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Abstract. In a continuous-time Kyle setting, we prove global existence of an equilibrium when

the insider faces a terminal trading constraint. We prove that our equilibrium model produces

output consistent with several empirical stylized facts such as autocorrelated aggregate holdings,

decreasing price impacts over the trading day, and U shaped optimal trading patterns.

1. Introduction

Kyle (1985) and Back (1992) are cornerstone works in market microstructure theory and we

develop a continuous-time trading model variation where the insider faces a trading constraint.

The constraint is modeled by a random variable ã which is private information for the insider. We

use a “hard” constraint formulation in the sense that the insider’s stock holding process (θt)t∈[0,T ]

must be such that its terminal value θT satisfies θT = ã where T ∈ (0,∞) is the trading horizon.

Our main theorem ensures the existence of a Kyle equilibrium when the insider maximizes her

expected profit subject to θT = ã. We prove that adding a trading restriction produces new model

outputs relative to Kyle (1985) and Back (1992) such as:

(i) Positive autocorrelation in aggregate holdings Yt := θt + σwWt where σwWt denotes the

exogenous noise trader holdings (Wt is a Brownian motion) and σw > 0 is a constant.1he

process Yt is also referred to as cumulative aggregate orders because, informally, dYt are

aggregate orders.

(ii) A decreasing price impact function λ(t) for t ∈ [0, T ] (commonly called Kyle’s λ).

(iii) U shaped optimal stock orders for the insider (in expectation).
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These three features are empirically desirable (see, e.g., Barardehi and Bernhardt (2021)). While

absent in Kyle (1985) and Back (1992), related Kyle models have produced similar features. For

example, when the time horizon is exponentially distributed, Back and Baruch (2004), Caldentey

and Stacchetti (2010), and Çetin (2018) show that λ is a supermartingale. Baruch (2002) and Cho

(2003) show that an insider with an exponential utility function can also produce a decreasing λ.

In contrast, Collin-Dufresne and Vyacheslav (2016) introduce stochastic noise-trader volatility and

show this feature makes λ a submartingale. Çetin and Danilova (2016) show that market makers

with exponential utilities can produce mean reversion in the equilibrium aggregate holdings as well

as non-martingality of λ.

While trading restrictions have been used in many optimal investment problems, see, e.g., Alm-

gren and Chriss (1999, 2000), Almgren (2003), and Schied and Schöneborn (2009), restrictions

produce model incompleteness and this complicates any equilibrium analysis significantly. Equi-

librium existence proofs are given in: (i) Radner equilibrium models with limited participation

in Basak and Cuoco (1998), Hugonnier (2012), and Prieto (2010). (ii) Nash equilibrium models

with predatory trading in Brunnermeier and Pedersen (2005) and Carlin, Lobo, and Viswanathan

(2007). (iii) Models based on “soft” constraints in the form of quadratic penalties incurred for

deviating from the terminal constraint ã in Gârleanu and Pedersen (2016), Bouchard, Fukasawa,

Herdegen, and Muhle-Karbe (2018), and Choi, Larsen, and Seppi (2021). Models based on “soft”

constraints are mathematically simpler relative to the “hard” constraints used in (i), (ii), and in

this paper. To the best of our knowledge, there is no equilibrium existence proofs in the settings

of Kyle (1985) and Back (1992) when the insider is subject to either a “hard” or “soft” trading

constraint. However, our paper is related to Degryse, de Jong, and van Kervel (2014), Choi, Larsen,

and Seppi (2019), van Kervel, Kwan, and Westerholm (2020) who numerically consider Kyle models

where there are both an unconstrained insider and an additional trader facing a terminal trading

constraint. These papers do not give existence proofs.

Our main theorem establishes equilibrium existence by first proving existence of solutions to an

autonomous system of first-order nonlinear ODEs and then provides the equilibrium stock-price

and holding processes in terms of these solutions. Our model has two mathematically critical

components. First, the insider’s terminal trading restriction θT = ã requires a new state process in

addition to the aggregate holding process Yt = θt +σwWt (Yt is the standard state process in many

Kyle models). Consequently, the pricing rules given by H(t, Yt) for a deterministic function H used

in both Kyle (1985) and Back (1992) are insufficient in our setting. We create generalized pricing

rules based on a two dimensional state process and prove that such a generalization produces
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existence of a global Kyle equilibrium. Second, we show that our constrained insider optimally

places a terminal block order ∆θT 6= 0. In a class of Kyle models, Back (1992) shows that block

orders are always suboptimal. Çetin and Danilova (2021) give general conditions under which block

orders are suboptimal but they also illustrate that block orders can be optimal in more general Kyle

models. Additionally, we show that the market makers can predict our insider’s optimal terminal

block order ∆θT = ã− θT−.

The paper is organized as follows: Section 2 recalls the continuous-time setting in Back (1992)

with Gaussian dividends. Section 3 ensures the existence of ODE solutions. Section 4 gives our

main theorem. Section 5 contains results related to empirical stylized facts. Appendix A recalls

the version of the Kalman-Bucy theorem from filtering theory we need and Appendix B considers

a model variation where the insider knows both ã and ṽ initially.

2. Model

Except for the insider’s trading constraint, we use the continuous-time setup in Back (1992)

specialized to the Gaussian dividend case as in Kyle (1985). The time interval for trading is

denoted by [0, T ] for an arbitrary time horizon T ∈ (0,∞). In the following, we use three sources

of randomness: (Wt)t∈[0,T ] is a one-dimensional Brownian motion with zero initial value, zero drift,

and constant unit volatility, and the random variables (ã, ṽ) are jointly normally distributed with

zeros means, standard deviations σã, σṽ > 0, and correlation ρ ∈ (0, 1]. We assume that (Wt)t∈[0,T ]

is independent of (ã, ṽ).

The financial market consists of a money market account with an exogenous zero interest rate

and a stock with liquidating dividends given by ṽ and an endogenously determined stock-price

process (Pt)t∈[0,T ].

2.1. Traders. There are three types of market participants in the model: noise traders, an insider

with a trading constraint, and market makers:

Noise traders: For a constant σw > 0, these traders’ aggregate stock-holding process is exogenously

given by σwWt at time t ∈ [0, T ]. Equivalently, the noise-traders’ exogenous initial holdings are

zero and their holdings have dynamics σwdWt over time t ∈ (0, T ).

Insider: The insider’s stock-holding process is denoted by (θt)t∈[0,T ]. The insider starts with zero

initial stock holdings θ0− := 0 and is subject to the terminal trading constraint θT = ã. The insider
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knows ã at time t = 0 and observes the noise-trader orders σwdWt over time; hence, the insider’s

filtration is:

FIt := σ
(
ã, (Wu)u∈[0,t]

)
for t ∈ [0, T ]. (2.1)

Equivalently, we can follow Back (1992) and assume that the insider directly observes the aggregate

orders dYt over time where

Yt := θt + σwWt, t ∈ [0, T ], (2.2)

and replace FIt with σ
(
ã, (Yu)u∈[0,t]

)
. A second equivalent formulation assumes that the insider

observes stock prices Pt over time and replaces FIt with σ
(
ã, (Pu)u∈[0,t]

)
. In our setting, these

three specifications of the insider’s filtration turn out to be equivalent and we use (2.1) because it

is exogenously given by model inputs.

The random variable ã plays a double role: ã is the insider’s terminal trading restriction and ã

gives the insider initial private information about ṽ (because ρ > 0). We are not the first authors

to use holdings to generate private information. For example, the activism model in Back, Collin-

Dufresne, Fos, Li, and Ljungqvist (2018) uses the insider’s initial holdings as the key piece of

private information. However, in Appendix B, we show that the equilibrium based on (2.1) is also

an equilibrium when the insider knows both (ã, ṽ) initially in the sense FIt := σ(ṽ, ã, (Wu)u∈[0,t]).

The insider’s objective is to maximize her expected profit subject to the constraint θT = ã:

sup
θ∈A

E

[
(ṽ − PT )θT +

∫
[0,T ]

θt−dPt

∣∣∣FI0
]

= ρ
σṽ
σã
ã2 − inf

θ∈A
E

[∫
[0,T ]

(ã− θt−)dPt

∣∣∣FI0
]
, (2.3)

where the set A is defined in Definition 2.1 below. The first objective in (2.3) is from Back (1992)

and reflects that ṽ is the stock’s liquidating dividends. The second objective in (2.3) follows from

θT = ã and P0− = 0 which give

PT θT = PT ã = (PT − P0−)ã = ã

∫
[0,T ]

dPt.

The joint normality of (ã, ṽ) and FI0 = σ(ã) give

E[ṽθT |FI0 ] = E[ṽã|σ(ã)] = ρ
σṽ
σã
ã2.

Based on the form of the insider’s objective in (2.3), we conjecture that the insider’s state

variables are her remaining trading gab ã− θt and the market makers’ estimate of ã− θt (denoted

by Qt). The market makers prescribe a pricing rule Pt (i.e., how prices depend on past and current
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aggregate holdings (Ys)s∈[0,t]) in terms of the following SDEs

dQt = r(t)dYt + s(t)Qtdt for t ∈ [0, T ), Q0− = 0, (2.4)

dPt = λ(t)dYt + µ(t)Qtdt for t ∈ [0, T ), P0− = 0, (2.5)

∆PT = λ(T )
(
ã− θT− −QT−

)
, (2.6)

for deterministic functions of time (r, s, λ, µ) (these functions are to be determined in equilibrium).

The insider uses Pt when solving her optimization problem (2.3). As in Kyle (1985), equilibrium

prices must be efficient in the sense that (2.8) below holds. Additionally, in the equilibrium we

construct in Theorem 4.1 below, the process Qt from (2.4) is the market makers’ estimate of the

insider’s remaining trading gab ã− θt (see (3.7) below).

As usual, to rule out doubling strategies and give a verification proof, we need to limit the

insider’s choice of possible controls.

Definition 2.1 (Admissibility). In addition to the initial condition θ0− := 0 and the terminal

constraint θT = ã, admissible holding processes (θt)t∈[0,T ] ∈ A satisfy:

(i) The holding process θt is a cádlág semimartingale which is adapted to FIt and square

integrable E
[∫ T

0 θ2
t dt
]
<∞.

(ii) For given continuous functions r, s : [0, T )→ R, a cádlág solution (Qt)t∈[0,T ) of (2.4) exists

with an almost surely finite limit QT− and E
[∫ T

0 Q2
tdt
]
<∞.

(iii) For given continuous functions λ : [0, T ] → R and µ : [0, T ) → R, a cádlág solution

(Pt)t∈[0,T ] of (2.5)-(2.6) exists such that the stochastic integral
∫

[0,t](ã− θu−)dPu, t ∈ [0, T ],

is a well-defined semimartingale with
∫

[0,T ](ã− θt−)dPt integrable.

�

The admissible set A in Definition 2.1 allows the insider to place block orders ∆θt := θt − θt−
for all t ∈ [0, T ]. For example, the insider is allowed to place an initial buy order ∆θ0 = 1, which

produces the initial stock price

P0 = P0− + ∆P0 = λ(0)∆Y0 = λ(0)∆θ0 = λ(0).

However, we shall see in Theorem 4.1 below that the insider optimally chooses to trade absolutely

continuously at a dt rate θ′t for t ∈ [0, T ) and then places a block order at t = T to satisfy her

terminal restriction θT = ã (i.e., ∆θT = ã − θT−). We note that while QT− must exist for θ ∈ A,

there is no QT in Definition 2.1.
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Market makers: These traders choose the pricing rule to clear the stock market. Market makers

observe the aggregate orders dYt from (2.2); hence, their filtration is defined as

FMt := σ
(
(Yu)u∈[0,t]

)
, t ∈ [0, T ]. (2.7)

The filtration FMt is endogenous because Yt in (2.2) depends on the insider’s stock-holdings θt. As

in Kyle (1985) and Back (1992), in equilibrium, the stock price must be efficient in the sense

Pt = E
[
ṽ|FMt

]
, t ∈ [0, T ], (2.8)

holds. The martingale condition in (2.8) is a zero-profit requirement stemming from competition

among risk-neutral market makers.

2.2. Equilibrium. Similar to Kyle (1985), we consider only linear equilibria in this paper:

Definition 2.2 (Kyle equilibrium). Continuous functions λ : [0, T ]→ R and µ, r, s, β, α : [0, T )→

R constitute an equilibrium if:

(i) For the pricing rule (2.5)-(2.6) with Qt in (2.4), the stock-holding process

dθt =
(
β(t)(ã− θt −Qt) + α(t)Qt

)
dt for t ∈ [0, T ), θ0− = 0, (2.9)

∆θT = ã− θT−, (2.10)

is in A and maximizes the insider’s objective (2.3).

(ii) The stock-holding process θt in (2.9)-(2.10) with Qt in (2.4) implies that Pt in (2.5)-(2.6)

satisfies (2.8).

�

While not a requirement in Definition 2.2, the process Qt given by (2.4) satisfies Qt = E[ã−θt|FMt ]

in the equilibrium that we construct in Theorem 4.1 below.

3. An autonomous system of ODEs

Similar to Back (1992) and Back and Baruch (2004), we include a heuristic derivation of the value

function and corresponding ODEs for the constrained insider’s optimization problem in (2.3). This

section concludes with a result ensuring global existence of solutions to this system of coupled ODEs.

In the next section, we use the solutions of the ODEs to prove existence of a Kyle equilibrium.
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To derive the HJB equation corresponding to the objective in (2.3), it suffices to consider stock-

holding processes θt with θ0− := 0 and dynamics

dθt :=

 θ′tdt, t ∈ [0, T ),

ã− θT−, t = T,
(3.1)

where θ′t is an arbitrary order-rate process. Inserting the dynamics of (2.2) into (2.4), we see that

the state process

Xt := ã− θt −Qt, t ∈ [0, T ), X0− := ã, (3.2)

has dynamics

dXt = −θ′tdt− r(t)
(
θ′tdt+ σwdWt

)
− s(t)Qtdt, t ∈ [0, T ). (3.3)

We conjecture that the value function corresponding to the infimum in (2.3) has the following

quadratic structure:

V (t, x, q) := Ix2 + J(t)xq +K(t), t ∈ [0, T ], x, q ∈ R, (3.4)

where I > 0 is a constant and (J,K) are deterministic functions of time. Because I is a constant,

the terminal condition for V in (3.4) at time t = T is not zero. This “facelift” feature was already

present in the continuous-time model in Kyle (1985). However, unlike Kyle (1985), our equilibrium

price-process Pt does not converge to E[ṽ|FI0 ] = ρσṽσã ã as t ↑ T (see Proposition 5.1(5)).

Formally, we get the HJB equation by equating the drift in the dynamics

(ã− θt)dPt + dV (t,Xt, Qt) (3.5)

to zero, where dPt is from (2.5), dQt is from (2.4), and dXt is from (3.3). Itô’s lemma shows that

the drift of (3.5) is an affine function of θ′t given by a slope and an intercept. Consequently, for the

drift of (3.5) to be zero, the slope and intercept must each separately be zero:

0 = Xt

(
λ(t)− 2I

(
r(t) + 1

)
+ J(t)r(t)

)
+Qt

(
λ(t)−

(
r(t) + 1

)
J(t)

)
,

0 = Q2
t

(
µ(t)− s(t)J(t)

)
+XtQt

(
s(t)

(
J(t)− 2I

)
+ J ′(t) + µ(t)

)
+K ′(t) + σ2

w

(
I − J(t)

)
r(t)2.
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Equating coefficients for Xt and Qt in the first equality and coefficients for Q2
t , XtQt, and deter-

ministic terms in the second equality to zero gives the requirements

0 = λ(t)− 2I(r(t) + 1) + J(t)r(t),

0 = λ(t)− (r(t) + 1)J(t),

0 = µ(t)− s(t)J(t),

0 = s(t)
(
J(t)− 2I

)
+ J ′(t) + µ(t),

0 = K ′(t) + σ2
w

(
I − J(t)

)
r(t)2.

(3.6)

Our equilibrium existence proof in the next section is based on an autonomous two-dimensional

coupled system of nonlinear ODEs. To heuristically derive this ODE system, the Kalman-Bucy

result from Gaussian filtering theory (recalled in Appendix A) shows that when θt is as in (2.9),

the property

Qt = E[ã− θt|FMt ], t ∈ [0, T ), (3.7)

and (2.8) impose the relations

λ(t) =
β(t)Σ2(t)

σ2
w

, µ(t) = −α(t)λ(t), (3.8)

r(t) =
β(t)Σ1(t)

σ2
w

, s(t) = −α(t)(1 + r(t)), (3.9)

where Σ1(t) and Σ2(t) are defined as solutions to the ODEs

Σ′1(t) = −σ2
w(r(t)2 + 2r(t)), t ∈ [0, T ), Σ1(0) = σ2

ã, (3.10)

Σ′2(t) = −σ2
w

(
1 + r(t)

)
λ(t), t ∈ [0, T ), Σ2(0) = ρσãσṽ. (3.11)

In (4.9) below, we shall see that Σ1(t) and Σ2(t) are the remaining variance and covariance func-

tions produced by Kalman-Bucy filtering theory (Appendix A recalls the result from Kalman-Bucy

filtering theory that we use). The relation between µ(t) and s(t) in (3.8)-(3.9) produces redundancy

in the second and third equation in (3.6).

By solving the first two equations in (3.6) we get I = (1+2r(t))λ(t)
2(1+r(t))2

and so

I
(
1 + r(t)

)2
= 1

2λ(t)
(
1 + 2r(t)

)
= 1

2
r(t)Σ2(t)

Σ1(t)

(
1 + 2r(t)

)
,

(3.12)
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where the second equality is due to (3.8)-(3.9). By using (3.10)-(3.11) when computing time

derivatives in (3.12), we produce the ODE

r′(t) = −
σ2
wr(t)

2
(
1 + r(t)

)
(1 + 2r(t))(

1 + 3r(t)
)
Σ1(t)

, t ∈ [0, T ). (3.13)

The ODEs (3.10) and (3.13) form an autonomous system. The correct initial condition r(0) = r0

for (3.13) is such that Σ′1(t) in (3.10) satisfies Σ1(T−) = 0. The intuition behind Σ1(T−) = 0 comes

from the representation in (3.7), which gives the market makers’ conditional variance of ã− θt as

E
[(
ã− θt − E[ã− θt|FMt ]

)2|FMt ] = E
[(
ã− θt −Qt

)2|FMt ]
= Σ1(t).

(3.14)

The last equality in (3.14) is based on the Gaussian structure, which gives us that ã − θt − Qt is

independent of FMt when (3.7) holds and Σ1(t) being the remaining variance function. The terminal

condition Σ1(T−) = 0 can be interpreted as the market makers expect θt to converge to ã as t ↑ T .

As we shall see in Proposition 5.1(4), even though QT− 6= 0 in equilibrium, Σ1(T−) = 0 is the

correct boundary condition because the insider’s optimal terminal block order ∆θT = ã− θT− 6= 0

can be predicted by the market makers.

While the above discussion is purely heuristic, the next result is rigorous and guarantees global

existence to above coupled ODE system.

Lemma 3.1. There exists a constant r0 ∈ (0,∞) such that the coupled ODEs (3.10) and (3.13)

with initial conditions

r(0) = r0 and Σ1(0) = σ2
ã, (3.15)

have global solutions in C1([0, T ]) that satisfy

Σ1(T ) := Σ1(T−) = 0, r(T ) := r(T−) = 0, r(t),Σ1(t) > 0 for t ∈ [0, T ). (3.16)

Proof. Let F : [0,∞)→ [π − 3, 2π) be defined as

F (x) := 4 tan−1(
√

1 + 2x)−
√

1 + 2x (3 + 4x)

(1 + x)2
. (3.17)

Then, F : [0,∞)→ [π − 3, 2π) is strictly increasing and bijective because F ′(x) = (1+3x)
√

1+2x
(1+x)3

> 0

for x ≥ 0. Hence, its inverse function F−1 : [π − 3, 2π)→ [0,∞) is well-defined.

Let G, τ : (0,∞)→ [0,∞) be defined as

G(x) :=
x2(1 + 2x)

3
2

(1 + x)2
,

τ(x) :=
σ2
ã(F (x)− F (0))

σ2
wG(x)

.
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For r0 ∈ (0,∞), the functionsr(t) := F−1
(
F (r0)− σ2

w

σ2
ã
G(r0)t

)
,

Σ1(t) :=
σ2
ãG(r(t))
G(r0) ,

(3.18)

are well-defined for t ∈ [0, τ(r0)] with r(0) = r0. Direct computations show that (3.18) satisfies

(3.13) and (3.15) for t ∈ [0, τ(r0)). Furthermore, the above functions r(t) and Σ1(t) satisfy

r(τ(r0)) = 0, Σ1(τ(r0)) = 0,

r(t),Σ1(t) > 0 for t ∈ [0, τ(r0)).

To complete the proof, it remains to be proven that there exists r0 ∈ (0,∞) such that τ(r0) = T .

L’Hopital’s rule gives

lim
x↓0

τ(x) =∞, lim
x→∞

τ(x) = 0. (3.19)

These limits and the continuity of τ(x) for x ∈ (0,∞) imply that there exists r0 ∈ (0,∞) such that

τ(r0) = T . �

4. Existence of a Kyle equilibrium

The next result is our main contribution and the theorem ensures the existence of a global Kyle

equilibrium in the sense of Definition 2.2.

Theorem 4.1. Let ρ ∈ (0, 1] and let r(t) and Σ1(t) be as in Lemma 3.1. Define the constant

I := ρσṽ
σã

r0(1+2r0)
2(1+r0)2

> 0 and the functions

λ(t) := 2I

(
1 + r(t)

)2
1 + 2r(t)

, t ∈ [0, T ],

µ(t) := −ρσ
2
wσṽr

3
0(1 + 2r0)

5
2

σ3
ã(1 + r0)4

(1 + r(t))4

(1 + 3r(t))(1 + 2r(t))
5
2

, t ∈ [0, T ],

β(t) :=
σ2
wr

2
0(1 + 2r0)

3
2

σ2
ã(1 + r0)2

(1 + r(t))2

r(t)(1 + 2r(t))
3
2

, t ∈ [0, T ),

s(t) := −σ
2
wr

2
0(1 + 2r0)

3
2

σ2
ã(1 + r0)2

(1 + r(t))3

(1 + 3r(t))(1 + 2r(t))
3
2

, t ∈ [0, T ],

α(t) :=
σ2
wr

2
0(1 + 2r0)

3
2

σ2
ã(1 + r0)2

(1 + r(t))2

(1 + 3r(t))(1 + 2r(t))
3
2

, t ∈ [0, T ].

(4.1)

Then, the functions λ, µ, r, s, β, α constitute a Kyle equilibrium, where the process Qt additionally

satisfies (3.7).
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Proof. We start by defining the function

Σ2(t) :=
λ(t)Σ1(t)

r(t)

=
ρσãσṽ

r0
√

1 + 2r0
r(t)

√
1 + 2r(t),

(4.2)

for t ∈ [0, T ]. Since r(t) is continuous on t ∈ [0, T ] and r(T ) = 0, Σ2(t) is continuous on t ∈ [0, T ]

with Σ2(T ) = 0.

We divide the proof into three steps:

Step 1/3: In this step, we show that the value function corresponding to (2.3) is greater than or

equal to V (t, x, q) in (3.4) for the coefficient functions J,K : [0, T ]→ R defined by

J(t) :=
λ(t)

1 + r(t)
,

K(t) := σ2
w

∫ T

t

(
I − J(u)

)
r(u)2du.

(4.3)

We let Xt be as in (3.2). Then, for θ ∈ A arbitrary, we have

d[X,X]ct =
(
1 + r(t)

)2
d[θ, θ]ct + σ2

wr(t)
2dt+ 2σw

(
1 + r(t)

)
r(t)d[θ,W ]ct ,

d[X,Q]ct = −r(t)
(
1 + r(t)

)
d[θ, θ]ct − σ2

wr(t)
2dt− σwr(t)

(
2r(t) + 1

)
d[θ,W ]ct ,

(4.4)

where [·, ·]c denotes the continuous part of the quadratic covariation process [·, ·]; see, e.g., p.70 in

Protter (2005). For t ∈ [0, T ), Ito’s formula gives∫
[0,t]

(ã− θu−)dPu + V (t,Xt, Qt)

=

∫
[0,t]

(ã− θu−)λ(u)
(
dθu + σwdWu − α(u)Qudu

)
+ Iã2 +K(0) +

∫
[0,t]

(
J ′(u)XuQu +K ′(u)

)
du

+

∫
[0,t]

((
2IXu− + J(u)Qu−

)
dXu + J(u)Xu−dQu + Id[X,X]cu + J(u)d[X,Q]cu

)
+
∑

0≤u≤t

(
∆V (u,Xu, Qu)−

(
2IXu− + J(u)Qu−)

)
∆Xu − J(u)Xu−∆Qu

)
= Iã2 +K(0) +

∫ t

0

((
λ(u)− 2r(u)I + r(u)J(u)

)
Xu +

(
λ(u)− r(u)J(u)

)
Qu

)
σwdWu

+ 1
2

∫ t

0
λ(u)d[θ, θ]cu + 1

2

∑
0≤u≤t

λ(u)(∆θu)2, (4.5)

where we used ã − θu− = Xu− + Qu−, (4.1), (4.3), and (4.4) to obtain the second equality. In

(4.5), the stochastic integral with respect to dWu is a martingale on t ∈ [0, T ] because of the square
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integrability requirement in Definition 2.1. Passing t ↑ T in (4.5) produces the limit∫
[0,T )

(ã− θu−)dPu + V (T,XT−, QT−)

= lim
t↑T

(∫
[0,t]

(ã− θu−)dPu + V (t,Xt, Qt)

)

= Iã2 +K(0) +

∫ T

0

((
λ(u)− 2r(u)I + r(u)J(u)

)
Xu +

(
λ(u)− r(u)J(u)

)
Qu

)
σwdWu

+ 1
2

∫ T

0
λ(u)d[θ, θ]cu + 1

2

∑
0≤u<T

λ(u)(∆θu)2.

Because the last two terms are positive and the stochastic integral with respect to dWu is a mar-

tingale for any θ ∈ A we have

E

[∫
[0,T )

(ã− θu−)dPu + V (T,XT−, QT−)
∣∣∣FI0

]
≥ Iã2 +K(0). (4.6)

By using r(T−) = 0, J(t) in (4.3), and λ(t) in (4.1) we obtain2

J(T−) = λ(T ) = 2I > 0. (4.7)

Combing (4.7) with (2.6) produces the inequality

(ã− θT−)∆PT = (ã− θT−)λ(T )(ã− θT− −QT−)

= 2IX2
T− + J(T−)XT−QT−

≥ V (T,XT−, QT−). (4.8)

We combine (4.6) and (4.8) to conclude that

inf
θ∈A

E

[∫
[0,T ]

(ã− θu−)dPu

∣∣∣FI0
]

= inf
θ∈A

E

[∫
[0,T )

(ã− θu−)dPu + (ã− θT−)∆PT

∣∣∣FI0
]

≥ inf
θ∈A

E

[∫
[0,T )

(ã− θu−)dPu + V (T,XT−, QT−)
∣∣∣FI0

]
≥ Iã2 +K(0).

Step 2/3: We show that V (t, x, q) in (3.4) is indeed the the value function corresponding to (2.3),

and the stock-holding process θt in (2.9)-(2.10) is admissible and optimal. In this step, we let

(θt, Pt, Qt) be the solution of the SDE system (2.4), (2.5) and (2.9) on t ∈ [0, T ). The existence

2The functions λ(t) and J(t) are continuous functions on t ∈ [0, T ], so we have λ(T−) = λ(T ) and J(T−) = J(T ).

Except for β, the other functions (r,Σ1,Σ2, µ, s, α) are also continuous on t ∈ [0, T ].
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of the solution is ensured by the continuity of λ, µ, r, s, β, α : [0, T ) → R. From the Kalman-Bucy

result in Lemma A.1, the representations in (2.8) and (3.7) hold for t ∈ [0, T ) and we have

Σ1(t) = E[(ã− θt −Qt)2], t ∈ [0, T ),

Σ2(t) = E[(ṽ − Pt)(ã− θt −Qt)], t ∈ [0, T ).
(4.9)

We observe that (3.7) and Qt ∈ FMt imply

E [Qt(ã− θt −Qt)] = E
[
QtE

[
ã− θt −Qt|FMt

]]
= 0, t ∈ [0, T ). (4.10)

Then, for t ∈ [0, T ), the dynamics dQt in (2.4) and Itô’s lemma produce

Σ3(t) : = E[Q2
t ]

= E
[∫ t

0
2QudQu + σ2

wr(u)2du

]
=

∫ t

0

(
− 2α(u)Σ3(u) + σ2

wr(u)2
)
du,

(4.11)

where the last equality is due to (4.10) and (3.8)-(3.9). By computing the time derivative, we get

the ODE

Σ′3(t) = −2α(t)Σ3(t) + σ2
wr(t)

2, Σ3(0) = 0. (4.12)

Similarly, the function Σ4(t) := E[(ṽ − Pt)2], t ∈ [0, T ), satisfies the ODE

Σ′4(t) = −σ2
wλ(t)2, Σ4(0) = σ2

ṽ , (4.13)

where we have used dPt in (2.5), the representation of Σ2 in (4.9), and (3.8).

The boundedness of r, α, λ on t ∈ [0, T ] and the above ODEs give

sup
t∈[0,T )

Σi(t) <∞, for i ∈ {1, 2, 3, 4}. (4.14)

The explicit expressions of β(t) in (4.1) and Σ1(t) in (3.18) produce

sup
t∈[0,T )

β(t)2Σ1(t) = sup
t∈[0,T )

σ4
wr

2
0(1 + 2r0)

3
2

σ2
ã(1 + r0)2

(1 + r(t))2

(1 + 2r(t))
3
2

<∞. (4.15)

Based on these bounds, we can verify the conditions in Definition 2.1:

(i) The following observation and (4.14)-(4.15) produce E
[∫ T

0 θ2
t dt
]
<∞:

E[θ2
t ] = E

[(∫ t

0

(
β(u)(ã− θu −Qu) + α(u)Qu

)
du

)2
]

(4.16)

= C

∫ t

0

(
β(u)2Σ1(u) + α(u)2Σ3(u)

)
du, t ∈ [0, T ), (4.17)

for a constant C independent of t.
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(ii) The expectation E
[∫ T

0 Q2
tdt
]

=
∫ T

0 Σ3(t)dt is finite by (4.14). Itô’s lemma gives the dynamics

of Zt := e
∫ t
0 α(u)duQt, t ∈ [0, T ), as

dZt = e
∫ t
0 α(u)dur(t)

(
β(t)(ã− θt −Qt)dt+ σwdWt

)
,

where we have used the relation (3.9). The representation (3.7) ensures that the process with

dynamics β(t)(ã − θt − Qt)dt + σwdWt is the market makers’ innovations process. Therefore, Zt

is a martingale with respect to FMt . Furthermore, (4.15) implies that Zt is a square integrable

martingale uniformly bounded in L2(P):

sup
t∈[0,T )

E[Z2
t ] = sup

t∈[0,T )
E

[(∫ t

0
e
∫ u
0 α(v)dvr(u)β(u)(ã− θu −Qu)du+ e

∫ u
0 α(v)dvr(u)dWu

)2
]
<∞,

where we have used the boundedness of r(t) and α(t) on t ∈ [0, T ] and (4.14)-(4.15). Therefore, a

finite limit limt↑T Zt exists, which implies the existence of QT− (here we also use the continuity of

α on t ∈ [0, T ]).

(iii) Similarly to (ii) above, the process (Pt)t∈[0,T ) is a square integrable martingale uniformly

bounded in L2(P). This implies the existence of PT−.

Finally, we show θt’s optimality. Because ∆θt = 0 and [θ, θ]t = 0 for t ∈ [0, T ), the inequality (4.6)

becomes an equality. The representation of Σ1 in (4.9) and the boundary condition Σ1(T−) = 0 in

(3.16) give

0 = lim
t↑T

E[(ã− θt −Qt)2]

≥ E[(ã− θT− −QT−)2],

(4.18)

where the inequality comes from Fatou’s lemma. Therefore,

XT− = ã− θT− −QT− = 0, almost surely, (4.19)

and the inequality (4.8) becomes an equality. All in all, θt in (2.9)-(2.10) is optimal and satisfies

E

[∫
[0,T ]

(ã− θu−)dPu

∣∣∣FI0
]

= Iã2 +K(0).

Step 3/3: It remains to verify the property in Definition 2.2 (ii). For t ∈ [0, T ), this follows from

the Kalman-Bucy result in Lemma A.1 in Appendix A. Therefore, we only need to verify that (2.8)

holds for t = T . To this end, we observe

E
[
ṽ|FMT

]
= E

[
ṽ|FMT−

]
= PT− = PT , (4.20)



TRADING CONSTRAINTS IN CONTINUOUS-TIME KYLE MODELS 15

where the first equality is due to (4.19) and QT− ∈ FMT−, and the last equality is due to (2.6) and

(4.19). �

Instead of Gaussian dividends ṽ, Back (1992) and Cho (2003) consider h(ṽ) for a strictly increas-

ing function h : R→ R as the stock’s terminal dividends. In a similar spirit, instead of the terminal

target ã, it would be interesting to consider targets of the form h(ã) for a strictly increasing func-

tion h. Unfortunately, our setting does not immediately extend this case and we leave it for future

research to identify an extended set of sufficient state processes for such non-Gaussian targets.

5. Properties of equilibrium

This section discusses new and desirable model features produced by the insider’s trading con-

straint θT = ã. First, our equilibrium aggregate orders are positively autocorrelated whereas in Kyle

(1985) this process is a Brownian motion (hence, zero autocorrelation). Çetin and Danilova (2016)

consider market makers with exponential utilities and produce mean reversion in the equilibrium

aggregate holding process.

Second, our equilibrium price-impact function λ(t) is decreasing over the trading interval t ∈

[0, T ]. Barardehi and Bernhardt (2021) show that decreasing price-impact functions are empirically

desirable, and while the discrete-time model in Kyle (1985) also has a decreasing price-impact

function, price impact is constant in the continuous-time model in Kyle (1985). In Kyle models

with an exponentially distributed time horizon, Back and Baruch (2004), Caldentey and Stacchetti

(2010), and Çetin (2018) show that λ is a supermartingale. Baruch (2002) and Cho (2003) show

that an insider with exponential utility produces a deterministic and decreasing λ. For nonlinear

pricing rules and market makers with exponential utilities, Çetin and Danilova (2016) can produce

both super- and submartingales for λ.

Third, in Kyle (1985), the insider’s optimal order rate process x′t satisfies E[x′t|ṽ] = σw
σṽ
ṽ for all

t ∈ [0, T ]. However, empirically, there is more trading in the morning and afternoon relative to the

middle of the day when [0, T ] is one trading day (see, e.g., Choi, Larsen, and Seppi (2019)). In

expectation, our model produces such optimal U shaped trading behavior for the insider.

Fourth, our constrained insider optimally places a terminal block order ∆θT = ã − θT− 6= 0

whereas in Back (1992) such orders are suboptimal. However, the terminal block order is predictable

by the market makers (i.e., ã − θT− is FMT− measurable) and does not induce a jump of the stock

price (i.e., ∆pT = 0).

Fifth, unlike Kyle (1985) and Back (1992), the equilibrium stock price at the terminal time

is different from the insider’s initial expectation of ṽ (i.e., PT 6= E[ṽ|FI0 ]). This means that our
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constrained insider still has some unrevealed private information at the terminal time. Barger and

Donnelly (2021) show that transaction costs can also produce this property.

The next proposition states the aforementioned characteristics of our equilibrium.

Proposition 5.1. In the setting of Theorem 4.1, we have:

(1) The scaled autocorrelation of equilibrium aggregate holdings is positive

lim
h↓0

1

h

E[(Yt − Yt−h)(Yt+h − Yt)]√
V[Yt − Yt−h]V[Yt+h − Yt]

= α(t)

(
α(t)Σ3(t)

σ2
w

+ r(t)

)
> 0, t ∈ (0, T ), (5.1)

where the positive function Σ3(t) is defined in (4.11). Furthermore, in equilibrium, the

process Qt in (2.4) is mean reverting.

(2) The price-impact function λ(t) is decreasing for t ∈ [0, T ].

(3) For ã 6= 0, the mapping [0, T ) 3 t 7→ 1
ãE[θ′t|FI0 ] is U shaped where θ′t is the insider’s

equilibrium order-rate process3

θ′t := β(t)(ã− θt) +
(
α(t)− β(t)

)
Qt, t ∈ [0, T ), (5.2)

and the terminal block order satisfies 0 < 1
ãE[∆θT |FI0 ] < 1.

(4) ∆θT = QT− 6= 0 almost surely, QT− ∈ FMT−, and ∆PT = 0.

(5) PT 6= E[ṽ|FI0 ] almost surely.

Proof. To simplify, we give the proof for σw := 1.

(1): Based on dQt in (2.4), the dynamics of θ′t in (5.2) have the form

dθ′t = Atdt+
(
α(t)− β(t)

)
r(t)dWt, t ∈ [0, T ), (5.3)

for some integrable process At. For h > 0, we have

E[(Yt − Yt−h)(Yt+h − Yt)] = E
[(∫ t

t−h
θ′sds+Wt −Wt−h

)(∫ t+h

t
θ′sds+Wt+h −Wt

)]
= E

[(∫ t

t−h
θ′sds+Wt −Wt−h

)∫ t+h

t
θ′sds

]
= E

[∫ t

t−h
θ′sds

∫ t+h

t
θ′sds

]
+

∫ t+h

t
E[(Wt −Wt−h)θ′s]ds.

3It turns out that E[θ′t|FI0 ] is linear in ã; hence, the ratio E[θ′t|FI0 ]/ã does not depend on ã.
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The first term above can be approximated as h2E[(θ′t)
2] for h > 0 close to 0. For the second term,

we let s ∈ [t, t+ h] and compute

E[(Wt −Wt−h)θ′s] = E
[
(Wt −Wt−h)

(
θ′0 +

∫ s

0

(
Audu+

(
α(u)− β(u)

)
r(u)dWu

))]
= E

[
(Wt −Wt−h)

∫ s

t−h

(
Audu+

(
α(u)− β(u)

)
r(u)dWu

)]
=

∫ t

t−h

(
α(u)− β(u)

)
r(u)du+O(h3/2),

where we used the following observations:

E
[
(Wt −Wt−h)

(∫ t

t−h

(
Audu+

(
α(u)− β(u)

)
r(u)dWu

))]
= E

[
(Wt −Wt−h)

∫ t

t−h
Audu

]
+

∫ t

t−h

(
α(u)− β(u)

)
r(u)du

=

∫ t

t−h

(
α(u)− β(u)

)
r(u)du+O(h3/2),

E
[
(Wt −Wt−h)

(∫ s

t
Audu+

(
α(u)− β(u)

)
r(u)dWu

)]
= E

[
(Wt −Wt−h)

∫ s

t
Audu

]
= O(h3/2).

Therefore, we obtain the scaled autocorrelation:

lim
h↓0

1

h

E[(Yt − Yt−h)(Yt+h − Yt)]√
V[Yt − Yt−h]V[Yt+h − Yt]

= lim
h↓0

E[(Yt − Yt−h)(Yt+h − Yt)]
h2

= E[(θ′t)
2] +

(
α(t)− β(t)

)
r(t)

= β(t)2Σ1(t) + α(t)2Σ3(t) +
(
α(t)− β(t)

)
r(t)

= α(t) (α(t)Σ3(t) + r(t)) > 0,

where the third equality is due to (4.9) and (4.10), and the last equality is due to r(t) = β(t)Σ1(t)

from (3.9).

From the proof of Theorem 4.1 we know that the market makers’ innovations process (i.e., a

Brownian motion generating the filtration (2.7)) is given by

dW Y
t := β(t)(ã− θt −Qt)dt+ dWt, W Y

0 := 0.

The Brownian motion W Y
t allows us to rewrite the dynamics of Qt from (2.4) as

dQt = −α(t)Qtdt+ r(t)dW Y
t . (5.4)



TRADING CONSTRAINTS IN CONTINUOUS-TIME KYLE MODELS 18

Because α(t) from (4.1) is positive, (5.4) shows that Qt is mean reverting.

(2): Using the ODE (3.13) and the expressions of Σ1(t) and λ(t) in (3.18) and (4.1), we obtain

λ′(t) = −2ρσ2
wσṽr

3
0(1 + 2r0)

5
2

σ3
ã(1 + r0)4

r(t)(1 + r(t))4

(1 + 3r(t))(1 + 2r(t))
5
2

< 0 for t ∈ (0, T ).

(3): Let f, g : [0, T )→ R be defined as

f(t) :=
E[θt|FI0 ]

ã
, g(t) :=

E[Qt|FI0 ]

ã
.

The SDEs (2.4) and (2.9) and the relation s(t) = −(1 + r(t))α(t) from (3.9) produce the following

ODEs for f and g:

f ′(t) = β(t)
(
1− f(t)− g(t)

)
+ α(t)g(t), f(0) = 0,

g′(t) = r(t)β(t)
(
1− f(t)− g(t)

)
− α(t)g(t), g(0) = 0.

We can find explicit expressions of the unique solution of the above ODE system by using (4.1):

f(t) = 1− (1 + 2r(t))
3
2

r0
√

1 + 2r0(1 + r(t))
+

(1 + r0 − r2
0)(1 + 2r(t))

r0(1 + 2r0)(1 + r(t))
,

g(t) =
1 + 2r(t)

1 + r(t)

(
1 + r(t)− r(t)2

r0
√

1 + 2r0

√
1 + 2r(t)

− 1 + r0 − r2
0

r0(1 + 2r0)

)
.

These expressions give

f ′′(0) = − σ4
wr

4
0

σ4
ã(1 + 3r0)

< 0,

f ′′(T−) =
3σ4

wr
3
0(1 + 2r0)2

σ4
ã(1 + r0)4

(√
1 + 2r0 − 1 + r0(r0 − 1)

)
> 0,

(5.5)

where the second equality is due to r(T−) = 0 and the second inequality is due to

(√
1 + 2r0 − 1 + r0(r0 − 1)

) ∣∣∣
r0=0

= 0,

d
dr0

(√
1 + 2r0 − 1 + r0(r0 − 1)

) ∣∣∣
r0=0

= 0,

d2

dr20

(√
1 + 2r0 − 1 + r0(r0 − 1)

)
= 2− 1

(1+2r0)
3
2
> 0, for r0 ∈ (0,∞).

.

Let H : [0,∞)2 → R be defined as

H(x, y) :=

(
σ6
ã(1 + r0)6(1 + 2r(t))

7
2 (1 + 3r(t))5

σ6
wr

5
0(1 + 2r0)3(1 + r(t))5

f ′′′(t)

)∣∣∣∣∣
r(t)=x, r0=y

.
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Direct computations produce for 0 < x ≤ y:
H(x, x) = (1 + x)(1 + 3x)3(1 + 2x+ 4x2)

√
1 + 2x > 0,

Hy(x, x) = 2(1+3x)(1+x(20+x(4+3x)(22+3x(7+4x))))√
1+2x

> 0,

Hyy(x, y) = 2(1+3y(3+5y))(11+x(55+x(83+33x)))

(1+2y)
3
2

> 0,

,

where Hy and Hyy denote partial derivatives. These inequalities imply that

H(x, y) > 0 for 0 < x ≤ y. (5.6)

Since 0 < r(t) ≤ r0 for t ∈ [0, T ), the definition of H and (5.6) produce

0 < H(r(t), r0) =
σ6
ã(1 + r0)6(1 + 2r(t))

7
2 (1 + 3r(t))5

σ6
wr

5
0(1 + 2r0)3(1 + r(t))5

f ′′′(t) for t ∈ [0, T ),

and we obtain

f ′′′(t) > 0 t ∈ [0, T ). (5.7)

Combining (5.5) and (5.7), we conclude that the map t 7→ E[θ′t|FI0 ]
ã = f ′(t) is U shaped for t ∈ [0, T ).

Finally, to prove 0 < 1
ãE[∆θT |FI0 ] < 1, we observe

1

ã
E[∆θT |FI0 ] = 1− f(T−)

=

√
1 + 2r0 − 1 + r0(r0 − 1)

r0(1 + 2r0)
,

(5.8)

where the first equality uses ∆θT = ã−θT− and the definition of f , and the second equality uses the

explicit expression of f and r(T−) = 0. The conclusion follows because
√

1+2r0−1+r0(r0−1)
r0(1+2r0) ∈ (0, 1)

for r0 > 0.

(4): ∆θT = QT− is from (4.19) and ∆PT = 0 is from (4.20). We obtain QT− 6= 0 a.s. because

1
ãE[QT−|FI0 ] = 1

ãE[∆θT |FI0 ] 6= 0 by part (3).

(5): The explicit solution of (4.13) is given by

Σ4(t) =
ρ2σ2

ṽ

√
1 + 2r0

(1 + r0)2

(1 + r(t))2√
1 + 2r(t)

+ (1− ρ2)σ2
ṽ . (5.9)

Because ṽ − ρσṽσã ã is independent of FIt , we obtain for t ∈ [0, T ) that

E
[(
ρσṽσã ã− Pt

)2
]

= E
[
(ṽ − Pt)2

]
− E

[(
ṽ − ρσṽσã ã

)2
]

= Σ4(t)− (1− ρ2)σ2
ṽ

=
ρ2σ2

ṽ

√
1 + 2r0

(1 + r0)2

(1 + r(t))2√
1 + 2r(t)

. (5.10)
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The expression in (5.10) and Fatou’s lemma produce

E

[(
ρ
σṽ
σã
ã− PT

)2
]
≥ ρ2σ2

ṽ

√
1 + 2r0

(1 + r0)2
> 0,

where we have used r(T−) = 0 and PT = PT−. �

Figure 1 illustrates the price impact function λ(t), the insider’s expected order rates 1
ãE[θ′t|FI0 ],

the scaled autocorrelation of aggregate holdings, and the remaining (unconditional) variance of

PT − E[ṽ|FI0 ] = PT − ρ
σṽ
σã
ã.

Figure 1. Graphs of the Kyle’s λ(t) (1A), the insider’s expected order rate 1
ã
E[θ′t|σ(ã)] (1B), autocorre-

lation of aggregate holdings Yt (1C), and remaining variance E[(ρσṽ
σã
ã − Pt)2] (1D). The parameters are

σw := 1, σṽ := 1, ρ := 0.3, T := 1, and σã := 5 (—), σã := 3 (- - -), and σã := 1 (- · -).
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1A: price impact λ(t) in (4.1) 1B: expected order rate 1
ã
E[θ′t|σ(ã)]
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1C: scaled autocorrelation in (5.1) 1D: remaining variance E[(ρσṽ
σã
ã− Pt)2] in (5.10)

Appendix A. Kalman-Bucy filtering

The following result is a special case of the classic Kalman-Bucy filtering result for Gaussian

processes.
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Lemma A.1 (Kalman-Bucy). Let the functions (Σ1, λ, µ, r, s, β, α) be as in (4.1), let Σ2 be as

in (4.2), and let the processes (θt, Pt, Qt) be the solutions of the SDEs (2.4), (2.6), and (2.9) for

t ∈ [0, T ). Then, for t ∈ [0, T ), the representations in (2.8), (3.7), and (4.9) hold.

Proof. While Σ1(t) is given as the solution of the ODE in (3.10), we can use λ(t) in (4.1) to see

that Σ2(t) defined in (4.2) satisfies the ODE in (3.11).

Based on (2.9), the market makers’ observation process Yt in (2.2) has dynamics

dYt =

 σwdWt +
(
β(t)(ã− θt −Qt) + α(t)Qt

)
dt, t ∈ (0, T ),

ã− θT−, t = T.

(A.1)

Because the explicit expressions in (4.1) satisfy (3.8)-(3.9), the Kalman-Bucy result (see, e.g.,

Theorem 10.3 in Liptser and Shiryaev 2001) gives (2.8) and (3.7) for t ∈ [0, T ). Furthermore,

because Σ1 satisfies (3.10) and Σ2 satisfies (3.11), the Kalman-Bucy result also gives (4.9). �

Appendix B. Full information

This appendix briefly explains why the equilibrium produced by Theorem 4.1 continues to be

an equilibrium when (2.1) is replaced with FIt := σ(ṽ, ã, (Wu)u∈[0,t]). Because FI0 = σ(ṽ, ã), the

right-hand-side of the insider’s maximization problem (2.3) is altered and becomes

sup
θ∈A

E

[
(ṽ − PT )θT +

∫
[0,T ]

θt−dPt

∣∣∣∣∣FI0
]

= ṽã− inf
θ∈A

E

[∫
[0,T ]

(ã− θt−)dPt

∣∣∣∣∣FI0
]
, (B.1)

where the admissible set A is as in Definition 2.1. While a term like γ(t)(ṽ−Pt) for a deterministic

function γ(t) is crucial in Kyle (1985) and Back (1992), such a term is irrelevant in our constrained

setting because the infimum in (B.1) does not depend on ṽ. Consequently, the equilibrium in The-

orem 4.1 remains a valid equilibrium even when the insider initially observes both ã and ṽ.
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