 + b], the regulator has access to a signal τk ∈ {0, 1} about bank k’s

type θk ∈ {γ, δ, β} with the following conditional probabilities:

Pr(τk = 1|θk = γ) = 1, P r(τk = 1|θk = δ) = 0, P r(τk = 1|θk = β) = 0. (3)

We assume that the regulator can choose the probability α with which she discloses type

γ banks. Formally, the regulator chooses a disclosure policy α ∈ [0, 1] such that the regulator

reveals its information on each type-γ bank with probability α. The regulator receives this

information before the banks enter the capital market. Hence, if the regulator discloses its

information on bank k’s type θk, the investors update their belief about θk and place their

buy orders accordingly.

To study how different policy regimes affect diversification in the financial system,

we assume that the regulator can commit to a disclosure policy α : [0,∞) → [0, 1] before

banks choose their types at t = 0, where α(b) is the probability that a type γ bank is

disclosed given that the measure of bad banks is b. A policy in which the regulator always

discloses her information (α(b) = 1 for all b > 0) is analogous to routinized stress tests,

such as the DFAST and CCAR for large-sized U.S. financial firms. Conversely, the stress tests

conducted contingently in the event of financial crises can be thought of as a policy of revealing

information only when adverse selection at financial market are very severe (i.e., b is high).9

Throughout, we abbreviate θk, τk and σk to θ, τ and σ, respectively, since all banks with the

same type behave symmetrically in equilibrium, as we will show later. We occasionally refer

to the banks whose types are not revealed by the regulator as the ones “failing” the stress

9Our assumption that the regulator observes the fraction of bad banks b, but not which banks are bad, is
intended to capture the idea that policymakers have some information about the severity of adverse selection
and the funding pressures facing banks, so that it is feasible to follow a policy of only disclosing stress test
results when adverse selection is especially severe. Indeed, the Board of Governors chose to disclose information
on bank-level losses under the 2009 SCAP precisely in order to reduce uncertainty during the financial crisis:
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test, and refer to type γ banks whose type is revealed by the regulator as “passing” the stress

test.

Our stylized model abstracts from a number of features of real-world stress test for

ease of exposition. First, in reality, banks are directly penalized for failing stress tests: for

example, under CCAR, the Fed forbids failing banks from making dividend payments or

stock repurchases. We abstract from these direct consequences, to focus on the indirect costs

that arise because investors are less willing to lend to failing banks. Incorporating direct

costs would only strengthen our main result that disclosure can reduce diversification in the

financial system.

Another simplifying assumption is that some banks fail in every state of the world, and

the regulator’s information concerns whether a bank’s project will pay off unconditionally. In

reality, banks generally only fail in a crisis, and thus stress tests concern the probability of

banks’ capital shortfall conditional on a crisis. To model this explicitly, we could introduce a

shock s ∈ {0, 1} realized at date 1, where s = 0 represents “normal times” and s = 1 represents

a rare, adverse event. If s = 0, all projects pay off 1 for sure and banks do not require funding

to continue their projects. If s = 1, the model proceeds as described earlier, and projects may

not pay off at date 2 depending on the value of ω ∈ {G,D}. Clearly, maximizing the ex-ante

bank profits (respectively, social welfare) will be equivalent to maximizing profits (respectively,

social welfare) in the adverse state. It is thus without loss of generality to assume that the

adverse scenario always realizes.10 This simplifies the model and restricts our attention to

outcomes in a crisis scenario, which are relevant to stress tests.

Lastly, we assume that the total measure of the good banks is fixed but the measure

of the bad banks is random. One may argue that a more plausible source of variations in the

severity of adverse selection problems would be fluctuations in the proportion of bad banks,

keeping the total measure fixed. We do not follow this approach in our model, because, as

we describe in Appendix C, such an alternative framework turns out to be less tractable

“The unprecedented nature of the SCAP, together with the extraordinary economic and financial
conditions that precipitated it, has led supervisors to take the unusual step of publicly reporting
the findings of this supervisory exercise. The decision to depart from the standard practice of
keeping examination information confidential stemmed from the belief that greater clarity around
the SCAP process and findings will make the exercise more effective at reducing uncertainty and
restoring confidence in our financial institutions.” (Board of Governors of the Federal Reserve
System, 2009, p.1)

10Another possibility is that the regulator can disclose information in “normal times,” before the adverse
scenario is realized. In this case, it may no longer literally be true that maximizing ex ante profits or welfare
is equivalent to maximizing profits or welfare in the crisis state.
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while delivering qualitatively similar results only in a restricted setting of the investors’ risk

appetite.

3 Ex-post Equilibrium at Date 1

In this section, we describe the partial equilibrium at date 1 after the good banks choose their

types and the fraction of type β banks b ≥ 0 is realized.

3.1 Partial Equilibrium Absent Stress Tests

As a benchmark, we first characterize the partial equilibrium at date 1 when the regulator

does not release any information. Let g ∈ [0, 1] and d := 1−g be the fraction of the banks with

type γ and type δ, respectively. After choosing their types at date 0, the banks with types

γ and δ, whose total measure is 1, enter the capital market at date 1. If a bank with type γ

(respectively, δ) receives the funds x required to continue its project, then its project produces

a unit return in state G (respectively, D) at date 2. Hence, the return on the individual bank’s

project per dollar is either R := 1/x > 1 or 0.

We analyze how the investors strategically place their buy orders at the capital market.

Since investors do not know whether a bank is type γ, δ, or β, an investor who buys bonds will

end up meeting type γ banks with probability πg = g
1+b

and type δ banks with probability

πd = d
1+b

, respectively. An investor who succeeds in executing the buy order (qi, Ri) receives

expected utility

p log(yG + qiπgRix) + (1− p) log(yD + qiπdRix)− qix,

where yG :=
∫ 1

0
(qiπg(1−Rix))di and yD :=

∫ 1

0
(qiπd(1−Rix))di are state-dependent dividends

equally distributed to each investor in states ω ∈ {G,D}, respectively. At t = 1, the investor

pays qix for purchasing the bonds from qi measure of banks. If state G is realized with

probability p in t = 2, then each investor i receives the debt repayments Rix from type γ

banks out of which sell the bonds to this investor. Hence, the total amount of the debt

repayments is qiπgRix. In addition, the same investor, as an equity holder, also receives the

residual returns yG as dividends from every bank with type γ. Similarly, if state D is realized

with probability 1− p, each investor i receives the debt repayments with the total amount of

qiπdRix and the dividends yD from the banks with type δ. As mentioned above, Appendix B

10



shows that all investors place the same buy order in the trading mechanism described in

Section 2: in any equilibrium, (qi, Ri) = (q, R) for all i ∈ [0, 1].

Given a symmetric buy order (q, R), it is convenient to work with ϕ = q
1+b

∈ [0, 1], the

proportion of the banks that obtain funding, rather than q, the total measure of the banks

who obtain funding. Then, each investor, as a debt-holder, receives the following expected

payoff:

p log(yG + ϕ(1 + b)πgRx) + (1− p) log(yD + ϕ(1 + b)πdRx)− ϕ(1 + b)x.

Since πg =
g

1+b
and πd =

1−g
1+b

, this can be rewritten as

p log(yG + ϕgRx) + (1− p) log(yD + ϕ(1− g)Rx)− ϕ(1 + b)x. (4)

Given the unit repayment R, each individual investor (weakly) prefers buying ϕ(1 + b) bonds

if and only if the marginal expected utility of investing in the banks is non-negative:

p
gRx

yG + ϕgRx
+ (1− p)

(1− g)Rx

yD + ϕ(1− g)Rx
− (1 + b)x ≥ 0. (5)

Since yG = ϕg(1−Rx) and yD = ϕ(1− g)(1−Rx), the equation (5) can be simplified as

R

ϕ
− (1 + b) ≥ 0. (6)

The first term in (6) captures the marginal benefit of funding an extra bank at given (ϕ,R)

per unit of capital; this is decreasing in ϕ because investors exhibit diminishing marginal

utility from the date-2 consumption. The second term captures the marginal cost of funding

an additional bank per unit of capital, which is increasing in b: the larger b is, the more likely

a lender is to find herself lending to an unproductive type β bank, and the less willing she is

to buy a bond. These properties allow us to characterize partial equilibrium at date 1.

Theorem 1. If the regulator does not reveal her information at t = 1, there exists a unique

partial equilibrium in which every investor places the same buy order (ϕ∗, R∗), where

(ϕ∗, R∗) =


(1, 1 + b) if b ≤ 1

x
− 1,

0(
1

x(1+b)
, R
)

if b > 1
x
− 1.

(7)
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Proof. See Appendix A.1. Q.E.D.

Theorem 1 reveals that adverse selection in the capital market can lead to credit

rationing. If the adverse selection problem is mild (i.e., b ≤ 1
x
− 1), investors are unlikely

to buy bonds issued by the bad banks, which makes the marginal cost of the bond purchase

relatively low. Thus, the investors fund every bank (ϕ∗ = 1) and are willing to pay a relatively

high price for the bank bonds (R∗ ≤ 1/x). However, as the fraction of the bad banks increases,

the banks must offer investors a higher return to compensate for the increased risk of funding

bad banks. If the adverse selection becomes severe (i.e., b > 1
x
− 1), the marginal cost of the

bond purchase becomes too high for the investors to fund every bank even at a hefty premium

(R∗ = 1/x). In this case, only a fraction ϕ∗ < 1 of the banks receive external funding. In

particular, credit rationing worsens as the proportion of the bad banks increases.

3.2 The Ex-Post Effects of the Regulator’s Information

In this section, we study how the regulator can alleviate adverse selection by providing its

information to the market. Recall that, under the regulator’s disclosure policy α ∈ [0, 1], banks

labeled σ = 1 are known to be type γ for sure, whereas banks labeled σ = 0 may be type

γ with probability (1−α)g
1−αg+b

, type δ with probability 1−g
1−αg+b

, or type β with probability b
1−αg+b

.

The regulator’s information effectively segments the capital market into two submarkets: one

for the fraction α of type γ banks (called “σ = 1 market”) and the other for the remaining

γ banks and all δ and β banks (called “σ = 0 market”). Now, each investor i ∈ [0, 1] places

buy orders {(ϕσ,i, Rσ,i)}σ∈{0,1} to the banks at the σ = 0 and σ = 1 markets, respectively.

The results in Appendix B imply, as above, that every investor i ∈ [0, 1] places the same buy

orders in equilibrium: {(ϕσ,i, Rσ,i)}σ∈{0,1} = {(ϕσ, Rσ)}σ∈{0,1} for all investors i ∈ [0, 1].

We next study how investors’ buy orders are determined in equilibrium. Each investor

receives the expected payoff

p log

(
yG + q1R1x+

(1− α)g

1− αg + b
q0R0x

)
+ (1− p) log

(
yD +

1− g

1− αg + b
q0R0x

)
− q0x− q1x.

Again, rather than working with q0 and q1, it is convenient to work with the fraction of σ = 0

and σ = 1 banks, respectively, that obtain funding. Defining ϕ0 = q0
1−αg+b

, ϕ1 = q1
αg

for

ϕ0, ϕ1 ∈ [0, 1], we can rewrite investors’ expected utility as

p log (yG + ϕ1αgR1x+ ϕ0(1− α)gR0x) + (1− p) log (yD + ϕ0(1− g)R0x)− ϕ0(1− αg + b)x− ϕ1αgx,
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where yG := ϕ1g(1 − R1x) + ϕ0(1 − α)g(1 − R0x) and yD := (1 − g)ϕ0(1 − R0x) are the

residual income paid as dividends to investors in states G and D, respectively. At the σ = 0

market, investors, as bond-holders, are willing to place the buy order (q0, R0) if and only if

the marginal expected utility of purchasing bonds purchase is non-negative:

p
(1− α)gR0

αg + (1− α)gϕ0

+ (1− p)
(1− g)R0

(1− g)ϕ0

− (1− αg + b) ≥ 0 (8)

Similarly, at the σ = 1 market, investors are willing to place the buy order (q1, R1) if and only

if

p
αgR1x

αgϕ1 + (1− α)gϕ0

− αgx ≥ 0 (9)

From the first-order conditions (8) and (9), we can characterize the date-1 partial equilibrium

after the regulator discloses the information as follows.

Theorem 2. Suppose that the regulator discloses γ banks with probability α. Then, there exists

a unique partial equilibrium in which the investors place the buy orders (ϕ∗
0, R

∗
0) to the banks

labelled σ = 0 and (ϕ∗
1, R

∗
1) to the banks labelled σ = 1. Specifically, (ϕ∗

1, R
∗
1) is determined by

(R∗
1, ϕ

∗
1) =

(
(α + (1− α)ϕ∗

0)g

p
, 1

)
. (10)

Furthermore, (ϕ∗
0, R

∗
0) is determined by

(R∗
0, ϕ

∗
0) =

(
(1− α)g + (1− g) + b

(1− α)p+ (1− p)
, 1

)
(11)

if (1−α)g+(1−g)+b
(1−α)p+(1−p)

≤ 1
x
, but R∗

0 =
1
x
and ϕ∗

0 is implicitly determined by the following indifference

condition

p
1

α
1−α

+ ϕ∗
0

+ (1− p)
1

ϕ∗
0

= ((1− α)g + (1− g) + b)x. (12)

if (1−α)g+(1−g)+b
(1−α)p+(1−p)

> 1
x
.

Proof. See Appendix A.1. Q.E.D.

Since the regulator’s information is imperfect, releasing it only benefits type γ banks,

whereas it worsens the adverse selection problem faced by the other banks with type δ. Specifi-
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cally, the adverse selection problem is fully eliminated for the fraction α of type γ banks whose

type is disclosed: all these banks successfully sell their bonds to the investors (i.e., ϕ∗
1 = 1 for

all b ≥ 0) without paying any lemons premium (i.e., R∗
1 <

1
x
). However, the banks consisting

of the remaining type γ banks (with the fraction 1−α) as well as all type δ banks, are lumped

together with the bad banks. Thus, these “failing” banks suffer a more severe adverse selec-

tion problem compared to the case with no disclosure. Indeed, these undisclosed banks face

even tougher financing conditions as the regulator discloses more information to the market

(i.e., α increases). This can be observed by applying the Implicit Function Theorem to (12),

which yields

dϕ∗
0

dα
= −

p
(

1
α+(1−α)ϕ∗

0

)2
− gx

p 1

( α
1−α

+ϕ∗
0)

2 + (1− p) 1

(ϕ∗
0)

2

< 0. (13)

Since ϕ∗ = limα→0 ϕ
∗
0, (13) also implies ϕ∗ ≥ ϕ∗

0 for every α > 0. Furthermore, for a fixed

disclosure policy α, these “undisclosed” banks suffer a more severe adverse selection problem

as the population of type β banks increases:

dϕ∗
0

db
= − x

p 1

( α
1−α

+ϕ∗
0)

2 + (1− p) 1

(ϕ∗
0)

2

< 0. (14)

One noteworthy feature from (10) and (14) is that the type-γ banks passing the stress test

enjoy more favorable borrowing conditions as b increases. On the flip side, disclosure of the

regulator’s information worsens the adverse selection problem faced by the failing banks. In

other words, buyers’ willingness to purchase the high-quality asset certified by the regulator

grows stronger as the alternative asset is believed to be a lemon with a higher likelihood.

3.3 The Ex-Post Optimal Disclosure Policy

Finally, we study whether disclosure improves social welfare from an ex post perspective (i.e.,

holding the respective fractions g of type γ banks and b of bad banks fixed). Ex-post social

welfare equals the sum of all investors’ expected utilities; since every investor places the same

buy order in equilibrium, this equals the expected utility of each investor, which can be defined

as a function of (g, α, b):

U(g, α, b) := p log(α+(1−α)ϕ∗
0)g+(1−p) log ϕ∗

0(1−g)−gx(α+(1−α)ϕ∗
0)+((1−g)+ b)ϕ∗

0x.
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This can be further simplified to

U(g, α, b) = p log g + (1− p) log(1− g)

+ [p log(α + (1− α)ϕ∗
0)− gx(α + (1− α)ϕ∗

0)]

+ [(1− p) log ϕ∗
0 − ((1− g) + b)ϕ∗

0x] .

(15)

In particular, ex-post welfare is equal to U(g, 0, b) if the regulator does not disclose any

information. Thus, the net gain from the disclosure policy α is U(g, α, b) − U(g, 0, b), which

is expressed as

U(g, α, b)− U(g, 0, b) = [p log(α + (1− α)ϕ∗
0)− gx(α + (1− α)ϕ∗

0)]

+ [(1− p) log ϕ∗
0 − ((1− g) + b)ϕ∗

0x]

− [p log ϕ∗ + (1− p) log ϕ∗ − (1 + b)ϕ∗x] ,

(16)

Recall from (13) that
dϕ∗

0

dα
≤ 0, where the inequality is strict for every b > (1− α)

[
1
x
p− g

]
+[

1
x
(1− p)− (1− g)

]
.

We first analyze the welfare impact of disclosure policies α ∈ [0, 1]. By applying the

standard Envelope Theorem, we have

d

db
[U(g, α, b)− U(g, 0, b)] = x(ϕ

∗
0 − ϕ∗

0) ≥ 0, (17)

where the inequality, once again, is strict for all b > (1 − α)
[
1
x
p− g

]
+
[
1
x
(1− p)− (1− g)

]
from (14). Hence, for any given disclosure rule α > 0, the regulator weakly prefers disclosing

its information α > 0 for every b ≥ 0 to disclosing zero information. In particular, the net gain

from information disclosure is strictly positive when adverse selection at the capital market is

relatively severe.

Next, we characterize the ex-post optimal disclosure policy α∗ for every degree of

adverse selection b ≥ 0. By applying the standard Envelope Theorem again, we have

d

dα
[U(g, α, b)− U(g, 0, b)] = (1− ϕ∗

0)

[
1

α + (1− α)ϕ∗
0

p− gx

]
≥ 0. (18)

The bracketed term on the right side in (18) is strictly positive, given the assumption p−x > 0

and the facts that 1
α+(1−α)ϕ∗

0
≥ 1 and ϕ∗

0, g ∈ [0, 1]. In particular, the whole inequality in (18)

is strict if and only if ϕ∗
0 < 1, i.e., b > (1 − α)

[
1
x
p− g

]
+
[
1
x
(1− p)− (1− g)

]
. Thus, full
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1−p
x − (1− g) 1

x − 1
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ϕ∗
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Figure 1 – The ex-post welfare gain from the full disclosure policy (α = 1)

disclosure (α∗ = 1) is (weakly) ex-post optimal for every b ≥ 0, and strictly optimal when b is

sufficiently high. In words, information disclosure strictly improves ex-post welfare when the

adverse selection problem is very severe. Furthermore, this welfare benefit is maximized by

full disclosure.

Theorem 3. The regulator maximizes ex-post welfare by choosing α∗ = 1 for every b ≥ 0. In

particular, the gain from disclosure is strictly positive if and only if b ≥ 1
x
(1− p)− (1− g).

Proof. See Appendix A.1. Q.E.D.

As shown in Theorem 2, releasing the regulator’s information can eliminate adverse

selection for type γ banks (with fraction α), whereas it worsens adverse selection for type

δ banks. Nevertheless, information disclosure always increases the ex-post welfare through

two channels. First, type γ banks are fully funded even though there is a large population

of type β banks at the capital market. That is, ϕ∗
1 ≥ ϕ∗ for all b ≥ 0. Second, releasing

information also reduces socially wasteful lending to unproductive type β banks. That is,

after observing that a bank is labeled as σ = 0, the investors believe that the bank is more

likely to be of type β and curtail lending to it. Figure 1 depicts how these two effects improve

the ex-post social welfare for the case of full disclosure α = 1. In particular, one can observe

that U(g, 1, b) − U(g, 0, b) > 0 for all b ∈
(
1−p
x

− (1− g), 1
x
− 1
]
. In this range of b, the

regulator’s information lowers the fraction of type β banks that sell bonds from ϕ∗ = 1 to

ϕ∗
0 =

1−p
((1−g)+b)x

< 1, thereby reducing wasteful lending to type β banks.
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4 Ex-Ante Equilibrium and Optimal Disclosure Policy

We have shown that disclosing stress test results can improve social welfare by alleviating

ex-post adverse selection in the capital market. However, disclosure also affects the relative

return to γ and δ projects, and thus influences good banks’ project choice ex ante. Good

banks will find project δ less attractive when it is expected to suffer severe adverse selection

problems relative to project γ. As a result, disclosure of the regulator’s information may lead

to under-diversification in the overall economy; there will be too many type γ banks and too

few type δ banks, leaving investors with fewer projects that pay off, and lower consumption, in

state D relative to state G. Thus, when designing an optimal disclosure policy, the regulator

should take into account its effects on aggregate portfolio diversification.

In this section, we analyze how the regulator’s disclosure policy α(b) influences each

bank’s ex-ante choice of financial project. Specifically, before banks choose their type θ ∈
{γ, δ}, the regulator commits to the fraction α(b) of type γ banks to be disclosed when b ≥ 0,

the degree of adverse selection, is realized at date 1. We investigate how each disclosure policy

(α(b)){b≥0} contributes to (in-)efficiency in diversification. Then we find the optimal disclosure

policy given this tradeoff between ex-post adverse selection and ex-ante diversification.

We first study how banks choose their types θ ∈ {γ, δ} at date 0 ex ante. Recall that

every outside investor owns an equal share, i.e. is an equity holder, of each bank. Furthermore,

there is no moral hazard between good banks and their equity holders: each bank aims to

maximize the expected utility of its equity holders. Given a particular realization of b ≥ 0

and a disclosure policy α ∈ [0, 1], the expected utility of each outside investor is

p log(αg(1−R∗
1x) + (1− α)gϕ∗

0(1−R∗
0x) + zG) + (1− p) log((1− g)ϕ∗

0(1−R∗
0x) + zD)− C∗,

where zG := αgR∗
1x + (1 − α)gϕ∗

0R
∗
0x is the ex-post debt repayment from type γ banks in

state G, zD := (1− g)ϕ∗
0R

∗
0x is the ex-post debt repayment from type δ banks in state D, and

C∗ = αgx+ (1− αg + b)ϕ∗
0x is the total investment to be made at date 1.

If a marginal bank chooses project γ rather than δ, equity holders’ expected utility in

state G will increase by the value of the type γ bank’s dividend, multiplied by marginal utility

in state G; their expected utility in state D will decrease by the value of the δ bank’s dividend

weighted by the marginal utility in state D. Thus, given a realization of b and the degree of

disclosure in that state α, the net benefit to outside investors from an additional type γ bank,

denoted by ∆(g, α, b), is the difference between the probability-weighted marginal gains and
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losses from an extra type γ bank. Equivalently, ∆(g, α, b) equals the derivative of expected

utility with respect to g:

∆(g, α, b) := α
p

g

(
1

α + (1− α)ϕ∗
0

− g

p
x

)
+

[(
p

g

)
(1− α)ϕ∗

0

α + (1− α)ϕ∗
0

− 1− p

1− g

]
(1−R∗

0x). (19)

The ex-ante marginal net benefit to the equity-holders from an extra type γ bank equals

the expected value of ∆(g, α, b) for b ≥ 0. In any equilibrium arising from a disclosure policy

(α(b)){b≥0}, the fraction g ∈ (0, 1) of type γ banks adjusts to satisfy the following condition:∫ ∞

0

∆(g, α(b), b)dF (b) = 0. (20)

In equilibrium, every individual bank must be indifferent between choosing projects γ and δ ex

ante. It is worth noting that ∆(g, α, b) is decreasing in g, which implies that equity holders,

like the regulator, value diversification. Specifically, a higher fraction of γ banks increases

consumption of equity holders in state G relative to state D, and thus lowers the marginal

value of having another bank that pays dividends out in state G. Note also that we cannot

have a corner solution in which all banks strictly prefer the same project – either g = 1 and∫∞
0

∆(g, α(b), b)dF (b) > 0, or g = 0 and
∫∞
0

∆(g, α(b), b)dF (b) < 0 – given our assumption

that investors have log utility over date-2 consumption, which implies limc→0
d
dc
log c = ∞.

Crucially, any change in disclosure policies (α(b)) shifts ∆(g, α(b), b), and therefore

influences overall diversification. For example, disclosing test results for high values of b pools

type δ banks together with bad banks, thereby increasing the average borrowing cost of type

δ banks as well as reducing their gross dividend payouts. Such a policy thus encourages good

banks to choose project γ rather than δ, or equivalently, increases
∫∞
0

∆(g, α(b), b)dF (b). As

a result, more good banks strategically respond by choosing project γ, increasing g so that

(20) continues to hold. In this context, the equilibrium condition (20) summarizes how the

disclosure of “biased” stress test results affects diversification.

Since social welfare is defined as the sum of all investors’ expected utilities, the regu-

lator’s welfare maximization problem is:

max
{α(b)∈[0,1] : b∈[0,∞)}

∫ ∞

0

U(g, α(b), b)dF (b), (21)

subject to (20). As a benchmark, it is useful to consider an unconstrained program in which

the regulator maximizes (21) ignoring the constraint (20), i.e. she can simply dictate that
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measure g ∈ (0, 1) of banks choose type γ. In this relaxed optimization problem, the regulator

would choose g = p since full diversification is always socially desirable. Moreover, we know

from Theorem 3 that the regulator can always weakly maximize the ex-post social welfare by

fully disclosing her information. Therefore, an unconstrained-optimal disclosure policy would

be α(b) = 1 for every b ≥ 0. The presence of the constraint (20), however, makes such an

allocation unimplementable. Indeed, the following observation reveals that the regulator’s

information always reduces diversification in the financial system.

Lemma 1. If a disclosure policy α(·) yields g = p, then we must have α(b) = 0 with probability

1. If α(b) > 0 with positive probability, then we must have g > p. Under optimal disclosure

policy, g > p.

Proof. See Appendix A.2. Q.E.D.

The regulator’s stress tests are biased against type δ banks: they correctly identify type

γ banks as “good” ones, but do not distinguish between δ banks and bad banks.11 Disclosure of

such biased stress test results inevitably reduces diversification (g > p) relative to the first-best

outcome (g = p). It is feasible to keep diversification at its first-best level, but this can only be

implemented by completely refraining from disclosure (i.e., α(b) = 0 with probability 1) only.

Obviously, such a policy is strictly suboptimal because the regulator forgoes an opportunity to

alleviate ex-post adverse selection. Instead, a constrained-efficient policy balances the benefit

and cost of disclosing stress test results. In what follows, we describe in more details the

structure of optimal disclosure policies which manage this tradeoff arising from the inherent

bias in the regulator’s stress test model. Throughout, we denote an ex-ante optimal disclosure

policy by α∗∗(b) for every b ≥ 0.

4.1 Optimal Disclosure under Mild Adverse Selection

We first characterize the optimal disclosure policy α(·) for low values of b ≤ 1−p
x

− (1 − g).

When b is sufficiently low, banks are never rationed at the capital market even if they are

labelled as “not good” (i.e., σ = 0). That is, we have ϕ∗
0 = ϕ∗

1 = ϕ∗ = 1 no matter what the

11Our model therefore has the empirical implication that disclosure of stress test results should cause banks
to choose more similar portfolios. This is consistent with Bräuning and Fillat (2019), who find that stress-
tested banks became more likely to have similar loan portfolios after the implementation of DFAST in 2011
(while this trend was not present for banks not subject to DFAST). In particular, banks with poor stress test
results adjust their portfolios so that they become similar to the portfolios of the banks which performed well
in the tests.
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level of disclosure α ∈ [0, 1] is. Consequently, disclosure in these states does not directly affect

social welfare, i.e., U(g, α, b) = U(g, 0, b) for every α > 0. Hence, optimal disclosure policy

will concentrate on minimizing the (negative) impact of the stress tests on diversification by

adjusting ∆(g, α, b). Since ∆(g, α, b) is decreasing in g, the regulator’s objective is to minimize∫∞
0

∆(g, α(b), b)dF (b) in order to raise (1−g), the total measure of type δ banks. The following

lemma states how optimal disclosure policy accomplishes this goal.

Lemma 2. There exists a b∗∗ := g
p
− 1 such that any optimal disclosure policy α∗∗(·) must

have α∗∗(b) = 1 for all b ≤ b∗∗ and α(b) = 0 for all b ∈
(
b∗∗, 1−p

x
− (1− g)

]
.

Proof. See Appendix A.2. Q.E.D.

Underlying Lemma 2 is the fact that ∆(g, α, b) is strictly decreasing in α if b < b∗∗

but strictly increasing if b ≥ b∗∗. Hence, the regulator can optimally mitigate the under-

diversification problem by following a cutoff rule: full disclosure when the adverse selection

problem is sufficiently mild (i.e., b < b∗∗), and zero disclosure otherwise.

To understand the intuition behind Lemma 2, first recall from Lemma 1 that disclosure

excessively reduces the supply of bonds issued by type δ banks (i.e., 1− g < 1− p). Investors,

who need to hedge the risk associated with state D, strongly prefer purchasing these scarce

bonds issued by type δ banks even by paying a high premium. Thus, where possible, the

regulator can mitigate the under-diversification problem by identifying type δ banks to the

investors so that these banks can enjoy a scarcity premium in the capital market.

When b is sufficiently small, one way to identify δ banks to investors, at least partially,

is to reveal all of type γ banks to investors. In this case, the remaining banks who are not

identified as type γ are likely to be “good” δ banks, rather than “bad” β banks. Hence, full

disclosure (α = 1) maximizes the likelihood that these “undisclosed” banks have type δ, and

thus maximizes the scarcity premium increasing the price of type δ bonds. From an ex-ante

perspective, this improvement in the expected average funding conditions of type δ banks

encourages good banks to choose project δ. However, if the fraction of bad banks b is not very

small, identifying type γ banks implies that the remaining “undisclosed” banks are likely to be

bad banks. In this case, full disclosure would worsen adverse selection for the “undisclosed”

banks – in particular type δ banks – reducing the incentive to choose a δ project from an

ex-ante perspective. Thus, for relatively high values of b, the regulator should adopt a zero

disclosure policy to minimize the adverse effect on diversification.
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4.2 Optimal Disclosure under Severe Adverse Selection

Next, we characterize optimal disclosure policy when b > 1−p
x

− (1− g), i.e., adverse selection

is relatively severe. In this case, credit rationing may take place at the σ = 0 submarket for

banks with σ = 0 — i.e., banks who “fail” the stress test. For expositional convenience, we

throughout work with the Lagrangian of the regulator’s optimization problem (21) subject to

(20), which is expressed as

L =

∫
[U(g, α(b), b)− λ∆(g, α(b), b)]dF (b).

Note that the Lagrangian multiplier λ is strictly positive: under log utility, the constraint

(20) is always binding for some interior values of g ∈ (0, 1). For each b, we next define the net

welfare gains from a disclosure policy α > 0 as follows:

W (g, α, b) := [U(g, α, b)− λ∆(g, α, b)]− [U(g, 0, b)− λ∆(g, 0, b)]. (22)

For example, a disclosure policy α increases welfare if the positive effect on the alleviation of

adverse selection is large relative to the negative impact on the ex-ante diversification. Note

that if a disclosure policy α∗∗(·) is optimal, we must have W (g, α∗∗(b), b) > 0 for any b such

that α∗∗(b) > 0.

In our model, the net benefit from revealing stress test results varies continuously with

α, i.e. the proportion of type γ banks whose type is revealed to investors. However, this does

not necessarily mean that an optimal disclosure policy α∗∗(b) must have interior values for

every degree of adverse selection b. Instead – surprisingly – it is optimal for the regulator to

disclose all type γ banks for some realizations of b, and none of type γ banks for all other

realizations of b.

Lemma 3. α∗∗(b) ∈ {0, 1} for b > 1−p
x

− (1− g).

Proof. See Appendix A.2. Q.E.D.

To understand the intuition for Lemma 3, we first show that choosing a small value

of α > 0 close to zero cannot be optimal. Formally, there exists a threshold α̂ ≥ 0 such

that any disclosure policy α ∈ (0, α̂] is always strictly suboptimal. Under such a disclosure

policy, even the banks “failing” the stress test do not suffer credit rationing. Consequently,

disclosure does not directly increase social welfare by rationing credit to bad banks (i.e.,
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U(g, α, b) = U(g, 0, b)), but does increase good banks’ ex-ante incentive to select project γ.

When b > 1−p
x

− (1− g), it follows from Lemma 2 that a small α > 0 raises ∆(g, α, b) above

∆(g, 0, b), increases the incentive to choose project γ, and worsens diversification. Since a

small value of α > 0 worsens diversification without increasing welfare, it cannot be optimal.

For this reason, we henceforth focus on relatively large values of α ∈ (α̂, 1].12

We next analyze how severely each disclosure policy α worsens diversification relative to

the welfare benefits from alleviating ex-post adverse selection. We first consider a sufficiently

small value of α, close to α̂. Under severe adverse selection, bonds issued by good banks (of

either type γ or δ) are relatively scarce. Thus, if the regulator reveals the type of only a small

fraction α of type γ banks, their bonds – claims on a bank which is known to be “good” –

will be extremely scarce, and outside investors will be willing to pay a high price for them.

This makes it very valuable to pass the stress test, strongly discouraging good banks from

choosing type δ (which gives zero chance of passing the stress test), and significantly lowering

diversification. On the other hand, we know from Theorem 3 that disclosing a small fraction α

of type γ banks provides little information to outside investors, and yields little direct welfare

benefit. Consequently, disclosing a small fraction of type γ banks decreases social welfare on

net, and therefore, cannot be optimal.

However, the benefit from information disclosure can outweigh its cost if the regulator

discloses a large fraction of type γ banks, i.e. chooses α close to 1. If the regulator reveals

the type of a large fraction of type γ banks, their bonds will not be very scarce, and their

borrowing costs will not be extremely low. This makes the benefit from passing the stress test

– while still positive – smaller than it would be for a lower value of α, mitigating the adverse

effect of disclosure on diversification. At the same time, Theorem 3 implies that the ex-post

benefit from disclosure is relatively high when the regulator chooses a large α.

Mathematically, the marginal effect of an increase in α on good banks’ incentive to

choose project γ is decreasing in α, which tends to push the regulator towards corner solutions

(α = 0 or α = 1). For α > α̂, we have

∆(g, α, b) = α

[
p

g

{
1

α + (1− α)ϕ∗
0

}
− x

]
. (23)

The partial derivative of ∆(g, α, b) with respect to α can be interpreted as the marginal effect

12In the proof of Lemma 3 in Appendix A.2, we formally show that α̂ is monotone decreasing in b. Intuitively,
as the adverse selection problem grows more severe, even a disclosure policy revealing only a small fraction of
type γ banks can improve ex-post social welfare.
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of higher α on the banks’ incentive to choose project δ. We have ∂2∆
∂α2 < 0, suggesting that this

marginal adverse impact of disclosure on diversification is increasing in α. At the same time,

the marginal welfare benefit from alleviating adverse selection for type γ banks is increasing

in α. Since
dϕ∗

0

dα
< 0 from (18), type γ banks that fail the stress test suffer more severe credit

rationing as α increases, so the marginal benefit from saving these banks from being rationed

is also higher. To sum up, both the diminishing marginal cost and the increasing marginal

benefit of disclosure push the regulator towards corner solutions: if the regulator discloses her

information, it is always optimal to choose full disclosure (α∗∗ = 1).

The following lemma provides one final result allowing us to characterize optimal dis-

closure policy.

Lemma 4. d
db
W (g, 1, b) > 0 for every b > 1−p

x
− (1− g).

Proof. See Appendix A.2. Q.E.D.

In Theorem 3, we have already seen that the direct gains from disclosure captured by

U(g, 1, b)− U(g, 0, b) is stictly increasing in b for every b > 1−p
x

− (1− g). That is, disclosure

is more valuable when the adverse selection problems become more severe.

What remains to be shown is how ∆(g, 1, b) − ∆(g, 0, b), capturing the welfare loss

from under-diversification under full disclosure, changes with b, i.e., the severity of adverse

selection. From (23), we have ∆(g, 1, b) = p
g
− x: under full disclosure, the banks’ ex-ante

incentive to choose project γ does not depend on the severity of adverse selection. This follows

from the fact that the regulator’s information, when fully disclosed, rations credit for for the

failing banks no matter how severe the adverse selection problem is.

Next, by plugging α = 1 into (19), we have ∆(g, 0, b) =
(

p
g
− 1−p

1−g

)
max{1 − R∗

0x, 0}.
Then it can be seen that ∆(g, 0, b) is non-positive and weakly increasing in b: by Lemma 1,

there is always under-diversification in equilibrium under optimal policy (g > p); the borrowing

term R∗
0 for the failing banks weakly increases with the degree of adverse selection, following

from (11). Intuitively, ∆(g, 0, b) ≤ 0 means that absent the disclosure of stress test results,

type δ banks are more valuable to equity holders than type γ banks since they pay off in state

D, when consumption is relatively low. However, d
db
∆(g, 0, b) ≥ 0, implying that the benefit

from choosing project δ eventually vanishes as the adverse selection problem becomes worse,

which raises the cost of borrowing. In sum, the incentive cost of the ex-ante project selection

is weakly decreasing in the severity of adverse selection. Consequently, W (g, 1, b) – the net

welfare gains from full disclosure – is strictly increasing in b.
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A key feature from Lemma 4 is that the optimal disclosure policy must have the single-

crossing property for b > 1−p
x

− (1− g): the regulator should optimally choose full disclosure

if b exceeds a threshold b
∗∗ ≥ 1−p

x
− (1− g) but zero disclosure otherwise. By combining this

feature with the others derived from Lemma 1 – 3, we can characterize the structure of the

optimal disclosure policy as follows.

Theorem 4. An optimal disclosure policy α∗∗(·) is characterized by two cutoffs 0 < b∗∗ <

b
∗∗

< ∞ such that α∗∗(b) = 1 if b ∈ [0, b∗∗] ∪ [b
∗∗
,∞) and α∗∗(b) = 0 otherwise. Any optimal

disclosure policy admits excessive supply of bonds issued by type γ banks, i.e., g > p.

Proof. See Appendix A.2. Q.E.D.

Figure 2 graphically illustrates how optimal policy is shaped by two cutoffs. The

lower threshold b∗∗ is the lowest value of b such that ∆(g, 1, b)−∆(g, 0, b) ≤ 0. When b < b∗∗,

disclosure of the regulator’s information increases welfare by improving diversification because

banks identified as either type δ or β are very likely to be δ, and therefore disclosure allows

type δ banks to obtain cheaper funding. For intermediate values of b (b∗∗ < b ≤ 1−p
x

− (1−g)),

disclosure worsens diversification (∆(g, 1, b) − ∆(g, 0, b) > 0), whereas it does not address

adverse selection problems at all (U(g, 1, b) − U(g, 0, b) = 0). Hence, the regulator should

refrain from disclosing any information.

For high values of b (b > 1−p
x

− (1−g)), it can be seen that disclosure alleviates adverse

selection problems (U(g, 1, b) − U(g, 0, b) > 0), and this welfare benefit increases with the

severity of adverse selection ( d
db
[U(g, 1, b)− U(g, 0, b)] > 0). Furthermore, it can be seen that

∆(g, 1, b)−∆(g, 0, b) > 0 for every b > 1−p
x

− (1− g): disclosure is costly due to the associated

under-diversification. However, this cost of disclosure decreases with the severity of adverse

selection ( d
db
[∆(g, 1, b)−∆(g, 0, b)] < 0). Hence, the net welfare gain from disclosure increases

with the severity of adverse selection. Therefore, to maximize welfare, the regulator should

disclose its information if and only if the adverse selection problems are sufficiently severe,

i.e., b > b
∗∗
.

Another interpretation of the optimal disclosure policy is that the regulator releases

her information when it is relatively accurate.13 To see this, note from (3) that the posterior

belief about an individual bank labelled σ = 0 is

Pr(θ = δ|σ = 0) =
1− g

1− g + b
.

13The authors specially thank Youngwoo Koh for this helpful comment.
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∆(g, 1, b)−∆(g, 0, b)

Figure 2 – The structure of the ex-ante optimal disclosure policy

Since Pr(θ = δ|σ = 0) → 1 as b → 0 and Pr(θ = β|σ = 0) → 0 as b → ∞, the regulator’s

signal becomes more accurate as b converges to either zero or infinity. Information disclosure

can be costly when it is inaccurate, mistakenly classifying type δ banks as bad banks. To

maximize welfare, the regulator only releases her information when it accurately identifies a

bank’s type, i.e. when b is either very low or very high.

Throughout, we have assumed that the private and social benefits from diversification

coincide. As we have shown, even when the outside investors and equity holders fully inter-

nalize the social benefits from a diversified financial system, disclosing imperfect stress test

results can inefficiently reduce diversification if banks are able to game the stress tests. This

cost would be even more severe to the extent that private individuals do not fully internalize

the benefits from diversification: this would only amplify our main result. Indeed, a key justi-

fication of stress tests (and financial regulation more broadly) in practice is that in a crisis, low

levels of bank capital have negative effects on the wider economy, which are not internalized

by individual banks. To the extent that such externalities are present, policy should try even

harder to induce banks to diversify their portfolios. Absent other instruments, this can only

be achieved by releasing stress test results even less frequently.14

Finally, one should not necessarily conclude from our analysis that releasing stress test

14Earlier versions of this paper modeled this formally by studying an extension in which when banks’ projects
fail, they are forced to sell productive assets to repay depositors. This introduces a pecuniary externality,
because an individual bank does not internalize that its asset sales reduce the prices that other banks receive
for their assets. Asset sales reduce welfare because banks are more productive managers of assets. In this case,
the optimal level of diversification is higher than in the model without externalities (the optimal g is lower).

25



results always reduces diversification. Information disclosure is only costly to the extent that

banks can anticipate which projects the regulator will deem as safe, which is a maintained

assumption in the model. If instead banks do not know at date 0 whether type γ or δ project

will “fail” at date 1, committing to unconditional disclosure may not reduce diversification,

and would be possibly optimal.15 Thus, our model would suggest that regulators should at-

tempt to conceal their models from subject banks, if possible. Recently, the Federal Reserve

has discussed whether to disclose additional details about its supervisory models; some com-

mentators have argued that the models should be fully disclosed.16 Our analysis lends support

to concerns regarding the disclosure of supervisory risk models: increasing predictability of

the supervisory stress testing could allow banks to manipulate their stress test results without

prudently reducing actual risks, leading to model monoculture. Our analysis also suggests

the empirical prediction the that disclosing additional details about the models used in su-

pervisory stress tests would cause an even larger increase in portfolio similarity among tested

banks.

5 Extensions

Our baseline model makes a number of simplifying assumptions for tractability. We now

investigate whether (and how) relaxing these assumptions changes our main results.

5.1 More General CRRA Preferences

Disclosure can be costly because it leads to an inefficiently under-diversified financial system.

In our model, under-diversification is inefficient because investors are risk-averse. It is therefore

natural to ask how the optimal policy changes as the investors become more risk-averse, and

the value of diversification increases. To answer this question, we modify our main model by

assuming that investors’ preferences over their date-2 consumption are described by a CRRA

utility function u(c) = c1−ρ

1−ρ
with ρ > 1. In Appendix A.3, we show that the optimal disclosure

policy has the same structure as that with ρ = 1 (i.e., B∗∗ := [0, b∗∗] ∪ [b
∗∗
,∞) for some

0 ≤ b∗∗ ≤ b
∗∗

< ∞). Furthermore, as in our baseline model, the optimal disclosure policy

features a larger fraction of type γ banks than in the unconstrained efficient allocation.

15In Section 5.2, we formalize this idea and numerically analyze an optimal level of unpredictability in the
regulator’s stress test models.

16Go to https://www.gpo.gov/fdsys/pkg/FR-2017-12-15/pdf/2017-26856.pdf for more details.
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Theorem 5. When investors have CRRA preferences with ρ > 1, optimal disclosure policy

α∗∗(·) is characterized by two cutoffs 0 < b∗∗ < b
∗∗

such that α∗∗(b) = 1 if b ∈ [0, b∗∗]∪ [b
∗∗
,∞)

and α∗∗(b) = 0 otherwise. Any optimal disclosure policy admits excessive supply of bonds

issued by type γ banks, i.e., gρ > p.

Proof. See Appendix A.3. Q.E.D.
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Figure 3 – Comparative statics of the optimal disclosure policy with respect to ρ

To see how the optimal disclosure policy changes with the social value of diversification,

we conduct a comparative statics exercise with respect to the degree of the investors’ risk

aversion ρ > 1. Specifically, we consider a numerical example in which x = 0.2, p = 0.5,

and b – the population of type-β banks on the market – is uniformly distributed over [0, 10].

Figure 3 graphically illustrates how the optimal policy varies with ρ.

There are a couple of interesting observations. First, the equilibrium fraction g of type

γ banks induced by the optimal disclosure policy converges downward to the first-best level

g = p
1
ρ as ρ increases. In part, this reflects investors’ private incentives: as equity holders

become more risk averse, banks will choose a more diversified mix of projects, for the same

disclosure policy, in order to maximize the equity holders’ expected utility. In addition, the

regulator takes into account the increased social value of diversification and discloses stress

test results less often as the investors become more risk-averse, implementing an even higher
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level of portfolio diversification than would arise given the same disclosure policy. Indeed,

Figure 3 shows that the total probability of disclosure F (b∗∗) + (1 − F (b
∗∗
)) is decreasing in

ρ. Specifically, one can see that the upper threshold b
∗∗

increases with ρ, whereas the lower

threshold b∗∗ decreases with ρ, increasing the size of the non-disclosure region (shaded gray).

5.2 Predictable Bias of Supervisory Stress Testing

In the last paragraph of Section 4, we remarked that model monoculture arises from the

predictability of the bias in supervisory stress test models. Indeed, subject banks are able to

game the system because these banks know precisely which type of risks the regulator focuses

on in its supervisory stress tests. We also conjectured that full disclosure of stress test results

would maximize welfare if banks were unable to predict the bias of the regulator’s stress test

models.

In this section, we extend our baseline model to prove our conjecture. Suppose that

the regulator tests for project γ with probability µ (that is, distinguishes between γ on the

one hand and δ and β on the other hand, as in our baseline model), while the regulator tests

for project δ with probability 1 − µ. To simplify the analysis, we throughout assume p = 1
2
.

If the regulator can costlessly choose any value of µ, it will be obviously optimal to set µ = 1
2

and α(b) = 1 for all b. Under µ = 1
2
, we have ∆(1

2
, α, b) = 0 for all α, b, so full diversification

(g = 1
2
) will obtain for any disclosure policy α(b).

Suppose then that µ ∈ (1
2
, 1) is exogenous. With probability µ, the regulator learns

the identities of all type γ banks (but not type δ banks), and can decide whether or not to

release that information, as in our baseline model. Recall that one interpretation is that the

regulator is able to study how banks will perform in a “stress scenario” corresponding to state

G, but cannot study another risk corresponding to state D. The regulator then commits to

a binary disclosure policy αγ(b) ∈ {0, 1}: αγ(b) = 1 iff the regulator reveals the test results

under scenario G when the fraction of bad banks equals b. Similarly, with probability 1− µ,

the regulator learns the identities of all type δ banks, but not type γ banks (i.e. she can study

a scenario based on state D, but not state G), and then commits to a binary disclosure policy

αδ(b) ∈ {0, 1}. That is, the disclosure policy is contingent on the scenarios that the regulator

tests for.

Given this uncertainty about which stress scenario the regulator will be able to test
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for, her optimization problem becomes:

max
g,αγ(·),αδ(·)

µ

∫
[αγ(b)Uγ(g, b) + (1− αγ(b))Un(g, b)]dF (b)

+ (1− µ)

∫
[αδ(b)Uδ(g, b) + (1− αδ(b))Un(g, b)]dF (b),

(24)

subject to

µ

∫
[αγ(b)∆γ(g, b) + (1− αγ(b))∆n(g, b)]dF (b)

+ (1− µ)

∫
[αδ(b)∆δ(g, b) + (1− αδ(b))∆n(g, b)]dF (b) = 0.

(25)

Here Un(g, b) := U(g, 0, b) and ∆n(g, b) := ∆(g, 0, b) denote welfare and the net benefit

to equity holders from project γ when the regulator does not reveal any information, respec-

tively. Similarly, Uγ(g, b) := U(g, 1, b) and ∆γ(g, b) := ∆(g, 1, b) denote welfare and the net

benefit to equity holders from project γ when the regulator discloses the result of a test based

on scenario G, respectively. These functions are described by the same expressions as in our

baseline model with µ = 1. Furthermore, Uδ(g, b) and ∆δ(g, b) denote welfare and the net

benefit to shareholders from a γ project when the regulator discloses the result of a test based

on scenario D. These functions can be written as

Uδ = p log g + (1− p) log(1− g) + p log ϕδ − (1− g + ϕδ(g + b))x,

∆δ(g, b) =
p

g
max

{
1− g + b

p
x, 0

}
− 1− p

1− g

(
1− 1− g

1− p
x

)
,

where ϕδ = min
{

p
(g+b)x

, 1
}
denotes the fraction of γ and β banks who are rationed when the

results of a test based on scenario D are disclosed.

The possibility of testing for project δ makes it difficult to analytically find an optimal

disclosure policy (α∗∗
γ (·), α∗∗

δ (·)) in general. Nevertheless, we can numerically find the optimal

policy for each µ ∈
(
1
2
, 1
)
for a given distribution function F. For example, Figure 4 depicts

the numerical results with x = 0.2 and b ∼ U [0, 10].17 The left panel depicts the optimal

disclosure policy when the regulator can test for scenario G, α∗∗
γ (·), as a correspondence of

µ ∈ (1
2
, 1). When the regulator can test for scenarioD, disclosure is always optimal (α∗∗

δ (b) = 1

for every b ≥ 0), so we do not plot this policy. In addition, the right panel illustrates how

17We stress that the qualitative results depicted by Figure 4 generally hold for x < p = 1
2 and b ∼ U [0, b]

with b > 1.
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Figure 4 – Comparative statics of the optimal disclosure policy with respect to µ

welfare under the optimal policy varies with µ. Higher values of µ mean that the regulator’s

tests are more predictably biased towards type γ banks. In this context, our baseline model

is viewed as the most predictable case at the rightmost point µ = 1.

This numerical example provides some features worth discussing. First, since the reg-

ulator’s model is, albeit stochastically, biased against state D (µ > 1
2
), the optimal disclosure

policy still admits under-diversification against state D (i.e., g > p). Hence, the optimal policy

α∗∗
γ (·) when the regulator tests for state G must have the similar two-cutoff structure to the

baseline analysis. Furthermore, the regulator should unconditionally disclose its information

when the regulator’s model tests for state D. Specifically, releasing the information does not

only perfectly identify type δ banks so that they can cheaply finance their project with a

scarcity premium, but it also addresses the ex-post adverse selection for type δ banks.

Second, the probability that the regulator discloses her information – represented by

the unshaded region in the left panel of Figure 4 – increases as the average bias of the stress

tests falls towards µ = 0.5. That is, the model monoculture problem becomes less important

in the design of optimal disclosure policy when the bias of the stress tests becomes more

unpredictable. This can also be seen by the fact that g, the equilibrium fraction of type γ

banks under the optimal policy, converges to the unconstrained optimal level (g = 0.5), and

welfare increases, as µ approaches 1
2
. That is, a low predictable bias against type δ banks allows

the regulator to disclose tests results more often without inevitably worsening diversification.

This all resonates with our conjecture in Section 4.2 that the model monoculture problem is

associated with the predictable bias in the regulator’s stress tests.
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5.3 Alternative Timing

In our baseline model, we assume that the regulator first commits to a disclosure policy α(b),

then good banks choose project γ or δ, then the measure of bad banks b is realized, and finally

the regulator discloses a fraction α(b) of good banks. In this setup, when each good bank

chooses its project, it takes into account expected profits across all possible realizations of b.

One might wonder whether it would have been better to assume that b is realized first, the

regulator chooses a disclosure probability α(b) next, and finally good banks choose projects γ

and δ. In this alternative setup, good banks would be able to adjust their financial projects

in real time in response to both the degree of adverse selection in the capital market, and the

regulator’s decision about whether to disclose stress test results.

We view our baseline timing assumption as more realistic than this alternative setup,

since it captures the idea that a bank’s choice of portfolio cannot be adjusted rapidly in

response to the announcement that a particular stress test will be conducted and the results

disclosed, but can be adjusted over time in response to a systematic change in policy. For

example, the SCAP was announced in February 2009, and the results released in May 2009.

Many aspects of the stress test were based on banks’ balance sheets as of December 31 2008.18

Thus, it would not have been possible for a bank to change its portfolio in order to improve

its test results in response to the February 2009 announcement.

Notwithstanding these concerns, adopting the alternative timing assumption would

amplify the adverse effect of disclosure on diversification. In fact, under the alternative timing

it would never be optimal for the regulator to disclose stress test results.

Theorem 6. α∗∗(b) = 0 for every b ≥ 0 is weakly optimal when the fraction of bad banks is

realized first, the regulator commits to a disclosure policy next, and good banks choose their

projects last.

Proof. See Appendix A.4. Q.E.D.

Under the alternative timing, the regulator chooses α, and thus implements g state

by state to maximize U(g, α, b) subject to the constraint ∆(g, α, b) = 0. If b and α(b) are

high enough that failing banks are rationed, the constraint ∆(g, α, b) = 0 implies that g must

converge to 1: banks know that project δ will make zero profits, so all of them will choose γ.

Such an allocation of financial projects is never optimal since g = 1 implies U(g, α, b) = −∞.

18See https://www.federalreserve.gov/bankinforeg/bcreg20090424a1.pdf
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Thus, the regulator will refrain from any policy that causes credit rationing to type δ banks in

any degree. This in turn implies that social welfare equals U(g, α, b) = p log g+(1−p) log(1−
g)+(1+b)x, which is maximized by setting g = p. The regulator can implement this allocation

by never disclosing, i.e., α = 0.

6 Related Literature

A growing theoretical literature discusses the benefits and costs of disclosing stress test results

or other information held by regulators. As surveyed by Goldstein and Sapra (2013) and

Leitner (2014), there are a number of arguments against unconditional disclosure of stress

test results: full disclosure of stress test results may reduce risk-sharing à la Hirshleifer (1971)

(Goldstein and Leitner, 2018); forcing firms to disclose their financial status too often may

encourage short-termism (Gigler et al., 2014); the public information provided by stress tests

may crowd out private information held by individual creditors (Morris and Shin, 2002; Bond

and Goldstein, 2015); and releasing the public information may cause coordination failure

among banks or market participants (Bouvard, Chaigneau and Motta, 2015; Inostroza and

Pavan, 2017). In particular, Williams (2017) presents a model in which even though a regulator

has perfect information about banks, it is optimal to only release just enough information to

prevent a bank run.19 We complement this literature by focusing on another potential cost

of stress tests, the impacts of disclosure on banks’ investments and risk assessments. In

particular, we study how the disclosure of stress test results may distort diversification in the

entire financial system when stress tests can misclassify some financially sound banks as risky.

Another recent paper that argues that limited disclosure of public information may

be optimal is Quigley and Walther (2018). They consider an environment in which market

“insiders” can choose to release verifiable private information at a cost. Although the dis-

closure of “outside” information by the public authority can crowd out “inside” information,

such crowding out can be socially desirable because disclosure of inside information can sep-

arate high-quality banks from the rest, causing inefficient bank runs. We instead focus on

the way in which information disclosure affects banks’ investment decisions rather than their

communication with investors (which is ruled out in our setting).

19The recent literature also emphasizes that the effectiveness and optimal design of stress tests depends
on what other instruments are available to policymakers. Spargoli (2013) argues that disclosure of negative
stress test results either reduces lending or requires costly bailouts. Similarly, Faria-e Castro, Martinez and
Philippon (2016) argue that disclosure can create inefficient bank runs unless there is a fiscal backstop.
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Leitner and Yilmaz (2019) also consider a similar environment in which banks choose

whether to privately produce information with their own risk models, given that regulators

decide whether to monitor the regulated banks’ information. It may be (constrained) optimal

not to monitor the banks’ models because monitoring would reduce the banks’ incentives to

collect information ex ante. While we abstract from the production of information either

by banks or by regulators, our main result resonates with Leitner and Yilmaz (2019): full

disclosure of the regulators’ (imperfect) information may adversely influence banks’ choices

of investments, which are socially valuable but not easily recognized as such. However, an

important difference is that their model is applicable to settings in which regulators rely on

the banks’ models (e.g. the internal ratings-based approach to calculate regulatory capital).

We instead assume regulators use their own model to regulate banks, and banks do not have

the option of using their own models instead. This assumption is more applicable to the

CCAR and DFAST in which the Federal Reserve conducts supervisory stress tests using its

own scenarios and models (though these stress tests do use data supplied by the firms).20

Our results suggest that regulators should keep their models secret; otherwise, banks

can game the regulators’ model, reducing diversification. Leitner and Williams (2017) argue

that secrecy may not, in fact, be optimal because it can deter banks from making risky

investments. We abstract from this possibility since banks always make some investment,

whether in good or diversifying projects. However, we highlight an additional cost that arises

when banks can game the regulator’s model. Banks do not only invest in excessively risky

projects; rather, they also invest in particular types of projects that are difficult to identify

as such, reducing diversification in the overall economy.

Our framework is consistent with the role that stress tests played during the 2007

– 09 Global Financial Crisis. A major goal of SCAP was to alleviate widespread adverse

selection problems in financial markets during the crisis (Geithner, 2015, pp. 286-7). The

academic literature (e.g. Tirole (2012)) also points to adverse selection as a key reason for the

lending freeze observed during the crisis. Flannery, Kwan and Nimalendran (2013) document

empirically that adverse selection problems worsened during the crisis.

While our result that releasing public information reduces diversification, may seem

reminiscent of Morris and Shin (2002), the mechanism in our paper is different. In Morris and

20While banks are also required to conduct their own company-run stress tests under the DFAST and
CCAR, these tests cannot be used as a substitute for the supervisory stress tests. The Fed can object to
banks’ capital plans based on whether they fail the CCAR stress tests using the Fed: subject banks cannot
use their own test results to avoid being required to take these corrective actions.
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Shin (2002), public information reduces diversification because agents’ actions are strategic

complements, and they coordinate on the public signal. In our paper, banks have no intrinsic

coordination motive. If anything, they have an intrinsic motive for diversification because

risk-averse households reward banks for investing in assets that pay off when consumption

is low. However, the disclosure of public information causes outside investors to rationally

punish banks for investing differently from the herd because those banks may be risky.

Our paper relates to a growing theoretical literature that studies the causes and con-

sequences of increased similarity in the portfolios of financial institutions. In Farhi and Tirole

(2012), imperfectly targeted policy interventions make banks’ leverage choices strategic com-

plements: banks only wish to be exposed to a common shock if other institutions are also

exposed, implying that policymakers will bail them out in a crisis. Kopytov (2018) presents a

dynamic model in which banks’ portfolios become more similar at the end of credit expansions,

as these portfolios become more diversified at the individual level (see also Khorrami (2019)

for a model in which an increase in diversification at the level of an individual intermediary

can increase aggregate risk). We focus on a different potential cause of correlated portfolios

across banks, namely the disclosure of stress test results.

Bräuning and Fillat (2019) provide the most relevant empirical evidence supporting our

theoretical result that stress test disclosure can increase portfolio similarity. They find that

the portfolios of U.S. banks who became subject to Dodd-Frank Act Stress Testing (DFAST)

starting in 2011 became more similar since then, while the portfolios of banks not subject to

DFAST remained essentially unchanged. In particular, banks with poor stress test results tend

to have dissimilar portfolios before the test; after failing the test, they adjust their portfolios

to become closer to the portfolios of the banks with good DFAST results. This is consistent

with our theoretical finding that supervisory stress testing may create a “model monoculture”

by inducing banks to choose similar business and risk models in order to avoid failing the

tests, inefficiently increasing the financial system’s exposure to the same aggregate risks.

7 Conclusion

Stress tests have moved from an exceptional measure of crisis management to a routine part

of financial regulation. In a crisis, stress tests can reduce uncertainty about banks’ financial

soundness and prevent market failure caused by financial instability. However, routine stress

tests may also lead to model monoculture, in which banks mimic the regulators’ models in
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order to pass the tests while ignoring their own measures of risk. This can leave the financial

system less diversified and vulnerable to those risks that the regulators’ model ignores. We

presented a simple model to understand the tradeoff facing financial regulators that use stress

tests as a routine policy tool. When stress test results are predictably biased against banks

holding a certain class of financial assets, our analysis suggests that the stress test results

should be released to the public only selectively, either in a severe crisis or when stress test

scenarios accurately evaluate the financial health of tested banks.

Our paper mainly focused on the direct impacts of releasing stress test results on

portfolio adjustment decisions by subject banks. One should not hastily generalize these

results to the the overall effect of supervisory stress tests before carefully examining their

potential indirect effects. Disclosure of stress test results may improve financial stability

through indirect channels which are not captured by our paper. In particular, the subject

banks’ strategic response to the stress testing can endogenously influence businesses of the

other banks not subject to the supervisory stress testing. For instance, while supervisory

stress testing increases the cost of lending to risky businesses for subject banks, this can

create a positive selection effect where only banks with expertise in assessing the financial

risks or sufficiently capitalized banks maintain or increase lending to the risky businesses

(Cortés et al., 2019). Exploring such tradeoffs is beyond the scope of our paper.
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Appendix

A Proofs

A.1 Proofs for Section 3

Proof of Theorem 1. First, fix any b ≤ 1
x
− 1. Suppose there exists an equilibrium in which

the investors place a buy order (ϕ′, R′) ̸= (ϕ∗, R∗). If ϕ′ ≤ ϕ∗ = 1 but R′ ≥ R∗, we have
R′

ϕ′ − (1 + b) > 0 from (6). Hence, an investor can get a higher payoff by placing a buy order

(1+ ε, R′ − ε′) for some ε, ε′ > 0. If ϕ′ = ϕ∗ = 1 but R′ < R∗, we have R′

ϕ′ − (1+ b) < 0. Thus,

an investor can get a higher payoff by offering (ϕ,R) =
(

R′

1+b
, R′). If ϕ′ < ϕ∗ = 1 and R′ < R∗,

some banks with measure (1−ϕ′)(1+ b) > 0 are not funded at the market. Thus, an investor

can get a higher payoff by placing a buy order (ϕ,R) = (1, R′ + ε) for some ε > 0.

Second, fix any b > 1
x
−1 and suppose there exists an equilibrium in which the investors

place the buy order (ϕ′, R′) ̸= (ϕ∗, R∗). If ϕ′ = ϕ∗ but R′ < R∗, then we have R′

ϕ′ − (1+ b) < 0,

and thus an investor has an incentive to deviate by offering (ϕ,R) =
(

R′

1+b
, R′). If ϕ′ < ϕ∗ and

R′ = R∗, then we have R′

ϕ′ − (1 + b) > 0, and thus an investor has an incentive to deviate by

placing an order (ϕ,R) = (ϕ′ + ε, R′) for some ε > 0. If ϕ′ < ϕ∗ and R′ < R∗, an investor

can get a higher payoff by placing a buy order (ϕ,R) = (ϕ′ + ε, R′ + ε′) for some ε, ε′ > 0.

Putting all these results together, if there exists an equilibrium, then all investors place the

buy order (ϕ∗, R∗) in such equilibrium. Conversely, as shown in Appendix B, it is optimal for

an investor to place the same buy order given that the other investors place (ϕ∗, R∗). Q.E.D.

Proof of Theorem 2. We omit the formal proof because of its logical similarity to the proof of

Theorem 1. Q.E.D.

Proof of Theorem 3. First, suppose b ≤ 1−p
x

− (1 − g). Then we have U(g, α, b) = U(g, 0, b)

for every α ∈ [0, 1], which implies that α = 1 is weakly optimal.

Next, suppose b > 1−p
x

− (1− g). From (11), there exists a α̂ ∈ [0, 1]. defined as

α̂ = 0 ∨

[(
1−

1−p
x

− [(1− g) + b](
p
x
− g
) )

∧ 1

]
, (26)

such that ϕ∗
0 = 1 if α ≤ α̂ and ϕ∗

0 < 1 otherwise. For every α ≤ α̂, we have U(g, α, b) =

U(g, 0, b). For every α > α̂, we have d
dα
[U(g, α, b) − U(g, 0, b)] > 0 from (18) since ϕ∗

0 < 1.
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Furthermore, we have limα→α̂[U(g, α, b) − U(g, 0, b)] = 0 since ϕ∗
0 → 1 as α → α̂. Therefore,

we have [U(g, α, b) − U(g, 0, b)] > 0 for every α > α̂. In particular, [U(g, α, b) − U(g, 0, b)] is

maximzed at α = 1 since d
dα
[U(g, α, b) − U(g, 0, b)] > 0 for every α > α̂. To sum up, it is

optimal for the regulator to α = 1 for every b ≥ 0. Q.E.D.

A.2 Proofs for Section 4

We first discuss a mathematical property of α̂ in (26). Recall from (11) that ϕ∗
0 = 1 if α ≤ α̂

and ϕ∗
0 < 1 otherwise. By construction, the following properties are immediate.

Lemma A.1.

(i) α̂ = 1 at b = 1−p
x

− (1− g) and α̂ = 0 at b = 1
x
− 1;

(ii) α̂ is strictly decreasing in b for all b ∈
[
1−p
x

− (1− g), 1
x
− 1
]
.

Proof of Lemma 1. We first show that g ≥ p under any feasible policy. Suppose to the

contrary that some optimal disclosure policy induces g < p. Recall that ∆(g, α, b) has different

forms, depending on whether ϕ∗
0 = 1 or ϕ∗

0 < 1. Consider ϕ∗
0 = 1 first. Recall that ϕ∗

0 = 1 if

either b ≤ 1−p
x

− (1− g) or b ∈
(
1−p
x

− (1− g), 1
x
− 1
]
and α ≤ α̂. By plugging (11) into (20),

we have

∆(g, α, b) =

[(
p

g
− 1− p

1− g

)
−
(
1 +

(1− g) + b

g

)
x

]
+

x(1− p)

p(1− g)

(
1 +

(1−g)+b
g

− 1−p
p

(1− α) + 1−p
p

)
.

∆(g, α, b) expressed as above is increasing in α if and only if (1−g)+b
g

− 1−p
p

> 0, or equivalently,

b > g
p
− 1. Since g < p, we have g

p
< 1. Hence, ∆(g, α, b) is increasing in α for every

b ≤ 1
x
− 1 and α ≤ α̂. Furthermore, g < p implies ∆(g, α, 0) > 0 for every α ∈ [0, 1]. Lastly,

∆(g, 0, b) =
(

p
g
− 1−p

1−g

)
[1− (1+ b)x] ≥ 0 for every b ≤ 1

x
− 1, where the equality holds only for

the case b = 1
x
− 1. From all the observations above, we have ∆(g, α, b) ≥ 0 for every (α, b)

that yields ϕ∗
0 = 1, where the equality holds only for the case b = 1

x
− 1 and α = 0.

Consider the case ϕ∗
0 < 1 next. SinceR∗

0 =
1
x
, we have ∆(g, α, b) = α

[
1

α+(1−α)ϕ∗
0

(
p
g

)
− x
]
.

Since p− x > 0, we have ∆(g, α, b) > 0 for every α > 0 and ∆(g, 0, b) = 0 at α = 0. Combin-

ing all the observations together, we have
∫∞
0

∆(g, α(b), b)dF (b) > 0 for any disclosure policy

α(b), which contradicts (20).
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Next, suppose g = p. By applying the same logic used in the previous case g < p, one

can find that ∆(g, α, b) > 0 for every b ≥ 0 if α > 0, whereas ∆(g, 0, b) = 0 for every b ≥ 0.

Hence, to support g = p, we must have α(b) = 0 with probability 1.

Finally, suppose by contradiction that g = p under an optimal disclosure policy,

implying that α(b) = 0 with probability 1. Consider a deviation in which α(b) = 1 for

b ∈
(
1
x
− 1, 1

x
− 1 + ε

)
for ε > 0 sufficiently small. For given ε, g(ε) is determined as a

differentiable function of ε by (20), which becomes

∫ ∞

0

∆(g(ε), 0, b)dF (b) +

∫ 1
x
−1+ε

1
x
−1

[∆(g(ε), 1, b)−∆(g(ε), 0, b)]dF (b) = 0

Welfare under this deviation is∫ ∞

0

U(g(ε), 0, b)dF (b) +

∫ 1
x
−1+ε

1
x
−1

[U(g(ε), 1, b)− U(g(ε), 0, b)]dF (b) = 0

The derivative of welfare with respect to ε, evaluated at ε = 0, equals[
U

(
p, 1,

1

x
− 1

)
− U

(
p, 0,

1

x
− 1

)]
f

(
1

x
− 1

)
> 0

This implies that the deviation increases welfare for small enough ε > 0, which contradicts

the original allocation being optimal. Q.E.D.

Proof of Lemma 2. We first derive some useful mathematical properties. First, we show d∆
dg

<

0. If ϕ∗
0 = 1, ∆(g, α, b) is rewritten as

∆(g, α, b) =

(
p

g
− 1− p

1− g

)
(1−R∗

0x) + αx(R∗
0 − 1).

From (11), we have
dR∗

0

dg
< 0. Furthermore, we have g > p by Lemma A.1. In sum, we have

d∆
dg

< 0. If ϕ∗
0 < 1, we have

∆(g, α, b) = α

(
p

g

{
1

α + (1− α)ϕ∗
0

}
− x

)
.

By applying the implicit function theorem to (12), we have
dϕ∗

0

dg
> 0 whenever ϕ∗

0 < 1. Hence

we have d∆
dg

< 0. Second, we show dU
dg

≤ 0. If ϕ∗
0 = 1, we have U(g, α, b) = −(1 + b)x, and

therefore, dU
dg

= 0. If ϕ∗
0 < 1, we have dU

dg
= ∂U

∂g
= −α(1 − ϕ∗

0)x < 0, where the first equality
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follows from the envelope theorem.

Thoroughout, fix an optimal disclosure policy α(·) such that E[α(b)] > 0. By Lemma 1,

we have g > p, which implies g
p
− 1 > 0. Furthermore, by Lemma A.1, we have

∆(g, α, b) =

[(
p

g
− 1− p

1− g

)
−
(
1 +

(1− g) + b

g

)
x

]
+

x(1− p)

p(1− g)

(
1 +

(1−g)+b
g

− 1−p
p

(1− α) + 1−p
p

)

for each b ≤ 1−p
x

− (1− g). As was seen in the proof of Lemma 1, ∆(g, α, b) is decreasing in α

if b ≤ g
p
−1 and increasing in α if b ∈

(
g
p
− 1, 1−p

x
− (1− g)

]
. Lastly, U(g, α, b)−U(g, 0, b) = 0

for all b ≤ 1−p
x

− (1− g) and α ∈ (0, 1].

To show optimality of α(b) = 1 for all b ≤ g
p
− 1, suppose to the contrary that

α(b) < 1 for a positive measure of b ≤ g
p
− 1. Since g, the equilibrium fraction of type-γ

banks, is determined by (20). Since d∆
dg

< 0 and dU
dg

≤ 0, the regulator can increase welfare

by making g closer to p by switching the disclosure policy to a α′(b) = (α(b) + ε) ∧ 1 for a

small ε > 0 and every b ≤ g
p
− 1, while the change in α does not directly affect welfare since

U(g, α′, b) = U(g, α, b) for every b ≤ g
p
− 1.

Next, to show optimality of α(b) = 0 for all b ∈
(

g
p
− 1, 1−p

x
− (1− g)

]
, suppose to

the contrary that α(b) > 0 for a positive measure of b ∈
(

g
p
− 1, 1−p

x
− (1− g)

]
. Then,

by changing the disclosure policy to α′(b) = (α(b) − ε) ∨ 0 for a small ε > 0 and ev-

ery b ∈
(

g
p
− 1, 1−p

x
− (1− g)

]
, the regulator can indirectly increase welfare by bringing

g closer to p, while not directly changing welfare since U(g, α′, b) = U(g, α, b) for every

b ∈
(

g
p
− 1, 1−p

x
− (1− g)

]
. Putting all these observations together, any optimal disclosure

policy must satisfy α(b) = 1 if b ≤ g
p
− 1 and α(b) = 0 if b ∈

(
g
p
− 1, 1−p

x
− (1− g)

]
. Q.E.D.

Proof of Lemma 3. We first prove that any α ≤ α̂ cannot be optimal for every 1−p
x

− (1−g) <

b < 1
x
− 1. For any b ∈

(
1−p
x

− (1− g), 1
x
− 1
]
, we have U(g, α, b) − U(g, 0, b) = 0 but

∆(g, α, b) > 0, and thus W (g, α, b) < 0 for every α ≤ α̂. Hence, the regulator never chooses

α ≤ α̂. Hence, we focus on the disclosure policies α ∈ (α̂, 1] throughout in the proof.

Next, we introduce some new notations used throughout the proof. For b > 1−p
x
−(1−g),

we define ϕ
∗
0 := supα≥α̂ ϕ

∗
0 and ϕ∗

0
:= infα≥α̂ ϕ

∗
0. By (13), we have ϕ

∗
0 = limα→α̂ ϕ

∗
0(≤ 1) and

ϕ∗
0
= limα→1 ϕ

∗
0 = ((1−g)+b)x

(1−p)
. Moreover, since ∆(g, α, b) = α

(
p
g

{
1

α+(1−α)ϕ∗
0

}
− x
)
, W (g, α, b)
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is expressed for every α ≥ α̂ and b > 1−p
x

− (1− g) as follows:

W (g, α, b) = [p log(α + (1− α)ϕ∗
0)− gx(α + (1− α)ϕ∗

0)] + [(1− p) log ϕ∗
0 − ((1− g) + b)xϕ∗

0]

− λα

(
1

α + (1− α)ϕ∗
0

p

g
− x

)
− [p log ϕ

∗
0 + (1− p) log ϕ

∗
0 − (1 + b)xϕ

∗
0]

=

[
p log(α + (1− α)ϕ∗

0)− gx(α + (1− α)ϕ∗
0)− λα

(
1

α + (1− α)ϕ∗
0

p

g
− x

)]
+ [(1− p) log ϕ∗

0 − ((1− g) + b)xϕ∗
0]− [p log ϕ

∗
0 + (1− p) log ϕ

∗
0 − (1 + b)xϕ

∗
0].

In the last expression, the first bracketed term is increasing in ϕ∗
0 since p > gx, and thus, max-

imized at ϕ∗
0 = ϕ

∗
0. Furthermore, the second bracketed term is concave in ϕ∗

0, and maximized

at the unique extreme point ϕ∗
0 = ϕ∗

0
.

Using these properties, define W (g, α, b) as follows:

W (g, α, b) =

[
p log(α + (1− α)ϕ

∗
0)− gx(α + (1− α)ϕ

∗
0)− λα

(
1

α + (1− α)ϕ
∗
0

p

g
− x

)]
+ [(1− p) log ϕ∗

0
− ((1− g) + b)xϕ∗

0
]− [p log ϕ

∗
0 + (1− p) log ϕ

∗
0 − (1 + b)xϕ

∗
0].

(27)

By construction, W (g, α, b) ≥ W (g, α, b) for every α ∈ (α̂, 1], where the inequality is strict for

all α ≥ α̂ but α = 1. Lastly, for every ϕγ, ϕδ ∈ [ϕ∗
0
, ϕ

∗
0], define

W̃ (ϕγ, ϕδ, g, α, b) :=

[
p log(α + (1− α)ϕγ)− (α + (1− α)ϕγ)gx− λ

g
α

(
p

1

α + (1− α)ϕγ

− gx

)]
+ [(1− p) log ϕδ − ϕδ((1− g) + b)x]− [p log ϕ

∗
0 + (1− p) log ϕ

∗
0 − (1 + b)xϕ

∗
0].

(28)

W̃ is increasing in ϕγ and decreasing in ϕδ for any ϕγ, ϕδ ∈ [ϕ∗
0
, ϕ

∗
0], respectively.

Now, the proof proceeds in several claims.

Claim A.1. Both W (g, α, b) and W̃ (ϕγ, ϕδ, g, α, b) are quasi-convex in α for all α ≥ α̂.

Proof. We prove quasi-convexity of W only, because the proof of quasi-convexity of W̃ is
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similar. Differentiating W with respect to α, we have

dW

dα
= (1− ϕ

∗
0)

(
p

1

α + (1− α)ϕ
∗
0

− gx

)
− λ

g

(
p

1

α + (1− α)ϕ
∗
0

− gx

)
+ λ

p

g

α(1− ϕ
∗
0)

(α + (1− α)ϕ
∗
0)

2

= (1− ϕ
∗
0)

(
p

1

α + (1− α)ϕ
∗
0

− gx

)
+ λ

p

g

(
1

α + (1− α)ϕ
∗
0

)(
α(1− ϕ

∗
0)

α + (1− α)ϕ
∗
0

− 1

)
+ λx

= (1− ϕ
∗
0)

(
p

1

α + (1− α)ϕ
∗
0

− gx

)
+ λ

p

g

(
1

α + (1− α)ϕ
∗
0

)(
− ϕ

∗
0

α + (1− α)ϕ
∗
0

)
+ λx

=
1

α + (1− α)ϕ
∗
0

· p
g

[
(1− ϕ

∗
0)g − λ

ϕ
∗
0

α + (1− α)ϕ
∗
0

]
− ((1− ϕ

∗
0)g − λ)x.

Since ϕ
∗
0

α+(1−α)ϕ
∗
0
≤ 1, 1

α+(1−α)ϕ
∗
0
≥ 1, and p− gx > 0, we have

(
1

α + (1− α)ϕ
∗
0

)
p

g
> x

and

(1− ϕ
∗
0)g − λ

ϕ
∗
0

α + (1− α)ϕ
∗
0

≥ ((1− ϕ
∗
0)g − λ).

If (1−ϕ
∗
0)g−λ ϕ

∗
0

α+(1−α)ϕ
∗
0
≥ 0, then we always have dW

dα
> 0. Consider (1−ϕ

∗
0)g−λ ϕ

∗
0

α+(1−α)ϕ
∗
0
< 0

next. If dW
dα

= 0, we have

dW

dα
=

1

α + (1− α)ϕ
∗
0

· p
g

[
(1− ϕ

∗
0)g − λ

ϕ
∗
0

α + (1− α)ϕ
∗
0

]
− ((1− ϕ

∗
0)g − λ)x = 0.

Since (1− ϕ
∗
0)g − λ ϕ

∗
0

α+(1−α)ϕ
∗
0
< 0, we have

d2W

dα2
=

d

dα

[
1

α + (1− α)ϕ
∗
0

· p
g

(
(1− ϕ

∗
0)g − λ

ϕ
∗
0

α + (1− α)ϕ
∗
0

)]

=
p

g

[
− (1− ϕ

∗
0)

(α + (1− α)ϕ
∗
0)

2

(
(1− ϕ

∗
0)g − λ

ϕ
∗
0

α + (1− α)ϕ
∗
0

)
+

1

α + (1− α)ϕ
∗
0

(
λϕ

∗
0(1− ϕ

∗
0)

(α + (1− α)ϕ
∗
0)

2

)]
> 0

if dW
dα

= 0, which implies the desired result. Q.E.D.
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Claim A.2. If W (g, α̂, b) > W (g, 1, b), there exists a α ∈ (α̂, 1] such that W (g, α, b) >

W (g, 1, b) ∨ 0 if and only if α ∈ (α̂, α).

Proof. The proof is straightforward from Claim A.1. Q.E.D.

Claim A.3. W̃ (ϕ, ϕ, g, α̂, b) < W (g, α̂, b)(≤ 0) for all ϕ < ϕ
∗
0.

Proof. Since W̃ (ϕ, ϕ, g, α̂, b) is a linear sum of two strictly concave functions of ϕ, W̃ (ϕ, ϕ, g, α̂, b)

is a globally concave function of ϕ. Furthermore, W̃ (ϕ, ϕ, g, α̂, b) is uniquely maximized at

ϕ = ϕ
∗
0, which implies W̃ (ϕ, ϕ, g, α̂, b) < W (ϕ

∗
0, ϕ

∗
0, g, α̂, b) = W (g, α̂, b) ≤ 0. Q.E.D.

Claim A.4. Suppose W̃ (ϕγ, ϕδ, g, α̂, b) = W (g, 1, b) ∨ 0 for some ϕγ ∈ [ϕ∗
0
, ϕ

∗
0) and ϕδ ≥ ϕ∗

0
.

Then, W̃ (ϕγ, ϕδ, g, α, b) < W (g, 1, b) ∨ 0 for all α ∈ [α̂, α].

Proof. Recall that W (g, 1, b) = W (g, 1, b). Suppose to the contrary that there exists a α̃ ∈
[α̂, α] such that W̃ (ϕγ, ϕδ, g, α̃, b) ≥ W (g, 1, b)∨ 0 = W̃ (ϕγ, ϕδ, g, α̂, b). Since W̃ (ϕγ, ϕδ, g, α, b)

is quasi-convex in α and W̃ (ϕγ, ϕδ, g, α̂, b) = W (g, 1, b) ∨ 0 by assumption, W̃ (ϕγ, ϕδ, g, α, b)

must be monotone increasing in α for all α ≥ α̃.

There are two possible cases, ϕδ > ϕ∗
0
or ϕδ = ϕ∗

0
. If ϕδ > ϕ∗

0
, we must have

W̃ (ϕγ, ϕδ, g, 1, b) < W (g, 1, b) ∨ 0 since ϕγ < ϕ
∗
0. Furthermore, we have W̃ (ϕγ, ϕδ, g, α̃, b) ≥

W (g, 1, b) > W̃ (ϕγ, ϕδ, g, 1, b). Since α̃ < 1, W̃ (ϕγ, ϕδ, g, α, b) must decrease in α for some

α ≥ α̃, which contradicts quasi-convexity of W̃ (ϕγ, ϕδ, g, α, b).

If ϕδ = ϕ∗
0
, we must have

W̃ (ϕγ, ϕδ, g, α, b) ≥ W̃ (ϕγ, ϕδ, g, α̃, b) ≥ W (g, 1, b) ∨ 0 = W (g, α, b),

where the first inequality follows from the observation that W̃ (ϕγ, ϕδ, g, α, b) is monotone

increasing in α for all α ≥ α̃, and the equality follows from the definition of α. However, since

ϕγ < ϕ
∗
0, we must have

W̃ (ϕγ, ϕδ, g, α, b) < W̃ (ϕ
∗
0, ϕ

∗
0
, g, α, b) = W (g, α, b),

where the strict inequality follows from ∂W̃
∂ϕγ

> 0, and the equality follows from the defini-

tion of W (g, a, b). Combining the observations above together, we have W̃ (ϕγ, ϕδ, g, α, b) ≥
W (g, α, b) > W̃ (ϕγ, ϕδ, g, α, b), a contradiction. Q.E.D.
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Claim A.5. Suppose W (g, α̂, b) > W (g, 1, b) ∨ 0. Then W (g, α, b) < W (g, 1, b) for all α ∈
[0, 1).

Proof. Recall that W (g, 1, b) = W (g, 1, b) and W (g, α̂, b) = W̃ (ϕ
∗
0, ϕ

∗
0, g, α̂, b) ≤ 0. By

Claim A.2 and quasi-convexity of W , we know

W (g, α, b) < W (g, α, b) ≤ W (g, 1, b) ∨ 0 = W (g, 1, b) ∨ 0

for all α ∈ (α, 1]. Hence, W (g, α, b) < W (g, 1, b) ∨ 0 for all α ∈ (α̂, 1). Furthermore, by ??,

we have W (g, α, b) < 0 for every α ≤ α̂.

What remains to prove is W (g, α, b) < W (g, 1, b) ∨ 0 for all α ∈ (α̂, α]. Suppose

W (g, α̂, b) > W (g, 1, b) ∨ 0. We first prove for the case W (g, 1, b) > 0. Since W̃ (ϕγ, ϕδ, g, α, b)

is decreasing in ϕδ and ϕ∗
0(α) is decreasing in α, there exists a α1 ∈ (α̂, 1) (and thus ϕ∗

0
<

ϕ∗
0(α1) < ϕ

∗
0) such that W̃ (ϕ

∗
0, ϕ

∗
0(α1), g, α̂, b) = W (g, 1, b).

We first show W̃ (ϕ
∗
0, ϕ

∗
0(α1), g, α, b) ≤ W (g, 1, b) for every α ≤ α ∨ α1. Suppose to the

contrary that W̃ (ϕ
∗
0, ϕ

∗
0(α1), g, α

′, b) > W (g, 1, b) for some α′ ≤ α ∨ α1. By quasi-convexity

of W̃ , we must have W̃ (ϕ
∗
0, ϕ

∗
0(α1), g, α, b) > W (g, 1, b) for all α > α′. Since W (g, α, b)

is decreasing in α for all α ≤ α by definition of α, we must have W̃ (ϕ
∗
0, ϕ

∗
0(α1), g, α, b) >

W (g, α, b) for some α ∈ α′, which contradicts W̃ ≤ W for every α. From this observation, we

have

W (g, α, b) = W̃ (ϕ∗
0(α), ϕ

∗
0(α), g, α, b) < W̃ (ϕ

∗
0, ϕ

∗
0(α1), g, α, b) ≤ W (g, 1, b) (29)

for all α ≤ α1, where the strict inequality follows from ϕ∗
0(α1) < ϕ∗

0(α) ≤ ϕ
∗
0 for all α̂ ≤ α < α1,

∂W̃
∂ϕγ

> 0, and ∂W̃
∂ϕδ

< 0. If α1 ≥ α, the proof is done since W (g, α, b) < W (g, 1, b) for all α ≤ α

by (29). Hence we restrict our focus on α1 < α.

Since W̃ (ϕ∗
0(α1), ϕδ, g, α̂, b) is decreasing in ϕδ for all ϕδ ∈ [ϕ∗

0
, ϕ

∗
0], there are two pos-

sible cases: (i) W̃ (ϕ∗
0(α1), ϕ

∗
0(α), g, α̂, b) ≤ W (g, 1, b); (ii) there exists a α2 > α1 such that

W̃ (ϕ∗
0(α1), ϕ

∗
0(α2), g, α̂, b) = W (g, 1, b). Consider the former case. By Claim A.4, we have

W̃ (ϕ∗
0(α1), ϕ

∗
0(α), g, α, b) ≤ W (g, 1, b) for all α ∈ (α1, α], which implies

W (g, α, b) < W̃ (ϕ∗
0(α1), ϕ

∗
0(α), g, α, b) ≤ W (g, 1, b)

for every α ∈ (α1, α], so the proof is done. In the latter case, we know ϕ∗
0(α1) ∈ [ϕ∗

0
, ϕ

∗
0) and
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ϕ∗
0(α2) ≥ ϕ∗

0
. Hence, by Claim A.4, we have

W̃ (ϕ∗
0(α1), ϕ

∗
0(α2), g, α, b) < W (g, 1, b) = W̃ (ϕ∗

0(α1), ϕ
∗
0(α2), g, α̂, b)

for all α ≤ α. Furthermore, since ϕ∗
0(α1) > ϕ∗

0(α) > ϕ∗
0(α2) for all α ∈ (α1, α2), we have

W (g, α, b) = W̃ (ϕ∗
0(α), ϕ

∗
0(α), g, α, b) < W̃ (ϕ∗

0(α1), ϕ
∗
0(α2), g, α, b) < W (g, 1, b)

for all α ∈ (α1, α2], where the first inequality follows from ∂
∂ϕγ

W̃ (ϕγ, ϕδ, g, α, b) > 0 and
∂

∂ϕδ
W̃ (ϕγ, ϕδ, g, α, b) < 0. If α2 ≥ α, then the proof is complete. If not, construct a sequence

{α3, α4, . . .} inductively such that W̃ (ϕ∗
0(αn), ϕ

∗
0(αn+1), g, α̂, b) = W (g, 1, b). Then, for every

(αn, αn+1) in this sequence, we have

W̃ (ϕ∗
0(αn), ϕ

∗
0(αn), g, α̂, b) < W (g, α̂, b) ≤ 0 < W̃ (ϕ∗

0(αn), ϕ
∗
0(αn+1), g, α̂, b) = W (g, 1, b),

where the first strict inequality follows from Claim A.3 and the second strict inequality holds

by construction of the sequence (αn). This implies the sequence (αn) should not have a limit

point at some α′ ≤ α. Hence, there must exist a αN > α for a finitely large number N , which

implies W (g, α, b) < W (g, 1, b) for all α ≤ α.

We next prove for the remaining case W (g, 1, b) ≤ 0. To this end, take an arbitrary

positive number ε ∈ (0,W (g, α̂, b)). Then, by applying the same logic above used for the

case W (g, 1, b) > 0, one can find that W (g, α, b) < ε for every α ∈ (α̂, α]. Since ε is an

arbitrary number, we have that W (g, α, b) ≤ 0 for every α ∈ (α̂, α]. Therefore, we find that

W (g, α, b) < W (g, 1, b) ∨ 0 for every α ∈ (α̂, α], which completes the proof. Q.E.D.

From Claim A.1 – A.5, we have that W (g, α, b) ≤ W (g, 1, b) ∨ 0, where the equality

holds if and only if W (g, 1, b) > 0 and α = 1. This means α∗∗(b) ∈ {0, 1} for every b >
1−p
x

− (1− g). Q.E.D.

Proof of Lemma 4. For every b that yields ϕ∗
0 < 1 and R∗

0 =
1
x
when α = 1, we have

W (g, 1, b) = [U(g, 1, b)− U(g, 0, b)]− λ

[(
p

g
− x

)
−
(
p

g
− 1− p

1− g

)
max{1− (1 + b)x, 0}

]
.

Since g > p by Lemma 1 and d
db
[U(g, 1, b)−U(g, 0, b)] > 0 from (17), we have d

db
W (g, 1, b) > 0,

which is the desired result. Q.E.D.
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Proof of Theorem 4. Fix an equilibrium fraction g > p induced by an optimal disclosure policy

α∗∗(·). By Lemma 2, we have α∗∗(b) = 1 if b ≤ g
p
−1 and α∗∗(b) = 0 if g

p
−1 < b ≤ 1−p

x
−(1−g).

It therefore remains to show that there exists an upper threshold b
∗∗ ≥ 1−p

x
− (1 − g) such

that α∗∗(b) = 0 if 1−p
x

− (1− g) < b < b
∗∗

and α∗∗(b) = 1 if b > b
∗∗
. By Lemma 3, the optimal

disclosure rule must be either α∗∗(b) = 0 or α∗∗(b) = 1 for each b > 1−p
x

− (1 − g). Since

α∗∗(b) maximizes the Lagrangian, we must have α∗∗(b) = 1 for b > 1−p
x

− (1− g) if and only if

W (g, 1, b) > 0. Moreover, since W (g, 1, b) is increasing in b by Lemma 4, there exists a unique

b
∗∗ ≥ 1−p

x
− (1− g) such that W (g, 1, b

∗∗
) = 0. Then, the optimal disclosure policy must have

α∗∗(b) = 0 if b ∈
(

1−p
x

− (1− g), b
∗∗
)
and α∗∗(b) = 1 if b ≥ b

∗∗
. Q.E.D.

A.3 Proofs for Section 5.1

In this section, we show that the main results of Theorem 3 and 4 are qualitatively unchanged

if we modify our model by assuming that the date-2 utility function of each investor is repre-

sented by u(x) = 1
1−ρ

x1−ρ for some ρ > 1.

A.3.1 Date-1 Equilibrium

Consider an individual investor at the capital market, who makes purchase offers (R∗
1, ϕ

∗
1) to

the banks labeled s = 1 and (R∗
0, ϕ

∗
0) to the banks labeled s = 0, respectively. If the regulator

reveals s = 1 with probability α ∈ [0, 1], the investor’s expected utility is

p

1− ρ
(yG + αϕ∗

1gR
∗
1x+ (1− α)ϕ∗

0gR
∗
0x)

1−ρ +
1− p

1− ρ
(yD + ϕ∗

0(1− g)R∗
0x)

1−ρ

− (αϕ∗
1 + (1− α)ϕ∗

0)gx− ϕ∗
0((1− g) + b)x,

(30)

where yG and yD are dividends equally distributed to every equity-holder. By differentiating

with respect to ϕ∗
1, we have the following first order condition:

p
αgR∗

1x

[(αϕ∗
1 + (1− α)ϕ∗

0)g]
ρ
− agx ≥ 0.

Since p− x > 0, we have

(R∗
1, ϕ

∗
1) =

(
1

p
[(αϕ∗

1 + (1− α)ϕ∗
0)g]

ρ, 1

)
for all b ≥ 0. (31)
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Furthermore, by differentiating with respect to ϕ∗
0, we have the following first order condition:[

p
(1− α)g

[(αϕ∗
1 + (1− α)ϕ∗

0)g]
ρ
+ (1− p)

(1− g)

[(1− g)ϕ∗
0]

ρ

]
R∗

0 ≥ ((1− α)g + (1− g) + b).

Therefore, we have

(R∗
0, ϕ

∗
0) =

(
(1− α)g + (1− g) + b

p
gρ−1 (1− α) + 1−p

(1−g)ρ−1

, 1

)
if

(1− α)g + (1− g) + b
p

gρ−1 (1− α) + 1−p
(1−g)ρ−1

≤ 1

x
. (32)

However, if (1−α)g+(1−g)+b
p

gρ−1 (1−α)+ 1−p

(1−g)ρ−1

> 1
x
, and thus R∗

0 = 1
x
, then ϕ∗

0 is uniquely determined by the

following equation:[
p

(1− α)g

[(αϕ∗
1 + (1− α)ϕ∗

0)g]
ρ
+ (1− p)

(1− g)

[(1− g)ϕ∗
0]

ρ

]
= ((1− α)g + (1− g) + b)x. (33)

By applying the Implicit Function Theorem, one can easily find that
dϕ∗

0

dα
< 0 and

dϕ∗
0

db
< 0.

From this result, we can construct the investors’ expected utility function U(g, α, b) at t = 1

as follows:
U(g, α, b) :=

p

1− ρ
[(α + (1− α)ϕ∗

0)g]
1−ρ − (α + (1− α)ϕ∗

0)gx

+
1− p

1− ρ
[ϕ∗

0(1− g)]1−ρ − ϕ∗
0((1− g) + b)x.

(34)

In particular, the expected utility function without the regulator’s information is U(g, 0, b),

which is written as

U(g, 0, b) =
p

1− ρ
(ϕ∗g)1−ρ +

1− p

1− ρ
(ϕ∗(1− g))1−ρ − ϕ∗(1 + b)x, (35)

where ϕ∗ =
[
pg1−ρ+(1−p)(1−g)1−ρ

(1+b)x

] 1
ρ ∧ 1.

Lastly, the ex-post net gains from information disclosure is U(g, α, b) − U(g, 0, b). By

applying the Envelope Theorem, we have

d

dα
[U(g, α, b)− U(g, 0, b)] = (1− ϕ∗

0)

[
p

[(α + (1− α)ϕ∗
0)g]

ρ
− gx

]
≥ 0, (36)

where the inequality strictly holds if and only if ϕ∗
0 < 1. That is, the regulator can improve

the investors’ ex-post welfare by revealing more information on banks’ types to the market.
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Similarly, we have

d

db
[U(g, α, b)− U(g, 0, b)] = (ϕ∗ − ϕ∗

0)x ≥ 0, (37)

where the inequality is strict if and only if ϕ∗ > ϕ∗
0, i.e., the adverse selection is relatively

severe.

A.3.2 Date-0 Project Choice

To analyze how the disclosure policy α influences the banks’ project choices, we next consider

the date-0 equilibrium. Then, each bank will take into account the following equity-holders’

expected surplus:

p

1− ρ
[αg(1−R∗

1x) + (1− α)gϕ∗
0(1−R∗

0x) + zG]
1−ρ+

1− p

1− ρ
[(1− g)ϕ∗

0(1−R∗
0x) + zD]

1−ρ−C∗.

If a bank chooses project type γ rather than δ, the marginal surplus will be equal to

∆(g, α, b) := p
α

[(α + (1− α)ϕ∗
0)g]

ρ
(1−R∗

1x)

+

[
p

1− α

[(α + (1− α)ϕ∗
0)g]

ρ
− (1− p)

1

[(1− g)ϕ∗
0]

ρ

]
ϕ∗
0(1−R∗

0x).

Given a disclosure policy {α(b)}b≥0, the fraction g must be determined to make
∫
∆(g, α, b)dF (b) =

0 in equilibrium.

If ϕ∗
0 = 1, we have

∆(g, α, b) =

(
p

gρ
− 1− p

(1− g)ρ

)
−
[
αx+R∗

0x

(
p

gρ
(1− α)− 1− p

(1− g)ρ

)]
. (38)

By plugging R∗
0 =

(1−α)g+(1−g)+b
p

gρ−1 (1−α)+ 1−p

(1−g)ρ−1

into (38), ∆(g, α, b) is rewritten as

∆(g, α, b) =

(
p

gρ
− 1− p

(1− g)ρ

)
−
(
1 +

(1− g) + b

g

)
x+

1 +

(1−g)+b
g

− (1−p)gρ−1

p(1−g)ρ−1

(1− α) + (1−p)gρ−1

p(1−g)ρ−1

 (1− p)g1−ρ

p(1− g)ρ
x.

(39)
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Hence, ∆(g, α, b) is decreasing in α if and only if (1−g)+b
g

− (1−p)gρ−1

p(1−g)ρ−1 < 0, or equivalently,

b < (1− g)

[
1− p

p

(
g

1− g

)ρ

− 1

]
. (40)

The right hand side of (40) is positive if and only if g ∈ (0, 1) and gρ > p.

If ϕ∗
0 < 1, we have

∆(g, α, b) = α

[
p

[(α + (1− α)ϕ∗
0)g]

ρ
− x

]
. (41)

Lastly, since dϕ∗

dα
< 0, we can find α̂ ∈ [0, 1] for every b ≥ 0 such that ∆(g, α, b) is

equal to (39) if α ≤ α̂ but equal to (41) if α > α̂. Furthermore, by applying dϕ∗

dα
< 0, we have

that (i) α̂ = 1 for every b ≤ 1−p
x(1−g)ρ−1 − (1 − g); (ii) α̂ ∈ (0, 1) and α̂ is decreasing in b if

b ∈
(

1−p
x(1−g)ρ−1 − (1− g), 1

x

[
p

gρ−1 +
1−p

(1−g)ρ−1

]
− 1
]
; (iii) α̂ = 0 if b ≥ 1

x

[
p

gρ−1 +
1−p

(1−g)ρ−1

]
− 1.

A.3.3 The Ex-Ante Optimal Disclosure Policy

Proof of Theorem 5. First, consider b ≤ 1−p
x(1−g)ρ−1 − (1 − g). In this case, we have ϕ∗ = ϕ∗

0 =

ϕ∗
1 = 1. Therefore, we have U(g, α, b)− U(g, 0, b) = 0. Furthermore, we know from (39) that

∆(g, α, b) is decreasing in α if and only if (1−g)+b
g

− (1−p)gρ−1

p(1−g)ρ−1 < 0. Since the mathematical

properties of U(g, α, b) and ∆(g, α, b) are similar to those in the baseline model, we have the

following lemmas, which correspond to Lemma 1 and 2, respectively.

Lemma A.2. Any optimal disclosure policy α∗∗ must yield gρ > p.

Lemma A.3. For every b ≤ 1−p
x(1−g)ρ−1−(1−g), an optimal disclosure policy α∗∗ is characterized

by a threshold b∗∗ := (1 − g)
[
1−p
p

(
g

1−g

)ρ
− 1
]
such that α∗∗(b) = 1 if b ≤ b∗∗ and α∗∗(b) = 0

if b ∈
(
b∗∗, 1−p

x(1−g)ρ−1 − (1− g)
]
.

Next, consider high b > 1−p
x(1−g)ρ−1 −(1−g). Like in the main model with ρ = 1, we know

U(g, α, b) − U(g, 0, b) = 0 for all α ≤ α̂, where α̂ > 0. However, ∆(g, α, b) − ∆(g, 0, b) > 0

since ∆(g, α, b) is increasing in b for all b > (1− g)
[
1−p
p

(
g

1−g

)ρ
− 1
]
and 1−p

x(1−g)ρ−1 − (1− g) >

(1− g)
[
1−p
p

(
g

1−g

)ρ
− 1
]
. These results imply that the regulator should not choose α ≤ θ̂ for

any b.

Lemma A.4. α∗∗(b) ≥ α̂(b) for every b > 1−p
x(1−g)ρ−1 − (1− g) such that α̂(b) > 0.
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Thus, like we did in the main model, consider the Lagrangian for a fixed g > (p)
1
ρ

corresponding to the regulator’s ex-ante optimization problem:

L :=

∫ ∞

1−p

x(1−g)ρ−1−(1−g)

[U(g, α, b)− λ∆(g, α, b)] dF (b), (42)

where

[U − λ∆] (g, α, b) =

[
p

1− ρ
[(α + (1− α)ϕ∗

0)g]
1−ρ − (α + (1− α)ϕ∗

0)gx− λα

(
p

[(α + (1− α)ϕ∗
0)g]

ρ
− x

)]
+

{
1− p

1− ρ
[ϕ∗

0(1− g)]1−ρ − ϕ∗
0((1− g) + b)x

}
(43)

for every α ≥ α̂ and b > 1−p
x(1−g)ρ−1 −(1−g). Furthermore, define the net gains from information

disclosure, denoted by W (g, α, b), as

W (g, α, b) := [U(g, α, b)− λ∆(g, α, b)]− [U(g, 0, b)− λ∆(g, 0, b)]

= [U(g, α, b)− λ∆(g, α, b)]− U(g, 0, b).

From (43), we can define W (g, α, b) and W̃ (g, α, b), modified forms of W (g, α, b), as follows:

W (g, α, b) =

[
p

1− ρ
[(α + (1− α)ϕ

∗
0)g]

1−ρ − (α + (1− α)ϕ
∗
0)gx− λα

(
p

[(α + (1− α)ϕ
∗
0)g]

ρ
− x

)]
+

{
1− p

1− ρ
[ϕ∗

0
(1− g)]1−ρ − ϕ∗

0
((1− g) + b)x

}
− U(g, 0, b),

(44)

and

W̃ (ϕγ, ϕδ, g, α, b) =

[
p

1− ρ
[(α + (1− α)ϕγ)g]

1−ρ − (α + (1− α)ϕγ)gx− λα

(
p

[(α + (1− α)ϕγ)g]ρ
− x

)]
+

{
1− p

1− ρ
[ϕδ(1− g)]1−ρ − ϕδ((1− g) + b)x

}
− U(g, 0, b);

(45)

One can find that Claim A.1 – A.5 hold true, which then implies that Lemma 3 holds true,

too. Furthermore, W (g, 1, b) is increasing in b by (37), which implies that Lemma 4 holds

true. By combining all the results together, we have that the optimal disclosure policy α∗∗(b)

is characterized by two cutoffs 0 < b∗∗ < b
∗∗

< ∞ such that α∗∗(b) = 1 if b ∈ [0 < b∗∗]∪[b∗∗,∞)

and α∗∗(b) = 0 otherwise. Q.E.D.
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A.4 Proofs for Section 5.3

Proof of Theorem 6. Fix any b ≥ 0. If the regulator chooses no disclosure α = 0, g is deter-

mined by

∆(g, 0, b) =

(
p

g
− 1− p

1− g

)
max{1− (1 + b)x, 0} = 0.

If b < 1
x
− 1, no disclosure yields g = p and the total welfare U(p, 0, b). If b ≥ 1

x
− 1, no

disclosure yields any g ∈ (0, 1) and the total welfare U(g, 0, b).

If the regulator chooses α > 0, there are two possible cases, either R∗
0 <

1
x
or R∗

0 =
1
x
.

First, suppose the regulator’s policy α > 0 yields R∗
0 <

1
x
. Then we have

∆(g, α, b) =

[(
p

g
− 1− p

1− g

)
−
(
1 +

(1− g) + b

g

)
x

]
+

x(1− p)

p(1− g)

(
1 +

(1−g)+b
g

− 1−p
p

(1− α) + 1−p
p

)
.

If ∆(p, α, b) < 0, the disclosure policy α > 0 yields g ̸= p and the resulting total welfare

U(g, α, b) = U(g, 0, b), where the equality follows from ϕ∗
1 = ϕ∗

0 = ϕ∗ = 1 when R∗
0 < 1

x
. If

∆(p, α, b) = 0, the disclosure policy yields g = p and the resulting total welfare U(p, α, b) =

U(p, 0, b). Since maxg∈[0,1] U(g, 0, b) = U(p, 0, b), it is weakly optimal for the regulator to

choose no disclosure (α = 0).

Next, suppose α > 0 yields R∗
0 =

1
x
. Then, we have

∆(g, α, b) = α

(
p

(α + (1− α)ϕ∗
0)g

− x

)
> 0,

where the strict inequality follows from α > 0, p > x, and g ∈ [0, 1]. Therefore, any disclosure

α > 0 yields g = 1 and the resulting welfare U(1, α, b) = −∞. Therefore, it is optimal for the

regulator to choose α = 0. To sum up, a disclosure policy α∗∗(b) = 0 for every b ≥ 0 is weakly

optimal. Q.E.D.
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Online Appendix

B Full Description of the Bidding Game

In this section we provide a more detailed description of the bidding game in which investors

fund banks. There exists a continuum of banks with measure S who each inelastically seek x

units of funding. There also exists a continuum of identical investors indexed by i ∈ [0, 1] who

supply funding. An investor’s expected utility from providing Qx units of funding to banks

with repayment rate R is

V (1(R ≤ 1/x)RQx)−Qx

where V is strictly increasing, concave, and differentiable. As described below, the function

V and the measure of banks seeking funding in a particular market S will depend on both the

state of the world (i.e. the measure of bad banks b seeking funding) and on the information

released by the regulator. This general framework allows us to treat all these cases simulta-

neously. Note that an investor effectively gets no return from loans at a rate of return above

1/x, because any bank promising to repay more than 1 will default for sure.

Each investor submits a buy order Ri, qi. Trade takes place as follows.

1. (No rationing) If there exists R∗ such that
∫ 1

0
1(Ri ≤ R∗)qidi = S, then every investor

who requested a rate of return less than or equal to the market clearing price R∗ can

buy qi at the price they quoted. That is, Qi = 1(Ri ≤ R∗)qi. Each bank is fully funded

and borrows from a representative sample of investors.

2. (Banks rationed) If
∫ 1

0
qidi < S, banks are probabilistically rationed. Each bank is

fully funded with probability
∫ 1
0 qidi

S
. Each investor can buy qi at the price they quoted:

Qi = qi.

3. (Investors rationed) If there exists R∗ such that∫ 1

0

1(Ri < R∗)qidi < S <

∫ 1

0

1(Ri ≤ R∗)qidi

then all investors who posted a price Ri < R∗ can buy qi at the price they quoted.
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Investors who posted Ri = R∗ are stochastically rationed. With probability

ξ =
S −

∫ 1

0
1(Ri < R∗)qidi∫ 1

0
1(Ri = R∗)qidi

they can buy qi at the price R∗. With probability 1 − ξ, they cannot transact at all,

Qi = 0.

From the investor’s perspective, this can be summarized by a stochastic function

Q(qi, q,R) where q,R refer to the whole profile of bids and prices submitted by other in-

vestors. An equilibrium of the bidding game is a profile q,R such that, for each i,

(qi, Ri) ∈ argmaxV (1(Ri ≤ 1/x)RiQ(qi, q,R)x)−Q(qi, q,R)x

We now characterize the equilibrium of the bidding game.

Lemma B.1. In equilibrium, investors are not rationed.

Proof. Suppose by contradiction that there exists some investor who posts a price R∗ and

can only execute her desired trade qi > 0 with probability ξ ∈ (0, 1). If R∗ > 1/x, clearly it

increases expected utility to deviate to qi = 0. Suppose R∗ ≤ 1/x. Then i has expected utility

ξV (R∗xqi) + (1− ξ)V (0)− ξxqi

Since V is concave, there exists ε > 0 such that

V (ξ(R∗ − ε)xqi)ξxqi > ξV (R∗xqi) + (1− ξ)V (0)− ξxqi

Thus it is optimal for i to deviate to (R∗ − ε, ξqi), which contradicts the original strategy

being optimal. Q.E.D.

Lemma B.2. In any equilibrium, all investors post the same price, Ri = Rj = R∗ for all

Ri, Rj ∈ [0, 1], and R∗ ≤ 1/x.

Proof. Suppose first that there is no rationing in equilibrium. If R∗ > 1/x, any investor who

posts Ri > 1/x and qi > 0 can increase expected utility by deviating to qi = 0, so this cannot

be an equilibrium. Suppose R∗ ≤ 1/x. Then any investor who posts Ri < R∗ can increase

her expected utility by increasing Ri to R∗, since she still trades with probability 1. Thus
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in any equilibrium of this type, all investors post the same price. If banks are rationed in

equilibrium, the same argument goes through. Take two investors who post Ri < Rj: the first

investor can strictly increase her expected utility by increasing Ri to Rj. Q.E.D.

Lemma B.3. Equilibria of the bidding game have the following structure.

(i) If there exists R ≤ 1/x with 1 = RV ′(RSx), then there exists an equilibrium in which

all banks are funded and all investors post (Ri, qi) = (R, S).

(ii) If V ′(S) < x, there exists an equilibrium in which banks are rationed and obtain funding

with probability ϕ ∈ (0, 1), and all investors post (Ri, qi) = 1/x, ϕS, where ϕ solves

V ′(ϕS) = x.

Proof. Proof of Lemma B.3-(i). Suppose there exists R ≤ 1/x with 1 = RV ′(RSx). Then

q = S is optimal, given the price R, since it solves the investor’s first order condition (which is

sufficient for optimality since the objective is concave). Charging Ri < R cannot be optimal,

since it yields a strictly lower return and does not increase the probability of trade (which is

already 1). Charging Ri > R cannot be optimal, since it results in no trade and yields the

same outcome as posting (R, 0), which we have already seen is strictly inferior to (R, S). So

this is indeed an equilibrium.

Proof of Lemma B.3-(ii). Suppose V ′(S) < x. Setting a lower price than 1/x is clearly not

optimal for an investor. Setting a higher price results in zero payoff at date 2 and is not

optimal. Given the price 1/x, q = ϕS satisfies the investor’s first order sufficient condition for

optimality. Q.E.D.

We end this section by describing how V (·) and S are defined in the various scenarios

discussed in the main text. In the baseline model with log utility, when the regulator does

not release any information, we have S = 1 + b and

V (z) = p log

(
yG +

g

1 + b
z

)
+ (1− p) log

(
yD +

1− g

1 + b
z

)
If the regulator does reveal her information, in the first market we have S = g and

V (z) = p log(yG + z)
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while in the second market we have S = 1− g + b and

V (z) = (1− p) log

(
yD +

1− g

1− g + b
z

)

C An Alternative Model: Bonds Turn “Sour” Ex-Post

In this section, we discuss the robustness of our baseline model by conducting the same

analysis in an alternative model with a different assumption on the source of adverse selection.

Specifically, we assume that there are only “good” banks with measure 1 ex ante, which chooses

project type γ or δ in t = 0. However, when the capital market opens at t = 1, each bank,

regardless of its project selection, turns “sour” and change to a type-β bank with probability

b ∈ [0, 1]. A key difference from the baseline model is that the population of “good” banks is

now random (it equals 1− b) and strictly less than 1 almost surely.

For analytical tractability, we make the following assumptions. First, the outside

investors’ t = 2 utility function is u(x) = 1
1−ρ

x1−ρ for some ρ ∈ (0, 1). Second, we assume

that the regulator’s disclosure policy is a binary choice variable, i.e., α : [0, 1] → {0, 1} where

α(b) = 1 indicates that the regulator fully discloses its information when the fraction of type

β banks is b and α(b) = 0 means zero disclosure.

C.1 The Equilibrium Terms of External Financing

We first study how the terms of external financing vary with the regulator’s information ex

post, i.e., after the fractions of types γ, δ, and β banks are determined. First suppose the

regulator does not disclose her information. Then, each (representative) investor faces the

following utility maximization problem:

max
(ϕ,R)

p
1

1− ρ
(yG + ϕg(1− b)Rx)1−ρ + (1− p)

1

1− ρ
(yD + ϕ(1− g)(1− b)Rx)1−ρ − ϕx.

The first order condition with respect to ϕ yields

p
g(1− b)Rx

(ϕg(1− b))ρ
+ (1− p)

(1− g)(1− b)Rx

(ϕ(1− g)(1− b))ρ
− x ≥ 0,

56



which is equivalent to

ϕ−ρ
[
p(g(1− b))1−ρ + (1− p)((1− g)(1− b))1−ρ

]
R ≥ 1.

Thus, the equilibrium offer (ϕ∗, R∗) is determined by

(ϕ∗, R∗) =

(
1,

1

p(g(1− b))1−ρ + (1− p)((1− g)(1− b))1−ρ

)
(46)

if 1
[p(g(1−b))1−ρ+(1−p)((1−g)(1−b))1−ρ]

≤ 1
x
, and

(ϕ∗, R∗) =

([
p(g(1− b))1−ρ + (1− p)((1− g)(1− b))1−ρ

x

] 1
ρ

,
1

x

)
(47)

otherwise.21 Let b̌s denote the highest value of b that yields ϕ∗ = 1. Note from (47) that ϕ∗

is decreasing in b if b > b̌s: the banks are less likely to get funding as the adverse selection at

the capital market grows more severe.

Next, suppose the regulator releases its information. For the outside investors funding

type γ banks by offering (ϕ1, R1), the first order condition with respect to ϕ1 is

p
g(1− b)Rx

(ϕ1g(1− b))ρ
− g(1− b)x ≥ 0,

which is equivalent to

ϕ−ρ
1 R1

p

(g(1− b))ρ
− 1 ≥ 0.

Since (g(1− b))ρ < 1 and ϕ1 ≤ 1 by definition, type γ banks surely fund their projects at the

capital market. Hence, the equilibrium offer (ϕ∗
1, R

∗
1) is

(ϕ∗
1, R

∗
1) =

(
1,

(g(1− b))ρ

p

)
. (48)

Like in the baseline model, type γ banks are never rationed because the regulator’s information

fully eliminates adverse selection for these banks. Note that R∗
1 is decreasing in b. That is,

investors’ willingness to pay for the bonds issued by type γ banks increases with the degree

of adverse selection. This is because the bonds issued by “good” banks become very scarce

21Note that ϕ∗ in (47) is strictly greater than 1 whenever ρ ≥ 1, which suggests that ρ should be restricted
to ρ ∈ (0, 1) for the non-triviality of the main result.
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as more banks turn into the bad ones, raising the premium for the banks fully certified as

“good” ones by the regulator.

Next, for the investors funding the “not-type-γ” banks by offering (ϕ0, R0), we have

the following first order condition with respect to ϕ0:

(1− p)
(1− g)(1− b)R0x

(ϕ0(1− g)(1− b))ρ
− (b+ (1− g)(1− b))x ≥ 0,

which is equivalent to

ϕ−ρ
0 ((1− g)(1− b))1−ρ(1− p)R0 − ((1− g) + gb) ≥ 0.

Hence, the equilibrium offer (ϕ∗
0, R

∗
0) is

(ϕ∗
0, R

∗
0) =

(
1,

(1− g) + gb

(1− p)((1− g)(1− b))1−ρ

)
if

(1− g) + gb

(1− p)((1− g)(1− b))1−ρ
≤ 1

x
(49)

and

(ϕ∗
0, R

∗
0) =

((
(1− p)((1− g)(1− b))1−ρ

((1− g) + gb)x

) 1
ρ

,
1

x

)
if

(1− g) + gb

(1− p)((1− g)(1− b))1−ρ
>

1

x
. (50)

One can show that (1−g)+gb
(1−p)((1−g)(1−b))1−ρ is increasing in b. Let b̌0s denote the highest value of b that

yields (1−g)+gb
(1−p)((1−g)(1−b))1−ρ ≤ 1

x
. Then (ϕ∗

0, R
∗
0) is determined by (49) if b ≤ b̌0s and determined

by (50) if b > b̌0s. Note that ϕ∗
0 is constant for small b’s but decreasing in b for all b > b̌0s.

We derive some properties used for the following analysis.

Lemma C.1. For any b ≤ min{b̌s, b̌0s}, there exists a b̂ such that R∗
1 > R∗ > R∗

0 if b < b̂ and

R∗
1 < R∗ < R∗

0 if b > b̂. In particular, b̂ = 0 if and only if p
1−p

<
(

g
1−g

)ρ
.

Proof. Fix any b ≤ min{b̌s, b̌0s}, at which R∗, R∗
1, and R∗

0 are determined by (46), (48), and

(49), respectively.
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We first compare R∗ and R∗
1. From (46) and (48), we have

R∗ > R∗
1,

⇐⇒ 1

[p(g(1− b))1−ρ + (1− p)((1− g)(1− b))1−ρ]
>

(g(1− b))ρ

p
,

⇐⇒ b > 1− 1

g

[
pg1−ρ

pg1−ρ + (1− p)(1− g)1−ρ

]
.

We next compare R∗ and R∗
0. From (46) and (49), we have

R∗ < R∗
0,

⇐⇒ 1

[p(g(1− b))1−ρ + (1− p)((1− g)(1− b))1−ρ]
<

(1− g) + gb

(1− p)((1− g)(1− b))1−ρ
,

⇐⇒ b > 1− 1

g

(
pg1−ρ

pg1−ρ + (1− p)(1− g)1−ρ

)
.

It follows from (46) that R∗ < 1
x
if and only if

b < b̌s := 1−
(

x

pg1−ρ + (1− p)(1− g)1−ρ

) 1
1−ρ

.

Thus, we have

b̌s > 1− 1

g

[
pg1−ρ

pg1−ρ + (1− p)(1− g)1−ρ

]
⇐⇒ x < p

1

pρgρ(1−ρ)
(pg1−ρ + (1− p)(1− g)1−ρ)ρ,

(51)

where the last inequality indeed holds given that x < p, (pg1−ρ + (1 − p)(1 − g)1−ρ)ρ > 1,

and 1
pρgρ(1−ρ) > 1. The last inequality in (51) implies that R∗ = R∗

1 = R∗
0 < 1

x
at b =

1− 1
g

[
pg1−ρ

pg1−ρ+(1−p)(1−g)1−ρ

]
. Combining these observations together, there exists a b̂ defined as

b̂ := 0 ∨
[
1− 1

g

(
pg1−ρ

pg1−ρ + (1− p)(1− g)1−ρ

)]
(52)

such that R∗
1 > R∗ > R∗

0 if b < b̂ and R∗
1 < R∗ < R∗

0 if b > b̂. Lastly, it is straightforward that

1− 1
g

(
pg1−ρ

pg1−ρ+(1−p)(1−g)1−ρ

)
> 0 ⇐⇒ p

1−p
<
(

g
1−g

)ρ
. Q.E.D.

The following property is immediate from Lemma C.1.

59



Lemma C.2. b̌0s < b̌s for any g ∈ (0, 1). Furthermore, ϕ∗ = ϕ∗
0 = 1 if b ≤ b̌0s, ϕ

∗ = 1 > ϕ∗
0 if

b ∈ (b̌0s, b̌s], and 1 > ϕ∗ > ϕ∗
0 if b > b̌s.

Proof. For all b > b̂ such that R∗
0 < 1

x
, we have R∗ < R∗

0. Thus, we have limb→b̌0s
R∗ <

limb→b̌0s
R∗ = 1

x
, which implies b̌0s < b̌s. Furthermore, for all b ∈ (b̌0s, b̌s], we have R

∗
0 =

1
x
> R∗

0,

which is equivalent to ϕ∗
0 < 1 = ϕ∗. Lastly, for all b ∈ (b̌s, 1], we have

(1− g) + gb

(1− p)((1− g)(1− b))1−ρ
>

1

[p(g(1− b))1−ρ + (1− p)((1− g)(1− b))1−ρ]
>

1

x
,

which is equivalent to 1 > ϕ∗ > ϕ∗
0. Q.E.D.

C.2 The Ex-post Optimal Disclosure Policy

We next find an ex-post optimal disclosure policy. To this end, we first derive an ex-post

welfare function based on the regulator’s disclosure policy. First, the expected welfare function

without disclosure, denoted by Un, is

Un(g, b) :=
p

1− ρ
(ϕ∗g(1− b))1−ρ +

1− p

1− ρ
(ϕ∗(1− g)(1− b))1−ρ − ϕ∗x, (53)

where ϕ∗ = 1 if b ≤ b̌s and ϕ∗ < 1 and has the form as in (47) if b > b̌s. Similarly, the expected

welfare function without disclosure, denoted by Ur, is

Ur(g, b) :=
p

1− ρ
(g(1− b))1−ρ +

1− p

1− ρ
(ϕ∗

0(1− g)(1− b))1−ρ − [g(1− b) + ϕ∗
0(b+ (1− g)(1− b))]x,

(54)

where ϕ∗
0 = 1 if b ≤ b̌0s and ϕ∗

0 < 1—which is shaped by (50)—if b > b̌0s. The welfare generated

by the regulator’s disclosure for the realized value of b ∈ [0, 1] is thus Ur − Un.

Then we can find the ex-post impact of releasing the regulator’s information.

Proposition C.1. For every b > 0, we have Ur −Un = 0 if b ≤ b̌0s, Ur −Un > 0 if b > (b̌0s, 1),

and Ur − Un = 0 if b = 1.

Proof. Define the following functions:

Uγ(ϕ) :=
p

1− ρ
[ϕg(1− b)]1−ρ − ϕg(1− b)x (55)
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and

U δ(ϕ) :=
1− p

1− ρ
[ϕ(1− g)(1− b)]1−ρ − ϕ[(1− g)(1− b) + b]x. (56)

Then, we have Un = Uγ(ϕ∗) + U δ(ϕ∗) and Ur = Uγ(1) + U δ(ϕ∗
0).

We first show Ur−Un ≥ 0. To this end, consider Uγ(ϕ) first. The first order derivative

of Uγ(ϕ) is
d

dϕ
Uγ = pϕ−ρ[g(1− b)]1−ρ − [g(1− b)]x,

which is decreasing in ϕ, which implies Uγ is strictly concave in ϕ. Hence, the first order

condition d
dϕ
Uγ = 0 yields ϕ̂γ that maximizes Uγ(ϕ):

ϕ̂γ =
1

g(1− b)

(p
x

) 1
ρ
.

Since p > x, g ∈ (0, 1), and b ∈ [0, 1], one can find ϕ̂γ > 1. Since ϕ∗
1 = 1, ϕ∗ = 1 if b ≤ b̌0s, and

ϕ∗ < 1 if b > b̌0s, concavity of Uγ(ϕ) implies Uγ(ϕ∗
1) ≥ Uγ(ϕ∗) for every b ∈ [0, 1], where the

inequality is strict if and only if b > b̌0s.

Next, consider U δ(ϕ). The first order derivative of U δ(ϕ) is

d

dϕ
U δ = (1− p)ϕ−ρ[(1− g)(1− b)]1−ρ − [(1− g)(1− b) + b]x,

which is decreasing in ϕ, which implies U δ(ϕ) is concave in ϕ. Therefore, there exists a ϕ̂δ

that maximizes U δ(ϕ):

ϕ̂δ =

[
(1− p){(1− g)(1− b)}1−ρ

(b+ (1− g)(1− b))x

] 1
ρ

.

From (50), one can easily find that ϕ̂δ > 1 and ϕ∗
0 = 1 if b ≤ b̌s, and ϕ̂δ = ϕ∗

0 < 1 if b > b̌s.

Once again, by concavity of U δ(ϕ), we have U δ(ϕ∗
0) = U δ(ϕ∗) if b ≤ b̌s and b ≤ b̌0s, and

U δ(ϕ∗
0) > U δ(ϕ∗) if b > b̌s. Combining all these results, we have

Ur = Uγ(ϕ∗
1) + U δ(ϕ∗

0) ≥ Uγ(ϕ∗) + U δ(ϕ∗) = Un

for every b ∈ [0, 1], where the inequality is strict if b ∈ (b̌0s, 1) by Lemma C.2. Lastly, we have

Ur = Un = 0 at b = 1. Q.E.D.
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There are a couple of features worth further discussing. First, like in the baseline

analysis, the regulator’s information improves bond trade by alleviating the adverse selection

problem for sufficiently high values of b. Second, more importantly, such a welfare improve-

ment effect disappears (Ur = Un = 0) as b approaches 1, which is not the case in our baseline

model. This feature is associated with the assumption that almost every bank turns into a

bad bank as b converges to 1: that is, there will be only few type γ banks that will benefit

from the regulator’s information.

C.3 The Ex-Ante Optimal Disclosure Policy

We next characterize the ex-ante optimal disclosure policy. To analyze how the corresponding

equilibrium fraction g of type γ banks is determined, we need to derive ∆r and ∆n, where ∆r

(∆n) denotes the marginal net utility of equity-holders when each bank chooses project type

γ rather than δ with (without) the regulator’s information for each b ∈ [0, 1].

We first derive ∆n. The investors’ expected utility when there is no disclosure is

p
1

1− ρ

(
ϕ∗g(1− b)(1−R∗x) + zGn

)1−ρ
+(1−p)

1

1− ρ

(
ϕ∗(1− g)(1− b)(1−R∗x) + zDn

)1−ρ−Cn.

Differentiating with respect to g and substituting zG = ϕ∗g(1− b)R∗x and zD = ϕ∗(1− g)(1−
b)R∗x yields

∆n = (1− b)1−ρ

(
p

gρ
− 1− p

(1− g)ρ

)
ϕ∗1−ρ(1−R∗x). (57)

We next derive ∆r. The investors’ expected utility with disclosure is

p
1

1− ρ

(
ϕ∗
1g(1− b)(1−R∗

1x) + zGr
)1−ρ

+ (1− p)
1

1− ρ

(
ϕ∗
0(1− g)(1− b)(1−R∗

0x) + zDr
)1−ρ − Cr.

Since ϕ∗
1 = 1, differentiating with respect to g yields

∆r = (1− b)1−ρ

[
p

gρ
(1−R∗

1x)−
1− p

(1− g)ρ
ϕ∗
0
1−ρ(1−R∗

0x)

]
. (58)

Then, ∆r−∆n indicates how the regulator’s information release for a given b influences

each bank’s incentive to choose type γ. The mathematical expression of ∆r −∆n varies with
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b. Specifically, if b ≤ b̌0s, we have

∆r −∆n = (1− b)1−ρx

[
p

gρ
(R∗ −R∗

1) +
(1− p)

(1− g)ρ
(R∗

0 −R∗)

]
, (59)

where R∗, R∗
1, and R∗

0 are represented by (46), (48), and (49), respectively. Furthermore, if

b ∈ (b̌0s, b̌s], we have

∆r −∆n = (1− b)1−ρx

[
p

gρ

(
1

x
−R∗

1

)
−
(

p

gρ
− (1− p)

(1− g)ρ

)(
1

x
−R∗

)]
, (60)

where R∗ and R∗
1 are represented by (46) and (48), respectively. Lastly, if b > b̌s, we have

∆r −∆n = (1− b)1−ρ p

gρ
(1−R∗

1x), (61)

where R∗
1 is represented by (48). From (59) – (61), we can derive the following properties of

∆r −∆n, which will be used for characterization of the ex-ante optimal disclosure policy.

Lemma C.3 (Properties of ∆r −∆n).

(i) limb→0 [∆r −∆n] ⋛ 0 if and only if p
1−p

⋛
(

g
1−g

)ρ
;

(ii) limb→1 [∆r −∆n] = 0;

(iii) d
db
[∆r −∆n] > 0 for any b ∈ (0, b̌0s];

(iv) ∆r −∆n > 0 and d2

db2
[∆r −∆n] < 0 for any b ∈ (b̌0s, b̌s];

(v) ∆r −∆n > 0 and d2

db2
[∆r −∆n] < 0 for any b ∈ (b̌s, 1];

Proof.

Proof of Part (i). Note that limb→0R
∗ = 1

pg1−ρ+(1−p)(1−g)1−ρ , limb→0R
∗
1 =

gρ

p
, and limb→0R

∗
0 =

(1−g)ρ

1−p
. Since ∆r −∆n is equal to (59), we have

lim
b→0

(∆r −∆n) = x

(
p

gρ
− 1− p

(1− g)ρ

)
1

pg1−ρ + (1− p)(1− g)1−ρ
.

Since 1
pg1−ρ+(1−p)(1−g)1−ρ > 0, limb→0(∆r −∆n) ⋛ 0 if and only if p

1−p
⋛
(

g
1−g

)ρ
.
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Proof of Part (ii). From (46) and (49), we have limb→1R
∗ = limb→1R

∗
0 = 1

x
. Therefore,

limb→1(∆r −∆n)(g, b) = limb→1(1− b)1−ρ p
gρ
(1−R∗

1x). Since R∗
1 =

gρ(1−b)ρ

p
from (48), we have

limb→1(1− b)1−ρ p
gρ
(1−R∗

1x) = 0.

Proof of Part (iii). Fix any b ≤ b̌0s. By plugging R
∗ in (46) and R∗

0 in (49) into (59) respectively,

we have

∆r −∆n =

(
p

gρ
− 1− p

(1− g)ρ

)
x

pg1−ρ + (1− p)(1− g)1−ρ
+

[(1− g) + gb]x

(1− g)
− (1− b)x,

which is strictly increasing in b.

Proof of Part (iv). Fix any b ∈ (b̌0s, b̌s]. By Lemma C.1, we have R∗
1 < R∗ for all b > b̌0s.

Furthermore, it is easy to check p
gρ

> p
gρ

− 1−p
(1−g)ρ

. Hence, we have

p

gρ

(
1

x
−R∗

1

)
>

(
p

gρ
− (1− p)

(1− g)ρ

)(
1

x
−R∗

)
,

which implies ∆r −∆n > 0.

Next, differentiating ∆r − ∆n with respect to b after plugging R∗ in (46) and R∗
1 in

(48) into (60), we have

d

db
(∆r −∆n) = 1− (1− ρ)(1− p)

x(1− g)ρ
(1− b)−ρ,

which is decreasing in b, and thus the desired result.

Proof of Part (v). Fix any b ∈ (b̌s, 1]. Since it is immediate from (48) that R∗
1 < 1

x
for such

a b, we have ∆r − ∆n > 0 when ∆r − ∆n is expressed as (61). Furthermore, differentiating

∆r −∆n in (61) with respect to b yields

d

db
(∆r −∆n) = 1− (1− ρ)p

xgρ
(1− b)−ρ,

which is decreasing in b, and therefore, is the desired result. Q.E.D.

From Lemma C.3, we find that ∆r − ∆n has similar mathematical properties to the

corresponding function in the original model. Specifically, we observe that ∆r − ∆n < 0 for

sufficiently low values of b when there is an excessively large fraction of type γ banks, which

will lead the optimal disclosure policy to reveal the information in the low states of b.
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We now characterize an optimal disclosure policy that maximizes the following opti-

mization problem facing the regulator ex ante (which is similar to the optimization problem

in the original model):

max
B⊂[0,1]

∫
B

(Ur − Un)(g, b)dF (b) +

∫ 1

0

Un(g, b)dF (b) (62)

subject to ∫
B

(∆r −∆n)(g, b)dF (b) +

∫ 1

0

∆n(g, b)dF (b) = 0. (63)

Proposition C.2. Let B∗∗
s ⊂ [0, 1] be an optimal disclosure policy that solves (62) subject to

(63). Then we have the following observations:

(i) (Under-diversification) If Pr(b ∈ B∗∗
s ) > 0, we must have p

1−p
<
(

g
1−g

)ρ
;

(ii) (Disclosure for low b’s) there exists a b∗∗s > 0 such that (0, b∗∗s ] ⊂ B∗∗
s ;

(iii) (Disclosure for high b’s) Pr(b ∈ B∗∗
s \ [0, b∗∗s ]) > 0.

Proof.

Proof of Part (i). Suppose to the contrary that p
1−p

≥
(

g
1−g

)ρ
under an optimal policy B∗∗

s

such that Pr(b ∈ B∗∗
s ) > 0. From Lemma C.3, we have ∆r −∆n > 0 for all b ∈ (0, 1) (since

∆r − ∆n > 0 for b = 0 and is increasing in b), which implies
∫
B∗∗(∆r − ∆n)(g, b)dF (b) +∫

(0,1)\B∗∗ ∆ndF (b) > 0, which contradicts (63).

Proof of Part (ii). From part (i) above, we have p
1−p

<
(

g
1−g

)ρ
, since a similar argument to

the one in our baseline model shows that Pr(b ∈ B∗∗∗) = 0 cannot be optimal. Recall from

parts (i), (iii), and (iv) of Lemma C.3 that ∆r − ∆n < 0 for sufficiently low b’s close to 0,

∆r −∆n > 0 for every b > b̌0s, and ∆r −∆n is increasing in b for all b ≤ b̌0s. Since ∆r −∆n

is continuous in b, there exists a unique b∗∗s ∈ (0, b̌0s) such that ∆r −∆n = 0 at b = b∗∗s . Note

that ∆r −∆n < 0 if and only if b < b∗∗s .

To prove part (ii), suppose to the contrary that there exists a B̃ ⊂ (0, b∗∗s ] such that

Pr(b ∈ B̃) > 0 and B̃ ∩B∗∗
s = ∅. Suppose the regulator takes a sufficiently small measurable

interval [b̃, b̃+ ε] ⊂ B̃ and changes the disclosure policy to B′ = [b̃, b̃+ ε]∪B∗∗
s . Let g∗∗ denote
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the fraction of type γ banks under B∗∗
s . Since Ur = Un for all b ≤ b̌0s, we have∫

B′
Ur(g

∗∗, b)dF (b)+

∫
(0,1)\B′

Un(g
∗∗, b)dF (b) =

∫
B∗∗

s

Ur(g
∗∗, b)dF (b)+

∫
(0,1)\B∗∗

s

Un(g
∗∗, b)dF (b).

However, since ∆r −∆n < 0 for every b ∈ B̃, we have∫
B′
(∆r −∆n)(g

∗∗, b)dF (b) +

∫ 1

0

∆n(g
∗∗, b)dF (b) < 0.

Hence, B′ yields g′ < g∗∗ to an extent that p
1−p

<
(

g′

1−g′

)ρ
. Since both Ur and Un are

maximized at g∗ such that p
1−p

=
(

g∗

1−g∗

)ρ
, B′ yields a strictly higher welfare than B∗∗

s , a

contradiction.

Proof of Part (iii). Suppose to the contrary that Pr(b ∈ B∗∗
s \ [0, b∗∗s ]) = 0. Then we have∫

B∗∗
s

(∆r −∆n)(g
∗∗, b)dF (b) +

∫ 1

0

∆n(g
∗∗, b)dF (b) < 0,

which contradicts (63). Q.E.D.

There are some similarities between the main results in the alternative model and the

baseline model. First, the bias of the regulator’s information against state D significantly

reduces diversification in the financial system. To address this under-diversification problem,

the regulator should disclose her information when b is sufficiently low so that relatively scarce

type δ banks can be indirectly identified, and therefore, fund their project cheaply. Second,

the regulator should also optimally disclose the information to address the adverse selection

problem when b is sufficiently high.

Nevertheless, we still prefer the baseline model for two reasons. First, the main result

from the alternative model obtains only if ρ is relatively low, i.e., ρ < 1. In other words,

the outside investors should be necessarily assumed to have relatively small degree of risk

aversion. If ρ ≥ 1, the investors will counterintuitively lend to “good” banks even by paying

a hefty premium when b approaches 1 because there are too few good banks in the capital

market. By contrast, as was seen in Section 5.1, the main result generally holds under the

baseline model for ρ ≥ 1. We believe that the baseline analysis is more relevant because the

main result obtains for a wider range of ρ than the alternative model.
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Second, the positive effect of the regulator’s information on adverse selection vanishes

to zero as b converges to 1. This is because almost every “good” bank turns into a bad bank as

b goes to 1. This non-monotonicity of the welfare gains from disclosure adversely complicates

the analysis, making it difficult to characterize optimal policy in a simple way. In the baseline

model, however, we could characterize the optimal disclosure policy as a simple two-cutoff

structure. This analytical tractability also makes the baseline model more favorable.
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