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Abstract 

 

Using a comprehensive panel of 2,969,829 stock-day data provided by the Securities and 

Exchange Commission (MIDAS), we find that HFT activity in the stock market increases 

market-making costs in the options markets. We consider two potential channels – the hedging 

channel and the arbitrage channel – and find that HFTs' liquidity-demanding orders increase 

the hedging costs due to a higher stock bid-ask spread and a higher price impact for larger 

hedging demand. The arbitrage channel subjects the options market-maker to the risk of trading 

at stale prices. We show that the hedging (arbitrage) channel is dominant for ATM (ITM) 

options.  
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1. Introduction 

High-frequency trading (HFT) has materially impacted the dynamics of electronic 

markets. The extensive and growing literature examining the implications of HFT has 

predominantly focused on the within-market, mainly the stock market, quality effects of HFT.1 

Investigations into the cross-asset impact of HFT are limited. In this paper, we attempt to fill 

this gap by examining the impact of HFT in the stock market on the options market 

microstructure.2  Figure 1 shows the  time-series evolution of trading volume in the US equity 

and options markets. We see that from 1996 to 2020 the options market volume grew at an 

annualized compound rate of 15% compared to 11% for the stock trading volume.  

INSERT FIGURE 1 ABOUT HERE 

An increase in options trading volume has been observed alongside some notable trends 

and records in the last two years. For instance, for the first time in history, in 2020 the number 

of shares traded with options contracts was higher than the underlying stock market trading 

volume.3 Trading volume in the US equity options markets also hit a record high in two 

consecutive years in 20204 and 2021.5  Thus, we believe that studying the potential externalities 

imposed by HFTs in the stock market on the options market is timely and important. 

 

 
1 Hendershott et al. (2011), Brogaard et al. (2015), Van Kervel and Menkveld (2019) and Hagströmer and Nordén 
(2013) examine the effects on stock market liquidity; Kirilenko et al. (2017) and Lee (2015) investigate the impact 
in the futures market; Chaboud et al. (2014) and Jiang et al. (2014) focus on FX and fixed-income securities 
markets respectively. 
2 Throughout this paper, we use the phrase “high-frequency trading” or “HFT” to refer to HFT activity in the stock 
market, unless we explicitly indicate otherwise. The acronym HFT is used interchangeably to refer to high-
frequency traders and high-frequency trading. 
3 https://finance.yahoo.com/news/option-trading-volume-higher-underlying-
211006236.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=
AQAAAEDVmOUhGSccv7vJXLzChzsOdqv_dwRYGuoAr4To9lPwq1ho_ANZqf8yViK5YWjwDoNZAawTz

64F1XrmDdCFkag0FKL5OBmTJ1K0OvgXGljjm_wmfjPiDhIEsOjo3HMIO9sghsOBOjYIpvj9KrYsEGRvPPi
mhzoNXO1gxEtP0ZKS 
4 https://www.thetradenews.com/occ-clears-record-volumes-for-us-exchange-listed-options-in-2020/ 
5 https://www.reuters.com/article/us-usa-stocks-options-idUSKBN29K2OI 
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In this study, we specifically address the following questions: (i) How does HFT in 

stocks impact the liquidity of options written on these stocks? (ii) Does the effect vary by option 

moneyness? (iii) Do different HFT strategies affect options market liquidity differently? (iv) Is 

the effect exclusively via the stock liquidity channel, or is there a direct effect after controlling 

for stock liquidity?  

To answer these questions, we construct HFT measures by using the Securities and 

Exchange Commission’s (SEC) Market Information Data Analytics System (MIDAS) data and 

show that HFT activity in the equity markets is associated with a significant deterioration in 

liquidity (increase in quoted bid-ask spreads) in the options markets. On average, a one 

standard deviation increase in HFT activity is associated with a 4.27% (8.89%) higher 

proportional (dollar) bid-ask spread. To address potential endogeneity concerns between the 

options market spread and stock market HFT, we employ a two-stage least squares (2SLS) 

instrumental variable (IV) approach by using two different sets of instruments. First, we follow 

Lee and Watts (2021) and use the randomized experiment of tick size changes launched by the 

SEC as an instrument for the level of HFT (Hagströmer & Nordén 2013 also employ tick size 

change as an exogenous shock on HFT). Second, following Hasbrouck and Saar (2013), we 

instrument the level of HFT in a stock-day with the average level of HFT on that day in all 

other stocks in the same market size quintile. Our results remain robust to both approaches. 

The consistency between the 2SLS IV approach and the fixed effects OLS regression confirms 

that the relationship between HFT and options market liquidity can be interpreted causally.  

We then propose two channels to explain the relationship between HFT and options 

liquidity: (i) the hedging channel; and (ii) the arbitrage channel.  The hedging channel is based 

on HFT activity in the stock market, affecting the option market bid-ask spread through its 

effect on option market-makers’ hedging costs. Black and Scholes (1973) show that option 

market-makers can perfectly hedge their exposure by acquiring an offsetting position in the 
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underlying asset and continuously rebalancing their portfolio to ensure it remains delta-neutral. 

However, due to friction and market imperfections, they can only imperfectly hedge their 

positions. Consequently, they require compensation for the transaction costs and the risks 

associated with imperfect hedging of their exposure (see Cho & Engle 1999; Kaul et al. 2004; 

Wu et al. 2014).6  

Boyle and Vorst (1992) and Cho and Engle (1999) demonstrate that option market-

makers’ hedging costs are proportional to the stock market bid-ask spread (see also Kaul et al. 

2004). This implies that the hedging channel leads to two opposing predictions regarding the 

impact of HFT on the options spread. On the one hand, options market-makers can more 

precisely hedge their exposure at lower cost if liquidity in the underlying stock market 

improves. This is likely when liquidity-supplying HFT activity is high, as argued by 

Hendershott et al. (2011) and Brogaard et al. (2015). On the other hand, if liquidity is lower in 

the underlying stock market, options market-makers will likely quote wider spreads due to 

increased costs of hedging their exposure and keeping their positions partially unhedged by 

reducing the rebalancing frequency. The arbitrage and momentum/directional strategies 

employed by HFT firms rely on aggressive trades and are harmful to the overall market 

liquidity (see Budish et al. 2015; Foucault et al. 2016; Foucault et al. 2017).  

Kaul et al. (2004) and Engle and Neri (2010) show that the transaction costs of hedging 

are due to setting up and unwinding the initial hedge and rebalancing costs. At-the-money 

(ATM) options have high rebalancing costs due to their high gamma. In-the-money (ITM) 

options have the highest absolute delta and high costs of initially setting up and unwinding the 

hedge. By contrast, out-of-the-money (OTM) options have the lowest delta and gamma, and, 

therefore, the hedging cost is relatively lower in these options. Above discussion suggests that, 

 
6 Leland (1985) and Boyle and Vorst (1992) develop alternative discrete-time option replication strategies in the 
presence of transaction costs.   
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if the hedging channel indeed explains the association between HFT and the cost of options 

market-making, then the impact of HFT activity in the underlying market on options spreads 

should be higher for ATM and ITM options.  

 The arbitrage channel relates to violations of the put-call parity relationship from the 

asynchronous adjustment in stock and option prices. These “toxic” arbitrage opportunities, to 

the extent that they are driven by a delay in incorporating information into stock and option 

prices, will induce market-makers to post wider quotes to protect against adverse selection 

losses (see Budish et al. 2015; Foucault et al. 2017). The short-lived nature of such arbitrage 

opportunities requires arbitrageurs to rely on aggressive orders in the stock (see Kozhan & 

Tham 2012). Options market-makers are particularly exposed to such toxic arbitrage losses due 

to the exchange-imposed caps on the number of quote updates and fines on traders with higher 

message-to-transaction ratios (see Muravyev & Pearson 2020). These restrictions severely 

limit the options market-makers’ ability to update their quotes in response to new information. 

In addition, liquidity-consuming HFTs engaging in cross-market arbitrage strategies may 

exploit violations of the put-call parity relation by sniping stale quotes in the options market. 

Hence, aggressive HFTs can expose options market-makers to the options market risk of 

trading at stale quotes. Notably, Halpern and Turnbull (1985) and Galai (1978) observe that 

violations of the put-call parity relationship are more frequent for ITM options. Thus, if the 

arbitrage channel is the dominant channel to explain the relationship between HFT and the cost 

of options market-making, then the impact of HFT on the options spread should be higher for 

ITM options and should be weakened on days without information.  

To test the hedging and arbitrage channels, we first examine whether the effects of HFT 

on options spreads vary by three moneyness groups: (i) ATM, (ii) ITM, and (iii) OTM options. 

While the results are statistically significant in all moneyness groups, consistent with the 

arbitrage and hedging channels, the economic magnitudes of the impact are relatively higher 
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for ATM and ITM options. However, it is important to note that our main data (the SEC’s 

MIDAS data) does not allow us to directly test the hedging and arbitrage channels. The direct 

testing of the hedging and arbitrage channels requires us to use more granular HFT data; it is 

necessary to disaggregate HFT activity into aggressive and passive trades to test these channels. 

The MIDAS data only allows us to construct a general measure of HFT. Therefore, we employ 

proprietary HFT data provided by NASDAQ to further test the hedging and arbitrage channels. 

Unfortunately, this data is only available for 2009, but, due to its granularity, it complements 

the MIDAS data that covers a much longer period: 2012-2019.  

We conduct two additional tests using NASDAQ’s proprietary data. In the first 

analysis, we find that after controlling for the stock market bid-ask spread, the impact of 

liquidity-consuming HFT activity on options spread remains positive and significant for ATM 

and ITM options. Specifically, a one standard deviation increase in aggressive HFT activity 

increases ATM options proportional (dollar) spreads by about 5.71% (13.89%).7 For ITM 

options, a one standard deviation increase in aggressive HFT activity is associated with a 

+6.22% (+9.66%) change in the proportional (dollar) options market spread. Importantly, the 

association between aggressive HFT activity and ITM options spreads is weakly statistically 

significant, while the economic magnitude is quite high. Finally, the results are insignificant 

for OTM options. These findings are consistent with the predictions of the hedging and 

arbitrage channels. 

In the second analysis, we further isolate the arbitrage channel by identifying and 

excluding days involving the release of firm-specific news from our sample. We observe that 

the impact of aggressive HFT on ITM options spread becomes insignificant. On the other hand, 

for ATM options, while the magnitude of the effect decreases by about 19% for proportional 

 
7 The estimates based on the NASDAQ proprietary data are similar to the estimates we obtain from the longer 
panel based on the SEC-MIDAS data (4.27% (8.89%) for the proportional and (dollar) spreads).  
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spread, the relationship remains significant. These two tests indicate that the hedging 

(arbitrage) channel predominantly explains the relationship between aggressive HFTs, and 

options market spread for ATM (ITM) options. However, we caution against over-

interpretation of this particular result because the NASDAQ HFT data has two important 

limitations. First, it only covers 103 randomly-selected stocks for the year 2009. Second, the 

data includes HFT activity in the NASDAQ only. We also find that the economic magnitude 

of the impact of HFT on options spreads is substantial in ITM contracts when we use the 

MIDAS HFT data, which covers most of the US-listed common stocks and the period of 2012 

to 2019. Therefore, we believe that the association between HFT and ITM options spreads is 

likely due to both hedging and arbitrage channels. 

Interestingly, the effect of liquidity-providing HFT activity on options spread is not 

statistically significant. We show that this is because 100% of passive HFT trades’ effect on 

options market spread is captured by the bid-ask spread in the stock market. Conversely, 75% 

of the impact of aggressive HFT activity on spreads in the options market is direct and unrelated 

to the stock market bid-ask spread. This is likely due to several factors: the bid-ask spread-

capturing transaction costs for small(er) orders due to the limited depth available at the best 

quotes, the predictability of options market makers’ hedging demand, options market-makers 

employing order-splitting algorithms to execute large hedging trades, and aggressive HFTs 

engaging in predatory trading (see Brunnermeier & Pedersen 2005). 

 Our findings offer insights into the role of HFTs in explaining the cross-asset market 

microstructure dynamics between the stock market and the options market. To the best of our 

knowledge, this study is the first to provide evidence on the direct impact of various strategies 

used by HFTs on the options spread. In a recent study, Kapadia and Linn (2019) use the Glosten 

and Milgrom (1985) framework to develop a model of trading in the primary market (stock) 

and a derivative market (option). The model is used to relate the bid-ask spread in the options 
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market to the volatility of the bid-ask spread in the stock market via a synthetic stock based on 

put-call parity. The authors use a glitch in Knight Capital’s trading platform that erroneously 

executed a large number of small orders for a selected number of stocks. While the glitch 

increased uninformed order flow, it also resulted in persistent liquidity-related uncertainty. The 

study finds that options spreads widened among impacted stocks and remained wide for a 

quarter of an hour after the broker-dealer fixed the glitch in their computer system.  

Our study also examines how low-latency traders (HFTs) in the stock market impact 

on the options spreads. While Kapadia and Linn (2019) analyze the effects of stock market 

quote uncertainty on the options market spread, we focus directly on the impact of HFTs on 

options spreads by using comprehensive HFT data. Due to the rich and granular MIDAS and 

NASDAQ HFT datasets, our study provides direct evidence of the negative impact of HFT on 

options market-making. While HFTs may cause uncertainty in the underlying stock liquidity, 

this is not solely driven by HFTs. Thus, the uncertainty in liquidity is not necessarily a proxy 

for HFT activity and is not commonly used in the literature. Nevertheless, for robustness, we 

control for the volatility of the stock bid-ask spread by including it as an explanatory variable, 

and we obtain the same results (see Table A.1).   

The focus of our study is also related to the work of Mishra et al. (2012), one of the 

first studies to examine the impact of automation on options markets. Mishra et al. (2012) use 

high-frequency data sourced from the Options Price Reporting Authority (OPRA), and show 

that automation reduces bid-ask spreads and increases liquidity in options markets. Our study 

differs from theirs in at least two ways. First, they focus on the impact of automated trading on 

option liquidity. While HFT strategies require automated trading, HFTs are only a subset of all 

the traders on the automated trading platform, and they have different impacts on market 

dynamics. Second, and most importantly, Mishra et al. (2012) investigate the relationship 

between option liquidity and option automated trading. However, as discussed, liquidity in 
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options markets is also determined by equity market dynamics (see Cho & Engle 1999). Since 

HFTs are one of the most important drivers of equity market liquidity, it is expected that the 

options spread will also be impacted by HFT activity in the underlying market.  

Although HFTs use both market-making and speculative trading strategies in the stock 

market, it is widely accepted that the majority of them (about 80%) follow the market-making 

strategy, implying that the adverse-selection-avoidance channel dominates the picking-off 

channel in this market (see Hagströmer & Nordén 2013; Menkveld 2013). In this context, if 

HFTs predominantly engage in market-making in the options market as well, then our results 

suggest that liquidity-demanding HFTs in the stock market will increase the costs of liquidity-

supplying HFTs in the options market. As such, this study provides a complementary 

perspective to that of Menkveld and Zoican (2017), who show that speculative HFTs impose 

adverse-selection costs on market-making HFTs. Focusing on the stock and options markets, 

we find that this is also the case in the cross-market setting. 

In other related literature, studies examine the effects of various market microstructure 

determinants of the options spread. Easley et al. (1998) propose a model where informed 

traders choose between stock and options markets based on the relative transaction costs in the 

markets and the “bang-for-buck” in the form of leverage afforded by the options market. The 

authors conclude that, depending on the relative transaction costs in the markets, there can be 

a separating equilibrium where informed traders only trade in the stock market, or a pooling 

equilibrium where informed traders trade in both markets. Subsequent empirical work that 

focused on informed trading in these two venues has largely supported the model’s theoretical 

predictions. For example, Cao et al. (2005) find informed options trading before takeovers. Hu 
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(2014) provides evidence of an information channel by documenting that the options market-

makers’ initial delta hedging strategy is reflected in stock prices.8 

Roadmap: The remainder of this paper is organized as follows. In Section 2, a 

description of the data is provided. Section 3 presents the estimation approaches, and Sections 

4 and 5 provide the estimation results. Section 6 outlines the conclusion. 

 

2. Data and Variable Construction 

2.1. Data Sources 

We compile data from several sources. The Securities and Exchange Commission’s 

Market Information Data Analytics System (MIDAS) data is used to construct HFT proxies.  

The SEC offers MIDAS data to promote investigations on the US equity markets structure.  

The MIDAS collects data across all major US exchanges since 2012, and it includes the 

following variables: lit trade and order volume, hidden trade and order volume, odd lot trade 

and order volume, and counts of cancellations (full or partial) for each day. The dataset covers 

over 5,570 stocks and 2,730 exchange-traded funds.   

End-of-the-day option bid and ask prices, trading volumes, Greeks, and implied 

volatilities are obtained from OptionMetrics. Greeks and implied volatilities are computed by 

using a binomial tree where an interest rate is constant. We obtain options data for all US-listed 

common stocks from 2012 to 2019 as MIDAS data is available from 2012 only. Our sample 

does not include 2020 due to the Covid-19-induced volatility. We follow the existing literature 

and exclude long-term options, i.e., those with maturities greater than 180 days. This allows us 

to restrict our analysis to the most actively traded options contracts, i.e., options contracts with 

higher trading volume (see Brenner et al. 2001; Christoffersen et al. 2017). There are over 1 

 
8 Pan and Poteshman (2006), Ni et al. (2008), Cremers and Weinbaum (2010), Ge et al. (2016) and Collin-
Dufresne et al. (2020) document the role of options markets in the price discovery process, which is consistent 
with the information channel. 
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billion option transactions in the final sample, and the total nominal and USD volumes of these 

transactions are approximately 28.7 billion and 73.9 billion USD respectively.  

Daily ask, bid, and trading prices are obtained from the Center for Research in 

Securities Prices (CRSP) dataset. The main analysis includes all CRSP common stocks 

matched in the MIDAS and OptionMetrics databases. The resulting sample has 2,746 unique 

securities and 2,969,829 security-day observations.   

 

2.2. Variable Construction 

We construct five HFT measures from the MIDAS data. Our first proxy is the ratio of 

the quote-to-trade volume (see Hendershott et al. 2011), 𝑄𝑇𝑖,𝑑,  which is computed as the sum 

of order volume for all order messages divided by the sum of trade volume for all trades that 

are not against hidden orders. The second HFT measure is the cancel-to-trade ratio, 𝐶𝑇𝑖,𝑑, or 

the number of all cancel messages (full or partial) divided by the number of trades (see Weller 

2018). The third (fourth) HFT proxy is the odd lot rate (odd-lot volume), 𝑂𝑅𝑖,𝑑 (𝑂𝑉𝑖,𝑑), which 

is calculated as the number of odd lot trade messages (odd lot trade volume) divided by the 

number of all trade messages (trade volume) (see O'Hara et al. 2014).9 The final HFT measure 

is the inverse of the average trade size, 𝐼𝑇𝑆𝑖,𝑑, or the number of trades divided by the number 

of shares traded (see Conrad et al. 2015). 

 Consistent with the literature, we measure option liquidity using bid-ask spreads (see 

as an example, Muravyev & Pearson 2020). Our liquidity proxies are the proportional quoted 

spread, computed as the difference between the ask and bid prices divided by the midpoint and 

the dollar quoted spread, which equals the difference between the ask and bid prices for each 

options transaction. Options contracts with various characteristics (different maturities and 

strike prices) are traded for each stock and day. As a result, for each stock, we observe multiple 

 
9 Odd lots are trades that have a volume of less than 100 shares. 
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bid-ask spreads during the day. Given that our main analysis is based on panel regressions at a 

daily frequency, we follow Muravyev and Pearson (2020) and compute the daily proportional 

spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) and dollar spread (𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) as the dollar-volume-weighted 

average of all spreads for stock i and day d. 

Apart from the variables mentioned above, we employ several control variables to 

capture stock and options market dynamics. Our options market variables are the options 

volume (𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 ), implied volatility (𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 ), absolute option delta (|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|), 

option vega (𝑂𝑣𝑒𝑔𝑎𝑖,𝑑), and option gamma (𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑). The 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 is the natural 

logarithm of the daily trading volume (contracts) for each stock i and day d. OptionMetrics 

provide the implied volatility and option Greeks. Similar to options market spread measures, 

we compute the daily 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑, and 𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑 as the dollar-

volume-weighted averages of all implied volatilities, absolute deltas, vegas, and gammas for 

stock i and day d. We use the absolute value of delta as call and put options and have different 

signs for deltas, i.e., a call option delta is positive, while delta is negative for put options.  

We employ the following variables to control for stock market activity: stock spreads 

(𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑), and stock price volatility (𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑). 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 

(proportional) and 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (dollar) are computed using the best-ask and bid prices for 

each stock and day. Specifically, 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is computed as the difference between the best-

ask and bid prices for stock i and day d, divided by the midpoint of the two prices on the same 

day. 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  is the difference between the best-ask and bid prices for stock i and day d. 

𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 is the absolute difference between the last transaction prices for stock i on days 

d and d-1.  

INSERT TABLE 1 ABOUT HERE 

 Table 1 provides an overview of all the variables and their computation methods.  
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2.3. Descriptive Statistics 

Table 2 provides descriptive statistics for the 2,746 stocks in the full sample and 1,235 

stocks in the tick size pilot sample and their listed options (see Section 3.2 for detailed 

information on the tick size pilot sample). We winsorized all variables at the 1st and 99th 

percentile values.  

INSERT TABLE 2 ABOUT HERE 

Panel A reports the summary statistics for the underlying stock market variables. For 

the full sample, the average 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) is 0.11% (0.02 USD), which is lower 

than the average 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) by a factor of approximately 310 (22.5). 

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 are higher for the tick size pilot sample. This is expected as 

relatively small and illiquid stocks are included in the Tick Size Pilot Program (see Chung et 

al. 2020).  

 Panel B reports the summary statistics for the options market variables for the full 

sample and the three moneyness groups (ATM, OTM, and ITM) based on the classification 

provided by Bollen and Whaley (2004). We define OTM options as those with absolute option 

delta |∆| ≤ 0.375, ATM options as those with 0.375 < |∆| ≤ 0.625, and ITM options as those 

with |∆| > 0.625. For ATM options, the average 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 are 21.64% 

and 0.38 USD respectively. 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  increases as we move from OTM (0.27 USD) to ITM 

(0.62 USD) contracts. This is not surprising as ITM (OTM) contracts have higher (lower) 

prices. Wei and Zheng (2010) also show that the dollar spread is higher for options with higher 

prices. By contrast, 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 increases as we move from ITM (15.73%) to OTM (52.10%) 

contracts. Wei and Zheng (2010) link this to leverage; in particular, they argue that option 

contracts with higher leverage (OTM contracts) attract more informed traders and are 

associated with a higher spread. ATM options have the highest 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 and 
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𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑. This is expected as these contracts are the most active. Consistent with the equity 

market spreads, the options spreads are higher for the tick size pilot sample.   

 

2.4. Correlation Between Control Variables and Dependent Variables 

We use several variables as controls for the stock and options spread regression models. 

The options market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 and 

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑, and the stock market variables are 𝑆𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖 ,𝑑. To show that 

the selected control variables are indeed valid and capture the important variation in options 

spreads, we first estimate the association between these control variables and options spreads.  

INSERT TABLE 3 ABOUT HERE 

Table 3 reports the correlation between the control variables and dependent variables 

used in the study. The estimates suggest that the associations between control variables and 

options spreads are significant and in line with the relevant literature. For instance, 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑  

is negatively correlated with options spreads, suggesting that a higher trading volume means 

higher liquidity. Consistent with Cho and Engle (1999) and Engle and Neri (2010), we also 

find that the stock spread is positively and significantly correlated to the options spread, 

implying that the stock spread is a significant determinant of the options market liquidity.   

 

3. Estimation Approaches 
 

3.1. Fixed Effect Estimation 

We begin testing the impact of HFT on the options spreads by estimating the following 

fixed-effect models: 

                 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝐻𝐹𝑇𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
7
𝑘=1 + 휀𝑖,𝑑                                   (1) 

where 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 corresponds to either the proportional spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) or the dollar 

spread (𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑), and 𝐻𝐹𝑇𝑖,𝑑 corresponds to one of the five HFT proxies (𝑄𝑇𝑖,𝑑, 
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𝐶𝑇𝑖,𝑑, 𝑂𝑅𝑖,𝑑,  𝑂𝑉𝑖,𝑑,  𝐼𝑇𝑆𝑖,𝑑). The  𝛼𝑖 and 𝛽𝑑 are stock and time (day) fixed effects. Standard 

errors are double clustered on stock and day.10 The 𝐶𝑘,𝑖,𝑑 is a set of k control variables, including 

variables from both the options and underlying markets. The options market variables are 

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑, and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑, and the stock market 

variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (when we employ 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the dependent variable), 

𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (when we use 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the dependent variable), and 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖 ,𝑑. All 

these variables are defined in Table 1. 

 

3.2. Two-stage Least Squares (2SLS) Instrumental Variable (IV) Approach 

The presence of HFT in the stock markets and option bid-ask spreads could be 

determined by unobserved common factors, implying they are jointly endogenous. To address 

these potential endogeneity concerns, we estimate the following 2SLS IV approach:  

                 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝐻𝐹𝑇𝑖,𝑑̂ + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
7
𝑘=1 + 휀𝑖,𝑑                                   (2) 

                        𝐻𝐹𝑇𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
7
𝑘=1 + 휀𝑖,𝑑                                         (3) 

where 𝐻𝐹𝑇𝑖,𝑑̂  is the fitted values of 𝐻𝐹𝑇𝑖,𝑑 obtained by regressing 𝐻𝐹𝑇𝑖,𝑑 on 𝐼𝑉𝑖,𝑑. We use two 

different sets of instruments for robustness. Our first instrument is based on tick size changes 

(see Hagströmer & Nordén 2013). We follow Lee and Watts (2021) and employ the 

introduction of the Tick Size Pilot Program as an exogenous shock on HFT. In October 2016, 

the SEC launched a two-year pilot program to investigate the effect of increased tick size on 

market quality. The pilot program consists of treatment and control groups of 1,200 randomly 

selected stocks each. The treatment securities are split into three treatment groups, each group 

subject to different changes. The stocks that are included in the first treatment group must be 

quoted in 5 cent increments. In addition to being subject to the increments in tick size applying 

 
10 Double-clustered standard errors are used in all subsequent models. 
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to the first group, the stocks in the second treatment group must be traded in 5 cent increments. 

The stocks in the third treatment group have the same quoting and trading rules as the second 

treatment group. However, they are also subject to the “trade-at” rule: orders must not be 

executed in dark venues for these stocks unless there is a meaningfully better price in dark 

markets. The tick size sample includes all stocks in the Tick Size Pilot Experiment matched in 

the MIDAS and OptionMetrics databases. The resulting sample has 1,235 unique securities 

(617 control and 618 treated stocks) and 640,306 security-day observations.   

We follow Lee and Watts (2021) and Chung et al. (2020) and use these three groups as 

our treatment group. The Tick Size Pilot Program commenced gradually from October 3, 2016, 

with all treatment firms included by the end of October; the program was implemented over 

the next two years. Thus, for the treatment stocks, 𝐼𝑉𝑖,𝑑 is a dummy variable that takes the value 

of one after the change (from October 3, 2016 to September 28, 2018) and zero before (from 

October 1, 2014 to October 2, 2016). For the control stocks, 𝐼𝑉𝑖,𝑑 equals zero during the sample 

period (from October 1, 2014 to September 28, 2018). Given that we include matched samples 

of stocks into the first-stage model, the estimation results of the second-stage model effectively 

give us a difference-in-differences estimate (see Malceniece et al. 2019). 

While the change in tick size is used as an exogenous shock on HFT in the relevant 

market microstructure literature (see Hagströmer & Nordén 2013; Lee & Watts 2021), it is not 

a perfect setting. The main concern with this identification strategy is that the tick size changes 

do not only influence the amount of HFT. For instance, Albuquerque et al. (2020) show that 

an increase in tick size led to increased transaction costs (see also Chung et al. 2020). Thus, 

the changes in tick size in equity markets can affect options spreads through a direct impact on 

the transaction costs in the equity markets. Although we control the stock spread in our first 

and second stage models to address this issue, we employ an additional instrument as our 

second identification strategy for robustness. We follow Hasbrouck and Saar (2013) and 
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instrument the level of HFT in a stock-day with the average level of HFT on that day in all 

other stocks in the corresponding size quintile (see also Comerton-Forde & Putniņš 2015). This 

variable meets the requirements for an instrument for two reasons. First, the level of HFT in 

other stocks is correlated with the level of HFT in a particular stock. Second, HFT in other 

stocks is unlikely to be driven by the nature of liquidity in options on a particular stock. This 

instrument alone is sufficient for identification; however, we follow Foley and Putniņš (2016) 

and include the first lag values of the dependent variable (HFT measures) as an additional 

control variable in the first-stage regression.  

 

4. Estimation Results 

4.1. The Impact of HFT on Options Spreads 

The estimation results of Equations 1 and 2 are presented in Table 4.  

INSERT TABLE 4 ABOUT HERE 

The first-stage results of the 2SLS IV approaches are reported in the Appendix (see 

Table A.2). Overall, our selected instruments are significantly correlated with all HFT 

measures, and the signs of the associations are as expected. We scale all independent variables 

by their standard deviation as this allows us to directly estimate the economic significances of 

the effect (see Foucault & Fresard 2014). Column 1 presents the results of the standard OLS 

approach with stock and day fixed effects, while Columns 2 and 3 report the results for the 

2SLS IV approach. Overall, we see that HFT in the underlying markets is positively related to 

the options spreads. This suggests that HFTs play a negative role in options market liquidity. 

The results are remarkably consistent across various HFT proxies and specifications. 

Consistency between the OLS and 2SLS IV methods allows us to establish a causal link 

between HFT and the options spread while ruling out endogeneity concerns.  

The magnitude of the impact is economically significant as well. For example, 

estimates using the standard OLS approach with stock and day fixed effects show that, on 
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average, a one standard deviation increase in HFT increases 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  and 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 by 

8.89% and 4.27% respectively. This means that, for the average 

option, 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ) will increase from 0.45 USD (34.97%) to 0.49 USD 

(36.46%). The economic magnitudes of the 2SLS IV estimates depend on which set of 

instruments is used. When we use the average HFT of the other stocks in the same size quintile 

as our instrument in the 2SLS-IV, the economic effects are even greater in magnitude. A one 

standard deviation shock on HFT raises 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  and 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 by 14.22% and 6.46% 

respectively. However, when we use the changes in tick size as an instrument, a one standard 

deviation increase in HFT is associated with a +3.30% and +2.98% change in 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  

and 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  respectively. As seen, tick size results are lower than those of other 

specifications. This is because only small stocks are included in the Tick Size Pilot Program. 

This is a plausible explanation as Brogaard et al. (2014) show that  HFTs are less active in 

small stocks.    

In this paper, we employ five HFT measures and three different model specifications 

to investigate the relationship between HFT and options spread. Hence, we believe that these 

estimations are sufficient to isolate the effects of HFT on options spread. Nevertheless, the 

results can still be driven by some common factors that drive both HFT and options spread. To 

rule out this concern, we include several control variables in Equation 2.  

We also want to specifically discuss one of these common factors: stock market 

volatility. The stock market volatility is one of the determinants of HFT trading volume (see 

Brogaard et al. 2014). Furthermore, as reported in Table 3, volatility is an important 

determinant of options liquidity. The implication is that our model may capture the impact of 

stock market volatility on both HFT and options spreads rather than the association between 

HFT and options spreads. While we are controlling for absolute price changes – one of the 

common volatility measures in the literature (see Karpoff 1987) – in Equation 2, we conduct 
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some moderation tests to further strengthen the interpretation of our results. Specifically, we 

estimate two additional models. We first test the association between HFT and stock realized 

volatility (where the realized spread is measured as the variance estimates based on the returns 

calculated using the midpoint of the quoted bid and ask prices at every second during the 

trading hours). Second, we examine the association between HFT and options spread after 

controlling for both the absolute value of price changes and the realized volatility. The 

estimation results are reported in the Appendix section (Tables A.3 and A.4). Two points stand 

out. First, although the association between HFT and the realized spread is statistically 

significant, the signs of the association are not consistent across different HFT measures and 

specifications. Second, and importantly, the effects of HFT on options spread are statistically 

significant even after controlling for the realized volatility. These results suggest that volatility 

does not drive our results.  

 The results provided in Table 4 show the average effects (across firms and years) of 

HFT on options spread, suggesting that the estimations can mask time variation in the effects. 

Hence, to further understand the time variation in the association between HFT and options 

spread, we estimate Equation 2 year-by-year.   

INSERT FIGURE 2 ABOUT HERE 

 Figure 2 displays the yearly estimates of 𝛾1. For 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ), the 

associations between HFT (measured by 𝑄𝑇𝑖,𝑡 ) and options spread are significant in seven (six) 

of eight years. The results suggest that, overall, the effect of HFT on options spreads is 

persistent across the years. 
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4.2. The Impact of HFT on Options Spreads by Moneyness 

To further study the impact of HFT on options spreads and understand the channels 

through which HFT impacts options spreads, we split our sample into moneyness groups and 

estimate Equations 2 and 3 for each group.  

INSERT TABLE 5 ABOUT HERE 

Table 5 presents the estimation results for ATM, ITM, and OTM options respectively. 

Similar to the results reported in Table 4, there is a positive and significant relationship between 

HFT and options spreads across the three moneyness groups in most specifications. There are 

a few exceptions for the OTM options. Specifically, for two HFT proxies (𝑂𝑉𝑖,𝑡 and 𝑇𝑆𝑖,𝑡), the 

impact of HFT on 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 is negative when we use the standard OLS approach. 

Nevertheless, the results show that the impact of HFT on the options market-making is robust 

and persistent. In addition to the statistical significance of the results, we also study the 

economic significance among different moneyness groups.  

INSERT TABLE 6 ABOUT HERE 

Table 6 presents the economic magnitudes of the effect of HFT on options spreads for 

the full sample and three moneyness groups. Two observations stand out. First, as discussed 

above, the magnitude of the increase in options spreads is economically meaningful. Second, 

and more importantly, the magnitudes of the impact of HFT on options spreads differ based on 

the moneyness of the options contract. In all specifications, the economic magnitude is higher 

for ITM (17.10% for 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 and 6.80% for 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ) and ATM (6.32% for 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 and 7.55% for 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ) options in comparison to OTM options (3.93% for 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 and 0.91% for 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ). We conjecture that this finding is important as it 

may give us insights into the channels that drive the HFT option market-making relationship. 

 As suppliers of immediacy, market-makers in equity markets face adverse selection, 

inventory holding, and order-processing costs. Cho and Engle (1999) and Kaul et al. (2004) 
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argue that, in addition to adverse selection, inventory holding, and order-processing costs, 

hedging costs play an important role in determining options spreads. Battalio and Schultz 

(2011) show that options market-makers’ exposure to adverse selection and inventory risks is 

typically larger. First, the options market-makers’ inventory positions can be highly volatile 

due to the implicit leverage in options contracts and uncertainty relating to stock return 

volatility (see also Jameson & Wilhelm 1992). Second, the options market-makers have limited 

control over their inventory positions due to options market dynamics. For example, traders 

are more likely to write call options than buy them, while they use buy and sell orders relatively 

evenly in equity markets (see Lakonishok et al. 2007). For these reasons, options market-

makers hedge their inventories by taking an offsetting position in the underlying cash market.  

In a discrete time setting, options market-makers’ hedging costs consist of two 

components: the cost of setting up and liquidating the initial delta-neutral position and the cost 

of continuously rebalancing the portfolio and maintaining a delta-neutral position (see Jameson 

& Wilhelm 1992; Cho & Engle 1999; Kaul et al. 2004; Engle & Neri 2010). Kaul et al. (2004) 

show that to the extent that options market-makers employ market orders to hedge their 

inventories, their hedging costs are proportional to the stock market bid-ask spread. In addition 

to the bid-ask spread, the rebalancing component of the hedging costs is positively related to 

the volatility of the underlying asset and the sensitivity of the option to changes in underlying 

volatility (𝑜𝑝𝑡𝑖𝑜𝑛 𝑣𝑒𝑔𝑎, 𝜈) is inversely related to the revision interval. 

The magnitude of the options market-makers' hedging costs differs by the moneyness 

of the options contract. For example, ITM options have the highest absolute delta and hence 

the highest cost associated with the setup and unwinding of the initial hedge. On the other hand, 

ATM options have the highest gamma and vega, and hence the market-makers’ positions in 

these contracts need to be rebalanced/hedged much more frequently (see Kaul et al. 2004). 

Consequently, ATM options have higher rebalancing costs than ITM and OTM options, and 
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ITM options have higher setup and unwinding costs for the delta-neutral position than ATM 

and OTM options (see Wu et al. 2014). This suggests that OTM options have the lowest initial 

and rebalancing hedging costs. Notably, as reported in Table 6, we also find that the economic 

magnitudes of the impact of HFT on options spreads are the lowest for the OTM contracts, 

suggesting that the hedging channel is a plausible explanation for our findings on the impact 

of HFTs on options spreads.  

The hedging channel discussed above may not be the only channel through which HFT 

activity in the stock market affects options market spreads. The payoffs of a stock and its listed 

option contracts are correlated through put-call parity. This parity relationship states that a 

portfolio that consists of a short put option and a long call option – both with the same strike 

price and maturity date – will have the same return as holding a forward contract with the same 

strike price and maturity. If this relationship does not hold, there will be a violation of the law 

of one price, implying the existence of an arbitrage opportunity between the stock and options 

markets (see Galai 1978; Halpern & Turnbull 1985; Ofek et al. 2004).11  

Options market-makers are particularly exposed to such toxic arbitrage losses as the 

exchange-imposed caps on the number of quote updates and fines on traders with higher 

message-to-transaction ratios (see Muravyev & Pearson 2020) severely limit the options 

market-makers’ ability to update their quotes in response to new information. Therefore, 

liquidity-consuming HFTs engaging in cross-market arbitrage strategies may exploit the put-

call parity relation violations by sniping stale quotes in the options market. Halpern and 

Turnbull (1985) and Galai (1978) observe that the frequency of profitable put-call parity 

violations in ITM contracts is due to the prices of such options following stock prices very 

closely and the resulting difficulty in keeping the option and stock prices arbitrage-free in these 

 
11 In the case of American options, the above-mentioned put-call parity relation is typically expressed as an 
inequality due to the early-exercise premium of American calls and puts. 
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contracts. Consistent with these findings, our results also suggest that the impact of HFT on 

options spread (especially for the dollar spread) is relatively higher for ITM options. Thus, the 

arbitrage channel might also be a potential channel to explain the association between HFT 

and options spreads.   

The main implication of the hedging and arbitrage channels is that they predict 

heterogeneity in the impact of various HFT strategies (liquidity-supplying and -demanding) on 

options spreads. In the hedging channel, HFT activity in the stock market likely affects options 

market-makers’ hedging costs by affecting the stock bid-ask spread. On the one hand, liquidity-

supplying HFTs in the stock market rely on their speed advantage to better manage the adverse-

selection and inventory-holding risks (see, as an example, Brogaard et al. 2015). On the other 

hand, liquidity-consuming HFTs may pick off slower traders and impose adverse-selection 

costs on liquidity providers (see, as an example, Shkilko & Sokolov 2020). The resulting 

impact on the bid-ask spread may affect the options market-makers’ hedging costs positively 

or negatively depending on the underlying strategy employed by the HFT firms.  

Further, the bid-ask spread may not fully capture options market-makers’ hedging costs 

as it only captures transaction costs for small orders. Lee (2008) estimates that more than half 

of the orders in the options markets originate from institutional investors. This, combined with 

the fact that options market-makers typically hedge their entire inventory of options, may 

induce them to employ more complex execution strategies involving the use of limit and market 

orders and order-splitting algorithms to minimize their transaction costs. Market-making HFTs 

may be more willing to supply liquidity to options market-makers due to their uninformed 

nature and the ability of HFTs to continuously reprice their orders. On the other hand, the 

predictability of options market-makers’ hedging demand can allow liquidity-consuming HFTs 

to exploit the intraday (temporary) price impact generated by options market-makers’ hedging 

demand (see Van Kervel & Menkveld 2019; Yang & Zhu 2020).  
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In the arbitrage channel, liquidity-demanding HFTs engaging in “toxic” arbitrage 

strategies may expose dealers to the risk of trading at stale quotes and force them to charge a 

larger bid-ask spread in options markets. Given that HFTs’ liquidity-demanding and -supplying 

strategies are expected to have different effects on options spreads via the hedging and arbitrage 

channels, testing this hypothesis requires us to use more granular HFT data. More explicitly, 

we need to deconstruct HFT activity into liquidity-demanding and -supplying components. 

Unfortunately, the SEC’s MIDAS data is not granular at this level. The MIDAS supplied 

proxies are general measures of HFTs and include the effects of both liquidity-demanding and 

liquidity-supplying HFT activities. Therefore, in the next section, we employ a more granular 

dataset – the NASDAQ HFT dataset – to test these two channels.  

 

5. Heterogenous HFT Strategies and their Impact on Options Spread: Hedging and 

Arbitrage Channels 

 

5.1. Description of the NASDAQ HFT Data 

The NASDAQ HFT dataset is used to analyze the two proposed channels (hedging and 

arbitrage) to explain the role of HFTs in options market-making. This data contains transactions 

for 120 randomly selected NASDAQ and NYSE-listed stocks trading in 2009. The dataset 

stamps transactions into those initiated by HFTs and non-HFTs.12 The following variables are 

included: date, time (in milliseconds), trading volume, price, buy-sell indicator, and the 

liquidity nature of the two sides to each trade (HH, HN, NH, and NN). HH refers to a trade in 

which both liquidity-providers and -takers are HFTs. HN (NH) implies that an HFT (a non-

HFT) demands liquidity, and a non-HFT (HFT) supplies liquidity. Finally, NN indicates a 

transaction between two non-HFTs demanding and supplying liquidity. Consistent with 

Brogaard et al. (2014), we define the sum of HH, HN, and NH as the total HFT volume. The 

 
12 The disaggregation process is done by the NASDAQ. Brogaard et al. (2014) provide full details of the 
disaggregation. 
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total trading volume is about 44,800 million shares, for which 31,968 million or 71.30% have 

HFTs as counterparties. The total value of all trades is 1,381 billion USD. 

We construct HFTs’ liquidity-demanding (𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷 ) and liquidity-supplying (𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆 ) 

trades from the NASDAQ dataset. 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  (𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆 ) is computed as the sum of HH and HN 

(HH and NH) divided by the total trading volume. 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙  is the ratio of the total HFT trading 

volume (HH, HN, and NH) to the total trading volume. The summary statistics of the NASDAQ 

HFT data is provided in Table A.5.  

 While the NASDAQ dataset contains transactions for 120 stocks, we only use 103 

stocks as we cannot match all options contracts in OptionMetrics with the corresponding stock 

in the NASDAQ dataset because of inconsistencies in ticker symbols across the two datasets. 

Thus, we obtain the option data for these 103 stocks in 2009.  

 

5.2. Estimation Approaches 

Similar to the baseline model, we first estimate the OLS approach with stock and time 

fixed effects: 

                 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

7
𝑘=1 + 휀𝑖,𝑑                         (4)                               

       𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷 + 𝛾1𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
7
𝑘 =1 + 휀𝑖,𝑑                         (5)                               

where 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙, 𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷  and  𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆  are the measures of HFTs’ total, liquidity-demanding 

and -supplying activities respectively and 𝛼𝑖 and 𝛽𝑑 are stock and time (day) fixed effects. All 

these variables are defined in Table 1.  

As noted, in order to address endogeneity, we employ the 2SLS IV approach in the 

baseline model; the same approach is used for the following analysis: 

    𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙̂ + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

7
𝑘=1 + 휀𝑖,𝑑                                   (6)                               

    𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷̂ + 𝛾2𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆̂ + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
7
𝑘=1 + 휀𝑖,𝑑               (7)      
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                      𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

7
𝑘=1 + 휀𝑖,𝑑                                       (8)                          

                       𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

7
𝑘=1 + 휀𝑖,𝑑                                       (9) 

                     𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

7
𝑘=1 + 휀𝑖,𝑑                                       (10) 

where 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙̂ , 𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷̂  and 𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆̂  are the fitted values of 𝑆𝐻𝐹𝑇𝑖,𝑑

𝐴𝑙𝑙, 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and  𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆  

obtained by regressing the respective variables on 𝐼𝑉𝑖,𝑑. We again employ two sets of 

instruments for robustness. First, we use the NASDAQ HFT dataset from 2009, and any 

exogenous shock to the volume of HFT on the NASDAQ stock exchange during this period is 

a candidate for the instrument. A potential instrument satisfying these criteria is proposed by 

Skjeltorp et al. (2016). On June 5, 2009, the NASDAQ stock exchange introduced NASDAQ 

Only Flash Orders.13  

The implementation details for these orders and some numerical examples are also 

provided by Skjeltorp et al. (2016). After an unsuccessful execution attempt in the NASDAQ 

limit order book, the NASDAQ gave an additional 500 milliseconds to its market participants 

and vendors to expose the orders before reaching the general marketplace. It is clear from the 

time constraint that only qualified low-latency traders, i.e., HFTs, are expected to use flash 

orders (see Harris & Namvar 2016).14 This expectation is also consistent with the flash order 

implementation of Direct Edge – the first company to introduce flash orders on January 27, 

2006 – which states that such orders allow brokers and HFTs to see and execute flash orders 

(see Skjeltorp et al. 2016). Thus, HFTs benefit from flash orders, such that the latter are 

expected to increase HFTs’ participation. In this specification, 𝐼𝑉𝑖,𝑑 is a dummy equal to one 

from June 5, 2009 to August 31, 2009, and zero for the other periods (from January 1, 2009 to 

June 4, 2009, and from September 1, 2009 to December 31, 2009) in our sample. It is important 

 
13 https://www.nasdaqtrader.com/TraderNews.aspx?id=ETA2009-35 
14 Some regulators and investors have argued that flash orders give an unfair advantage to market participants 
who are able to use them. For example, Mary Schapiro, SEC Chairman, says that  “flash orders have the potential 
to discourage publicly displayed trading interest and harm quote competition among markets”. 

https://www.nasdaqtrader.com/TraderNews.aspx?id=ETA2009-35
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to note that, in this specification, we only include stock fixed effect because our instrument 

does not have a time variation.  

 Second, similar to the main analysis, and inspired by Hasbrouck and Saar (2013), the 

level of HFT is instrumented with the average level of HFT on that day in all other stocks in 

the corresponding size quintile; for this specification, 𝐼𝑉𝑖,𝑑 is the average level of three HFT 

proxies (𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙 , 𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷  and 𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆 ) in all other stocks in the corresponding size quintile. 

 

5.3. Estimation Results 

The estimation results are presented in Table 7. 

INSERT TABLE 7 ABOUT HERE 

The first-stage results of the 2SLS IV approach are reported in the Appendix section 

(Table A.6). The selected instruments are significantly related to 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙, 𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷  and 

𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆  and the signs of association are as expected. There are three important points in Table 

7. First, consistent with the results based on the SEC’s MIDAS data, HFT is positively and 

significantly related to options spreads. The magnitude of the increase in options spreads is 

also economically meaningful. For example, estimates using the OLS regression with fixed 

effects show that a one standard deviation increase in 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙  raises 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 by about 14.7% and 3.0% respectively.  

Second, HFTs’ liquidity-demanding orders (𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷 ) are positively and significantly 

(both statistically and economically) related to both options spread proxies (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) for ATM and ITM contracts; for ITM contracts, the association between 

𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is weakly significant (10% level).  The economic magnitudes of the 

impact are again substantial. Specifically, a one standard deviation shock to 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  increases 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 by 5.71% and 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 by 13.89% for ATM options. For ITM options, the 
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economic magnitudes are 6.22% for 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and 9.66% for 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑. The 

association between 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and 𝑂𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 is not significant for OTM options. These results 

are consistent with the hedging channel.  

Second, liquidity-supplying orders initiated by HFTs (𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆 ) are weakly 

significantly (negatively) related to both options spread proxies for ITM contracts only; this is 

not significant for ATM and OTM options. This result seems puzzling as it is expected that the 

hedging costs of the options market-maker will decrease with the HFTs’ liquidity-supplying 

trading. We argue that this may be linked to the fact that we control for the stock spread in our 

regression setting. A significant portion of the effect of 𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆  on the options market spread 

can be captured by the bid-ask spread in the stock market. To test this argument, we estimate 

models 4 to 10 without controlling for the stock spread. 

INSERT TABLE 8 ABOUT HERE 

Panels A (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑)  and B (𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) of Table 8 show the estimation results 

for models 4 to 10 without controlling for the stock spread. The results show that both 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  

and 𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆  are statistically significantly related to 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 in this 

specification. Importantly, the associations are statistically significant across all moneyness 

groups, albeit weakly significant in some specifications. The results are economically 

meaningful as well. For instance, for ATM options, a one standard deviation increase in 

𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆  (𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷 ) is associated with a −5.00% (+6.43%) and −13.89% (+20.83%) change in 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 respectively.  

Overall, the results imply that HFTs’ effect on the options market-making is restricted 

to their liquidity-demanding orders in the underlying market after controlling for the stock 

spread. This can be explained by the fact that it is unlikely that the options market-maker 

observes who (HFT or non-HFT) is supplying liquidity and strategically chooses one over the 

other, as these are anonymous markets. However, this explanation raises an interesting question 
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about why 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  is still significant. We argue that this is because the relationship between 

HFT in the stock market and the options market bid-ask spread is unlikely to be fully captured 

by including the stock market bid-ask spread as a control variable. Bid-ask spreads only capture 

the transaction costs associated with small orders and do not capture the price impact of large 

parent orders being split into smaller child orders.15  

This is indeed a plausible explanation as Lee (2008) shows that half of the orders in the 

options markets originate from institutional investors who are generally splitting their orders 

(see Menkveld 2008; Chemmanur et al. 2010). It is also known that options market-makers 

typically hedge their entire inventory of options, and thus they may need to split their large 

orders to reduce their transaction costs. Liquidity-demanding HFTs employ different 

aggressive strategies (e.g., arbitrage, back-running, etc.) (see Brogaard et al. 2015), which 

allow them to profit from the price impact of options market-makers’ large orders being split 

into child orders. This finding further suggests that the stock spread mainly includes the impact 

of HFTs’ liquidity supply trades on the stock market liquidity. Therefore, the studies that 

investigate the role of HFTs in market quality using only the spread as a proxy for liquidity 

should be interpreted with caution.  

As noted, in addition to the hedging channel discussed and tested above, the arbitrage 

channel, which suggests that the options market-makers can charge a higher bid-ask spread due 

to liquidity-consuming HFTs engaging in cross-market arbitrage strategies between stock and 

options markets, may also explain the impact of HFT activity in the stock market affects 

options market spreads. In the next analysis, we test this channel.  

 

5.3.1. The Arrival of New Information and HFT  

 
15 The literature examining the effect of HFT in the stock market similarly finds that HFT simultaneously leads to 
lower bid-ask spreads (see Hendershott et al. 2011; Brogaard et al. 2015) and higher execution costs for large 
orders (see Korajczyk & Murphy 2019; Van Kervel & Menkveld 2019). 
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Foucault et al. (2017) argue that arbitrage opportunities arising due to the asynchronous 

adjustments in the price of correlated assets are “toxic” and lead to increased bid-ask spreads 

if they result from the arrival of new information.16 Inspired by this, to test the arbitrage channel 

and investigate the relative importance of the hedging and arbitrage channels, we study the 

differences in the impact of HFT on the options market spread during news and no-news days.  

We follow Hirschey (2020) to identify the days with firm news. First, we use Factiva, 

which contains news from over 35,000 sources, and identify the news days for each firm. As 

suggested by Hirschey (2020), traders may respond to signals not covered by these sources. 

Therefore, we compute absolute market-adjusted returns in a second step and exclude days on 

which they were greater than specific thresholds (1%, 0.5%, and 0.25%).17 

INSERT TABLE 9 ABOUT HERE 

Panels A and B in Table 9 present the model’s estimation results for days with no firm 

news. The results show that 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  has a positive and statistically significant influence on the 

ATM options spread, even on these days. Thus, the hedging channel is more dominant for 

ATM options as options market-makers need to rebalance their entire inventory positions. In 

contrast, the relationship between 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and the ITM options spread loses its significance 

once we exclude days with firm news. Halpern and Turnbull (1985) and Galai (1978) document 

that the profitable arbitrage opportunities arising from violations’ put-call parity are more 

frequently observed in ITM options. Therefore, the association between HFT and options 

spreads disappears on days with fewer arbitrage opportunities (i.e., without firm news), 

suggesting that the arbitrage channel is more dominant for ITM contracts.  

 
16 This is also consistent with Rzayev and Ibikunle (2019) and Brolley and Zoican (2020), who show that HFTs 
can make profits at slow traders’ expense due to their ability to react faster to public news (i.e., latency arbitrage). 
17 Our sample period covers 2009. Due to the 2008 financial crisis, there may be some abnormal returns during 
our sample period not related to any specific information. Therefore, for robustness, in the second specification, 
we exclude days with market-adjusted returns higher than the mean of the market-adjusted returns for the sample 
period. The results obtained are qualitatively similar to those we report.  
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Importantly, we do not claim that the arbitrage channel is the only channel that can 

explain the association between HFT and ITM options spreads. This is because the NASDAQ 

HFT data contains a limited number of stocks, and it covers one year – 2009. The data also 

includes HFT activity in NASDAQ only. In the main analysis, where we use the comprehensive 

panel data from the SEC’s MIDAS database, we find that the economic magnitude of the effect 

of HFT on options spreads is quite substantial for ITM options. Thus, it is plausible to expect 

that both hedging and arbitrage channels contribute to the association between HFT and the 

costs of market-making in ITM options. We nevertheless believe that the fact that the 

relationship between 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and the ITM options spread loses its significance on no-news 

days gives us some insights into the association between HFT activity and ITM options spreads. 

Thus, this should be of general interest. 

 

6. Conclusion 
 
 This study uses a comprehensive sample of HFT data provided by the SEC MIDAS to 

investigate the relationship between HFT activity in the stock market and its impact on options 

market-making. We find that HFT in the stock market leads to increased bid-ask spread and 

deterioration of liquidity in options markets. We propose two channels to explain this finding: 

(i) hedging channel; and (ii) arbitrage channel. The hedging channel suggests that the options 

market-makers’ hedging costs increase (decrease) due to higher (lower) bid-ask spread and the 

price impact-sourced HFTs’ liquidity-demanding trades. On the other hand, the arbitrage 

channel implies that HFTs’ aggressive (liquidity-demanding) trades expose the options market-

maker to the risk of trading at stale prices upon the arrival of new information. 

We test these channels by using proprietary HFT data from NASDAQ. Our findings 

suggest that the hedging channel dominates for ATM options. On the other hand, the significant 

relationship between HFT and the options spread might be mainly driven by the arbitrage 
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channel for ITM options. For OTM contracts, the economic magnitude of the impact of HFT 

on options spreads is lower in the main analysis and not statistically significant based on the 

NASDAQ HFT data.  

Our findings also suggest that while HFTs’ liquidity-supplying trades increase the 

options market-makers’ hedging abilities by improving liquidity in the underlying markets, the 

significant relationship between HFTs’ liquidity-supply trades and options market liquidity 

disappears after controlling for the stock spread. 

The results of this paper highlight the need for a better understanding of the costs/risks 

due to HFTs in today’s highly fragmented and complicated market structures. Our findings in 

particular suggest that practitioners, academics, and policy makers should carefully consider 

the cross-asset effects of HFTs’ activities in equity markets on derivative market quality.  
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Table 1. Definitions of variables 

This table reports the notation, description, and source of variables. The units of the variables are in parentheses 
following the variable names. Panel A reports the equity market variables and Panel B reports options market 
variables. 

 

Panel A. Equity market variables 

Variable Description  Data source 

𝑄𝑇𝑖,𝑑  Quote-to-trade ratio for firm 𝑖 on day 𝑑 is computed as the sum of 
order volume for all order messages divided by the sum of trade 
volume for all trades that are not against hidden orders. 

 MIDAS 

𝐶𝑇𝑖,𝑑  (%) Cancel-to-trade for firm 𝑖 on day 𝑑 is computed as the number of 
all cancel messages (full or partial) divided by the number of all 
trade messages. 

 MIDAS 

𝑂𝑅𝑖,𝑑  (%) Odd lot rate for firm 𝑖 on day 𝑑 is computed as the number of odd 
lot trade messages for all exchanges divided by the number of 
trades from exchange that report individual trades.  

 MIDAS 

𝑂𝑉𝑖,𝑑  (%) Odd lot rate for firm 𝑖 on day 𝑑 is computed as the sum of odd lot 
trade volume for all exchanges divided by the sum of trade volume 
from exchange that report individual trades.  

 MIDAS 

𝐼𝑇𝑆𝑖,𝑑  Inverse trade size for firm 𝑖 on day 𝑑 is computed as the number of 
trades divided by the number of shares traded. 

 MIDAS 

𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙  (%) HFTs’ total trades percentage for stock i and day d computed as the 

ratio of the HFTs’ total trading volume (the sum of HH, HN, and 

NH) to the total trading volume. 

 NASDAQ 

𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  (%) HFTs’ liquidity-demanding trades percentage for stock i and day d 

computed as the ratio of the HFTs’ liquidity-demanding trading 
volume (the sum of HH and HN) to the total trading volume. 

 NASDAQ 

𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆  (%) HFTs’ liquidity-supplying trades percentage for stock i and day d 

computed as the ratio of the HFTs’ liquidity-supplying trading 
volume (the sum of HH and NH) to the total trading volume. 

 NASDAQ 

𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  Stock dollar spread for firm 𝑖 on day 𝑑 is computed as the 
difference between best-ask and bid prices for day d. 

 CRSP 

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  (%) Stock proportional spread for firm 𝑖 on day 𝑑 is computed as bid-

ask spread divided by bid-ask midpoint for stock 𝑖 each day.  

 CRSP 

𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑  Stock price volatility for firm 𝑖 on day 𝑡 is computed as the absolute 
value of the difference between mid-prices for days d and d-1.  

 CRSP 

Panel B. Option market variables 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 Option market dollar spread for stock i and day d computed as the 
dollar-volume-weighted average of the dollar spread (the 
difference between the best-ask and bid prices).  

 OptionMetrics 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (%) Option market proportional spread for stock i and day d computed 
as the dollar-volume-weighted average of the proportional spread 
(the difference between the best-ask and bid prices divided by the 

midpoint of the ask and bid prices). 

 OptionMetrics 

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑  Option volume for stock i and day d computed as the natural 
logarithm of the daily trading volume (contracts) 

 OptionMetrics 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑  Option-implied volatility for stock i and day d computed as the 
dollar-volume-weighted average of the implied volatility provided 

by OptionMetrics. 

 OptionMetrics 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑 | Absolute option delta for stock i and day d computed as the dollar-
volume-weighted average of the absolute delta provided by 
OptionMetrics. 

 OptionMetrics 

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑑  Option gamma for stock i and day d computed as the dollar-
volume-weighted average of the gamma provided by 
OptionMetrics. 

 OptionMetrics 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑑  Option vega for stock i and day d computed as the dollar-volume-
weighted average of the vega provided by OptionMetrics. 

 OptionMetrics 
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Table 2. Summary statistics for MIDAS sample 

This table reports the descriptive statistics for the variables used in our analysis. Panel A shows the descriptive 
statistics for all variables from the underlying stock market. Panel B provides the descriptive statistics for all 
options-related variables separately for the full sample and three groups based on moneyness. For the definitions 

and computation methods of the variables, see Table 1. We follow Bollen and Whaley (2004) and define OTM 
options as those with absolute option delta |∆| ≤ 0.375, ATM options as those with 0.375 < |∆| ≤ 0.625, and 

ITM options as those with |∆| > 0.625. In both panels, we have two samples: (i) the full sample; and (ii) the tick 
size pilot sample. The full sample contains 2,746 stocks traded between January 1, 2012 and December 31, 2019 
on the US exchanges. The tick size pilot sample contains 1,235 stocks (617 control stocks and 618 treated stocks), 
including the Tick Size Pilot Program launched by the SEC. The Tick Size Pilot Program commenced on October 
3, 2016, and was implemented over the following two years. Therefore, the tick size pilot sample covers October 

1, 2014 to September 28, 2018.   
 

Panel A. Equity market variables 

 

 

 

 

 

Full sample 

 

 

Variable Mean Median St dev 

𝑄𝑇𝑖,𝑑 42.07 33.73 29.43 

𝐶𝑇𝑖,𝑡 (%) 23.15 19.69 13.51 

𝑂𝑅𝑖,𝑡  (%) 37.21 35.07 17.44 

𝑂𝑉𝑖,𝑡  (%) 15.87 14.09 9.81 

𝐼𝑇𝑆𝑖,𝑡 0.01 0.01 0.01 

𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  0.02 0.01 0.03 

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) 0.11 0.05 0.18 

𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡  0.69 0.35 1.02 

 

 
 
 

 

Tick size pilot 

sample 

 

𝑄𝑇𝑖,𝑑 44.04 32.24 36.81 

𝐶𝑇𝑖,𝑡 (%) 24.18 19.68 16.15 

𝑂𝑅𝑖,𝑡  (%) 39.15 38.33 14.59 

𝑂𝑉𝑖,𝑡  (%) 16.83 15.96 8.35 

𝐼𝑇𝑆𝑖,𝑡 0.01 0.01 0.01 

𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  0.03 0.02 0.03 

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) 0.18 0.09 0.26 

𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡  0.60 0.32 0.81 

Panel B. Option market variables 

 

 

 

Full sample 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.45 0.27 0.55 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) 34.07 19.63 40.75 

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡  5.06 4.96 2.59 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑡  0.45 0.36 0.28 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | 0.51 0.50 0.17 

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑡  0.12 0.08 0.12 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑡  5.98 4.10 6.25 

 

 
 
 

Tick size pilot 

sample 

 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.60 0.40 0.62 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) 50.44 32.43 47.79 

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡  3.62 3.58 1.95 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑡  0.52 0.43 0.28 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | 0.50 0.49 0.19 

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑡  0.12 0.10 0.10 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑡  4.06 2.86 3.79 

 

 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.38 0.23 0.47 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) 21.64 13.57 25.30 
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ATM 

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡  4.53 4.54 2.42 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑡  0.40 0.33 0.23 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | 0.49 0.49 0.05 

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑡  0.13 0.09 0.12 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑡  8.23 5.79 8.29 

 

 

 

ITM 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.62 0.39 0.71 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) 15.73 10.57 16.38 

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡  3.81 3.64 2.31 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑡  0.48 0.38 0.31 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | 0.78 0.78 0.08 

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑡  0.11 0.07 0.11 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑡  4.86 3.11 0.11 

 

 

 

OTM 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.27 0.17 0.32 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) 52.10 32.50 52.08 

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡  4.34 4.17 2.50 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑡  0.43 0.35 0.26 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | 0.25 0.26 0.06 

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑡  0.10 0.06 0.10 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑡  5.93 4.13 6.05 
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Table 3. The relationship between control variables and option spread – MIDAS sample 

This table presents the results for the estimation of the association between control variables and the options 
spread: 

𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

7

𝑘=1
+ 휀𝑖,𝑑 

 where 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  corresponds to either the proportional spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) or the dollar spread 

(𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑), and 𝛼𝑖 and 𝛽𝑑  are stock and time (day) fixed effects. The 𝐶𝑘,𝑖,𝑑  is a set of k control variables, 

including variables from both the option and underlying markets. The option market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑  and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑, and the stock market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  (when we 

employ 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the dependent variable), 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (when we use 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the dependent 

variable), and 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . For the definitions and computation methods of all the variables, see Table 1 . The 

sample contains 2,746 stocks traded between January 1, 2012 and December 31, 2019 on the US exchanges. 
Standard errors are double clustered on stock and day and t-statistics are reported in parentheses. *, ** and *** 
denote significance at 10%, 5% and 1%. 

 

 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑  -0.24*** 
(-256.37) 

-25.55*** 
(-351.10) 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 0.23*** 

(211.08) 

13.44*** 

(187.84) 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑| 0.42*** 
(455.23) 

21.18*** 
(316.27) 

𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑 -0.09*** 
(-224.78) 

9.56*** 
(170.34) 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑑  0.16*** 
(191.56) 

-13.72*** 
(301.59) 

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑   2.38*** 
(51.55) 

𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 0.05*** 
(78.00) 

 

𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 0.06*** 
(132.43) 

3.89*** 
(170.27) 

Time and stock FEs Yes Yes 

N 2,969,829 2,969,829 
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Table 4. The impact of HFT on options spread – MIDAS sample 

This table presents the results for the estimation of the impact of HFT on the options spread: 

𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝐻𝐹𝑇𝑖,�̂� + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

7

𝑘=1
+ 휀𝑖,𝑑  

   𝐻𝐹𝑇𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
7
𝑘=1 + 휀𝑖,𝑑  

where 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  corresponds to either the proportional spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) or the dollar spread 

(𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑), and 𝐻𝐹𝑇𝑖,𝑑  corresponds to one of the five HFT proxies (𝑄𝑇𝑖,𝑑 , 𝐶𝑇𝑖,𝑑, 𝑂𝑅𝑖,𝑑 ,  𝑂𝑉𝑖,𝑑 ,  𝐼𝑇𝑆𝑖,𝑑). 𝛼𝑖 

and 𝛽𝑑  are stock and time (day) fixed effects. The 𝐶𝑘,𝑖,𝑑 is a set of k control variables, including variables from 

both the option and underlying markets. The options market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 
𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑  and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑, and the stock market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 (when we employ 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as 

the dependent variable), 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  (when we use 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  as the dependent variable), and 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . 

For the definitions and computation methods of all the variables, see Table 1. Three specifications of the model 
are estimated. In Column 1, we estimate the model by using OLS with stock and fixed effects. In Columns 2 and 

3, we use the 2SLS IV approach. In Column 2, the level of HFT is instrumented with the changes in tick size; for 

this specification, 𝐼𝑉𝑖,𝑑  is a dummy variable that takes the value of one after the change (from October 3, 2016 to 

September 28, 2018), and zero before (from October 1, 2014 to October 2, 2016) for the treatment stocks, and  

𝐼𝑉𝑖,𝑑  takes the value of zero in the entire period for the control stocks. In Column 3, the level of HFT is 

instrumented with the average level of HFT on that day in all other stocks in the corresponding size quintile; for 

this specification, 𝐼𝑉𝑖,𝑑  is the average level of five HFT proxies (𝑄𝑇𝑖,𝑑 , 𝐶𝑇𝑖,𝑑, 𝑂𝑅𝑖,𝑑 ,  𝑂𝑉𝑖,𝑑 ,  𝐼𝑇𝑆𝑖,𝑑) in all other 

stocks in the corresponding size quintile. For Columns 1 and 3, the sample contains 2,746 stocks traded between 
January 1, 2012 and December 31, 2019 on the US exchanges. For Column 2, the sample contains 1,235 stocks 
(617 control stocks and 618 treated stocks) implemented in the SEC’s Tick Size Pilot Program from October 1, 
2014 to September 28, 2018. Standard errors are double clustered on stock and day and t-statistics are reported in 
parentheses. *, ** and *** denote significance at 10%, 5% and 1%. 
 

Panel A: 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 Variable OLS 
(1) 

IV (Tick size pilot) 
(2) 

IV (Average HFT) 
(3) 

 
 

 
 

 

𝐻𝐹𝑇𝑖,𝑑  

𝑄𝑇𝑖,𝑑 0.02*** 
(28.42) 

0.02*** 
(10.95) 

0.03*** 
(25.16) 

𝐶𝑇𝑖,𝑑 0.01*** 
(15.52) 

0.02*** 
(11.12) 

0.01*** 
(10.10) 

𝑂𝑅𝑖,𝑑 0.07*** 
(60.39) 

0.02*** 
(6.85) 

0.11*** 
(65.74) 

𝑂𝑉𝑖,𝑑 0.05*** 
(54.45) 

0.02*** 
(8.52) 

0.09*** 
(62.46) 

𝐼𝑇𝑆𝑖,𝑑  0.05*** 
(41.60) 

0.02*** 
(6.30) 

0.08*** 
(44.01) 

 Controls Yes Yes Yes 

 Time and Stock FEs Yes Yes Yes 

 N 2,969,829 640,306 2,967,095 

Panel B: 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 Variable OLS 
(1) 

IV (Tick size pilot) 
(2) 

IV (Average HFT) 
(3) 

 

 
 

𝐻𝐹𝑇𝑖,𝑑  

𝑄𝑇𝑖,𝑑 0.89*** 

(19.51) 

1.46*** 

(11.19) 

1.31*** 

(17.98) 

𝐶𝑇𝑖,𝑑 0.60*** 

(11.99) 

1.35*** 

(11.59) 

0.96*** 

(11.65) 

𝑂𝑅𝑖,𝑑 2.76*** 
(32.88) 

1.67*** 
(5.81) 

3.59*** 
(28.06) 

𝑂𝑉𝑖,𝑑 1.89*** 
(27.72) 

1.50*** 
(7.17) 

2.61*** 
(25.39) 

𝐼𝑇𝑆𝑖,𝑑  1.13*** 
(12.45) 

1.54*** 
(5.18) 

2.53*** 
(19.84) 

 Controls Yes Yes Yes 

 Time and stock FEs Yes Yes Yes 

 N 2,969,829 640,306 2,967,095 
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Table 5. The impact of HFT on options spread by moneyness – MIDAS sample 

This table presents the results for the estimation of the impact of HFT on options spread by moneyness: 

𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝐻𝐹𝑇𝑖,�̂� + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

7

𝑘=1
+ 휀𝑖,𝑑  

   𝐻𝐹𝑇𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
7
𝑘=1 + 휀𝑖,𝑑  

where 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  corresponds to either the proportional spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) or the dollar spread (𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑), 𝐻𝐹𝑇𝑖,𝑑  corresponds to one of the five HFT proxies (𝑄𝑇𝑖,𝑑, 

𝐶𝑇𝑖,𝑑, 𝑂𝑅𝑖,𝑑 ,  𝑂𝑉𝑖,𝑑 ,  𝐼𝑇𝑆𝑖,𝑑), and 𝛼𝑖 and 𝛽𝑑  are stock and time (day) fixed effects. The 𝐶𝑘,𝑖,𝑑  is a set of k control variables, including variables from both the options and 

underlying markets. The options market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑 and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑  and the stock market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  (when 

we employ 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  as the dependent variable), 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  (when we use 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the dependent variable), and 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑. For the definitions and 

computation methods of all the variables, see Table 1. Three specifications of the model are estimated. In Column 1, we estimate the model by using OLS with stock and fixed 

effects. In Columns 2 and 3, we use the 2SLS IV approach. In Column 2, the level of HFT is instrumented with the changes in tick size; for this specification, 𝐼𝑉𝑖,𝑑  is a dummy 

variable that takes the value of one after the change (from October 3, 2016 to September 28, 2018), and zero before (from October 1, 2014 to October 2, 2016) for the treatment 

stocks and  𝐼𝑉𝑖,𝑑 takes the value of zero in the entire period for the control stocks. In Column 3, the level of HFT is instrumented with the a verage level of HFT on that day in 

all other stocks in the corresponding size quintile; for this specification, 𝐼𝑉𝑖,𝑑 is the average level of five HFT proxies (𝑄𝑇𝑖,𝑑, 𝐶𝑇𝑖,𝑑, 𝑂𝑅𝑖,𝑑 ,  𝑂𝑉𝑖,𝑑,  𝐼𝑇𝑆𝑖,𝑑) in all other stocks in 

the corresponding size quintile. For Columns 1 and 3, the sample contains 2,746 stocks traded between January 1, 2012 and December 31, 2019 on the US exchanges. For 

Column 2, the sample contains 1,235 stocks (617 control stocks and 618 treated stocks) implemented in the SEC’s Tick Size Pilot Program from October 1, 2014 to September 
28, 2018. We follow Bollen and Whaley (2004) and define OTM options as those with absolute option delta |∆| ≤ 0.375, ATM options as those with 0.375 < |∆| ≤ 0.625, 

and ITM options as those with |∆| > 0.625. Standard errors are double clustered on stock and day and t-statistics are reported in parentheses. *, ** and *** denote significance 
at 10%, 5% and 1%. 
 

Panel A: 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 ATM ITM OTM 

𝐻𝐹𝑇𝑖,𝑡 OLS 
(1) 

IV (Tick size 
pilot) 

(2) 

IV (Average 
HFT) 
(3) 

OLS 
(4) 

IV (Tick size 
pilot) 

(5) 

IV (Average 
HFT) 
(6) 

OLS 
(7) 

IV (Tick size 
pilot) 

(8) 

IV (Average 
HFT) 
(9) 

𝑄𝑇𝑖,𝑡 0.02*** 

(25.32) 

0.02*** 

(10.37) 

0.02*** 

(22.86) 

0.04*** 

(39.46) 

0.05*** 

(10.49) 

0.06*** 

(33.88) 

0.01*** 

(30.26) 

0.01*** 

(12.32) 

0.02*** 

(27.87) 

𝐶𝑇𝑖,𝑡 0.01*** 
(19.53) 

0.02*** 
(9.79) 

0.02*** 
(14.33) 

0.01*** 
(14.41) 

0.02*** 
(7.64) 

0.01*** 
(6.07) 

0.01*** 
(24.73) 

0.01*** 
(12.60) 

0.01*** 
(20.67) 

𝑂𝑅𝑖,𝑡  0.04*** 
(34.90) 

0.03*** 
(5.13) 

0.07*** 
(40.63) 

0.18*** 
(107.91) 

0.08*** 
(4.34) 

0.27*** 
(110.07) 

0.02*** 
(28.02) 

0.01*** 
(4.51) 

0.03*** 
(33.89) 

𝑂𝑉𝑖,𝑡  0.03*** 
(27.83) 

0.03*** 
(7.08) 

0.05*** 
(35.95) 

0.15*** 
(104.94) 

0.09*** 
(6.75) 

0.23*** 
(109.69) 

0.01*** 
(19.02) 

0.01*** 
(7.55) 

0.02*** 
(27.01) 

𝐼𝑇𝑆𝑖,𝑡 0.02*** 
(17.65) 

0.03*** 
(5.32) 

0.04*** 
(21.40) 

0.15*** 
(81.49) 

0.15*** 
(8.84) 

0.22*** 
(82.73) 

0.003*** 
(4.71) 

0.01*** 
(5.61) 

0.01*** 
(9.04) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 
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Time and 
stock FEs 

Yes Yes Yes Yes Yes Yes Yes Yes Yes 

N 2,266,764 402,656 2,264,040 2,080,605 343,460 2,077,881 2,543,347 480,324 2,540,617 

Panel B: 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 ATM ITM OTM 

𝐻𝐹𝑇𝑖,𝑡 OLS 
(1) 

IV (Tick Size 
Pilot) 

(2) 

IV (Average 
HFT) 
(3) 

OLS 
(4) 

IV (Tick Size 
Pilot) 

(5) 

IV (Average 
HFT) 
(6) 

OLS 
(7) 

IV (Tick Size 
Pilot) 

(8) 

IV (Average 
HFT) 
(9) 

𝑄𝑇𝑖,𝑡 1.10*** 

(30.47) 

1.24*** 

(9.38) 

1.82*** 

(32.13) 

0.75*** 

(30.74) 

1.30*** 

(10.27) 

1.19*** 

(31.19) 

1.28*** 

(22.80) 

2.35*** 

(11.19) 

2.28*** 

(25.60) 

𝐶𝑇𝑖,𝑡 1.21*** 
(30.53) 

0.97*** 
(9.06) 

2.04*** 
(31.64) 

0.64*** 
(24.00) 

0.62** 
(7.63) 

1.03*** 
(23.90) 

1.63*** 
(26.55) 

2.24*** 
(11.90) 

3.12*** 
(31.02) 

𝑂𝑅𝑖,𝑡  2.61*** 
(38.34) 

1.28*** 
(3.29) 

4.00*** 
(39.78) 

1.78*** 
(40.27) 

1.85*** 
(4.79) 

3.02*** 
(46.83) 

0.92*** 
(8.80) 

1.66*** 
(5.42) 

2.05*** 
(13.31) 

𝑂𝑉𝑖,𝑡  1.70*** 
(30.84) 

1.46*** 
(5.34) 

2.80*** 
(34.67) 

1.21*** 
(33.83) 

2.35*** 
(8.06) 

2.12*** 
(41.30) 

-0.09 
(-1.02) 

1.57*** 
(5.51) 

0.66*** 
(5.35) 

𝐼𝑇𝑆𝑖,𝑡 1.55*** 
(20.71) 

1.09*** 
(2.67) 

3.10*** 
(30.46) 

0.97*** 
(19.45) 

4.44*** 
(7.78) 

1.99*** 
(29.69) 

-1.36*** 
(-12.06) 

1.72*** 
(4.17) 

-0.19 
(-1.25) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time and 
stock FEs 

Yes Yes Yes Yes Yes Yes Yes Yes Yes 

N 2,266,764 402,656 2,264,040 2,080,605 343,460 2,077,881 2,543,347 480,324 2,540,617 
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Table 6. Economic effect of HFT on options spreads – MIDAS sample  

This table presents the economic effect of a one standard deviation shock to HFT proxies on the options spreads: 

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝑒𝑓𝑓𝑒𝑐𝑡 = 𝛾1/𝜇(𝑂𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑠), 

where 𝛾
1
 is the coefficient of various HFT proxies obtained from estimation of the regression, and 𝜇(𝑂𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡) is the average value of various 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  and 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 . 

Panel A (B) shows the economic magnitude of the impact of HFT on the 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 ). The first column shows the results for a standard OLS approach with 

stock and day fixed effects, whilst the second and third columns present the results for the 2SLS IV approach. In Column 2, the level of HFT is instrumented with the changes 

in tick size; for this specification, 𝐼𝑉𝑖,𝑑 is a dummy variable that takes the value of one after the change (from October 3, 2016 to September 28, 2018), and zero before (from 

October 1, 2014 to October 2, 2016) for the treatment stocks and 𝐼𝑉𝑖,𝑑  takes the value of zero in the entire period for the control stocks. In Column 3, the level of HFT is 

instrumented with the average level of HFT on that day in all other stocks in the corresponding size quintile; for this specification, 𝐼𝑉𝑖,𝑑 is the average level of five HFT proxies 

(𝑄𝑇𝑖,𝑑 , 𝐶𝑇𝑖,𝑑, 𝑂𝑅𝑖,𝑑 ,  𝑂𝑉𝑖,𝑑 ,  𝐼𝑇𝑆𝑖,𝑑) in all other stocks in the corresponding size quintile. For Columns 1 and 3, the sample contains 2,746 stocks traded between January 1, 2012 

and December 31, 2019 on the US exchanges. For Column 2, the sample contains 1,235 stocks (617 control stocks and 618 treated stocks) implemented in the SEC’s Tick Size 

Pilot Program from October 1, 2014 to September 28, 2018. We follow Bollen and Whaley (2004) and define OTM options as those with |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | ≤ 0.375, ATM options 

as those with 0.375 < |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | ≤ 0.625, and ITM options as those with |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | > 0.625. For the definitions and computation methods of all the variables, see Table 

1. 
 

Panel A: 𝑶𝑫𝒔𝒑𝒓𝒆𝒂𝒅𝒊,𝒕  is the dependent variable. 

 OLS 
(1) 

IV (Tick size pilot) 
(2) 

IV (Average HFT) 
(3) 

𝐻𝐹𝑇𝑖,𝑡 Full ATM ITM OTM Full ATM ITM OTM Full ATM ITM OTM 

𝑄𝑇𝑖,𝑡 4.44% 5.26% 6.45% 3.70% 3.33% 3.64% 5.81% 2.63% 6.67% 5.26% 9.68% 7.41% 

𝐶𝑇𝑖,𝑡 2.22% 2.63% 1.61% 3.70% 3.33% 3.64% 2.33% 2.63% 2.22% 5.26% 1.61% 3.70% 

𝑂𝑅𝑖,𝑡 15.56% 10.53% 29.03% 7.41% 3.33% 5.45% 9.30% 2.63% 24.44% 18.42% 43.55% 11.11% 

𝑂𝑉𝑖,𝑡 11.11% 7.89% 24.19% 3.70% 3.33% 5.45% 10.47% 2.63% 20.00% 13.16% 37.10% 7.41% 

𝐼𝑇𝑆𝑖,𝑡 11.11% 5.26% 24.19% 1.11% 3.33% 5.45% 17.44% 2.63% 17.78% 10.53% 35.48% 3.70% 

Average 8.89% 6.32% 17.10% 3.93% 3.33% 4.73% 9.07% 2.63% 14.22% 10.53% 25.48% 6.67% 

Panel B: 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 OLS 
(1) 

IV (Tick size pilot) 
(2) 

IV (Average HFT) 
(3) 

𝐻𝐹𝑇𝑖,𝑡 Full ATM ITM OTM Full ATM ITM OTM Full ATM ITM OTM 

𝑄𝑇𝑖,𝑡 2.61% 5.08% 4.77% 2.46% 2.89% 3.47% 5.16% 3.04% 3.85% 8.41% 7.57% 4.38% 

𝐶𝑇𝑖,𝑡 1.76% 5.59% 4.07% 3.13% 2.68% 2.71% 2.46% 1.60% 2.82% 9.43% 6.55% 5.99% 

𝑂𝑅𝑖,𝑡 8.10% 12.06% 11.32% 1.77% 3.31% 3.58% 7.35% 2.15% 10.54% 18.48% 19.20% 3.93% 

𝑂𝑉𝑖,𝑡 5.55% 7.86% 7.69% -0.17% 2.97% 4.08% 9.33% 2.03% 7.66% 12.94% 13.48% 1.27% 

𝐼𝑇𝑆𝑖,𝑡 3.32% 7.16% 6.17% -2.61% 3.05% 3.05% 17.63% 2.22% 7.43% 14.33% 12.65% -0.36% 

Average 4.27% 7.55% 6.80% 0.91% 2.98% 3.38% 8.39% 2.21% 6.46% 12.72% 11.89% 3.04% 
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Table 7. The impact of HFT on options spread – NASDAQ sample 

This table presents the results for the estimation of the impact of HFT on the options spread: 

               𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷̂ + 𝛾2𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆̂ + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
6
𝑘=1 + 휀𝑖,𝑑    

             
                                        𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
6
𝑘=1 + 휀𝑖,𝑑      

                                     
                                       𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
6
𝑘=1 + 휀𝑖,𝑑                                        

where 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  corresponds to either the proportional spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) or the dollar spread (𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑), 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and  𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆  are the measures of HFTs’ liquidity-

demanding and -supplying activities respectively, and 𝛼𝑖 and 𝛽𝑑  are stock and time (day) fixed effects. The 𝐶𝑘,𝑖,𝑑 is a set of k control variables, including variables from both 

the options and underlying markets. The options market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑 and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and the stock market variables are 

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  (when we employ 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the dependent variable), 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  (when we use 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the dependent variable), and 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . For the 

definitions and computation methods of all the variables, see Table 1. Three specifications of the model are estimated. In Columns 1 and 4, we estimate the model by using 

OLS with stock and fixed effects. In Columns 2 and 5, we use the 2SLS IV approach. 𝐼𝑉𝑖,𝑑  is a dummy variable that takes the value 1 during the flash-orders period (from June 

5, 2009 to August 31, 2009) initiated by the NASDAQ. In Columns 3 and 6, the level of HFT is instrumented with the average level of HFT on that day in all other stocks in  

the corresponding size quintile; for this specification, 𝐼𝑉𝑖,𝑑 is the average level of two HFT proxies (𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and 𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆 ) in all other stocks in the corresponding size quintile. 

The sample contains 103 stocks traded between January 1, 2009 and December 31, 2009 on the NASDAQ. We follow Bollen and Whaley (2004) and define OTM options as 

those with |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | ≤ 0.375, ATM options as those with 0.375 < |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | ≤ 0.625, and ITM options as those with |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | > 0.625. Standard errors are double 

clustered on stock and day, and t-statistics are reported in parentheses. *, ** and *** denote significance at 10%, 5% and 1%. 
 

Panel A: 𝑶𝑫𝒔𝒑𝒓𝒆𝒂𝒅𝒊,𝒕  is the dependent variable. 

 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙 𝑆𝐻𝐹𝑇𝑖,𝑑
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(2.91) 
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(-2.38) 
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(-1.77) 
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(-1.85) 
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Panel B: 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙 𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷  𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆  
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-0.10 
(-1.27) 
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-0.00 
(-0.27) 
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Table 8. The impact of HFT on options spread without controlling for the stock spread – NASDAQ sample 

This table presents the results for the estimation of the impact of HFT on the options spread: 

               𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷̂ + 𝛾2𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆̂ + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
6
𝑘=1 + 휀𝑖,𝑑    

             
                                        𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
6
𝑘=1 + 휀𝑖,𝑑      

 
                                    
                                       𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
6
𝑘=1 + 휀𝑖,𝑑                                        

where 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  corresponds to either the proportional spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) or the dollar spread (𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑), 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and  𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆  are the measures of HFTs’ liquidity-

demanding and -supplying activities respectively, and 𝛼𝑖 and 𝛽𝑑  are stock and time (day) fixed effects. The 𝐶𝑘,𝑖,𝑑 is a set of k control variables, including variables from both 

the option and underlying markets. The option market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑 and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑, and the stock market variable is 

𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . For the definitions and computation methods of all the variables, see Table 1. Three specifications of the model are estimated. In Columns 1 and 4, we estimate 

the model by using OLS with stock and fixed effects. In Columns 2 and 5, we use the 2SLS IV approach. 𝐼𝑉𝑖,𝑑 is a dummy variable that takes the value 1 during the flash-orders 

period (from June 5, 2009 to August 31, 2009) initiated by the NASDAQ. In Columns 3 and 6, the level of HFT is instrumented with the average level of HFT on that day in 

all other stocks in the corresponding size quintile; for this specification, 𝐼𝑉𝑖,𝑑 is the average level of two HFT proxies (𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and 𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆 ) in all other stocks in the 

corresponding size quintile. The sample contains 103 stocks traded between January 1, 2009 and December 31, 2009 on the NASDAQ. We follow Bollen and Whaley (2004) 

and define OTM options as those with |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | ≤ 0.375, ATM options as those with 0.375 < |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | ≤ 0.625, and ITM options as those with |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | > 0.625. 

Standard errors are double clustered on stock and day, and t-statistics are reported in parentheses. *, ** and *** denote significance at 10%, 5% and 1%.  
 

Panel A: 𝑶𝑫𝒔𝒑𝒓𝒆𝒂𝒅𝒊,𝒕  is the dependent variable. 

 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙 𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷  𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆  
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(2.91) 

-0.02** 
(-2.29) 

-0.02** 
(-2.44) 

-0.02** 
(-2.21) 

ITM 0.02 
(1.55) 

0.01 
(1.12) 

0.01* 
(1.74) 

0.03*** 
(3.01) 

0.03*** 
(2.99) 

0.03*** 
(3.13) 

-0.02*** 
(-2.93) 

-0.02** 
(-2.26) 

-0.02*** 
(-2.99) 

OTM 0.00 

(1.09) 

0.00 

(0.77) 

0.01 

(1.10) 

0.01* 

(1.88) 

0.01* 

(1.89) 

0.01* 

(1.90) 

-0.01* 
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Panel B: 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙 𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷  𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆  
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HFT) 
(3) 

OLS 
(1) 

IV (Flash 
orders) 

(2) 

IV (Average 
HFT) 
(3) 

Full 
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0.23*** 
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0.36*** 
(3.18) 
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(-2.64) 
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Table 9. The impact of HFT on options spread during “no-news” days – NASDAQ sample 

This table presents the results for the estimation of the impact of HFT on the options spread: 

               𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷̂ + 𝛾2𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆̂ + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
6
𝑘=1 + 휀𝑖,𝑑    

             
                                        𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
6
𝑘=1 + 휀𝑖,𝑑      

 
                                    
                                       𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
6
𝑘=1 + 휀𝑖,𝑑                                        

where 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  corresponds to either the proportional spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) or the dollar spread (𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑), 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and  𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆  are the measures of HFTs’ liquidity-

demanding and -supplying activities respectively and 𝛼𝑖 and 𝛽𝑑  are stock and time (day) fixed effects. The 𝐶𝑘,𝑖,𝑑 is a set of k control variables, including variables from both 

the options and underlying markets. The options market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑 and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 , and the stock market variables are 

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  (when we employ 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the dependent variable), 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  (when we use 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the dependent variable), and 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . For the 

definitions and computation methods of all the variables, see Table 1. We follow Hirschey (2020) to identify days with firm news. Three specifications of the model are 

estimated. In Columns 1 and 4, we estimate the model by using OLS with stock and fixed effects. In Columns 2 and 5, we use the 2SLS IV approach. 𝐼𝑉𝑖,𝑑  is a dummy variable 

that takes the value 1 during the flash-orders period (from June 5, 2009 to August 31, 2009) initiated by the NASDAQ. In Columns 3 and 6, the level of HFT is instrumented 

with the average level of HFT on that day in all other stocks in  the corresponding size quintile; for this specification, 𝐼𝑉𝑖,𝑑 is the average level of two HFT proxies (𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  

and 𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆 ) in all other stocks in the corresponding size quintile. The sample contains 103 stocks traded between January 1, 2009 and December 31, 2009 on the NASDAQ. 

We follow Bollen and Whaley (2004) and define OTM options as those with |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | ≤ 0.375, ATM options as those with 0.375 < |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | ≤ 0.625, and ITM options 

as those with |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | > 0.625. Standard errors are double clustered on stock and day, and t-statistics are reported in parentheses. *, ** and *** denote significance at 10%, 

5% and 1%.  

 

Panel A: 𝑶𝑫𝒔𝒑𝒓𝒆𝒂𝒅𝒊,𝒕  is the dependent variable. 

 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙 𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷  𝑆𝐻𝐹𝑇𝑖,𝑑
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OLS 

(1) 

IV (Flash 

orders) 
(2) 

IV (Average 

HFT) 
(3) 

Full 

 

0.02* 
(1.83) 

0.02** 
(2.12) 

0.02** 
(2.01) 

0.02** 
(2.21) 

0.02** 
(2.43) 

0.02** 
(2.19) 

-0.01 
(-0.89) 

-0.01 
(-1.04) 

-0.01 
(-0.81) 

ATM 0.01* 

(1.79) 

0.01** 

(2.09) 

0.01* 

(1.87) 

0.02** 

(1.99) 

0.02** 

(2.50) 

0.02** 

(1.98) 

-0.01 

(-0.90) 

-0.01 

(-0.50) 

-0.01 

(-0.93) 

ITM 0.00 
(0.15) 

0.00 
(0.13) 

0.00 
(0.06) 

0.01 
(1.49) 

0.01 
(1.37) 

0.01 
(1.55) 

-0.01* 
(-1.66) 

-0.01* 
(-1.73) 

-0.01* 
(-1.69) 

OTM 0.00 
(0.08) 

0.00 
(0.07) 

0.00 
(0.12) 

0.01 
(0.63) 

0.01 
(0.18) 

0.01 
(0.62) 

-0.01 
(-0.86) 

-0.01 
(-0.95) 

-0.01 
(-0.92) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Stock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 
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Time FE Yes No Yes Yes No Yes Yes No Yes 

N 18,210 18,210 18,210 18,210 18,210 18,210 18,210 18,210 18,210 

Panel B: 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙 𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷  𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆  

 OLS 
(1) 

IV (Flash 
orders) 

(2) 

IV (Average 
HFT) 
(3) 

OLS 
(1) 

IV (Flash 
orders) 

(2) 

IV (Average 
HFT) 
(3) 

OLS 
(1) 

IV (Flash 
orders) 

(2) 

IV (Average 
HFT) 
(3) 

Full 

 

0.16** 
(2.21) 

0.19** 
(2.06) 

0.13** 
(1.99) 

0.29** 
(2.33) 

0.28*** 
(2.98) 

0.27** 
(2.34) 

-0.13 
(-0.17) 

-0.11 
(-1.36) 

-0.16 
(-0.25) 

ATM 0.13** 
(2.12) 

0.20** 
(2.04) 

0.16** 
(2.33) 

0.26** 
(2.20) 

0.25*** 
(2.78) 

0.18** 
(2.43) 

-0.12 
(-0.01) 

-0.09 
(-0.06) 

-0.13 
(-0.01) 

ITM -0.02 
(-0.29) 

-0.11 
(-1.37) 

-0.05 
(-0.36) 

0.16 
(1.51) 

0.10 
(1.52) 

0.16 
(1.51) 

-0.21* 
(-1.75) 

-0.26* 
(-1.88) 

-0.25* 
(-1.82) 

OTM 0.05 
(0.33) 

-0.04 
(-0.45) 

0.00 
(0.08) 

0.13 
(0.74) 

0.12 
(1.08) 

0.12 
(0.72) 

-0.20 
(-1.08) 

-0.19 
(-1.21) 

-0.21 
(-1.07) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Stock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time FE Yes No Yes Yes No Yes Yes No Yes 

N 18,210 18,210 18,210 18,210 18,210 18,210 18,210 18,210 18,210 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 



52 
 

 

 

Figure 1. The evolution of trading volume in US equity and options markets 

This figure reports the evolution of trading volume in US equity and options markets. The grey (dark) bar corresponds to the number of shares (contracts) traded in US equity 
(options) markets. The sample contains all stocks traded between January 1, 1996 and December 31, 2020 on the US exchanges. The data is obtained from CRSP and 

OptionMetrics.  
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Figure 2. The impact of HFT on options spread – MIDAS sample: Year-by-year estimation 

This figure reports the results from year-by-year OLS regressions of the association between HFT and the options 

spread. The grey (dark) bar corresponds to the impact of HFT on the options dollar (proportional) spread. 𝑄𝑇𝑖,𝑑  is 

used as an HFT measure (𝛾1). The sample contains 2,746 stocks traded between January 1, 2012 and December 
31, 2019 on the US exchanges. All estimations include stock and time (day) fixed effects. Standard errors are 
double clustered on stock and day and t-statistics are reported in parentheses. *, ** and *** denote significance 
at 10%, 5% and 1%. 
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Table A.1. The impact of HFT on options spread controlling for the volatility of stock spread – MIDAS 

sample 
This table presents the results for the estimation of the impact of HFT on the options spread: 

𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝐻𝐹𝑇𝑖,𝑑
̂ + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

8

𝑘=1
+ 휀𝑖,𝑑 

   𝐻𝐹𝑇𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1 𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
8
𝑘=1 + 휀𝑖,𝑑 

where 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑 corresponds to either the proportional spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) or the dollar spread (𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑), 𝐻𝐹𝑇𝑖 ,𝑑 

corresponds to one of the five HFT proxies (𝑄𝑇𝑖 ,𝑑, 𝐶𝑇𝑖,𝑑 , 𝑂𝑅𝑖,𝑑,  𝑂𝑉𝑖 ,𝑑,  𝐼𝑇𝑆𝑖,𝑑), and 𝛼𝑖  and 𝛽𝑑 are stock and time (day) fixed 

effects. The 𝐶𝑘,𝑖,𝑑 is a set of k control variables, including variables from both the options and underlying markets. The options 

market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑, |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑 and 𝑂𝑣𝑒𝑔𝑎 𝑖,𝑑 and the stock market variables are 

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑 and 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑣𝑜𝑙 𝑖,𝑑 (when we employ 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the dependent variable), 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑  and 

𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑣𝑜𝑙 𝑖,𝑑 (when we use 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑 as the dependent variable), and 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑. 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑣𝑜𝑙 𝑖,𝑑 and 

𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑣𝑜𝑙 𝑖,𝑑 are the volatility of proportional and dollar spreads. For the definitions and computation methods of all the 

other variables, see Table 1. Three specifications of the model are estimated. In Column 1, we estimate the model by using 
OLS with stock and fixed effects. In Columns 2 and 3, we use the 2SLS IV approach. In Column 2, the level of HFT is 
instrumented with the changes in tick size; for this specification, 𝐼𝑉𝑖 ,𝑑 is a dummy variable that takes the value of one after the 

change (from October 3, 2016 to September 28, 2018), and zero before (from October 1, 2014 to October 2, 2016) for the 
treatment stocks, and 𝐼𝑉𝑖,𝑑 takes the value of zero in the entire period for the control stocks. In Column 3, the level of HFT is 

instrumented with the average level of HFT on that day in all other stocks in the corresponding size quintile; for this 

specification, 𝐼𝑉𝑖,𝑑 is the average level of five HFT proxies (𝑄𝑇𝑖,𝑑, 𝐶𝑇𝑖,𝑑, 𝑂𝑅𝑖,𝑑,  𝑂𝑉𝑖 ,𝑑,  𝐼𝑇𝑆𝑖,𝑑) in all other stocks in the 

corresponding size quintile. For Columns 1 and 3, the sample contains 2,746 stocks traded between January 1, 2012 and 
December 31, 2019 on the US exchanges. For Column 2, the sample contains 1,235 stocks (617 control stocks and 6 18 treated 

stocks) implemented in the SEC’s Tick Size Pilot Program from October 1, 2014 to September 28, 2018. Standard errors are 
double clustered on stock and day and t-statistics are reported in parentheses. *, ** and *** denote significance at 10%, 5% 
and 1%. 
 

Panel A: 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 Variable OLS 
(1) 

IV (Tick size pilot) 
(2) 

IV (Average HFT) 
(3) 

 
 
 
 

 

𝐻𝐹𝑇𝑖,𝑑  

𝑄𝑇𝑖,𝑑  0.02*** 
(26.51) 

0.02*** 
(9.81) 

0.03*** 
(25.99) 

𝐶𝑇𝑖,𝑑 0.01*** 
(13.72) 

0.02*** 
(10.01) 

0.01*** 
(9.25) 

𝑂𝑅𝑖,𝑑 0.07*** 
(57.68) 

0.02*** 
(6.71) 

0.11*** 
(64.80) 

𝑂𝑉𝑖,𝑑  0.05*** 
(53.38) 

0.02*** 
(8.49) 

0.09*** 
(62.55) 

𝐼𝑇𝑆𝑖,𝑑  0.05*** 
(41.03) 

0.02*** 
(6.22) 

0.08*** 
(44.36) 

 Controls Yes Yes Yes 

 Time and stock FEs Yes Yes Yes 
 N 2,969,829 640,306 2,967,095 

Panel B: 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 Variable OLS 
(1) 

IV (Tick size pilot) 
(2) 

IV (Average HFT) 
(3) 

 
 
 

𝐻𝐹𝑇𝑖,𝑑  

𝑄𝑇𝑖,𝑑 0.89*** 
(18.67) 

1.46*** 
(11.73) 

1.31*** 
(17.34) 

𝐶𝑇𝑖,𝑑 0.60*** 
(11.84) 

1.35*** 
(11.54) 

0.96*** 
(11.58) 

𝑂𝑅𝑖,𝑑 2.76*** 
(32.03) 

1.67*** 
(5.86) 

3.59*** 
(27.21) 

𝑂𝑉𝑖,𝑑 1.89*** 

(25.48) 

1.50*** 

(6.53) 

2.61*** 

(24.75) 

𝐼𝑇𝑆𝑖,𝑑  1.13*** 
(12.79) 

1.54*** 
(5.06) 

2.53*** 
(19.68) 

 Controls Yes Yes Yes 

 Time and stock FEs Yes Yes Yes 

 N 2,969,829 640,306 2,967,095 
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Table A.2. First stage instrumental variable (IV) regression results – MIDAS sample 

This table presents the results for the estimation of the impact of the selected instruments on HFT measures: 

 𝐻𝐹𝑇𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
7
𝑘=1 + 휀𝑖,𝑑  

Where 𝐻𝐹𝑇𝑖,𝑑  corresponds to one of the five HFT proxies (𝑄𝑇𝑖,𝑑 , 𝐶𝑇𝑖,𝑑, 𝑂𝑅𝑖,𝑑 ,  𝑂𝑉𝑖,𝑑 ,  𝐼𝑇𝑆𝑖,𝑑), and 𝛼𝑖 and 𝛽𝑑  are stock and time (day) fixed effects. The 𝐶𝑘,𝑖,𝑑  is a set of k control 

variables, including variables from both the options and underlying markets. The options market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑  and 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑑, and the stock market variables are 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 and 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑. Standard errors are double clustered on stock and day. For the definitions and computation 

methods of all the variables, see Table 1. In Columns 1, 3, 5 and 7, the level of HFT is instrumented with the changes in tick size; for this specification, 𝐼𝑉𝑖,𝑑  is a dummy 

variable that takes the value of one after the change (from October 3, 2016 to September 28, 2018), and zero before (from October 1, 2014 to October 2, 2016) for the treatment 

stocks and  𝐼𝑉𝑖,𝑑 takes the value of zero in the entire period for the control stocks. In Columns 2, 4, 6 and 8, the level of HFT is instrumented with the average level of HFT on 

that day in all other stocks in the corresponding size quintile; for this specification, 𝐼𝑉𝑖,𝑑  is the average level of five HFT proxies (𝑄𝑇𝑖,𝑑 , 𝐶𝑇𝑖,𝑑, 𝑂𝑅𝑖,𝑑 ,  𝑂𝑉𝑖,𝑑 ,  𝐼𝑇𝑆𝑖,𝑑) in all other 

stocks in the corresponding size quintile. For Columns 1, 3, 5 and 7, the sample contains 1,235 stocks (617 control stocks and 618 treated stocks) implemented in the SEC’s 
Tick Size Pilot Program from October 1, 2014 to September 28, 2018. For Columns 2, 4, 6 and 8, the sample contains 2,746 stocks traded between January 1, 2012 and 

December 31, 2019 on the US exchanges. We follow Bollen and Whaley (2004) and define OTM options as those with |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | ≤ 0.375, ATM options as those with 

0.375 < |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | ≤ 0.625, and ITM options as those with |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | > 0.625. Standard errors are double clustered on stock and day and t-statistics are reported in 

parentheses. *, ** and *** denote significance at 10%, 5% and 1%. 
 

  Full sample ATM ITM OTM 

 Dependent 

variable 

IV (Tick size 

pilot) 
(1) 

IV (Average 

HFT) 
(2) 

IV (Tick size 

pilot) 
(3) 

IV (Average 

HFT) 
(4) 

IV (Tick size 

pilot) 
(5) 

IV (Average 

HFT) 
(6) 

IV (Tick size 

pilot) 
(7) 

IV (Average 

HFT) 
(8) 

 
 

 
 
 

𝐻𝐹𝑇𝑖,𝑡 

𝑄𝑇𝑖,𝑡 -0.30*** 
(-98.58) 

0.01*** 
(2.89) 

-0.31*** 
(-83.20) 

0.01*** 
(4.95) 

-0.31*** 
(-74.90) 

0.001* 
(1.83) 

-0.30*** 
(-89.06) 

0.05*** 
(3.78) 

𝐶𝑇𝑖,𝑡 -0.35*** 
(-127.24) 

0.04*** 
(45.76) 

-0.35*** 
(-107.74) 

0.05*** 
(45.34) 

-0.35*** 
(-98.34) 

0.04*** 
(32.84) 

-0.34*** 
(-113.69) 

0.04*** 
(43.11) 

𝑂𝑅𝑖,𝑡  -0.09*** 
(-66.38) 

0.38*** 
(307.8) 

-0.08*** 
(-51.43) 

0.36*** 
(269.9) 

-0.08*** 
(-43.73) 

0.36*** 
(250.9) 

-0.08*** 
(-58.37) 

0.36*** 
(284.2) 

𝑂𝑉𝑖,𝑡  -0.14*** 
(-85.74) 

0.32*** 
(266.18) 

-0.14*** 
(-68.49) 

0.31*** 
(233.25) 

-0.14*** 
(-61.23) 

0.29*** 
(212.26) 

-0.14*** 
(-76.18) 

0.31*** 
(246.03) 

𝐼𝑇𝑆𝑖,𝑡 -0.07*** 
(-63.56) 

0.21*** 
(193.69) 

-0.07*** 
(-49.34) 

0.22*** 
(181.89) 

-0.07*** 
(-46.70) 

0.21*** 
(166.31) 

-0.07*** 
(56.75) 

0.21*** 
(186.26) 

Controls Yes Yes Yes Yes Yes Yes Yes Yes 
Stock and time FEs Yes Yes Yes Yes Yes Yes Yes Yes 

N 640,306 2,967,095 402,656 2,264,040 343,460 2,077,881 480,324 2,540,617 
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Table A.3. The impact of HFT on the realized volatility – MIDAS sample 

This table presents the results for the estimation of the impact of HFT on the realized volatility: 

𝑆𝑅𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝐻𝐹𝑇𝑖,�̂� + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

7

𝑘=1
+ 휀𝑖,𝑑  

   𝐻𝐹𝑇𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
7
𝑘=1 + 휀𝑖,𝑑  

where 𝑆𝑅𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 is computed as the variance of second midpoint stock returns, 𝐻𝐹𝑇𝑖,𝑑  corresponds to one 

of the five HFT proxies (𝑄𝑇𝑖,𝑑 , 𝐶𝑇𝑖,𝑑, 𝑂𝑅𝑖,𝑑 ,  𝑂𝑉𝑖,𝑑 ,  𝐼𝑇𝑆𝑖,𝑑), and 𝛼𝑖 and 𝛽𝑑  are stock and time (day) fixed effects. 

The 𝐶𝑘,𝑖,𝑑 is a set of k control variables, including variables from both the options and underlying markets. The 

options market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑 , 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑  and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑, and the stock 

market variables are 𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  (when we employ 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  as the dependent variable), 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  (when 

we use 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the dependent variable), and 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 . For the definitions and computation methods 

of all the variables, see Table 1. Three specifications of the model are estimated. In Column 1, we estimate the 
model by using OLS with stock and fixed effects. In Columns 2 and 3, we use the 2SLS IV approach. In Column 

2, the level of HFT is instrumented with the changes in tick size; for this specification, 𝐼𝑉𝑖,𝑑 is a dummy variable 

that takes the value of one after the change (from October 3, 2016 to September 28, 2018), and zero before (from 

October 1, 2014 to October 2, 2016) for the treatment stocks, and 𝐼𝑉𝑖,𝑑 takes the value of zero in the entire period 

for the control stocks. In Column 3, the level of HFT is instrumented with the average level of HFT on that day 

in all other stocks in the corresponding size quintile; for this specification, 𝐼𝑉𝑖,𝑑 is the average level of five HFT 

proxies (𝑄𝑇𝑖,𝑑 , 𝐶𝑇𝑖,𝑑, 𝑂𝑅𝑖,𝑑 ,  𝑂𝑉𝑖,𝑑 ,  𝐼𝑇𝑆𝑖,𝑑) in all other stocks in the corresponding size quintile. For Columns 1 

and 3, the sample contains 2,746 stocks traded between January 1, 2012 and December 31, 2019 on the US 
exchanges. For Column 2, the sample contains 1,235 stocks (617 control stocks and 618 treated stocks) 

implemented in the SEC’s Tick Size Pilot Program from October 1, 2014 to September 28, 2018. Standard errors 
are double clustered on stock and day and t-statistics are reported in parentheses. *, ** and *** denote significance 
at 10%, 5% and 1%. 
 

𝑆𝑅𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 is the dependent variable. 

 Variable OLS 
(1) 

IV (Tick size pilot) 
(2) 

IV (Average HFT) 
(3) 

 
 
 
 

 
𝐻𝐹𝑇𝑖,𝑑  

𝑄𝑇𝑖,𝑑 -0.001*** 
(-45.22) 

-0.002*** 
(-28.99) 

-0.002*** 
(-44.14) 

𝐶𝑇𝑖,𝑑 -0.002*** 
(-56.77) 

-0.002*** 
(-28.18) 

-0.003*** 
(-39.99) 

𝑂𝑅𝑖,𝑑 0.01*** 
(121.30) 

-0.01*** 
(-21.88) 

0.02*** 
(173.34) 

𝑂𝑉𝑖,𝑑 0.01*** 
(96.29) 

-0.002*** 
(-20.82) 

0.01** 
(140.18) 

𝐼𝑇𝑆𝑖,𝑑  0.01*** 
(82.27) 

-0.002*** 
(-21.26) 

0.01*** 
(124.06) 

 Controls Yes Yes Yes 

 Time and stock FEs Yes Yes Yes 

 N 2,969,829 640,306 2,967,095 
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Table A.4. The impact of HFT on options spread after controlling for the realized volatility – MIDAS 

sample 
This table presents the results for the estimation of the impact of HFT on the options spread: 

𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝛾1𝐻𝐹𝑇𝑖,𝑑
̂ + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑

8

𝑘=1
+ 휀𝑖,𝑑 

   𝐻𝐹𝑇𝑖,𝑑 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖 ,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
8
𝑘=1 + 휀𝑖,𝑑 

where 𝑂𝑆𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑 corresponds to either the proportional spread (𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑) or the dollar spread (𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑), 𝐻𝐹𝑇𝑖 ,𝑑 

corresponds to one of the five HFT proxies (𝑄𝑇𝑖 ,𝑑, 𝐶𝑇𝑖,𝑑 , 𝑂𝑅𝑖,𝑑,  𝑂𝑉𝑖 ,𝑑,  𝐼𝑇𝑆𝑖,𝑑), and 𝛼𝑖  and 𝛽𝑑 are stock and time (day) fixed 

effects. The 𝐶𝑘,𝑖,𝑑 is a set of k control variables, including variables from both the options and underlying markets. The options 

market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑, |𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑 and 𝑂𝑣𝑒𝑔𝑎 𝑖,𝑑, and the stock market variables are 

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑 (when we employ 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑 as the dependent variable), 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖 ,𝑑 (when we use 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑 as the 

dependent variable), 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 and quote-based realized volatility (𝑆𝑅𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑). 𝑆𝑅𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑 is computed as the 

variance of second midpoint stock returns. For the definitions and computation methods of all the variables, see Table 1. Three 
specifications of the model are estimated. In Column 1, we estimate the model by using OLS with stock and fixed effects. In 

Columns 2 and 3, we use the 2SLS IV approach. In Column 2, the level of HFT is instrumented with the changes in tick size; 
for this specification, 𝐼𝑉𝑖,𝑑 is a dummy variable that takes the value of one after the change (from October 3, 2016 to September 

28, 2018), and zero before (from October 1, 2014 to October 2, 2016) for the treatment stocks, and 𝐼𝑉𝑖,𝑑 takes the value of zero 

in the entire period for the control stocks. In Column 3, the level of HFT is instrumented with the average level of HFT on that 
day in all other stocks in the corresponding size quintile; for this specification, 𝐼𝑉𝑖,𝑑 is the average level of five HFT proxies 

(𝑄𝑇𝑖 ,𝑑, 𝐶𝑇𝑖 ,𝑑, 𝑂𝑅𝑖,𝑑,  𝑂𝑉𝑖 ,𝑑,  𝐼𝑇𝑆𝑖,𝑑) in all other stocks in the corresponding size quintile. For Columns 1 and 3, the sample 

contains 2,746 stocks traded between January 1, 2012 and December 31, 2019 on the US exchanges. For Column 2, the sample 
contains 1,235 stocks (617 control stocks and 618 treated stocks) implemented in the SEC’s Tick Size Pilot Program from 

October 1, 2014 to September 28, 2018. Standard errors are double clustered on stock and d ay and t-statistics are reported in 
parentheses. *, ** and *** denote significance at 10%, 5% and 1%. 

 

Panel A: 𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 Variable OLS 
(1) 

IV (Tick size pilot) 
(2) 

IV (Average HFT) 
(3) 

 
 
 

 
 

𝐻𝐹𝑇𝑖,𝑑  

𝑄𝑇𝑖,𝑑 0.02*** 
(29.40) 

0.02*** 
(11.03) 

0.03*** 
(26.12) 

𝐶𝑇𝑖,𝑑 0.01*** 

(16.81) 

0.02*** 

(11.20) 

0.01*** 

(11.43) 

𝑂𝑅𝑖,𝑑 0.06*** 
(51.40) 

0.02*** 
(6.95) 

0.10*** 
(50.97) 

𝑂𝑉𝑖,𝑑 0.05*** 

(48.67) 

0.02*** 

(8.61) 

0.08*** 

(52.06) 

𝐼𝑇𝑆𝑖,𝑑  0.05*** 
(35.65) 

0.02*** 
(6.40) 

0.07*** 
(35.39) 

 Controls Yes Yes Yes 

 Time and stock FEs Yes Yes Yes 

 N 2,969,829 640,306 2,967,095 

Panel B: 𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡  is the dependent variable. 

 Variable OLS 
(1) 

IV (Tick size pilot) 
(2) 

IV (Average HFT) 
(3) 

 
 
 

𝐻𝐹𝑇𝑖,𝑑  

𝑄𝑇𝑖,𝑑 0.93*** 
(20.24) 

1.48*** 
(11.34) 

1.37*** 
(18.66) 

𝐶𝑇𝑖,𝑑 0.64*** 
(12.87) 

1.37*** 
(15.30) 

1.04*** 
(12.51) 

𝑂𝑅𝑖,𝑑 2.57*** 

(29.67) 

1.72*** 

(5.96) 

3.18*** 

(23.40) 

𝑂𝑉𝑖,𝑑 1.76*** 

(25.29) 

1.54*** 

(7.31) 

2.33*** 

(21.74) 

𝐼𝑇𝑆𝑖,𝑑  0.93*** 
(10.00) 

1.59*** 
(5.33) 

2.18*** 
(16.39) 

 Controls Yes Yes Yes 

 Time and stock FEs Yes Yes Yes 

 N 2,969,829 640,306 2,967,095 
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Table A.5. Summary statistics for NASDAQ sample 

This table reports the descriptive statistics for the variables used in our analysis. Panel A provides the descriptive 
statistics for all options-related variables separately for the full sample and three groups based on moneyness. 

Panel B shows the descriptive statistics for all variables from the underlying stock market. For the definitions and 
computation methods of the variables, see Table 1. We follow Bollen and Whaley (2004) and define OTM options 

as those with absolute option delta |∆| ≤ 0.375, ATM options as those with 0.375 < |∆| ≤ 0.625, and ITM 
options as those with |∆| > 0.625. The sample contains 103 stocks traded between January 1, 2009 and December 
31, 2009 on the NASDAQ. 
 

Panel A. Equity market variables 

 

 

 

 

Full sample 

 

 

 

Variable Mean Median St dev 

𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙  0.49 0.48 0.21 

 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  0.33 0.31 0.16 

𝑆𝐻𝐹𝑇𝑖,𝑑
𝑆  0.25 0.25 0.17 

𝑆𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  0.11 0.12 0.23 

𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  ($) 0.03 0.02 0.04 

𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑  0.41 0.35 6.65 

𝑆𝑂𝐼𝐵𝑖,𝑑  0.09 0.07 0.09 

Panel B. Option market variables 

 

 

 

Full sample 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.136 0.100 0.137 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) 5.61 4.52 5.25 

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡  5.892 6.276 2.762 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑡  0.407 0.359 0.245 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | 0.539 0.530 0.247 

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑡  0.11 0.09 0.14 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑡  2.403 1.910 2.330 

 

 

 

ATM 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.144 0.117 0.178 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) 0.056 0.046 0.089 

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡  6.900 7.154 2.455 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑡  0.398 0.344 0.244 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | 0.476 0.469 0.159 

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑡  0.13 0.09 0.16 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑡  4.041 3.505 3.736 

 

 

 

ITM 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.207 0.163 0.216 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) 0.037 0.031 0.073 

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡  4.295 4.444 2.467 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑡  0.502 0.468 0.286 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | 0.732 0.703 0.182 

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑡  0.10 0.09 0.18 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑡  2.308 2.001 2.316 

 

 

 

OTM 

𝑂𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 0.103 0.098 0.134 

𝑂𝑃𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡 (%) 0.075 0.069 0.091 

𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡  5.331 5.578 2.499 

𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑡  0.206 0.202 0.202 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑡 | 0.110 0.107 0.088 

𝑂𝑔𝑎𝑚𝑚𝑎𝑖,𝑡  0.08 0.07 0.12 

𝑂𝑣𝑒𝑔𝑎𝑖,𝑡  2.193 1.691 2.478 
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Table A.6. First stage instrumental variable (IV) regression results – NASDAQ sample 

This table presents the results for the estimation of the impact of the selected instruments on HFT measures: 
             
                                           𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
7
𝑘=1 + 휀𝑖,𝑑      

                                     
                                          𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆 = 𝛼𝑖 + 𝛽𝑑 + 𝜗1𝐼𝑉𝑖,𝑑 + ∑ 𝛿𝑘𝐶𝑘,𝑖,𝑑
7
𝑘=1 + 휀𝑖,𝑑                                         

where 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and  𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆  are the measures of HFTs’ liquidity-demanding and -supplying activities respectively, 
and 𝛼𝑖 and 𝛽𝑑  are stock and time (day) fixed effects. The 𝐶𝑘,𝑖,𝑑 is a set of k control variables, including variables 

from both the options and underlying markets. The options market variables are 𝑂𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑑, 𝑂𝑖𝑚𝑝𝑙𝑖𝑒𝑑𝑖,𝑑 , 

|𝑂𝑑𝑒𝑙𝑡𝑎𝑖,𝑑|, 𝑂𝑔𝑎𝑚𝑚𝑒𝑖,𝑑  and 𝑂𝑣𝑒𝑔𝑎𝑖,𝑑 and the stock market variables are 𝑆𝐷𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑑  and 𝑆𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑑. 

Standard errors are double clustered on stock and day. For the definitions and computation methods of all the 

variables, see Table 1. Two specifications of the model are estimated. In Columns 1 and 3, 𝐼𝑉𝑖,𝑑 is a dummy 

variable that takes the value 1 during the flash-orders period (from June 5, 2009 to August 31, 2009) initiated by 
the NASDAQ. In Columns 2 and 4, the level of HFT is instrumented with the average level of HFT on that day in 

all other stocks in the corresponding size quintile; for this specification, 𝐼𝑉𝑖,𝑑 is the average level of two HFT 

proxies (𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  and 𝑆𝐻𝐹𝑇𝑖,𝑑

𝑆 ) in all other stocks in the corresponding size quintile. The sample contains 103 

stocks traded between January 1, 2009 and December 31, 2009 on the NASDAQ. Standard errors are double 
clustered on stock and day, and t-statistics are reported in parentheses. *, ** and *** denote significance at 10%, 
5% and 1%.  
 
 

 𝑆𝐻𝐹𝑇𝑖,𝑑
𝐴𝑙𝑙 𝑆𝐻𝐹𝑇𝑖,𝑑

𝐷  𝑆𝐻𝐹𝑇𝑖,𝑑
𝐷  

 IV (Flash 
orders) 

(1) 

IV (Average 
HFT) 

(2) 

IV (Flash 
orders) 

(3) 

IV (Average 
HFT) 

(4) 

IV (Flash 
orders) 

(5) 

IV (Average 
HFT) 

(6) 

𝐼𝑉𝑖 ,𝑑 3.52*** 

(2.91) 

0.27*** 

(9.89) 

3.12*** 

(2.70) 

0.20*** 

(8.37) 

2.24** 

(2.52) 

0.18*** 

(7.21) 

Controls Yes Yes Yes Yes Yes Yes 

Stock FE Yes Yes Yes Yes Yes Yes 

Time FE No Yes No Yes No Yes 

 
 
 
 

 

 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 


