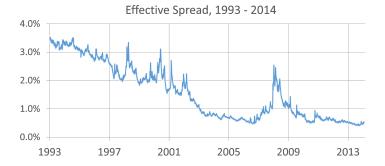
Discussion of "Fragmented Markets and Maker-Taker Pricing" Daejin Kim (UNIST)

Hong Kee Sul Wharton Research Data Services


Asia-Pacific Association of Derivatives Conference (APAD) July 10, 2017

MOTIVATION

- Introduction of Regulation NMS
 - Goal: Regulators wanted to foster competition among trading venues
 - ► Key: Order Protection Rule (Trade Through Rule)
- Decentralized / Fragmented Markets
 - Multiple Exchanges
 - Other Trading Venues(ATS, ECN, Dark Pools)
- Designated Market Makers to Competition of Order Flow
 - Maker-Take Pricing Models

STATE OF THE MARKET

- On surface, markets are better than ever
 - Quoted bid-ask spreads are near all-time low
 - Trading costs have fallen dramatically
 - Market depth has increased significantly
 - Speed has increased dramatically

POTENTIAL PITFALLS EXIST

- Disappearance of the Designated Market Makers
 - Flash Crash
- Dark pools mays degrade market liquidity
 - ► Dark Pools cover 38% of market (2017 July, BATS)
- ► Fragmented Markets → Competition for Order Flow: Conflicts of Interest
 - Maker-Take pricing model
 - Payment for order flow

MAKER-TAKE PRICING MODEL

Concept

- Rebate is paid to liquidity providers (Make)
- Fee is charged to traders removing liquidity (Take)

Issues

 Brokers may choose to internalize orders or route orders to cheaper venues or dark pools to avoid paying access fees to make-or-take exchanges

FOUCAULT, KADAN, AND KANDEL (2013, JF)

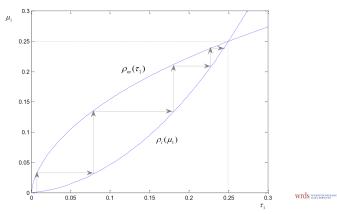
Security

- ► Market Makers value of security: *v*₀
- Market Takers value of security: $v_0 + \Gamma$
- Gains from Trade: Γ
- Trade price : $a = v_0 + \Delta$, $v_0 < a = v_0 + \Delta < v_0 + \Gamma$

Make-Take Fee

- ► Market maker fee : *c*_m
- Market taker fee: c_t
- Platform Profit: $\bar{c} = c_m + c_t$
- Monitoring cost of participating in a trade
 - ► Market Maker *i* (*i* ∈ 1...*M*) inspects the market according to a Poisson process with parameter *μ_i* with cost,

$$C_m = \frac{1}{2}\beta\mu_i^2 T \tag{1}$$


► Market Taker j (j ∈ 1...N) inspects the market according to a Poisson process with parameter τ_i with cost,

$$\mathcal{L}_t = rac{1}{2}\gamma au_i^2 T$$

FOUCAULT, KADAN, AND KANDEL (2013, JF)

- Solving for Equilibrium
 - The Trading Platform chooses its fee structure: c_m, c_t
 - Market Makers/Takers choose simultaneously monitoring intensities μ, τ
- Propositions
 - P1/2) There exists two equilibria; One with no monitoring and no trade, and one with monitoring and trade

FOUCAULT, KADAN, AND KANDEL (2013, JF)

- Optimal Breakdown of fees
 - Trading Platform's problem

$$max(c_m + c_t) * R(\bar{\mu}, \bar{\tau})$$
(3)

• s.t.
$$c_m + c_t = \overline{c}$$
.

- Solution:
 - c_m^*, c_t^* such that

$$\frac{\partial R}{\partial c_m} = \frac{\partial R}{\partial c_t} \tag{4}$$

- Optimal fees are set so that the change of transaction rate to the fees are equal
- Intutive that $c_m \neq c_t$, and Make-Take spreads exist

MAKER-TAKE PRICING MODEL

Empirical Literature

- ► Battalio, Corwin, and Jennings (2016 JF)
 - Findings: a negative relation between measures(fill rate, fill time, realized spread) of limit order execution quality and rebate/fee level
 - ► Problem: Proprietary Limit Order Data questionable
- ► Malinova and Park(2015 JF)
 - ► Change in trading fees in TSE → posted bid-ask spreads decline but transaction costs for liquidity demanders remain unaffected

Thank You!

